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ABSTRACT

Understanding efficiency-durability relationships and related mitigation strategies is an important
step towards commercialization of organic photovoltaics (OPVs). Here, we report that a
photoactivated 6-bridged azide cross-linker (6Bx) improves the morphological stability by
suppressing thermally activated diffusion of (Y6) acceptor molecules in PM6:Y6 bulk-
heterojunction (BHJ)-based OPVs. Cross-linked PM6:Y6(0.05 wt% 6Bx) BHJ OPVs retain 93.4%
of initial power conversion efficiency upon thermal aging at 85 °C for 1680 h (730 = 3290 h).
Molecular origins of enhanced thermal stability are corroborated by optical spectroscopy, surface
imaging, 2D solid-state nuclear magnetic resonance (NMR), Raman spectroscopy and scanning
electron diffraction (SED) measurements and analysis of the BHJ thin films. A facile single-step
cross-linking strategy in conjugation with advanced characterization methods presented in the

study paves the way towards developing durable OPVs based on non-fullerene acceptors (NFAs).
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There is an upsurge in the solar-to-electrical power conversion efficiency (PCE) of BHJ based
organic photovoltaic devices (OPVs) — thanks to the introduction of Y6 nonfullerene acceptor

NFA) combined with the PM6 polymer donor! — inviting further research in this field. Significant
poly g



efforts have been made in the development new NFAs*7 in order to boost PCEs to over 19%.5!!
While these advancements represent an important leap forward towards commercialization of
OPVs, there is an urgent need to address the device stability issues associated with these devices.
The instability issues can be related to undesirable reactions at interfaces between the stacked
layers in a device,'?>!” and more significantly in the photoactive layer caused either by thermal or
photochemical processes.!828 It has been shown that the thermally induced molecular diffusion of
NFAs significantly alters BHJ morphology leading to OPV performance deterioration.!*-?! For
example, OPVs in outdoor settings are expected to operate under intense solar illumination at

29, 30

elevated operating temperatures, and can reach ~65 °C. Recently, two different mitigation

strategies have been suggested to address thermally-induced instability issue in OPVs:

3135 or side group engineering in NFAs3®-

synthesizing thermally robust materials (e.g. oligomers
3%), and cross-linking of donor (D) and acceptor (A) moieties in the BHJ morphology.** However,
synthesizing thermally stable D and A materials requires expensive and rigorous synthesis
procedures. Instead, cross-linking donor and/or acceptor can be viewed as a credible and

sustainable approach that can be achieved by: (i) incorporating cross-linking units onto D or A

during their synthesis, or (i1) adding them to D:A BHJ blends during solution casting process.

Inspired by the cross-linking methods that have been previously applied to suppress thermally
induced aggregation of fullerenes (FAs) in OPV devices,*-%¢ this approach has been extended to

nascent all-polymer and NFA-based OPVs. For example, covalently cross-linked moieties on the

47, 48 49, 50, 51

D polymer side chains, polymeric acceptors or NFAs, have been shown to improve
stability in OPVs and other optoelectronic devices.>® Noteworthy examples also include the
addition of azide-based cross-linker additives added to the PM6 polymer layer to prepare a bilayer

film consisting of PM6+cross-linker/Y6,% 3 to enhance photo- and thermal stability. In contrast,



studies have also reported the detrimental effects of single or double cross-linkable azide and
diazirine moieties on the PM6:Y6 based OPVs,>* by means of degradation products formed upon
cross-linking of Y6 molecules leading to exciton quenching and performance deterioration.
Despite the advancements in cross linking chemistry of NFAs, there remain several unaddressed
questions regarding NFA stability in OPVs including thermally activated diffusion or aggregation
of NFAs, enjoining further investigation. Here, we present a photoactivated cross linking approach
using 6-bridged azide cross-linker (6Bx) to stabilize PM6:Y6 BHJ morphology to substantially
improve the thermal stability of OPV devices. In so doing, we applied multimodal characterization
techniques to unravel the BHJ morphological features and local structures that contribute to the

enhanced OPYV stability.

