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Abstract—We present ‘wake-cough’, an application of
wake-word spotting to coughs using a Resnet50 and the identifica-
tion of coughers using i-vectors, for the purpose of a long-term,
personalised cough monitoring system. Coughs, recorded in a
quiet (73±5 dB) and noisy (34±17 dB) environment, were used
to extract i-vectors, x-vectors and d-vectors, used as features to
the classifiers. The system achieves 90.02% accuracy when using
an MLP to discriminate between 51 coughers using 2-sec long
cough segments in the noisy environment. When discriminating
between 5 and 14 coughers using longer (100 sec) segments
in the quiet environment, this accuracy improves to 99.78%
and 98.39% respectively. Unlike speech, i-vectors outperform
x-vectors and d-vectors in identifying coughers. These coughs
were added as an extra class to the Google Speech Commands
dataset and features were extracted by preserving the end-to-end
time-domain information in a trigger phrase. The highest accu-
racy of 88.58% is achieved in spotting coughs among 35 other
trigger phrases using a Resnet50. Thus, wake-cough represents
a personalised, non-intrusive cough monitoring system, which
is power-efficient as on-device wake-word detection can keep
a smartphone-based monitoring device mostly dormant. This
makes wake-cough extremely attractive in multi-bed ward en-
vironments to monitor patients’ long-term recovery from lung
ailments such as tuberculosis (TB) and COVID-19.

I. INTRODUCTION

Wake-words are used as trigger phrases which enable key-

word spotting systems to initiate certain tasks such as speech

recognition by continuously listening for specific keywords

using low computational power [1]. This is the first important

step between the user and the processing units on either the

device or the cloud server [2] and both the near and far field

wake-word detection requires to be highly sensitive in both
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quiet and noisy environments for better performance [3]. For

example, some widely-used trigger phrases for voice assistants

on smart devices are: Google’s ‘OK Google’, Apple’s ‘Hey

Siri’, Amazon’s ‘Alexa’ and Microsoft’s ‘Hey Cortana’ [4].

These algorithms are highly sensitive in both quiet and noisy

environments [3], making them extremely useful in hands-

free situations like driving [5]. Coughing is the forceful

expulsion of air to clear the airway and a common symptom

of respiratory diseases, such as tuberculosis (TB) [6], asthma

[7], pertussis [8] and COVID-19 [9], [10], which can be

identified using machine learning classifiers. To successfully

implement cough as a personalised wake-word in commercial

smartphones, it is necessary to accurately identify the cougher

[11] in both noisy and quiet environments and the cough

among various other commonly used trigger phrases [12].

Vocal audio such as speech can be identified using

i-vectors, which present a low-dimensional speaker and

channel-dependant space using factor analysis proposing a

speaker representation system for speaker identification [13].

The performance can be improved by using x-vectors [14] and

d-vectors [15], which use the data augmentation and DNN

based embeddings to map speaker embeddings.

Coughers have been identified using x-vectors on natural

coughs in an open world environment for 8 male and 8 female

subjects after implementing data augmentation to address the

effect of background noise [16] and using d-vectors on forced

coughs [17]. Here, we identify both natural and forced coughs

among other trigger phrases in the Google Speech commands

dataset [18] while also identifying the coughers in noisy and

quiet environments using i-vectors, x-vectors and d-vectors. To

accurately monitor the long-term cough rates, for example in

a multi-bed ward, automatic detection of coughs among other

environmental noises and classification of coughers while

consuming less power and preserving privacy is extremely

important. By detecting coughs among other wake-words and

classifying coughers using i-vectors, wake-cough represents a

personalised long-term cough monitoring system. This system

is also power-efficient as specialised algorithms work on the
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device without needing any cloud service.

II. DATASET PREPARATION

For the cougher identification task, two datasets which will

be referred to as TASK and Wallacedene (Table I), were both

manually annotated using ELAN [19]. The TASK dataset,

which contains natural coughs, was collected at a TB research

hospital in Cape Town, South Africa (TASK clinical trial

centre). This research hospital accommodates up to 24 patients

in six 4-bed wards [20], [21]. A plastic enclosure, attached

to the bed-frames, holds a Samsung Galaxy J4 smartphone

connected to a BOYA BY-MM1 cardioid microphone (Figure

1) and the distance between the cougher and the microphone

was between 30 and 150 cm. The dataset includes 6000

cough events, sampled at 22.05 kHz and collected from 14

adult male patients over a 6 month period, totalling 3.16

hours of cough audio with an average SNR of 73±5 dB.

