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1. Introduction

In many countries around the world road congestion continues to cost billions in economic losses each year, and this

is predicted to rise (INRIX (2021)). Conventional approaches to traffic congestion reduction have been to build more

roads and capacity. However, due to induced demand effects and increasing environmental costs this is not always

effective or viable option (Hymel et al. (2010)). As an alternative to making physical changes to the network, potential

improvements to congestion can be made from directing drivers to use the network more efficiently utilising intelligent
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Rerouting drivers from selfish route choices to system-optimal traffic patterns has the potential to improve the performance of

existing infrastructure. Previous research has looked into assessing the potential of rerouting through the empirical price of anarchy,

a measure of network efficiency. However, studies using real-world measurements have been limited by methodological accuracy

and network size. Also, they have lacked understanding of the spatial distribution of benefits from rerouting and the relationship

with marginal external cost road charges that can be used for implementation. In this article, we create an accurate data-driven

traffic assignment model of England’s Strategic Road Network. We use it to calculate the national price of anarchy, which is found

to be almost 1 implying gains from rerouting at the national scale are minimal and smaller than in other studies. The results show

the distribution of rerouting benefits varies strongly with different network zones and demand profiles. This did not match the

distribution of marginal external cost charges. Some zones have noticeable benefits from rerouting although the overall network

benefit is small, however, these zones do not coincide with where the largest road charges have to be applied for system-optimal

rerouting. These results have implications for rerouting implementation.
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transport systems such as connected autonomous vehicles and road-specific road charges (Zhang et al. (2018)). Drivers

on the road seek to minimise their own selfish travel cost through their choice of route without considering the effect

on the transport system overall. Their non-cooperative behaviour leads to emergence of Wardrop equilibrium patterns

referred to as User-Equilibrium (UE), where no driver can improve their travel cost assuming the other drivers’ routes

are fixed (Youn et al. (2008)). The use of static Traffic Assignment (TA) models has been investigated as potential

way to analyse traffic patterns and calculate System-Optimal (SO) routing that reduces global travel costs from UE by

more efficient route allocation (Patriksson (2015)). The dimensionless metric of the Price of Anarchy (POA) metric

is used to quantify the loss in performance from selfish UE routing compared to globally SO patterns (Zhang et al.

(2018)).

Technological developments in traffic data collection have created opportunities to measure the cost of uncoordi-

nated driving on large-scale real-world transportation systems. Different methodological approaches have been used to

quantify the empirical POA (Table 1). Previous work using real-world measurements has been limited by the accuracy

of the methods used for calculating the traffic patterns or restricted to smaller network sizes by the techniques used to

create the static TA model (Monnot et al. (2017); Zhang et al. (2018)). Others have included additional synthetic data

(Youn et al. (2008); De Grange et al. (2017)) that reduced empirical validity, or incorporated dynamic effects through

micro-simulation that increased computational cost (Belov et al. (2022)). Currently such empirical POA research has

not investigated in detail from a network perspective the distribution of benefits from large-scale rerouting and the

relationship with marginal cost road charges. By investigating this it adds extra insight into how rerouting allocates

the costs on a network, providing a greater comprehension of any practical implementation issues and the fairness of

potential benefit distributions. These are essential for planners to understand how such schemes impact road users in

different regions of networks.

Study Model Type Analysis Description Network

location/type

POA

Range

Youn et al.

(2008)

Synthetic demand in

static TA

Demand varied on single O-D pair Boston, New York

and London

1.24 - 1.30

O’Hare

et al. (2016)

Synthetic demand in

static TA

Demand varied on different

numbers of O-D pairs

Sioux Falls test

network

1 - 1.1

De Grange

et al. (2017)

Synthetic demand in

static TA

Demand varied for reference

matrices with alternative

congestion function parameters

Santiago de Chile,

Anaheim and

Chicago

1.06 - 1.09

Monnot

et al. (2017)

Individual commuter

data without TA

model

Acquired the SO routing via

Google Directions and compared

with recorded commuter routes

Singapore 1.11 - 1.22

Zhang et al.

(2018)

Mobile phone data-

driven static TA

Data-driven TA model used to

calculate SO pattern for

comparison with observed traffic

Eastern

Massachusetts

1 - 2.3

Wu et al.

