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Abstract

We present an experimental investigation into the effectiveness

of transfer learning and bottleneck feature extraction in detect-

ing COVID-19 from audio recordings of cough, breath and

speech. This type of screening is non-contact, does not require

specialist medical expertise or laboratory facilities and can be

deployed on inexpensive consumer hardware. We use datasets

that contain recordings of coughing, sneezing, speech and other

noises, but do not contain COVID-19 labels, to pre-train three

deep neural networks: a CNN, an LSTM and a Resnet50. These

pre-trained networks are subsequently either fine-tuned using

smaller datasets of coughing with COVID-19 labels in the pro-

cess of transfer learning, or are used as bottleneck feature ex-

tractors. Results show that a Resnet50 classifier trained by this

transfer learning process delivers optimal or near-optimal per-

formance across all datasets achieving areas under the receiver

operating characteristic (ROC AUC) of 0.98, 0.94 and 0.92

respectively for all three sound classes (coughs, breaths and

speech). This indicates that coughs carry the strongest COVID-

19 signature, followed by breath and speech. Our results also

show that applying transfer learning and extracting bottleneck

features using the larger datasets without COVID-19 labels led

not only to improve performance, but also to minimise the stan-

dard deviation of the classifier AUCs among the outer folds

of the leave-p-out cross-validation, indicating better generali-

sation. We conclude that deep transfer learning and bottleneck

feature extraction can improve COVID-19 cough, breath and

speech audio classification, yielding automatic classifiers with

higher accuracy.

Index Terms: COVID-19, breath, speech, cough, machine

learning, transfer learning, bottleneck features

1. Introduction

COVID-19 (COrona VIrus Disease of 2019) was declared a

global pandemic on February 11, 2020 by the World Health

Organisation (WHO). Caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), this disease affects

the respiratory system and includes symptoms like fatigue, dry

cough, shortness of breath, joint pain, muscle pain, gastroin-

testinal symptoms and loss of smell or taste [ , ]. Due to its ef-

fect on the vascular endothelium, the acute respiratory distress

syndrome can originate from either the gas or vascular side of

the alveolus which becomes visible in a chest x-ray or CT scan

for COVID-19 patients [ , ]. Among the patients infected with

SARS-CoV-2, between 5% and 20% are admitted to ICU and

their mortality rate varies between 26% and 62% [ ]. Medical

lab tests are available to diagnose COVID-19 by analysis of ex-

haled breaths [ ]. This technique was reported to achieve an

accuracy of 93% when considering a group of 28 COVID-19

positive and 12 COVID-19 negative patients [ ]. Related work

using a group of 25 COVID-19 positive and 65 negative patients

achieved an area under the ROC curve (AUC) of 0.87 [ ].

Previously, machine learning algorithms have been ap-

plied to detect COVID-19 using image analysis. For example,

COVID-19 was detected from computed tomography (CT) im-

ages using a Resnet50 architecture with 96.23% accuracy in [ ].

The same architecture also detected pneumonia due to COVID-

19 with an accuracy of 96.7% [ ] and COVID-19 from x-ray

images with an accuracy of 96.30% [ ].

The automatic analysis of cough audio for COVID-19 de-

tection has also received attention. Coughing is a predominant

symptom of many lung ailments and its effect on the respira-

tory system varies [ , ]. Lung disease can cause the glottis

to behave differently and the airway to be either restricted or

obstructed and this can influence the acoustics of the vocal au-

dio such as cough, breath and speech [ , ]. This raises the

prospect of identifying the coughing audio associated with a

particular respiratory disease such as COVID-19 [ , ]. Re-

searchers have found that a simple binary machine learning

classifier can distinguish between healthy and COVID-19 respi-

ratory audio, such as coughs gathered from crowdsourced data,

with AUC higher than 0.8 [ ]. Improved performance was

achieved using a convolutional neural network (CNN) for cough

and breath audio, achieving an AUC of 0.846 [ ].

In our previous work, we have also found that automatic

COVID-19 detection is possible on the basis of the acoustic

cough signal [ ]. Here we extend this work firstly by consid-

ering whether breath and speech audio can also be used effec-

tively for COVID-19 detection. Secondly, since the COVID-19

datasets at our disposal are comparatively small, we apply trans-

fer learning and extract bottleneck features to take advantage

of other datasets that do not include COVID-19 labels. To do

this, we use both publicly available and our own datasets to pre-

train three deep neural network (DNN) architectures: a CNN, a

long short-term memory (LSTM) and a 50-layer residual based

architecture (Resnet50). For subsequent COVID-19 classifier

evaluation, the Coswara dataset [ ], the Interspeech Compu-

tational Paralinguistics ChallengE (ComParE) dataset [ ] and

the Sarcos dataset [ ] are used. We report further evidence of

accurate discrimination using all three audio classes and con-

clude that vocal audio including coughing, breathing and speech

are all affected by the condition of the lungs to an extent that

they carry acoustic information that can be used by machine

learning classifiers to detect signatures of COVID-19. We find

that the application of transfer learning enables the classifiers

to perform more accurately, exhibit a greater robustness and re-

duce the tendency of over-fitting.
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Sections and Section summarise the datasets used for

experimentation and the primary feature extraction process.

Section describes the transfer learning process and Section

explains the bottleneck feature extraction process. Section

presents the experimental setup, including the cross-validated

hyperparameter optimisation and classifier evaluation process.