Figure 1a presents the chemical structures of PM6, Y6, and a molecular tether (6Bx) that is
composed of 6 azide cross-linkable units. The 6Bx enables higher cross-linking efficiency (96%)
compared to those with four (4Bx, 82%) and two azide units (2Bx, 36%).%°> Azide cross-linking
can be triggered by either thermally activated or photoactivated methods using ultra-violet (UV)
light irradiation.’® Here, photoactivation (254 nm UV light) was used in order to avoid additional
thermally-induced morphological degradation. UV light irradiation activates the azide moieties to
generate a reactive singlet nitrene which reacts with alkyl chains by inserting into carbon-hydrogen
bonds of the alkyl chains.’’>° Figure 1b shows the energy levels of Y6, PM6, Y6:6Bx, PM6:6Bx
obtained from the ultraviolet electron spectroscopy (UPS) and inverse photoelectron spectroscopy
(IPES). Importantly, cross-linking of Y6 and PM6 with 0.05wt% of 6Bx does not significantly

alter their energy levels.
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Figure 1. (a) Chemical structures of PM6, Y6, and 6Bx cross-linker. (b) Energy diagram of pristine
and 0.05 wt% 6Bx cross-linked PM6 and Y6. Absorbance of 20 wt% 6Bx cross-linked (c) PM6,
(d) Y6, and (e) PM6:Y6 BHJ films before and after washing with chloroform.

To confirm the photoactivation of azide units in 6Bx, we carried out Fourier-transform infrared
(FTIR) spectroscopy measurements (Figure S1) in which the azide vibration at ~2125 c¢cm™!
disappears after the UV light irradiation for 1 minute under nitrogen environment that activates
azide cross-linking reactions.®®2 A simple but credible method to confirm this trend is the use of
a solubility test that involves washing of the 6BX treated materials using a solvent in which these
material dissolve.’* % Here, chloroform (CF) was used as washing solvent. Optical absorption
spectra acquired before and after washing the 20 wt% 6Bx treated PM6 films with CF (Figure 1c)
do not show significant changes in the absorbance, suggesting that the PM6 polymers (molecular
weight, Mw = 77 kDa) are cross-linked by the 6Bx. On the other hand, the 20wt% of 6Bx treated
Y6 acceptor molecules (Mw = 1.4 kDa) are severely affected by the washing process, resulting in

the absorption loss (Figure 1d). Intriguingly, 20 wt% 6Bx cross-linked PM6:Y6 BHIJ films



(Figure 1e) are much more robust toward this washing test, akin to PM6 films. In the PM6:Y6
morphology, cross-linked Y6 domains are much more likely to be retained during the washing
process. In explaining this, we reasoned that the cross-linking of PM6 forms much larger networks
compared to Y6. For example, a 6Bx moiety connecting two PM6 chains can double the molecular
weight from 77 to 154 kDa, whereas cross-linking two Y6 molecules yields 2.8 kDa, as constrained
by its size. Thus, achieving high crosslinking densities with Y6 requires a large amount of cross-
linker, potentially impacting desired optoelectronic properties and OPV device efficiency (vide
infra). Thus, a priori, we focused on exploring how the 6Bx cross-linking influences the

morphological and thermal properties of Y6 films.
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Figure 2. Normalized absorbance of (a) the pristine Y6 and the 6Bx cross-linked Y6 ((b) 1, (¢) 5,
and (d) 20 wt%) thin films annealed at increased temperatures from 40 to 170 °C. (¢) AFM images
(scan area: 10 x 10 um?) of the pristine Y6 and the 6Bx cross-linked Y6 (1, 5, and 20 wt%) thin
films: as-cast films in an upper panel and the films annealed at up to 200 °C in a bottom panel.



Thermal stability is assessed by examining more closely the Y6 and the 6Bx cross-linked Y6 films
(1, 5, and 20 wt% 6Bx) based on temperature dependent optical absorption and glass-transition
temperature (7). The normalized absorbance spectra obtained upon thermal annealing at 40 —
170 °C range (10 °C intervals, each for 10 minutes) are compared (Figure 2a-d), and the associated
absorbance spectra are displayed in Figure S2 and Figure S3. For the Y6 film, thermal annealing
causes a red shift in the absorption (Figure 2a) due to molecular aggregation,®*%¢ but the 6Bx
cross-linked Y6 film shows more mitigated absorption shift at higher 6Bx (Figure 2b, 2¢, and 2d).
For the non-activated Y6:6Bx (i.e., without UV photoactivation), on the other hand, the degree of
the absorption red shift (Figure S4) is similar to that of Y6, because 6Bx does not cross-link Y6
molecules and these are able to aggregate like pristine Y6. These results indicate that the thermal
diffusion and molecular aggregation of Y6 is restricted upon cross-linking with 6Bx. The results
can be further verified by studying the glass-transition temperature (7%), in which the cross-linking
is expected to increase the T of materials.’”-%° For small molecule NFAs, however, it becomes less
straight forward to measure the T, values using differential scanning calorimetry (DSC).?! Instead,
UV-vis spectroscopy’ has been used as an alternative to estimate the T of the NFAs,?% 2131, 33, 34,
"t which is preferred in this study. The detailed description of this technique and deviation metric
(DMr) values are described in the SI. Table 1 summarizes the estimated 7, value of Y6 and 6Bx