(2021)

Synthetic demand in

static TA

Number of O-D pairs varied when

loading the network

Beijing 1

Belov et al.

(2022)

Synthetic data in

dynamic TA using

micro-simulation

Varied the micro-simulation

parameters modelling driver

behaviour

Small Braess-like

test network

1.6 - 2.6

Table 1. Details of key existing empirical POA studies with range of obtained POA values.

In this paper we use Motorway Incident Detection and Automatic Signalling (MIDAS) traffic data supplied by

National Highways (NH) to create a TA model to analyse the empirical POA on the national-scale English Strategic

Road Network (SRN). The approach uses efficient techniques to obtain accurate TA model inputs. It utilises a novel

combination of road-specific density-based fitting of congestion function and network modularity-based community

partitioning to obtain the Origin-Destination (O-D) demand matrix. The created data-driven model is used to analyse

POA on the English SRN and investigate how the benefits of SO routing are distributed together with marginal external

costs.
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The results obtained indicate a small POA that is close to 1 for the English SRN (1.0011-1.0015). This implies

that SO rerouting leads to approximately a 0.1% improvement in overall time savings on the network. This is a small

value compared to many previous empirical studies (Table 1). For example, the study of the Eastern Massachusetts

highway network in Zhang et al. (2018) using a similar data-driven model found POA values of up to 2.3, with a

monthly average of 1.5. In a national-scale study of Singapore, a POA between 1.11 and 1.22 was obtained (Monnot

et al. (2017)). However, the novel analysis of the zonal distribution of costs from rerouting reveals a more nuanced

picture, with certain regions of the network exhibiting more significant changes in cost from rerouting.

This paper is structured as follows. In Section 2, the models and methods are presented to create the data-driven TA

model. In Section 3, the data sets are presented together with the validation of the fitted TA model. Section 4 presents

the numerical results relating to the POA and distribution of costs on the network. Finally, Section 5 concludes the

paper.

2. Model and Methods

2.1. Network Definition

The road network is modelled as a directed graph with a set of nodesV and a set of edgesA. The model assumes

the graph is strongly connected, on road networks in general, and the English SRN in particular, there is a path between

all pairs of nodes so the assumption is valid. F is the set of vehicle flows permissible on the network.

Further details of the mathematical definition of the network including the properties and relations of the traffic

flows and demands can be found in Zhang et al. (2018).

2.2. Calculating Congestion Functions

Congestion functions are key inputs for assignment models that link the travel time on each road to the vehicle

flows. In this paper we use a density-based fitting of the Bureau of Public Roads (BPR) function based on Kucharski

and Drabicki (2017) to estimate the functions for each edge of the network from traffic data with low computational

cost.

The BPR equation is widely used in TA models (De Grange et al. (2017); Youn et al. (2008)). In its more general

form for an edge a ∈ A it is:

ta = t0
a

(

1 + α(
x̌a

ma

)
β
)

, (1)

where x̌a is the flow ’demand’. It should be clarified that flow demand defined here refers to the total number of drivers

intending to travel through the specified road edge and this can exceed the defined road capacity, which is therefore

distinct from actual measured or observed flow which is limited by capacity. ma is the capacity and t0
a is the free-flow

travel time.

Our method uses traffic density to transform the congestion function to a form that a curve can be fitted to using

a non-linear least-squares approach and specific estimates of α and β parameters can be obtained (Kucharski and

Drabicki (2017)). Estimating the traffic density using loop detector data is limited by the instantaneous time-mean

measurements. In this work, the measured vehicle occupancy, together with mean length of vehicle and sensor length

(2m for MIDAS), is used to estimate the traffic density as is commonly done in practice (Kim and Hall (2004)). The

data used in the estimation include all daytime measurements averaged with 60-min mean values to remove outliers

to steady-state conditions. ma is taken as the maximum observed flow (Dervisoglu et al. (2009)). Free-flow speed v0 is

obtained as the 95th percentile of the observed speeds (Casey et al. (2020)) and t0 from that through edge length l. The

fitting is only applied to edges with sufficient data in the hyper-critical congested region. Edges without congested

data assume values of α = 0.15 and β = 4 and take the National Traffic Information Service (NTIS) values of capacity

(National Highways (2022)).
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2.3. Estimating the O-D Demand Matrix

The Generalised Least Squares (GLS) method, together with the Bi-Level optimisation problem (BiLev) adjustment

algorithm, is used to estimate the key TA model input of the O-D demand matrix, without relying on external data

sources beyond the empirical loop detector data (e.g. travel demand surveys). The method used in this work is similar

to Zhang et al. (2018) and Roocroft et al. (2022).