Experimental results are presented in Section and discussed

in Section . Finally, Section summarises and concludes this

study.

2. Data

2.1. Datasets without COVID-19 labels for pre-training

Audio data with COVID-19 labels remain scarce which limits

classifier training. We have therefore made use of five addi-

tional datasets without COVID-19 labels for pre-training. These

datasets contain recordings of coughing, sneezing, speech and

non-vocal audio. The first three datasets (TASK, Brooklyn and

Wallacedene) were compiled by ourselves as part of research

projects concerning cough monitoring and cough classification.

The last two (Google Audio Set & Freesound and Librispeech)

were compiled from publicly available data. Since all five

datasets were compiled before the start of the COVID-19 pan-

demic, they are unlikely to contain data from COVID-19 posi-

tive subjects. All datasets used for pre-training include manual

annotations.

2.1.1. TASK dataset

This corpus consists of spontaneous coughing audio collected

at a small tuberculosis (TB) clinic near Cape Town, South

Africa [ ]. The dataset contains 6000 cough audio by patients

undergoing TB treatment and 11393 non-cough audio such as

laughter, doors opening and objects moving. This data was in-

tended for the development of cough detection algorithms and

the recordings were made in a multi-ward environment using a

smartphone with an external microphone.

2.1.2. Brooklyn dataset

This dataset contains 746 voluntary coughs by 38 subjects com-

piled for the development of cough audio classification sys-

tems [ ]. Audio recording took place in a controlled indoor

booth, using a Rode M3 microphone and an audio field recorder.

2.1.3. Wallacedene dataset

This dataset consists of 1358 voluntary coughs by 51 patients,

also compiled for the development of cough audio classifica-

tion [ ]. In this case, audio recording took place in an outdoor

booth located at a busy primary healthcare clinic. The recording

was performed using a Rode M1 microphone and an audio field

recorder. This data has more environmental noise and therefore

a poorer signal-to-noise ratio than the Brooklyn dataset.

2.1.4. Google Audio Set & Freesound

The Google Audio Set dataset contains excerpts from 1.8 mil-

lion Youtube videos that have been manually labelled accord-

ing to an ontology of 632 audio event categories [ ]. The

Freesound audio database is a collection of tagged sounds up-

loaded by contributors from around the world [ ]. In both

datasets, the audio recordings were contributed by many dif-

ferent individuals under widely varying recording conditions

and noise levels. From these two datasets, we have compiled a

collection of 3098 coughing audio, 1013 sneezing audio, 2326

speech excerpts and 1027 other non-vocal audio such as en-

gine noise, running water and restaurant chatter. Previously,

this dataset was used for the development of cough detection

algorithms [ ].

2.1.5. LibriSpeech

As a source of speech audio data, we have selected utterances by

28 male and 28 female speakers from the freely available Lib-

riSpeech corpus [ ]. These recordings contain very little noise

and the large size of the corpus allowed easy gender balancing.

2.1.6. Summary of data used for pre-training

In total, the data described above includes 11202 cough events

(2.45 hours of audio). It also includes 2.91 hours of speech

from both male and female participants and 2.98 hours of other

non-vocal audio. Finally, the data also includes recordings of

1013 sneezing audio, totalling 13.34 minutes of audio. Hence

sneezing is under-represented as a class in the pre-training data.

Since such an imbalance in training data can detrimentally af-

fect the performance especially of neural networks [ , ], we

have applied the synthetic minority over-sampling technique

(SMOTE) [ ]. SMOTE oversamples the minor class by creat-

ing additional synthetic samples rather than, for example, ran-

dom oversampling. We have in the past successfully applied

SMOTE to address training set class imbalances in cough detec-

tion [ ] and cough classification [ ] based on audio record-

ings.

In total, therefore, a dataset containing 10.29 hours of audio

recordings annotated with four class labels was available to pre-

train the neural architectures. The composition of this dataset is

summarised in Table . All recordings used for pre-training

were downsampled at 16 kHz.

2.2. Datasets with COVID-19 labels for classification

Three datasets of coughing audio with COVID-19 labels were

available for experimentation.

2.2.1. Coswara dataset

This dataset is specifically developed with the testing of classi-

fication algorithms for COVID-19 detection in mind. Data col-

lection is web-based, and participants contribute by using their

smartphones to record their coughing, breathing and speech.

Audio recordings were collected of both shallow and deep

breaths as well as speech uttered at a normal and fast pace.

However, since the deep breaths consistently outperformed the

shallow breaths in our initial experiments, the latter will not be

presented in our experiments. At the time of writing, the data

included contributions from participants located on five differ-

ent continents [ , , ].

Figure and Figure show examples of Coswara breaths

and normal-paced count from one to twenty respectively, col-

lected from both COVID-19 positive and COVID-19 negative

subjects. It is evident that breaths have more higher-frequency

content than speech and interesting to note that COVID-19

breaths are 30% shorter than non-COVID-19 breaths (Table ).

All audio recordings were pre-processed to remove periods of

silence to within a margin of 50 ms using a simple energy de-

tector.



Table 1: Summary of the Datasets used in Pre-training. Classifiers are pre-trained on 10.29 hours audio recordings annotated with

four class labels: cough, sneeze, speech and noise. The datasets do not include any COVID-19 labels.