cross-linked Y6 films. Upon cross-linking with 6Bx, the 7;; value of the Y6 films slightly increases

Table 1. 7, of the pristine Y6 and the 6Bx cross-linked Y6 films (1, 5, and 20 wt%)
estimated from the UV—vis absorption spectroscopy technique.

6Bx concentration (wt%) T, (°C)
0 91.9
1 923
5 96.9
20 97.9




from 91.9 °C (pristine Y6) to 92.3, 96.9, and 97.9 °C for 1, 5, and 20 wt% 6Bx, respectively. Their
DMTr plots are presented in Figure S5. It is noteworthy that, for the non-activated Y6:6Bx, the
DMr plots (Figure S6) show that the thermal activation of 6Bx cross-linking occurs above 120 °C.
Below 120 °C, their DMt values are identical to that of pristine Y6 regardless of the 6Bx
concentration (Figure S6b). The azide moieties of 6Bx start to activate at temperatures above
120 °C as detected in thermogravimetric analysis (TGA) of neat 6Bx (Figure S7). UV-vis
spectroscopy results corroborate that 6Bx cross-linking restricts molecular aggregation of Y6

NFAs in the solid state and contributes to an increased 7.

Subsequently, we analyzed the surface morphological features of the pristine Y6 and the 6Bx cross-
linked Y6 films (1, 5, and 20 wt% 6Bx) using atomic force microscopy (AFM) and optical
microscopy (OM) techniques. The AFM images were collected in both 2 x 2 and 10 x 10 um? scan
area (Figures S8 and S9) as function of increasing temperature (80, 120, 150, 170, 180, and 200 °C,
each for 10 min). As shown in Figure 2e, the root mean square (RMS) roughness of the pristine
Y6 film is ~2.95 nm differs from the RMS values of cross-linked Y6 films ~3.35, 4.39, and 9.57
nm for 1, 5, and 20 wt% 6Bx, respectively. For Y6 film, thermal annealing at 200 °C causes
significant molecular movement leading to large crystalline domains with a crack depth of ~50 nm,
which is consistent with previous reports.’”> 73 It is noteworthy that the crystallization temperature
of Y6 depends on film thickness: 20 and 60 nm-thick film exhibited crystallization-induced cracks
at 180 °C (Figure S10) and at 200 °C, respectively. In contrast to this, 5 and 20 wt% 6Bx cross-
linked Y6 films did not produce such features on their surfaces, confirming that 6Bx cross-linking
helps preventing Y6 molecules from being crystallized at high temperatures. At relatively larger
length scales of several tens of microns, OM analysis of the pristine Y6 and the 20 wt% 6Bx cross-

linked Y6 films (Figure S11, acquired before and after the annealing at 200 °C) provided



additional support for such morphological evolution: the crystal growth of Y6 molecules is evident
in the pristine Y6 film only, and is not observed in the 6Bx cross-linked Y6 film. Furthermore, OM
analysis of pristine PM6:Y6 BHJ and 5 wt% 6Bx cross-linked PM6:Y6 BHJ films upon annealing
at a harsh condition (200 °C for 1 h, see Figure S12) shows that the 6Bx cross-linked BHJ
morphology is relatively resistant to thermal stress, but the pristine BHJ morphology displays
dramatic changes on the surface. Together, these results and analyses indicates 6Bx cross-linking

effectively suppresses molecular aggregation and crystallization of Y6 in the solid state.
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Figure 3. Scanning Electron Diffraction analysis of PM6:Y6 and PM6:Y6 cross-linked by
6Bx. (a-c) Annular dark field (ADF) images of PM6:Y6, PM6:Y6:6Bx (0.05 wt%), and
PM6:Y6:6Bx (20 wt%), respectively, showing systematic changes in the morphology of diffracting
domains with the addition of 6Bx. (d) Illustration of the analysis procedure for extracting the
position of the Friedel pairs (diffraction vectors g,00 and gz0: more details are presented in SI)
used to determine dr . from the electron diffraction data. (e) Plot of Friedel pairs position in the



diffraction pattern showing a shift after crossing-linking with 6Bx. With 20wt% 6Bx, a decrease
in reciprocal space distance d* (peak-to-peak distance) corresponding to an increase in d-spacing
(2/d*peak-to-peak) IS ObSCI’Ved.