As GLS has computational difficulties at larger network sizes, to obtain an estimate of the prior matrix a community

partitioning approach is used to reduce computational difficulty, as described in Roocroft et al. (2022). This approach

uses the Louvain algorithm for community detection based on network modularity to find the areas of the network

most closely connected. It then applies the GLS method to the OD pairs in each partition separately. It combines

these individual estimates into an estimate of the prior matrix, assuming zero demand for the OD pairs spanning

partitions. In Roocroft et al. (2022) there are multiple ways of combining the partition OD estimates, this work uses

the internal-only approach with two partitions as that has been shown to provide the best combination of accuracy and

computational cost for networks of the size to be investigated here. The demand is calculated for discrete time-bins

that approximate demand for static TA analysis. Three time-bins relating to workdays (Monday-Friday) are used: AM

(6am-10am); MD (10am-4pm); PM (4pm-8pm).

2.4. Flow pattern calculation

The predicted UE flow pattern can be calculated using the calculated O-D demand matrix and congestion functions

through the Frank-Wolfe algorithm with the following optimisation of the Traffic Assignment Problem (TAP) (see

Patriksson (2015) for details):

min
x∈F

∑
a∈A

∫ x̌a

0

ta(s)ds (2)

The UE flow pattern results from drivers pursuing their selfish best route and throughout this work it is assumed to

match the observed flows as commonly done in other works (Zhang et al. (2018); Monnot et al. (2017); De Grange

et al. (2017)). This type of deterministic UE assumes drivers are perfectly rational and have complete routing informa-

tion available (Sheffi (1985)). More complex models use perceived cost to account for imperfect routing information

in stochastic user equilibrium (Prato (2009)). Others use bounded rationality to model drivers’ inertia to changing

decisions (Di and Liu (2016)). Both of these alternatives can provide more realistic driver behaviour, however, they

increase model complexity and require more computational requirements. Deterministic UE has been shown in recent

research to match observed flow patterns fairly well at the network scale (Yildirimoglu and Kahraman (2018)) and it

is widely used in many TA models for POA investigations (Zhang et al. (2018); Monnot et al. (2017); De Grange et al.

(2017)).

For the network, the Total System Travel Time (TSTT) is defined by:

L(x) =
∑
a∈A

x̌ata(x̌a) (3)

The SO flows which minimise the TSTT are formulated by the following non-linear optimisation problem:

min
x∈F

∑
a∈A

x̌ata(x̌a) (4)
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This can also be solved using the Frank-Wolfe algorithm. The objective function of the SO optimisation can be

expressed as the sum of the integrals of the marginal total costs of each edge t̄a(xa). Such that (Patriksson (2015)):

t̄a(x̌a)
def

=
d

dx̌a

x̌ata(x̌a) = ta(x̌a) + x̌at′a(x̌a), (5a)

∑
a∈A

x̌ata(x̌a) =
∑
a∈A

∫ x̌a

0

t̄a(s)ds. (5b)

The marginal total cost, t̄a(x̌a), of an edge a at x̌a can be interpreted as the increase in total cost on that edge from

an additional driver joining that edge. In Equation 5a the total marginal cost is broken down into two components:

ta(x̌a) is the the marginal private cost; x̌at′a(x̌a) is the marginal external cost. The difference between the UE and SO

patterns results from the individual driver’s avoidance of paying all the cost that they contribute to the system’s total

travel cost. From an economics perspective, a driver’s private cost does not equal their total cost to the system due to

the external costs they do not pay.