Type Dataset Sampling Rate No of Events Total audio Average length Standard deviation

Cough

TASK dataset 44.1 kHz 6000 91 mins 0.91 sec 0.25 sec

Brooklyn dataset 44.1 kHz 746 6.29 mins 0.51 sec 0.21 sec

Wallacedene dataset 44.1 kHz 1358 17.42 mins 0.77 sec 0.31 sec

Google Audio Set & Freesound 16 kHz 3098 32.01 mins 0.62 sec 0.23 sec

Total (Cough) — 11202 2.45 hours 0.79 sec 0.23 sec

Sneeze

Google Audio Set & Freesound 16 kHz 1013 13.34 mins 0.79 sec 0.21 sec

Google Audio Set & Freesound + SMOTE 16 kHz 9750 2.14 hours 0.79 sec 0.23 sec

Total (Sneeze) — 10763 2.14 hours 0.79 sec 0.23 sec

Speech

Google Audio Set & Freesound 16 kHz 2326 22.48 mins 0.58 sec 0.14 sec

LibriSpeech 16 kHz 56 2.54 hours 2.72 mins 0.91 mins

Total (Speech) — 2382 2.91 hours 4.39 sec 0.42 sec

Noise

TASK dataset 44.1 kHz 12714 2.79 hours 0.79 sec 0.23 sec

Google Audio Set & Freesound 16 kHz 1027 11.13 mins 0.65 sec 0.26 sec

Total (Noise) — 13741 2.79 hours 0.79 sec 0.23 sec

Table 2: Summary of the datasets used for COVID-19 classification. Cough, breath and speech signals were extracted from the

Coswara, ComParE and Sarcos datasets. COVID-19 positive subjects are under-represented in all three datasets.

Type Dataset Sampling Rate Label Subjects Total audio Average per subject Standard deviation

Cough

Coswara 44.1 kHz

COVID-19 Positive 92 4.24 mins 2.77 sec 1.62 sec

Healthy 1079 0.98 hours 3.26 sec 1.66 sec

Total 1171 1.05 hours 3.22 sec 1.67 sec

ComParE 16 kHz

COVID-19 Positive 119 13.43 mins 6.77 sec 2.11 sec

Healthy 398 40.89 mins 6.16 sec 2.26 sec

Total 517 54.32 mins 6.31 sec 2.24 sec

Sarcos 44.1 kHz

COVID-19 Positive 18 0.87 mins 2.91 sec 2.23 sec

COVID-19 Negative 26 1.57 mins 3.63 sec 2.75 sec

Total 44 2.45 mins 3.34 sec 2.53 sec

Breath Coswara 44.1 kHz

COVID-19 Positive 88 8.58 mins 5.85 sec 5.05 sec

Healthy 1062 2.77 hours 9.39 sec 5.23 sec

Total 1150 2.92 hours 9.126 sec 5.29 sec

Speech

Coswara 44.1 kHz

COVID-19 Positive 88 12.42 mins 8.47 sec 4.27 sec

(normal count)
Healthy 1077 2.99 hours 9.99 sec 3.09 sec

Total 1165 3.19 hours 9.88 sec 3.22 sec

Coswara 44.1 kHz

COVID-19 Positive 85 7.62 mins 5.38 sec 2.76 sec

(fast count)
Healthy 1074 1.91 hours 6.39 sec 1.77 sec

Total 1159 2.03 hours 6.31 sec 1.88 sec

ComParE 16 kHz

COVID-19 Positive 214 44.02 mins 12.34 sec 5.35 sec

Healthy 396 1.46 hours 13.25 sec 4.67 sec

Total 610 2.19 hours 12.93 sec 4.93 sec

2.2.2. ComParE dataset

This dataset was provided as a part of the 2021 Interspeech

Computational Paralinguistics ChallengE (ComParE) [ ]. The
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Figure 1: Pre-processed breath signals from both COVID-

19 positive and COVID-19 negative subjects in the Coswara

dataset. Breaths corresponding to inhalation are marked by ar-

rows, and are followed by an exhalation.
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Figure 2: Pre-processed speech (counting from 1 to 20 at a nor-

mal pace) from both COVID-19 positive and COVID-19 nega-

tive subjects in the Coswara dataset. In contrast to breath (Fig-

ure ), spectral energy is concentrated below 1 kHz.

ComParE dataset contains recordings, of both coughs and

speech, where the latter is the utterance ‘I hope my data can

help to manage the virus pandemic’ in the speaker’s language

of choice.

2.2.3. Sarcos dataset

This dataset was collected in South Africa as part of this re-

search and currently contains recordings of coughing by 18

COVID-19 positive and 26 COVID-19 negative subjects. Au-

dio was pre-processed in the same way as the Coswara data.

Since this dataset is very small, we have used it in our previ-

ous work exclusively for an independent validation [ ]. In this

study, however, it has also been used to fine-tune and evaluate

pre-trained DNN classifiers by means of transfer learning and

the extraction of bottleneck features.

2.2.4. Summary of data used for classification

A summary of the above three datasets is presented in Table .

We see that the COVID-19 positive class is under-represented in

all cases. To address this, we again apply SMOTE during train-

ing. We also note that the Coswara dataset contains the largest

number of subjects, followed by ComParE and then Sarcos and

all recordings were downsampled at 16 kHz.

3. Primary Feature Extraction

From the time-domain audio signals, we have extracted mel-

frequency cepstral coefficients (MFCCs) and linearly-spaced

log filterbank energies, along with their respective velocity and

acceleration coefficients. We have also extracted the signal

zero-crossing rate (ZCR) and kurtosis [ ], which are indicative

respectively of time-domain signal variability and tailedness i.e.

the prevalence of higher amplitudes.