Although the above results indicate that the cross-linked Y6 molecules exhibit enhanced thermal
stability in thin films, it is unclear that the molecular origins that contribute to the enhanced
stability in PM6:Y6 BHJ thin films and the associated OPV devices. To resolve the morphology
of pristine and cross linked PM6:Y 6 BHJ films, we applied the scanning electron diffraction (SED)
technique, a low-dose variant of four-dimensional scanning transmission electron microscopy (4D-
STEM) established as a method for unravelling the nanoscale ordering and domain structure in
organic semiconductor films and particularly their n-m interplanar spacings and the relative
orientation of m-w stacking planes.”* 7> In SED, a two-dimensional diffraction pattern is acquired
at every position (pixel) in an image acquired by scanning an electron ‘pencil beam’ (focused probe
with small convergence angle) across a thin sample. First, a diffraction-contrast annular dark field
(ADF) STEM images was formed, revealing an interwoven BHJ morphology (Figure 3a-c). The
brighter features in these images were traced to weak but detectable Bragg diffraction spots,
characteristic features of crystalline domains. These crystalline domains are expected to originate
from the Y6 acceptor regions that are relatively more crystalline compared to the PM6 donor
polymer. A step-by-step protocol to analyze these images is presented in Figure 3d (and SI,
experimental): first, the circular virtual aperture (circular mask on the diffraction axes) is kept at
the approximate scattering angle for d»—»to produce a virtual dark field (VDF) image in the vicinity
of the scattering angle characteristic for m—n stacking, showing a localised domain. Then, a
threshold intensity is defined to detect the regions in the real-space VDF image with strong
scattering intensity. A diffraction pattern is then formed by averaging the diffraction patterns from

all probe positions with intensity above the threshold (filtered patterns with high relative scattering
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intensity at the characteristic angular range for dr z). Two intensity profiles can then be extracted,
one spanning the scattered Friedel pair profile (marked by a green rectangular) and a second profile
at a perpendicular orientation (unstructured scattering, marked by a red rectangular) observed as
subtracted background from the profile spanning the Bragg reflections. The diffraction spots
(Figure 3d) can be indexed to the {400} reflections for the Y6 unit cell, i.e., the =—= stacking
distance dr » between Y6 molecules. However, these crystalline domains do not appear to show
any long-range coherent in-plane orientation, as evidenced by varied orientations of the Friedel
pairs observed at approximately the n—r distance ({400} reflections) for the Y6 unit cell observed
in different nano-crystalline domains across the film (SI, Figures S13-S15). For PM6:Y6 and
PM6:Y6:6Bx (0.05wt%), the average of coherent scattering domains (i.e. crystallites with a single
orientation) is <30 nm in size (SI, Figures S13-S15), consistently with Resonant Soft X-ray
Scattering (RSoXS) data analysis presented for the PM6:Y6 BHJ morphology.’® It suggests that
the addition of +0.05wt%, does not substantially modify the BHJ morphology. In contrast to this,
the diffracting domains in PM6:Y6:6Bx (20wt%) (Figures 3¢, S15) appear to show an increased
spread of sizes. The n—n stacking distance, extracted as twice the inverse of the Bragg (reciprocal
space, A™!) peak-to-peak distance 2/d*peak-to-peak (We adopt the electron diffraction convention, such
that d* peak-to-peak/2 = 1/dz—z) shows a corresponding similarity for PM6:Y6 and PM6:Y6+0.05wt%
at 3.87 £ 0.06 A and 3.71 + 0.09 A, respectively. The n—n stacking distance in neat Y6 films is
reported to centre at 3.57-3.59 A, and the distribution centre increases to 3.61-3.70 A in PM6:Y6
blends.! The equivalent interplanar spacing shows a marked increase for PM6:Y6:6Bx (20wt%) to
4.63 £ 0.08 A. These results corroborate interpretation of the observed nanoscale heterogeneity
with cross-linker content that influences the local morphology, a point that will be further discussed