An understanding of the spatial and temporal distribution of marginal costs on specific road edges would allow for

more targeted strategies that could encourage SO routing for individual drivers. For example, by specifying road road

charges during specific periods or at particular road edges, a traffic flow distribution that is closer to SO routing could

be achieved (Patriksson (2015)). For static TA models with BPR congestion functions, the values of the marginal

external cost, x̌at′a(x̌a), for an edge a ∈ A with a road-specific BPR congestion function is calculated by:

x̌at′a(x̌a) =
t0
aβaαa

ma
βa

x̌
βa

a , (6)

where the parameters αa and βa are the BPR coefficients fitted to edge a. This can be derived by differentiating

Equation 1 with respect to x̌a and then multiplying by x̌a.

3. Data sets and Model Fitting

For the purpose of this article, we utilise traffic data obtained through the MIDAS system for the period September

2018 to August 2019. MIDAS mostly records traffic through inductive loops spaced approximately every 500m at

approximately 7000 sites on the England SRN (Highways England (2019)). Details of pre-processing MIDAS data

for TA analysis can be found in (Roocroft et al. (2022)).

The NTIS model contains the information on the details and location of assets used to monitor traffic on the SRN,

such as the location of MIDAS sensor sites and geospatial information of the road junctions that can be converted

into a graph representation of the network (Highways England (2019)). The NTIS is subjected to conventional data

processing to remove inaccuracies and create a 278 edge topographic representation of the main carriageways com-

prising the national SRN monitored by MIDAS. The partitioned topographic representation of the network (Figure 1)

is used to obtain the O-D matrix.

The density-based BPR congestion function fitting method is applied to 231 suitable edges of the network (83% of

total), with these edges selected based on suitable data. The fitted congestion functions and O-D matrices are used to

obtain the errors in the resulting UE traffic pattern compared to the observed edge flows and travel times.

The Absolute Percentage Errors (APE) are calculated as:

APEt
a =
|tuser

p,a − tobs
p,a |

tobs
p,a

, (7)
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Figure 1. Topographic representation of the simplified NTIS model for the SRN subnetwork. The two colours of nodes indicate the partitions used

for demand profile estimation. Map underlay from Google Maps (Google Maps (2022)).

for travel time, while

APEx
a =
|xuser

p,a − xobs
p,a |

xobs
p,a

, (8)

is used for flows. For each time-bin p and edge a, xobs
p,a is the observed flow and tobs

p,a is the travel time derived from

observed speed. The values are the mean within each time-bin over the fitting period. tuser
p,a is the predicted travel time

derived from the congestion function using xuser
p,a , which is the edge flow value predicted by the model through solving

the UE TAP with the calculated O-D matrix.

The inaccuracy of the UE assignment prediction is also assessed through the error in TSTT, Lerror, such that:

L
p
error(x

ue) =

∑
a∈A xuser

p,a tuser
p,a −

∑
a∈A xobs

p,a tobs
p,a

∑
a∈A xobs

p,a tobs
p,a

, (9)

for time-bin p. This calculation combines the errors in flow and time prediction and has particular relevance for

analysis based on aggregate total system cost

The validation results (Table 2) show the travel time error is fairly low and the overall error in TSTT, Lerror(x
ue),

is only 7.9% on average across the time-bins. The results can be compared with recent TA modelling work (Dey
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et al. (2020)) that used similar network tomography-based O-D matrix estimation techniques to obtain the TA input

for a small 23 node, 54 edge network in Melbourne, Australia. That model had a mean flow APE of 24.18% using

simulated data. Using travel time data from Uber and Syic, they found mean APEs in travel time predictions of

18 - 33%. Although these results are not directly comparable as the networks are different, they demonstrate the

approximate size of errors for current similar real-world data-driven static TA models. As Table 2 shows similar errors

for a much larger network, the derived static TA model is reasonably suitable for the following analysis.

Mean Flow

APE (%)

Mean Travel

Time APE

(%)

Median Flow

APE (%)

Median

Travel Time

APE (%)

Lerror(x
ue)

(%)

AM 32.8 16.6 23.0 4.8 -7.8

MD 30.9 16.5 22.4 4.3 -4.6

PM 32.6 16.4 26.0 4.4 -11.2

Table 2. Time-bin specific User-Equilibrium (UE) prediction error statistics for all edges on network during the analysis period September 2018 to

August 2019. The mean and median errors refers to the mean and median across all the edges.