MFCCs have been very effective mostly in speech [ ], but

also in discriminating dry and wet coughs [ ], and recently in

characterising COVID-19 audio [ ]. Linearly-spaced log fil-

terbank energies have proved useful in biomedical applications,

including cough audio classification [ , , ]. The ZCR is the

number of times the time-domain signal changes sign within a

frame, and is an indicator of variability [ ].

Features are extracted from overlapping frames, where the

frame overlap δ is computed to ensure that the audio signal

is always divided into exactly S frames, as illustrated in Fig-

ure . This ensures that the entire audio event is always captured

within a fixed number of frames, which allows a fixed input di-

mension to be maintained while preserving the general overall

temporal structure of the sound. Such fixed two-dimensional

feature dimensions are particularly useful for the training of

DNN classifiers, and has been found to perform well in pre-

vious experiments [ ].
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Figure 3: Feature extraction process for a breath audio. The

frame overlap δ is adjusted in such a way that the entire record-

ing is divided into S segments. For M MFCCs, the final feature

matrix has (3M+ 2,S) dimensions.

The frame length (F ), number of frames (S), number of

lower order MFCCs (M) and number of linearly spaced filters

(B) are regarded as feature extraction hyperparameters, listed in

Table . The table shows that in our experiments each audio

signal is divided into between 70 and 200 frames, each between

512 and 4096 samples i.e. 32 msec and 256 msec long. The

number of extracted MFCCs (M) lies between 13 and 65, and

the number of linearly-spaced filterbanks (B) between 40 and

200. This allows the spectral information included in each fea-

ture to be varied.

Table 3: Primary feature (PF) extraction hyperparameters.

We have used between 13 and 65 MFCCs and between 40 and

200 linearly spaced filters to extract log energies.

Hyperparameters Description Range

MFCCs (M)
lower order 13× k, where

MFCCs to keep k = 1, 2, 3, 4, 5

Linearly spaced used to extract 40 to 200

filters (B) log energies in steps of 20

Frame length (F )
into which audio 2

k where

is segmented k = 9, 10, 11, 12

Segments (S)
number of frames 10× k, where

extracted from audio k = 7, 10, 12, 15, 20

The input feature matrix to the classifiers has the dimension

of (3M+2,S) for M MFCCs along with their M velocity and

M acceleration coefficients, as shown in Figure . Similarly,



for linearly spaced filters, the dimension of the feature matrix is

(3B + 2,S).

We will refer to the features described in this section as

primary features (PF) to distinguish them from the bottleneck

features (BNF), described in Section .

4. Transfer Learning architecture

Since the audio datasets with COVID-19 labels described in

Section are small, they may lead to overfitting when train-

ing deep architectures. Nevertheless, in previous work we have

found that deep architectures perform better than shallow clas-

sifiers when using these as training sets [ ]. In this work, we

consider whether the classification performance of such DNNs

can be improved by applying transfer learning.

To achieve this, we use the datasets containing 10.29 hours

of audio, labelled with four classes: cough, sneeze, speech and

noise, but do not include COVID-19 labels (Table in Sec-

tion ). This data is used to pre-train three deep neural ar-

chitectures: a CNN, an LSTM and a Resnet50. The feature

extraction hyperparameters: M = 39,F = 210 and S = 150
delivered good performance in our previous work [ ] and thus

have also been used here (Table ).

The CNN consists of three convolutional layers, with 256,

128 and 64 (2×2) kernels respectively and each followed by

(2,2) max-pooling. The LSTM consists of three layers with 512,

256 and 128 LSTM units respectively, each including dropout

with a rate of 0.2. A standard Resnet50, as described in Table 1

of [ ], has been implemented with 512-dimensional dense lay-

ers.

During pre-training, all three networks (CNN, LSTM and

Resnet50) are terminated by three dense layers with dimension-

alities 512, 64 and finally 4 to correspond to the four classes

mentioned in Table . Relu activation functions were used

throughout, except in the four-dimensional output layer which

was softmax. All the above architectural hyperparameters were

chosen by optimising the four-class classifiers during cross-

validation (Table ).

After pre-training on the datasets described in Section ,

the 64 and 4-dimensional dense layers terminating the network

were discarded from the CNN, the LSTM and the Resnet50.

This left three trained deep neural networks, each accepting the

same input dimensions and each with a 512-dimensional relu

output layer. The parameters of these three pre-trained networks

were then fixed for the remaining experiments.

In order to obtain COVID-19 classifiers by transfer learn-

ing, two dense layers are added after the 512-dimensional out-

put layer of each of the three pre-trained deep networks. The

final layer is a two-dimensional softmax, to indicate COVID-

19 positive and negative classes respectively. The dimension-

ality of the penultimate layer was also considered to be a hy-

perparameter and was optimised during nested k-fold cross-

validation. Its optimal value was found to be 32 for all three

architectures. The transfer learning process for a CNN archi-

tecture is illustrated in Figure .

5. Bottleneck Features

The 512-dimensional output of the three pre-trained networks

described in the previous section has a much lower dimension-

ality than the (3M+2, S) i.e. (3×39+2)×150 = 17850 di-

mensional input matrix consisting of primary features (Table ).