by solid-state NMR spectroscopy.
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Figure 4. Solid-state 2D F-1°F spin-diffusion (SD) NMR spectra of PM6:Y6 with 6Bx (a) before
and (b) after UV photoactivation, acquired at 18.8 T with 1000 ms of SD mixing time. (¢) 2D "°F-
'H cross-polarization heteronuclear correlation (CP-HETCOR) NMR spectrum of the 6Bx cross-
linked PM6:Y6 (after UV photoactivation), acquired at 20 T with 0.2 ms of CP contact time. (d)
PCE values and (e) the slope of the V,.-In(I) plot for (black) the PM6:Y6 with non-activated 6Bx
and (purple) the 6Bx cross-linked PM6:Y6 BHJ OPVs as a function of the 6Bx concentration. (f)
SCLC charge carrier mobility of the PM6:Y6 blends and 6Bx cross-linked PM6:Y6 devices as a
function of the 6Bx concentration.

Next, we investigated the bulk morphology of PM6:Y6 BHJ blends with 6Bx (20wt%) at a sub-
nanometer resolution by solid-state nuclear magnetic resonance (ssNMR) and electron
paramagnetic resonance (ssEPR) spectroscopy. A unique feature of these techniques is that they
provide insights into the local structures of azide moieties from 6Bx and their interactions with the
PM6 and Y6 molecules in heterogenous BHJ morphologies. Specifically, ssNMR has been
increasingly applied to characterize polymeric semiconductors and their blends.!”> 77-7 Since the

very low concentration of 6Bx (0.05wt%) is difficult to detect from SSNMR, we characterized the
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BHIJ blend with 20wt% 6Bx molecules. Among the nuclei probed in this study, 'H and '3C sites
from PM6, Y6 and 6Bx produce overlapped spectra (Figures S16 and S17), but '°F sites gave rise
to well-resolved patterns (Figures S18-S20). Identical '°F chemical shifts for PM6 and Y6 in
pristine and cross-linked BHJ morphology indicate that the acceptor domains are not significantly
altered upon addition of 6Bx, consistently with the SED analysis. From the analysis of 1D F
NMR spectra alone, however, it remains unclear whether azide units are molecularly mixed and
interact in the vicinity of PM6 and Y6 regions in the BHJ blend. In order to investigate the local
structure, 2D F-1F and '°F-'H correlation experiments were conducted, in which chemical shifts
and through-space proximities manifest as 2D peaks (Figures S20-S21). Figure 4a and 4b
compare 2D PF-1°F spin-diffusion (SD) NMR spectra of the PM6:Y6:6Bx BHJ before and after
photoactivation, in which the on-diagonal peaks associated with PM6 (-131, red), Y6 (—125 ppm,
blue) and 6Bx (—142 and —154 ppm, gray) moieties are well resolved. The off-diagonal peaks
between 6Bx and Y6 s are exclusively detected in the photoactivated sample (Figure 4b, green
boxes), but not for the non-activated sample (Figure 4a, red dashed boxes), confirming the
through-space dipolar interactions between Y6 and 6Bx molecules. The off-diagonal peaks within
the gray box are due to the close proximities of the different F atoms (ortho and meta) in the 6Bx
molecules. Additionally, weak intensity peaks between the PM6 and 6Bx molecules (Figure 4b,
black arrow) indicate that the 6Bx molecules interact less with the backbone moieties of PM6 or
some traces of the 6Bx may be involved in PM6-6Bx-Y6 cross linking reactions. More evidently,
the 'F-'H correlation NMR spectrum (Figure 4c¢) exhibits peaks corresponding to the through-
space intermolecular H~'F proximities in Y6, PM6 and 6Bx molecules as indicated by red, blue,
and gray bands, respectively. For these samples, the line-cut 1D '"H NMR spectra obtained from

the 2D plot are presented in the SI (Figure S21). The most notable of all is that 2D peaks shown

13



in the green band (Figure 4c¢) indicate the close proximity between the PM6/Y6 sidechains and
fluorinated aromatic groups (containing azide moieties) of the 6Bx molecules. This analysis aligns
with the hypothesized C—H insertion reactions triggered by the photoactivation of azide moieties

to generate a reactive singlet nitrene species.