4. Results

4.1. Routing Efficiency

Using the calculated UE and SO flow patterns, the POA can be calculated through:

POA =
L(xUE)

L(xS O)
, (10)

where L(xUE) is the sum of the calculated UE flow vector multiplied by the calculated UE travel time vector resulting

from the congestion functions. Likewise, L(xS O) is the SO flow vector multiplied by its travel time vector.

After calculating the TSTT for the UE and SO flow patterns, the POA is found to be very low (Table 3). On average,

the POA for the three time-bins is 1.0013. This indicates that the network does not have a large potential for savings

in overall congestion from rerouting selfish drivers in a more system optimal way. The obtained values are due to

the interplay of the SRN’s demand profile, congestion functions and network structure (Belov et al. (2022)). A major

influence on the low POA values is the large free-flow travel times of the congestion functions of the SRN, which

dwarf the time savings from rerouting and lead to smaller POA values (O’Hare (2015)). This combines with a general

lack of routing options on the network and a time-bin average demand profile that smooths out peak demand to a

lower level, which also reduce the POA (O’Hare et al. (2016)). These aspects joined together lead to POA values on

the low end of those found in the literature, and could be expected for other similar networks.

Table 3. Price of Anarchy (POA) during the period September 2018 to August 2019.

Time

Bin
L(xue) [hr] L(xS O) [hr] POA

AM 87797 87662 1.0015

MD 87835 87709 1.0014

PM 82921 82831 1.0011
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Figure 2. Difference in the total cost on each edge of the network between User-Equilibrium (UE) and System-Optimal (SO) flow patterns in each

time-bin. Results are for edges on network, using data from the weekdays selected for analysis between September 2018 and August 2019.

4.1.1. Network Cost Distribution

The travel cost on a single edge a ∈ A, Ledge(xa), is defined as:

Ledge(x̌a)
def

= x̌ata(x̌a). (11)

The difference between the edge cost for UE and SO flow patterns is then defined as:

∆L
a
edge

def

= Ledge(x̌UE
a ) − Ledge(x̌S O

a ). (12)

To investigate how the traffic cost is redistributed between UE and SO flow patterns, the difference in the cost on

each edge, ∆La
edge

(Equation 12), is plotted in Figure 2. Other quantities such as the saturation rate, xa/ma, and delay

factor, ta(xa)/t0
a, could be used to show the effect of the different routing; however, the difference in edge cost is the

most relevant as it captures both flow and travel time together.

The plots in Figure 2 show that there are many edges that do not have routing differences, for example between

edges 220 to 250. These edges correspond to the areas of the network that only have single routes. These are called

bridge edges and removing them would prevent certain nodes from being accessible from the rest of the network. Of

the 278 edges of the network, 90 are classed as bridge edges (32.4%). These large portions of the network with only

one route limit the effectiveness of rerouting and contribute to the low overall POA values found in Table 3.

The edges without cost differences are highlighted in red and purple in Figure 3. The red Group 2 edges are the

bridge edges that only have one route available to their attached nodes, they do not have a difference in any time-bin.

The edges in the purple Group 3 change across time-bins. This shows that the edges in the main subnetwork that are
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Figure 3. Edges on network that have cost differences between User-Equilibrium (UE) and System-Optimal (SO) flow patterns during the analysis

period September 2018 to August 2019: (a) AM; (b) MD; (c) PM. Edge thickness is proportional to change in edge cost. Group 1 are edges with

differences in cost between UE and SO routing. Group 2 are bridge edges without any difference in cost. Group 3 are non-bridge edges without any

difference in cost.
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Figure 4. Marginal external cost for each edge and each time-bin on the network for the analysis period September 2018 to August 2019. Bridge

edges on the network (those with single routes) are indicated with red bars, non-bridge edges are indicated with blue bars.

not ’bridges’ yet present no cost difference, change depending on the demand profile of the time-bin considered. This

highlights the influence demand profile structure can have on the outcome of rerouting.