No other information of the patients was collected due to

ethical constraints. Wallacedene dataset was collected inside

an outdoor booth next to a busy primary health clinic in

Wallacedene, near Cape Town, South Africa representing a

real-world environment where a typical TB test would likely

to be deployed [22] (Figure 1). Patients were asked to count

from 1 to 10, then cough, take a few deep breaths, and

cough again, thus producing a bout of forced coughs. These

counts were used as speech to provide a baseline to compare

the performance of cougher identification in Table IV. The

audio, sampled at 44.1 kHz, was recorded using a RØDE M3

condenser microphone from 38 males and 13 females, keeping

a 10 to 15 cm gap between the microphone and the patients.

Environmental noise was present in both cough and speech

recordings, which had an average SNR of 34 dB and 33 dB

respectively with a standard deviation of 17 dB (Table I).
Table I shows that the TASK dataset is less-noisy and

contains much longer cough audio for each subject, whereas

the Wallacedene dataset is noisier but contains both cough

and speech audio from a larger number of subjects. All audio

recordings were downsampled to 16 kHz, as required for the

Kaldi ASR system [23].

TABLE I
DATA USED IN COUGHER & SPEAKER IDENTIFICATION: THE TASK

DATASET IS LESS-NOISY THAN THE WALLACEDENE DATASET.

Dataset Subjects Events Avg SNR Avg Length

Cougher identification

TASK 14 6000 73±5 dB 1.87±0.2 sec
Wallacedene 51 1358 34±17 dB 0.77±0.1 sec

Speaker identification

Wallacedene 51 510 33±17 dB 0.99±0.2 sec

For cough spotting, we randomly selected 3795 coughs

from the TASK and Wallacedene datasets. Each cough was

normalised to a 1-sec duration by either trimming or padding

with silence. These ‘cough’ events were added as an extra

class to the 2nd version of Google Speech Commands dataset,

which contains a total of 109,624 1-sec long events, sampled

WALLACEDENE DATASET: COLLECTED IN A NOISY 

ENVIRONMENT (SNR: 34±17 dB) 

TASK DATASET: COLLECTED IN A QUIET ENVIRONMENT  

(SNR: 73±5 dB) 
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Fig. 1. Data collection process for cougher identification: The TASK
dataset, containing only coughs, was collected in a quiet environment. The
Wallacedene dataset, containing both cough and speech (counting from 1 to
10), was collected in a noisy environment.

at 16 kHz and belonging to 35 classes [18]. These events were

mixed with the background noises (Section 5.8 of [18]) with

a randomly selected SNR between 73 and 34 dB (Table I). A

subset of this dataset, with only 42,341 events belonging to

10 classes, is also available for use as commands in IoT or

robotics [18]. For spotting cough as a trigger phrase, we note

these two datasets as SC-36 and SC-11, containing 36 and 11

classes respectively.

III. FEATURE EXTRACTION

For cougher identification, we have extracted x-vectors and

i-vectors using extractors pre-trained on the under-resourced

languages [24], which are spoken by the subjects in the TASK

and Wallacedene datasets (Figure 2). Audio segments that

are t-sec long from each of N coughers are concatenated

by following the data preparation requirements of Kaldi ASR

toolkit [23]. For each non-overlapping 0.1 sec audio, i-vectors

are generated from each utterance ID, with a dimension of

(t × 10, 100) for each cougher [13]. Unique x-vectors are

generated for each 1.5 sec of utterance with a 0.75 sec overlap,

having a dimension of (1, 512) [14]. Thus for each t-sec long

audio from each cougher, there are x-vectors of dimension

( t

0.75
, 512). We have also extracted d-vectors using an ex-

tractor pre-trained on VCC 2018, VCTK, LibriSpeech, and

CommonVoice English datasets and were generalized using the

end-to-end loss function [15]. Every t sec cough is split into

non-overlapping 0.5 sec segments, thus producing d-vectors

of dimension ( t

0.5
, 256) for every cougher and suggesting that



the i-vectors have a higher dimensionality than x-vectors and

d-vectors. The number of subjects (N ) and the cough-time (t)

were the hyperparameters in cougher identification task (Table

III). For speakers, we used all counts, having only N as a

hyperparameter. For the TASK and Wallacedene datasets, N

has been varied between 5 & 14 and 5 & 51 respectively in

steps of 5.