The generated reactive species were further corroborated by continuous-wave (CW) EPR
experiments and analysis (Figure S22). The 6Bx cross-linked PM6:Y6 BHJ exhibited EPR
features with overlapping contribution from a narrow (4.5 Gauss) and a broader lineshape (15.8
Gauss) centered at a g value of 2.0048. The spin concentration in PM6:Y6:6Bx samples is 1.5 X
10" spins/g, calculated using an external reference (weak pitch sample provided by the instrument
manufacture). In contrast, the non-activated sample did not produce any EPR patterns. Raman
spectroscopy analysis (Figure S23) of PM6, Y6, 6Bx compounds, and PM6:Y6:6Bx blends
suggests a possible cross-linked site in Y6. For neat Y6, the peaks associated with the stretching
vibrations (v) of carbonyl (C=0) and nitrile (C=N) groups were observed at ~1692 and 2212 cm™!
respectively, while the neat 6Bx shows peaks corresponding to the ve=o (~1740 cm™) and vn3
(azide moieties, ~2130 cm™!). The Raman spectra of a PM6:Y6:6Bx mixture acquired before and
after photoactivation exhibited obvious changes in the vicinities of C=0O and C=N stretching
modes of Y6 (Figure S23b), and increased intensities associated with C—H stretching modes upon
photoactivation. The combined ssNMR, ssEPR and Raman spectroscopy analysis confirms the
local structures and intermolecular proximities between 6Bx and Y6 molecules in the 6Bx cross-
linked PM6:Y6 BHJ blend. These observations are further supported by analyzing miscibility

parameters using contact angle measurements (SI, Table S1).
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Following the detailed morphological and structural analysis of these materials, we then studied
the impact of the 6Bx cross-linking on the photovoltaic properties of PM6:Y6 BHJ OPVs as a
function of 6Bx concentration (0.05, 0.2, and 0.5 wt%). A slightly lower PCE of 13.92 + 0.16%
for PM6:Y6 OPVs (without 6Bx) is due to the batch dependence of the PM6 polymer discussed in
our previous reports.!”- 7 The PCE values are significantly affected by the introduction of 6Bx at
different concentrations (Figure 4d): 0.5 wt% of 6Bx in PM6:Y6 OPVs leads to 11.80 = 0.23%
and 7.12 £ 0.41% of PCE before and after photoactivation, respectively. In these devices, the
reduced PCEs can be linked to trap-assisted recombination processes and charge carrier mobility.
To understand the effect of 6Bx cross-linking on non-geminate recombination losses, light
intensity (/) dependent open-circuit voltage (Voc) analysis®® 8! was carried out. The Voc—In(I) plot
exhibits a linear relationship with a slope of £7/g when bimolecular recombination dominates,
where £ is the Boltzmann constant, 7 is absolute temperature, and g is the elementary charge. When
bulk trap-assisted recombination dominates, the slope is larger than 1 k7/q. For PM6:Y6 BHJ
OPVs with the 6Bx, the slope of the Vo—In(I) plot increases with higher 6Bx concentration (Figure
4e), which implies that addition of 6Bx into the PM6:Y6 BHJ causes additional bulk trap-assisted
recombination. In order to explore how cross-linking affects electron and hole mobility, space-
charge-limited current (SCLC) charge carrier mobilities of PM6:Y 6 blends and PM6:Y 6:6Bx were
measured using electron- and hole-only diodes (see the SI for a detailed description). The electron
and hole mobilities of these blends are presented in Figure 4f, and the values are summarized in
Table S2. Both electron and hole mobilities decrease with higher 6Bx concentrations. 6Bx cross-
linking influences the electron mobility much more than the hole mobility, which is consistent with
the above-mentioned ssSNMR results that suggested 6Bx molecules interact more closely with Y6

rather than PM6 in the PM6:Y6 BHJ. Thus, a relatively small concentration of 6Bx is preferred to
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maintain reasonable OPV device performance, while enhancing device durability, as discussed

below.
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Figure 5. Normalized (a) PCE, (b) FF, (c) Js, (d) Vo, and (e) the slope of the Vi-In(I) plot for
(black) the pristine PM6:Y6 and (orange) 6Bx cross-linked PM6:Y6 BHJ OPVs as a function of
thermal aging time at 85 °C. (f) EQE spectra of the pristine PM6:Y 6 and 6Bx cross-linked PM6:Y6
BHJ OPVs before and after thermal aging at 85 °C for 1680 h.