The marginal external cost for each edge and time-bin is shown in Figure 4. Notably, some of the highest marginal

external costs are on bridge edges. High road charges on them would entail implementation difficulties as they only

have one route to their associated nodes. Drivers wishing to access these nodes would have no alternative choice

of route, meaning the road charges would not directly affect the routing. Instead, these road charges would likely

have unconsidered secondary effects on mode choice and patterns of demand, as drivers may not want to use the

available road system for affected journeys. This highlights a problem for any road network with bridge edges, which

reduce routing options and the opportunity to benefit from rerouting. However, the network model we have used

here, is actually a simplification of the actual road network (since we do not include smaller roads in the model) and

alternative routes would be available in reality.

4.2. Effect of Rerouting in Zones of SRN

We use zonal cost difference to analyse the cost difference between zones of the network to see how the rerouting

benefits are distributed across the network. This is defined as:

∆Lz
def

=
L(xUE

z ) − L(xS O
z )

|Az|
, (13)

where for UE and SO flow patterns, Az is the set of edges in zone z and L(xz) =
∑

a∈Az x̌ata(x̌a). The difference in

the total costs in the zone from rerouting is divided by the number of edges in the zone |Az| to give a mean zonal cost

difference per edge. Additionally, the mean marginal external cost for a zone is calculated by the sum of the marginal

external costs of the edges in a zoneAz divided by the number of edges in the zone |Az|.
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Although the POA on the network is small, the change in costs from rerouting UE flow patterns to SO is distributed

differently across the network. For the network overall, the total costs decrease when changing the routes taken by

drivers, however, the benefits of this are not evenly distributed. For example, in Figure 2 it can be seen that the edges

1-28 have some of the highest redistribution of costs. These edges correspond to the roads around the Birmingham

area.

To investigate the pattern of redistribution of costs from rerouting, in Figure 5 we identify a sample of zones. These

split the network into broad geographic regions (e.g. North, South) and also city regions (e.g. London). In order to

reduce the unwanted effect of the bridge edges identified (Figure 3) (since they can have no impact on improving

rerouting), we remove them from this zonal analysis. The parts of the network that contain the bridge edges decrease

the opportunity to lower the TSTT through rerouting, as they contribute to the total demand but cannot vary routing

between UE and SO.

In Figure 6 (a), it can be seen that there are variations in the changes to the zonal costs from rerouting between

different zones and time-bins. For example, between North, South and Middle it is apparent that North benefits the

most from rerouting, in particular in the AM time-bin. This comes at the expense of the edges in the Middle zone,

however, in the MD time-bin that zone does have a slight positive reduction in cost. In Figure 6 (b), it can be seen

that, of the three zones, the highest mean edge marginal external cost is within the Middle region, highlighting that if

a marginal cost road charge scheme was implemented then higher road charges would be paid in the region with the

least reduction in time cost.

When the subnetwork is divided between the East and West zones, it can be seen that in AM and PM the West zone

benefits more than the East. However, in the MD time-bin East benefits slightly more than West. In the city zones it

is clear that Birmingham (BHM) has the largest reduction in cost of all the three, however, London (LDN) has higher

mean edge marginal external costs.

In the Core zone, with the bridge edges removed, there is a positive reduction in cost across all time-bins. Using

the Core zonal cost totals in the POA calculation leads to higher values than those obtained for the whole network

(AM 1.0021 ; MD 1.0020 ; PM 1.0015).

The zone with the clearest benefit from SO rerouting consists of the 24 edges which represent roads surrounding

Birmingham (BHM). When the total costs of this zone are included in the POA analysis, the values are considerably

higher than for the whole network (AM 1.0203 ; MD 1.0262 ; PM 1.0154). BHM is clearly a beneficiary of rerouting

on the network, however, the Middle zone of which it is a part of, is a zone which loses overall from rerouting. This

is due to the position of the zones, the structure of the network and the profiles of demand. Depending on how the

network is divided into zones, different aggregate results are obtainable. Overall, the network benefits from rerouting,

however, users in distinct areas of the country with different needs from the transport system would perceive the

changes differently. Further understanding of the causes that lead to different zones benefiting or losing out due to

rerouting is beyond this analysis; however, future work could build on this insight.