Therefore, the output of this layer can be viewed as a bottleneck

feature vector [ – ]. In addition to fine-tuning, where we

Table 4: Hyperparameters of the pre-trained networks: Fea-

ture extraction hyperparameters were adopted from the optimal

values in previous related work [ ], while classifier hyperpa-

rameters were optimised on the pre-training data using cross-

validation.

FEATURE EXTRACTION HYPERPARAMETERS

Hyperparameters Values

M MFCCs 39

F Frame length 2
10

= 1024

S Segments 150

CLASSIFIER HYPERPARAMETERS

Hyperparameters Classifier Values

Conv filters CNN 256 & 128 & 64

Kernel size CNN 2

Dropout rate CNN, LSTM 0.2

Dense layer
CNN, LSTM, Resnet50 512 & 64 & 4

(while pre-training)

Dense layer
CNN, LSTM, Resnet50 32 & 2

(while fine-tuning)

LSTM units LSTM 512 & 256 & 128

Learning rate LSTM 10
−3

= 0.001

Batch Size CNN, LSTM, Resnet50 2
7
= 128

Epochs CNN, LSTM, Resnet50 70

add terminating dense layers to the three pre-trained networks

and optimise these for the binary COVID-19 detection task as

shown in Figure , we have trained logistic regression (LR),

support vector machine (SVM), k-nearest neighbour (KNN) and

multilayer perceptron (MLP) classifiers using these bottleneck

features as inputs. Bottleneck features computed by the CNN,

the LSTM or the Resnet50 were chosen based on the one which

performed better in the corresponding transfer learning exper-

iments. Since the Resnet50 achieved higher development set

AUCs than the CNN and the LSTM during transfer learning, it

was used to extract bottleneck features on which the LR, SVM,

KNN and MLP classifiers were trained.

6. Experimental Method

We have evaluated the effectiveness of transfer learning (Sec-

tion ) and bottleneck feature extraction (Section ) using CNN,

LSTM and Resnet50 architectures in improving the perfor-

mance of COVID-19 classification based on cough, breath and

speech audio signals. In order to place these results in context,

we provide two baselines.

1. As a first baseline, we train the three deep architectures

(CNN, LSTM and Resnet50) directly on the primary fea-

tures extracted from data containing COVID-19 labels

(as described in Section ) and hence skip the pre-

training. Some of these baseline results were developed

in our previous work [ ].

2. As a second baseline, we train shallow classifiers (LR,

SVM, KNN and MLP) on the primary input features (as

described in Section ), also extracted from the data con-
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Figure 4: Transfer Learning Architecture for a CNN. Cross-validation on the pre-training data determined the optimal CNN archi-

tecture to have three convolutional layers with 256, 128 and 64 (2×2) kernels respectively and each followed by (2,2) max-pooling.

The convolutional layers were followed by two dense layers with 512 and 64 relu units each, and the network was terminated by a

4-dimensional softmax. To apply transfer learning, the final two layers were removed and replaced with a new dense layer and a ter-

minating 2-dimensional softmax to account for COVID-19 positive and negative classes. Only this newly added portion of the network

was trained for classification on the data with COVID-19 labels. In addition, the outputs of the third-last layer (512-dimensional dense

relu) from the pre-trained network were used as bottleneck features.

taining COVID-19 labels (described in Section ).

The performance of these baseline systems will be com-

pared against:

1. Deep architectures (CNN, LSTM and Resnet50) trained

by the transfer learning process. The respective deep ar-

chitectures are pre-trained (as described in Section ),

after which the final two layers are fine-tuned on the

data containing COVID-19 labels (as described in Sec-

tion ).

2. Shallow architectures (LR, SVM, KNN and MLP)

trained on the bottleneck features extracted from the pre-

trained networks.

6.1. Hyperparameter Optimisation

Hyperparameters for three pre-trained networks have already

been described in Section and are listed in Table . The re-

maining hyperparameters are those of the baseline deep clas-

sifiers (CNN, LSTM and Resnet50 without pre-training), the

four shallow classifiers (LR, SVM, KNN and MLP), and the di-

mensionality of the penultimate layer for the deep architectures

during transfer learning.

With the exception of Resnet50, all these hyperparameters

optimisation and performance evaluation has been performed

within the inner loops of a leave-p-out nested cross-validation

scheme [ ]. Due to the excessive computational requirements

of optimising Resnet50 metaparameters within the same cross-

validation framework, we have used the standard 50 skip lay-

ers in all experiments [ ]. Classifier hyperparameters and the

values considered during optimisation are listed in Table . A

five-fold split, similar to that employed in [ ], was used for the

nested leave-p-out cross-validation.

6.2. Classifier Evaluation

Receiver operating characteristic (ROC) curves were calculated

within both the inner and outer loops of the leave-p-out cross-

validation scheme described in the previous section. The inner-

loop ROC values were used for the hyperparameter optimisa-

tion, while the average of the outer-loop ROC values indicate fi-

nal classifier performance on the independent held-out test sets.

The AUC score indicates how well the classifier has performed

over a range of decision thresholds [ ]. The threshold that

achieves an equal error rate (γEE) was computed from these

curves.

We note the mean per-frame probability that an event such

as a cough is from a COVID-19 positive subject by P̂ :

P̂ =

K
∑

i=1

P (Y = 1|Xi, θ)

K
(1)

where K indicates the number of frames in the cough and

P (Y = 1|Xi, θ) is the output of the classifier for feature vec-

tor Xi and parameters θ for the ith frame. Now we define the

indicator variable C as:

C =

{

1 if P̂ ≥ γEE

0 otherwise
(2)

We then define two COVID-19 index scores as CI1 and CI2,

N1 as the number of coughs from the subject in the recording

and N2 as the total number of frames of cough audio gathered

from the subject in Equations and respectively.