For OPV durability tests, we used 0.05 wt% 6Bx cross-linked PM6:Y6 BHJ layers. Device
parameters were recorded as a function of thermal aging time at 85 °C for up to 1680 h (70 days)
in a nitrogen-filled glove box (see the experimental methods in the SI). The initial PCE (i.e. as-
cast devices) of pristine PM6:Y6 BHJ and 6Bx cross-linked PM6:Y6 BHJ OPVs is 13.92 +0.16%
and 12.53 + 0.23%, respectively (Table 2). The normalized PV parameters of the pristine and
cross-linked devices are shown in Figure 5, and the T3 (time lapsed to reach a PCE value at 80%

of the initial value) was estimated (Figure 5a). It is evident that the T30 of the 6Bx cross-linked
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PM6:Y6 BHJ OPVs even at a very low concentration is 3.48 times longer than that of the pristine
devices under thermal aging. These results are further corroborated by the analysis of the fill factor
(FF, Figure 5b), short circuit current (Js, Figure 5¢) and V. (Figure 5d). Both Vo and Jsc values
of the cross-linked OPVs are well maintained after long-term thermal aging. On the other hand,
the FF values are slightly reduced upon thermal aging. For the PM6:Y6 devices, the FF and Jsc
decrease with thermal aging. The slope of the Voc-In(Z) plot as a function of the aging time (Figure
Se) indicates that, in the early stage, the 6Bx cross-linked OPVs have a slightly larger slope value
(1.39 kT/q) than that of the pristine OPVs (1.22 kT/q). However, it is surprising to observe that
long-term thermal aging produces an opposite trend for the change in slope: the 6Bx cross-linked
OPVs show reduced slope from 1.40 to 1.14 k7/q, whereas the slope of pristine OPVs increases
from 1.14 to 1.50 k7/q. These results are further corroborated by the capacitance spectroscopy
measurements and analysis (SI, Figures S24-S26). This observation agrees with the reduced FF
and Js for pristine PM6:Y6 devices after thermal aging. The Voc-In(Z) result indicates that trap-
assisted recombination in 6Bx cross-linked OPVs is gradually mitigated, whereas the pristine
OPVs show more severe trap-assisted recombination upon thermal aging, consistently with the
previous work.2% 8283 EQE spectra of the pristine PM6:Y6 and 6Bx cross-linked PM6:Y6 BHJ
OPVs were measured before and after thermal aging, indicating that the 6Bx cross-linking
contributed to improved EQE after aging (Figure 5f). This tendency is consistent with the Jsc

results shown in Figure Sc.
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Table 2. Photovoltaic parameters of the pristine PM6:Y6 and the 0.05 wt% 6Bx cross-linked
PM6:Y6 BHJ OPVs before and after thermal aging at 85 °C for 1680 hours.

Pristine PM6:Y6 Jse (mA/cm?) Voe (V) FF PCE (%)
As-cast 25.75+0.09 0.80+0.002 0.68+0.010 13.92+0.16
Thermal Aging 2246+045 0.76+0.004 0.48+0.017 8.17+0.26

0.05 wt% 6Bx cross-linked PM6:Y6
As-cast 24.81+0.15 0.78 + 0.003 0.65+0.014 12.53 +0.23
Thermal Aging 26.43 +£0.43 0.74+£0.013 0.60 £0.010 11.70 £ 0.27

To recap, a facile and single-step molecular cross-linking strategy demonstrated in this study not
only leads to suppressed molecular movement of the acceptor molecules, but also enhances
thermal stability of BHJ OPVs. To understand the molecular origins that contribute to enhanced
OPV stability, we characterized these materials at different length scales using electron diffraction
and spectroscopy techniques. The 6Bx molecules efficiently cross-link the Y6 molecules in
acceptor domains, as supported by an analysis of local structures at sub-nanometer resolution
enabled by 2D "F-"F and F-'H NMR spectroscopy techniques. Analysis of miscibility
parameters using contact angle measurements support these results. These results are corroborated
with device parameter analysis. These findings deepen our understanding of cross-linking
strategies involving D and A molecules in the BHJ morphology, offering the potential to improve
the lifetime of OPVs. This study utilized six-armed azide moiety to improve cross-linking densities,
although higher loadings of cross-linker potentially dilute the active material and affects the
optoelectronic properties through trap-assisted recombination. Improving morphological stability
of NFAs using cross-linker additives avoids costly and intricate synthesis, making it particularly
attractive. Therefore, photo-included cross-linking approaches are likely to find a promising future

in OPVs research.
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