5. Conclusion

In this paper we presented a high level structural analysis of the motorway system of the English SRN covered

by the MIDAS system over a year. From the analysis we showed through the POA metric that the opportunity to

improve overall congestion on the SRN network through rerouting selfish drivers was limited in the analysis period.

When compared to previous empirical POA studies the values obtained were relatively small. This was due to the

interaction of the demand profile with the network structure and congestion functions. In line with previous POA

research, contributing factors to this were large free-flow travel times in the congestion functions and lower levels of

demand. Another contributing factor was the presence of a large number of bridge edges that reduce routing options.

It was highlighted how bridge edges could cause implementation issues for marginal cost road charging if the charges

on them were high. In general, a large number of bridge edges would likely make rerouting schemes unsuitable for a

network.

The created data-driven TA model was used to investigate the distribution of the costs and benefits of rerouting

across the road system, which was found to vary strongly with different areas and time-bin demand profiles. This

distribution did not match with the distribution of marginal external costs on the network. Zones of the network with
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Figure 5. Zonal divisions of the topographic representation of the network. (a) North, South, Middle; (b) East and West; (c) Cities- London (LDN),

Birmingham (BHM), Manchester (MCR); (d) Core subnetwork without bridge edges. The edges with thin blue lines are excluded from the zones.

the largest benefits from rerouting were not often those where the largest marginal external cost road charges would

be applied, which has implications for public acceptance of any such road charge scheme as it may be seen as unfair.

The techniques in this research could be used by transport planners to build a suitable TA model solely from

widely-available loop detector measurements and analyse at different scales the viability of system optimal routing

schemes for improved understanding of potential cost and benefit distributions. Future work could investigate the
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Figure 6. Zonal distribution on the network of cost differences between User-Equilibrium (UE) and System-Optimal (SO) flow patterns in each

time-bin during the analysis period September 2018 to August 2019: (a) Mean edge change in cost from rerouting in different zones; (b) Mean

marginal external costs in each zone. The mean is across all the edges of the zone.

relationship between network structure, demand profile and cost changes to further understand why different zones

have the response they do to rerouting and how rerouting benefits are shared across the network compared to applied

road charges.

Acknowledgment

We acknowledge the assistance in obtaining the data used from National Highways (England) and MWay Commu-

nications Ltd.

References

Belov, A., Mattas, K., Makridis, M., Menendez, M., Ciuffo, B., 2022. A microsimulation based analysis of the price of anarchy in traffic

routing: The enhanced braess network case. Journal of Intelligent Transportation Systems 26, 448–460. URL: https://doi.org/10.1080/

15472450.2021.1904920, doi:10.1080/15472450.2021.1904920, arXiv:https://doi.org/10.1080/15472450.2021.1904920.

Casey, G., Zhao, B., Kumar, K., Soga, K., 2020. Context-specific volume–delay curves by combining crowd-sourced traffic data with automated

traffic counters: A case study for London. Data-Centric Engineering 1.

De Grange, L., Melo-Riquelme, C., Burgos, C., González, F., Raveau, S., 2017. Numerical Bounds on the Price of Anarchy. Journal of

Advanced Transportation 2017, 1–9. doi:10.1155/2017/5062984.

Dervisoglu, G., Gomes, G., Kwon, J., Muralidharan, A., Varaiya, P., Horowitz, R., 2009. Automatic Calibration of the Fundamental Diagram

and Empirical Observations on Capacity, in: Transportation Research Board 88th Annual Meeting, TRB, Washington, D.C.. pp. 1–14.

Dey, S., Winter, S., Tomko, M., 2020. Origin–destination flow estimation from link count data only. Sensors 20. doi:10.3390/s20185226.

Di, X., Liu, H.X., 2016. Review. Transportation Research Part B: Methodological 85, 142–179. doi:10.1016/j.trb.2016.01.002.

Google Maps, 2022. Map of Central England. URL: https://www.google.com/maps/place/England,+UK/. available online at: https:

//www.google.com/maps/place/England,+UK/, last accessed on 27/10/2022.

Highways England, 2019. National Traffic Information Service DATEX II Service v10. Technical Report. Highways England. London.