CI1 =

N1
∑

i=1

C

N1

(3)

CI2 =

N2
∑

i=1

P (Y = 1|Xi)

N2

(4)

Hence Equation computes a per-cough average proba-

bility while Equation computes a per-frame average prob-

ability. For the shallow classifiers, the use of one of Equa-

tions and was considered an additional hyperparameter dur-

ing cross-validation, and it was found that taking the maximum

value of the index scores consistently led to the best perfor-

mance.

The average specificity, sensitivity and accuracy, as well as

the AUC together with its standard deviation (σAUC ) are shown



Table 5: Classifier hyperparameters, optimised using leave-p-

out nested cross-validation.

Hyperparameters Classifier Range

Regularisation
LR, SVM

10
i where,

Strength (α1) i = −7,−6, . . . , 6, 7

l1 penalty (α2) LR 0 to 1 in steps of 0.05

l2 penalty (α3) LR, MLP 0 to 1 in steps of 0.05

Kernel
SVM

10
i where,

Coefficient (α4) i = −7,−6, . . . , 6, 7

No. of neighbours (α5) KNN 10 to 100 in steps of 10

Leaf size (α6) KNN 5 to 30 in steps of 5

No. of neurons (α7) MLP 10 to 100 in steps of 10

No. of conv filters (β1) CNN 3× 2
k where k = 3, 4, 5

Kernel size (β2) CNN 2 and 3

Dropout rate (β3) CNN, LSTM 0.1 to 0.5 in steps of 0.2

Dense layer size (β4) CNN, LSTM 2
k where k = 4, 5

LSTM units (β5) LSTM 2
k where k = 6, 7, 8

Learning rate (β6) LSTM, MLP
10

k where,

k = −2,−3,−4

Batch Size (β7) CNN, LSTM 2
k where k = 6, 7, 8

Epochs (β8) CNN, LSTM 10 to 250 in steps of 20

in Tables , and for cough, breath and speech respectively.

These values have all been calculated over the outer folds during

nested cross-validation. Hyperparameters producing the highest

AUC over the inner loops have been noted as the ‘best classifier

hyperparameter’.

7. Experimental Results

COVID-19 classification performance based on cough, breath

and speech are presented in Tables , and respectively.

These tables include the performance of baseline deep clas-

sifiers without pre-training, deep classifiers trained by trans-

fer learning (TL), shallow classifiers using bottleneck features

(BNF) and baseline shallow classifiers trained directly on the

primary features (PF). The best performing classifiers appear

first for each dataset and the baseline results are shown towards

the end. Each system is identified by an ‘ID’.

7.1. Coughs

We have found in our previous work [ ] that, when training

a Resnet50 on only the Coswara dataset, an AUC of 0.976

(σAUC = 0.018) can be achieved for the binary classifica-

tion problem of distinguishing COVID-19 coughs from healthy

coughs. These results are reproduced as baseline systems C8,

C9 and C10 in Table . The improved results achieved by trans-

fer learning are indicated by systems C1 to C7 in the same table.

Specifically, system C1 shows that, by applying transfer learn-

ing as described in Section , the same Resnet50 architecture

can achieve an AUC of 0.982 (σAUC = 0.002). The entries

for systems C2 and C3 show that pre-training also improves the

AUCs achieved by the deep CNN and LSTM classifiers from

0.953 (system C9) to 0.972 (system C2) and from 0.942 (sys-

tem C10) to 0.964 (system C3) respectively. Of particular note

in all these cases is the substantial decrease in the standard de-

viation of the AUC (σAUC ), observed during cross-validation

when implementing transfer learning. This indicates that pre-

training leads to classifiers with more consistent performance

on the unseen test data.

The Sarcos dataset is much smaller than the Coswara

dataset and too small to train a deep classifier directly. For this

reason, it was used only as an independent validation dataset

for classifiers trained on the Coswara data in our previous

work [ ]. It can however be used to fine-tune pre-trained clas-

sifiers during transfer learning, and the resulting performance is

reflected by systems C11 to C17 in Table . Previously an AUC

of 0.938 (system C20) was achieved when using Sarcos as an

independent validation data and applying sequential forward se-

lection (SFS). Here, we find that transfer learning applied to the

Resnet50 model results in an AUC of 0.961 (system C11) and

a lower standard deviation (σAUC =0.003) than that observed

for the Coswara dataset [ ]. As an additional experiment, we

apply the Resnet50 classifier trained by transfer learning using

the Coswara data to the Sarcos data, thus again using the lat-

ter as an independent validation set. The resulting performance

is indicated by system C18, while the previous baselines are

repeated as systems C19 and C20. System C18 achieves an

AUC of 0.954, which is only slightly below the 0.961, achieved

by system C11 where the pre-trained model used the Sarcos

data for fine-tuning, and slightly higher than the AUC of 0.938

achieved by system C20 which is the baseline LSTM trained

on Coswara without transfer learning but employing SFS [ ].

This supports our earlier observation that transfer learning ap-

pears to lead to more robust classifiers that can generalise to

other datasets. Due to the extreme computational load, we have

not yet been able to evaluate SFS within the transfer learning

framework.