COUGHi22 COUGHi11 COUGHi13 COUGHiN …  

 

I-VECTOR, X-VECTOR AND D-VECTOR WERE 

FEATURES USED AS INPUT TO THE CLASSIFIERS 

X-VECTOR: 

(
𝒕𝟎.𝟕𝟓, 512) x N 

I-VECTOR: 

(t x 10, 100) x N 

t sec COUGH AUDIO IS CONCATENATED FROM N COUGHERS.  

D-VECTOR: 

(
𝒕𝟎.𝟓, 256) x N 

THE FINAL LAYER OF THE CLASSIFIER CONSISTS OF N NEURONS, 

EQUAL TO THE NUMBER OF COUGHERS 

Fig. 2. Feature extraction for cougher identification: t-sec long cough
segments (COUGHi1, COUGHi2, COUGHi3, . . ., where, 1 ≤ i ≤ N ) from
each cougher are concatenated as they appear in the audio recording for N

coughers. i-vectors, x-vectors and d-vectors are extracted from this t×N -sec
long audio and presented to the classifiers, which have N neurons in the final
layer to distinguish the cougher using a cross-validation scheme.

For spotting cough as a trigger phrase, we have extracted

STFT, ZCR and kurtosis from overlapping frames (F) of the

audio, where the frame overlap is computed to ensure that

the audio signal is always divided into exactly S frames,

so that the entire audio event is always captured within a

fixed number of frames, allowing a fixed input dimension to

be maintained while preserving the general overall temporal

structure of the event. Such fixed two-dimensional features

are particularly useful for the training of DNN classifiers [9].

Table II shows that in our experiments each audio signal is

divided into between 70 and 150 frames, each between 512 and

4096 samples i.e. 32 msec and 256 msec long, thus varying the

spectral information extracted from each event in the SC-11

and SC-36 datasets.

LR, LDA, SVM and MLP classifiers were used to identify

coughers and CNN, LSTM and Resnet50 were used to spot

coughs as a trigger phrase. Table III lists the hyperparam-

eters considered and the ranges considered during the 5-fold

cross-validation. The standard deviation among the outer folds

is noted as σACC in Table IV. For Resnet50, the 50-layer

architecture described in [25] has been used.

IV. RESULTS AND DISCUSSION

Table IV shows the results using the best two features for

both TASK (less-noisy) and Wallacedene (noisier) datasets.

TABLE II
FEATURE EXTRACTION HYPERPARAMETERS. TABLE IV AND V SHOW

CLASSIFICATION RESULTS FOR THESE HYPERPARAMETERS.

Hyperparameter Description Range

Cougher identification

Subject (N ) no. of coughers or speakers 5 to 51 with step of 5
Cough-time (t) cough from each subject 2, 5 to 100 with step of 5

Cough spotting

Frame length (F ) used to extract features 2
k , k = 9, . . . 12

No. of frames (S) extracted from audio 10× k, k = 7, 10, 12, 15

TABLE III
CLASSIFIER HYPERPARAMETERS USED IN BOTH IDENTIFYING

‘COUGHERS’ AND SPOTTING ‘COUGH’.