Hymel, K.M., Small, K.A., Dender, K.V., 2010. Induced demand and rebound effects in road transport. Transportation Research Part B:

Methodological 44, 1220–1241. URL: https://www.sciencedirect.com/science/article/pii/S0191261510000226, doi:https:

//doi.org/10.1016/j.trb.2010.02.007.

INRIX, 2021. INRIX Research: Global Traffic Scorecard. Technical Report. INRIX. URL: https://inrix.com/scorecard/, doi:10.

1163/156854108783360159.

Kim, Y., Hall, F.L., 2004. Relationships between occupancy and density reflecting average vehicle lengths. Transportation Research Record

1883, 85–93.

Kucharski, R., Drabicki, A., 2017. Estimating macroscopic volume delay functions with the traffic density derived from measured speeds and

flows. Journal of Advanced Transportation 2017, 1–10. doi:10.1155/2017/4629792.



Alexander Roocroft  et al. / Transportation Research Procedia 82 (2025) 2532–2545 2545

Monnot, B., Benita, F., Piliouras, G., 2017. Routing games in the wild: Efficiency, equilibration and regret, in: R. Devanur, N., Lu, P. (Eds.),

Web and Internet Economics, Springer International Publishing, Cham. pp. 340–353.

National Highways, 2022. National highways traffic information services. URL: https://www.trafficengland.com/subscribers.

available online at: https://www.trafficengland.com/subscribers, last accessed on 27/11/2022.

O’Hare, S.J., 2015. The Influence of Structure in Supply and Demand on the Performance Characteristics of Road Traffic Networks: An

exploration of how methodological approaches from network science can be implemented for a transportation research problem. Ph.D. thesis.

University of Leeds. URL: https://etheses.whiterose.ac.uk/9151/.

O’Hare, S.J., Connors, R.D., Watling, D.P., 2016. Mechanisms that govern how the Price of Anarchy varies with travel demand. Transportation

Research Part B: Methodological 84, 55–80. URL: https://www.sciencedirect.com/science/article/pii/S0191261515002660,

doi:https://doi.org/10.1016/j.trb.2015.12.005.

Patriksson, M., 2015. The Traffic Assignment Problem: Models and Methods. 2 ed., Dover Publications, Mineola, N.Y. URL: https:

//books.google.com.sg/books?id=PDhkBgAAQBAJ.

Prato, C.G., 2009. Route choice modeling: past, present and future research directions. Journal of Choice Modelling 2, 65–

100. URL: https://www.sciencedirect.com/science/article/pii/S1755534513700058, doi:https://doi.org/10.1016/

S1755-5345(13)70005-8.

Roocroft, A., Punzo, G., Ramli, M.A., 2022. Link count data-driven static traffic assignment models through network modularity partitioning

(pre-print). URL: https://arxiv.org/abs/2211.13514, doi:10.48550/ARXIV.2211.13514.

Sheffi, Y., 1985. Urban transportation networks: Equilibrium analysis with mathematical programming methods. 1 ed., Prentice-Hall Inc,

Englewood Cliffs, N.J. doi:10.1016/0191-2607(87)90038-0.

Wu, Z., Möhring, R.H., Chen, Y., Xu, D., 2021. Selfishness need not be bad. Operations Research 69, 410–435. URL: https://doi.org/

10.1287/opre.2020.2036, doi:10.1287/opre.2020.2036, arXiv:https://doi.org/10.1287/opre.2020.2036.

Yildirimoglu, M., Kahraman, O., 2018. Searching for empirical evidence on traffic equilibrium. PLOS ONE 13, 1–16. URL: https:

//doi.org/10.1371/journal.pone.0196997, doi:10.1371/journal.pone.0196997.

Youn, H., Gastner, M.T., Jeong, H., 2008. Price of anarchy in transportation networks: Efficiency and optimality control. Physical Review

Letters 101, 1–4. doi:10.1103/PhysRevLett.101.128701, arXiv:0712.1598.

Zhang, J., Pourazarm, S., Cassandras, C.G., Paschalidis, I.C., 2018. The Price of Anarchy in Transportation Networks: Data-Driven Evaluation

and Reduction Strategies. Proceedings of the IEEE 106, 538–553. doi:10.1109/JPROC.2018.2790405, arXiv:arXiv:1606.02194v2.