For the ComParE dataset, we have included shallow clas-

sifiers trained directly on the primary input features (KNN+PF,

MLP+PF, SVM+PF and LR+PF). These are the baseline sys-

tems C29 to C32 in Table . The best-performing shallow clas-

sifier is C29, where a KNN used 60 linearly spaced filterbank

log energies as features. System C28 is the result of apply-

ing SFS to system C29. In this case, SFS identifies the top

12 features based on the development sets used during nested

cross-validation, and results in the best-performing shallow sys-

tem with an AUC of 0.944. This represents a substantial im-

provement over the AUC of 0.855 achieved by the same system

without SFS (system C29). Systems C21 to C27 in Table

are obtained by transfer learning using the ComParE dataset.

These show improved performance over the shallow classifiers

without SFS. In particular, after transfer learning, the Resnet50

achieves almost the same AUC as the best ComParE system

(system C28) with a lower σAUC .

When considering the performance of the shallow classi-

fiers trained on the bottleneck features across all three datasets

in Table , we see that a consistent improvement over the use of

primary features with the same classifiers is observed. The ROC

curves for the best-performing COVID-19 cough classifiers are

shown in Figure .

7.2. Breath

Table demonstrates that COVID-19 classification is also pos-

sible on the basis of breath signals. The baseline systems B8,

B9 and B10 are trained directly on the primary features, with-

out pre-training. By comparing these baselines with B1, B2 and

B3, we see that transfer learning leads to a small improvement



Table 6: COVID-19 cough classifier performance: For the Coswara, Sarcos and ComParE datasets the highest AUCs were 0.982,

0.961 and 0.944 respectively and achieved by a Resnet50 trained by transfer learning in the first two cases and a KNN classifier using

12 primary features determined by sequential forward selection (SFS) in the third case. When Sarcos as a validation-only datset for a

classifier trained on the Coswara data, an AUC of 0.954 is achieved.

Dataset ID Classifier
Best Feature Best Classifier Hyperparameters Performance

Hyperparameters (Optimised inside nested cross-validation) Spec Sens Acc AUC σAUC

Coswara

C1 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 97% 98% 97% 0.982 2×10
−3

C2 CNN+TL ” Table 92% 98% 95% 0.972 3×10
−3

C3 LSTM+TL ” ” 93% 95% 94% 0.964 3×10
−3

C4 MLP+BNF ” α3=0.35, α7=50 92% 96% 94% 0.963 4×10
−3

C5 SVM+BNF ” α1 = 10
4, α4 = 10

1 89% 93% 91% 0.942 3×10
−3

C6 KNN+BNF ” α5=20, α6=15 88% 90% 89% 0.917 7×10
−3

C7 LR+BNF ” α1 = 10
−1, α2 = 0.5, α3 = 0.5 84% 86% 85% 0.898 8×10

−3

C8 Resnet50+PF [ ] Table 4 in [ ] Default Resnet50 (Table 1 in [ ]) 98% 93% 95% 0.976 18×10
−3

C9 CNN+PF [ ] ” Table 4 in [ ] 99% 90% 95% 0.953 39×10
−3

C10 LSTM+PF [ ] ” ” 97% 91% 94% 0.942 43×10
−3

Sarcos

C11 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 92% 96% 94% 0.961 3×10
−3

C12 LSTM+TL ” Table 92% 92% 92% 0.943 3×10
−3

C13 CNN+TL ” ” 89% 91% 90% 0.917 4×10
−3

C14 MLP+BNF ” α3=0.75, α7=70 88% 90% 89% 0.913 7×10
−3

C15 SVM+BNF ” α1 = 10
−2, α4 = 10

4 88% 89% 89% 0.904 6×10
−3

C16 KNN+BNF ” α5=40, α6=20 85% 87% 86% 0.883 8×10
−3

C17 LR+BNF ” α1 = 10
−3, α2 = 0.4, α3 = 0.6 83% 86% 85% 0.867 9×10

−3

Sarcos
C18 Resnet50+TL ” Default Resnet50 (Table 1 in [ ]) 92% 96% 94% 0.954 —

(val only)
C19 LSTM+PF [ ] Table 5 in [ ] Table 5 in [ ] 73% 75% 74% 0.779 —

C20 LSTM+PF+SFS [ ] ” ” 96% 91% 93% 0.938 —

ComParE

C21 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 89% 93% 91% 0.934 4×10
−3

C22 LSTM+TL ” Table 88% 92% 90% 0.916 4×10
−3

C23 CNN+TL ” ” 86% 90% 88% 0.898 4×10
−3

C24 MLP+BNF ” α3=0.25, α7=20 85% 90% 88% 0.912 5×10
−3

C25 SVM+BNF ” α1 = 10
−3, α4 = 10

2 85% 90% 88% 0.903 6×10
−3

C26 KNN+BNF ” α5=70, α6=20 85% 86% 86% 0.882 8×10
−3

C27 LR+BNF ” α1 = 10
4, α2 = 0.3, α3 = 0.7 84% 86% 85% 0.863 8×10

−3

C28 KNN+PF+SFS B = 60,F = 2
11,S = 70 α5=60, α6=25 84% 90% 92% 0.944 9×10

−3

C29 KNN+PF B = 60,F = 2
11,S = 70 α5=60, α6=25 78% 80% 80% 0.855 13×10

−3

C30 MLP+PF M = 13,F = 2
10,S = 100 α3=0.65, α7=40 76% 80% 78% 0.839 14×10

−3

C31 SVM+PF B = 80,F = 2
9,S = 70 α1 = 10

−4, α4 = 10
−1 75% 78% 77% 0.814 12×10

−3

C32 LR+PF B = 140,F = 2
11,S = 70 α1 = 10

−2, α2 = 0.6, α3 = 0.4 69% 73% 71% 0.789 13×10
−3

Table 7: COVID-19 breath classifier performance: For breaths, the best performance was achieved by an SVM using bottleneck

features (AUC = 0.942). The Resnet50 classifier trained by transfer learning achieves a similar AUC of 0.934.