Hyperparameters Classifier Range

co
u

g
h

er
s

Regularisation LR & SVM 10
i where i = −7, . . . 7

l1 penalty LR 0 to 1 in steps of 0.05
l2 penalty LR, MLP 0 to 1 in steps of 0.05

Kernel coeff. SVM 10
i where i = −7, . . . 7

No. of neurons MLP 70 to 150 in steps of 20

co
u

g
h

Batch size CNN & LSTM 2
k where k = 6, 7, 8

No. of epochs CNN & LSTM 10 to 200 in steps of 20

No. of conv filters CNN 3× 2
k where k = 3, 4, 5

kernel size CNN 2 and 3
Dropout rate CNN & LSTM 0.1 to 0.5 in steps of 0.2

Dense layer size CNN & LSTM 2
k where k = 4, 5

LSTM units LSTM 2
k where k = 6, 7, 8

Learning rate LSTM 10
k where k = −2,−3,−4

The highest accuracy (99.78%) has been achieved by an

MLP when using i-vectors to identify coughers from 100-sec

(t = 100) long cough collected from each of 5 coughers.

By increasing the number of coughers to 10 and 14, the

performance of the MLP classifier decreased to 98.87% and

98.39% respectively for i-vectors (Table IV and Figure 4).

All classifiers performed well in identifying both coughers

and speakers on the noisier the Wallacedene dataset. The

speaker identification is used as the baseline and Table IV

shows that using x-vectors produced better classification scores

Fig. 3. The t-SNE cluster of i-vectors extracted from 2-sec long cough

audio from 14 coughers in TASK dataset. The MLP produces 95.11%
accuracy using these i-vectors in discriminating 14 coughers (Table IV).



Fig. 4. Classifier performance. The accuracies from the MLP classifier
decrease while discriminating more subjects (Table IV).

than using i-vectors for speaker identification, as also found

by others [14]. The highest accuracy (99.91%) has been

achieved using the MLP and x-vectors while discriminating

among only 5 speakers. This accuracy drops to 98.14% using

MLP while differentiating between 30 speakers and to 95.24%

when discriminating among all 51 speakers in the Wallacedene

dataset. For a smaller number of coughers, such as 5, the

MLP classifier has achieved the highest accuracy of 98.49%

using i-vectors. As the number of coughers is increased to

15, 25, 40 and 51, the accuracy of the MLP has dropped

to 97.82%, 96.69%, 94.87% and 93.32% respectively and

the σACC has increased sharply. These scores show that

although cougher identification is not as accurate as speaker

identification, the performance is close, especially for a small

number of subjects.

The results also show that, unsurprisingly, cougher iden-

tification on the less-noisy TASK dataset is more accurate

than the noisier Wallacedene dataset. Although longer coughs

from each subject improve the classifier accuracy in general,

similar performance is achieved (accuracies of 95.11% &

90.02% on the less-noisy & the noisy data) for coughs as

short as only 2 sec (Figure 3). Although the performance is

close, i-vectors performed better than x-vectors in cougher

identification. The MLP is the classifier of choice as it shows a

lower σACC across the cross-validation folds for the less-noisy

data than noisier data. d-vectors are outperformed by i-vectors

and x-vectors for both speech and cough, as also found by

[26], and thus excluded from Table IV.

Coughs were successfully spotted among other trigger

phrases in both the SC-11 and the SC-36 dataset. Table V

shows that although LSTM and CNN have performed well, the

best performance of 92.73% accuracy (ACC) & mean Cohen’s

Kappa (K) of 0.9218 on SC-11 and 88.58% accuracy & K
of 0.8757 on SC-36 have been achieved using a Resnet50.

The confusion matrix of the best SC-11 system exhibits an

excellent performance for spotting coughs among the other

trigger phrases in Figure 5. Table V also shows that the best

CNN and Resnet50 results were obtained mostly when using

1024 sample (64 msec) long frames and 100 segments.

TABLE IV
CLASSIFIER ACCURACIES IN IDENTIFYING COUGHERS FOR BOTH

TASK AND WALLACEDENE (WD) DATASETS.

Dataset N t Feature LR LDA SVM MLP σACC

TASK

5
100 i-vector 98.91% 98.87% 99.44% 99.78% 0.0007
100 x-vector 96.71% 96.73% 97.54% 97.64% 0.0009

10
80 i-vector 97.54% 97.88% 98.19% 98.87% 0.0006
80 x-vector 96.31% 96.24% 96.55% 97.22% 0.0005

14
2 i-vector 94.41% 94.51% 94.55% 95.11% 0.0005

100 i-vector 96.46% 96.71% 97.48% 98.39% 0.0006
100 x-vector 97.26% 97.54% 98.78% 96.46% 0.0008

WD

5
20 i-vector 97.23% 97.19% 97.77% 98.49% 0.0054

(Cougher)

20 x-vector 95.54% 95.97% 96.72% 97.19% 0.0078

15
20 i-vector 97.16% 97.14% 97.31% 97.82% 0.0061
20 x-vector 95.41% 95.30% 95.72% 96.24% 0.0068

25
20 i-vector 95.04% 95.18% 95.94% 96.69% 0.0072
20 x-vector 93.31% 93.55% 94.07% 94.97% 0.0082

40
20 i-vector 93.38% 93.62% 94.09% 94.87% 0.0091
20 x-vector 90.23% 90.07% 90.97% 91.62% 0.0102

51
2 i-vector 89.26% 89.38% 89.22% 90.02% 0.0178
20 i-vector 90.27% 90.49% 91.89% 93.32% 0.0301
20 x-vector 84.61% 84.74% 85.83% 88.26% 0.0247

WD

5
— x-vector 98.57% 98.64% 99.48% 99.91% 0.0018

(Speaker)

— i-vector 97.21% 97.17% 97.70% 98.45% 0.0027

30
— x-vector 96.81% 96.85% 97.42% 98.14% 0.0081
— i-vector 94.81% 94.87% 95.18% 96.33% 0.0078

51
— x-vector 99.44% 99.44% 99.44% 95.24% 0.0229
— i-vector 90.01% 90.05% 90.34% 91.63% 0.0274

Fig. 5. The confusion matrix of detecting coughs among 10 other trigger
phrases in SC-11 dataset using the best Resnet50 classifier in Table V.

TABLE V
COUGH SPOTTING: THE BEST-THREE RESULTS FOR EACH CLASSIFIER

SHOWS RESNET50 HAS PERFORMED THE BEST BY ACHIEVING 92.73% &
88.58% ACCURACY ON THE SC-11 & SC-36 DATASET.

Classifier
SC-11 Dataset SC-36 Dataset

F S ACC K F S ACC K

LSTM
512 150 88.09% 0.8767 512 120 80.74% 0.7937

2048 120 87.66% 0.8614 1024 120 80.40% 0.7931
512 70 87.09% 0.8598 512 100 80.11% 0.7902

CNN
1024 100 91.25% 0.9007 1024 120 86.74% 0.8592

2048 100 90.72% 0.8981 1024 70 85.98% 0.8463
1024 70 90.11% 0.8945 2048 100 85.22% 0.8411

Resnet50
1024 100 92.73% 0.9218 2048 100 88.58% 0.8777
2048 120 92.69% 0.8733 2048 70 87.94% 0.8729
2048 100 92.55% 0.8715 1024 120 87.68% 0.8702

V. CONCLUSION

We propose a system using cough as a wake-word to spot

coughs among other trigger phrases and identify the cougher.



A less-noisy and noisier dataset, containing 14 and 51 subjects

respectively, were used to extract i-vectors, x-vectors and

d-vectors, to classify the cougher. The best performance was

achieved using an MLP, showing coughers as many as 51

can be distinguished from one another with 90.02% accuracy

using i-vectors from as short as 2-sec long audio from each

cougher in the noisy environment. We also found that, unlike

speakers, coughers were better identifiable using i-vectors.

Coughs were also spotted as wake-words using a Resnet50 on

features keeping end-to-end time-domain information among

35 other keywords in the Google Speech Commands dataset

with 88.58% accuracy. Wake-cough represents a means of

personalised, long-term cough monitoring system that is able

to discriminate between coughers, non-intrusive and, due to the

use of wake-word detection methods, power-efficient since a

smartphone-based monitoring device can remain mostly dor-

mant. Thus, it is an attractive and viable means for monitoring

a patient’s long-term recovery from lung ailments such as TB

and COVID-19 in multi-bed ward environments.

In our future work, we aim to include more recent architec-

tures and extend the dataset to investigate wake-cough’s per-

formance across age, gender etc. of the subjects and compare

it with metric learning-based cougher identification [27].
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