Dataset ID Classifier
Best Feature Best Classifier Hyperparameters Performance

Hyperparameters (Optimised inside nested cross-validation) Spec Sens Acc AUC σAUC

Coswara

B1 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 87% 93% 90% 0.934 3×10
−3

B2 LSTM+TL ” Table 86% 90% 88% 0.927 3×10
−3

B3 CNN+TL ” ” 85% 89% 87% 0.914 3×10
−3

B4 SVM+BNF ” α1 = 10
2, α4 = 10

−2 88% 94% 91% 0.942 4×10
−3

B5 MLP+BNF ” α3=0.45, α7=50 87% 93% 90% 0.923 6×10
−3

B6 KNN+BNF ” α5=70, α6=10 87% 93% 90% 0.922 9×10
−3

B7 LR+BNF ” α1 = 10
−4, α2 = 0.8, α3 = 0.2 86% 90% 88% 0.891 8×10

−3

B8 Resnet50+PF M = 39,F = 2
10,S = 150 Default Resnet50 (Table 1 in [ ]) 92% 90% 91% 0.923 34×10

−3

B9 LSTM+PF M = 26,F = 2
11,S = 120 β3=0.1, β4=32, β5=128, β6=0.001, β7=256, β8=170 90% 86% 88% 0.917 41×10

−3

B10 CNN+PF M = 52,F = 2
10,S = 100 β1=48, β2=2, β3=0.3, β4=32, β7=256, β8=210 87% 85% 86% 0.898 42×10

−3

in AUC for all three deep architectures. Furthermore, systems

B4 to B7 show that comparable performance can be achieved

by shallow classifiers using the bottleneck features. The best

overall performance (AUC = 0.942) was achieved by an SVM

classifier trained on the bottleneck features (system B4). How-

ever, the Resnet50 trained by transfer learning (system B1) per-

formed almost equally well (AUC = 0.934). The ROC curves

for the best-performing COVID-19 breath classifiers are shown



Figure 5: COVID-19 cough classification: A Resnet50 classi-

fier with transfer learning achieved the highest AUC in classi-

fying COVID-19 coughs for the Coswara and Sarcos datasets

(0.982 and 0.961 respectively). For the ComParE dataset,

AUCs of 0.944 and 0.934 were achieved by a KNN classifier

using 12 features identified by SFS and by a Resnet50 classifier

trained by transfer learning respectively.

Figure 6: COVID-19 breath classification: An SVM classifier

using bottleneck features (BNF) achieved the highest AUC of

0.942 when classifying COVID-19 breath. The Resnet50 with

and without the transfer learning has achieved AUCs of 0.934

and 0.923 respectively, with higher σAUC for the latter (Table

).

in Figure . As it was observed for coughs, the standard devia-

tion of the AUC (σAUC ) is consistently lower for the pre-trained

networks.

7.3. Speech

Although not as informative as cough or breath audio, COVID-

19 classification can also be achieved on the basis of speech

audio recordings. For Coswara, the best classification perfor-

mance (AUC = 0.893) was achieved by a Resnet50 after apply-

ing transfer learning (system S1). For the ComParE data, the

top performer (AUC = 0.923) was an SVM trained on the bottle-

neck features (system S24). However, the Resnet50 trained by

transfer learning performed almost equally well, with an AUC

of 0.914 (system S21). Furthermore, while good performance

was also achieved when using the deep architectures without

applying the transfer learning process (systems S8-S10, S18-

S20 and S28-S32), this again was at the cost of a substantially

higher standard deviation σAUC . Finally, for the Coswara data,

performance was generally better when speech was uttered at

a normal pace rather than a fast pace. The ROC curves for the

best-performing COVID-19 speech classifiers are shown in Fig-

Figure 7: COVID-19 speech classification: An SVM classifier

using bottleneck features (BNF) achieved the highest AUC of

0.923 when classifying COVID-19 speech in ComParE dataset.

A Resnet50 trained by transfer learning achieves a slightly

lower AUC of 0.914. Speech (normal and fast) in the Coswara

dataset can be used to classify COVID-19 with AUCs of 0.893

and 0.861 respectively using a Resnet50 trained by transfer

learning.

ure .

8. Discussion

Previous studies have shown that it is possible to distinguish

between the coughing sounds made by COVID-19 positive and

COVID-19 negative subjects by means of automatic classifica-

tion and machine learning. However, the fairly small size of

datasets with COVID-19 labels limits the effectiveness of these

techniques. The results of the experiments we have presented

in this study show that larger datasets of other vocal and respi-

ratory audio that do not include COVID-19 labels can be lever-

aged to improve classification performance by applying trans-

fer learning. Specifically, we have shown that the accuracy

of COVID-19 classification based on coughs can be improved

by transfer learning for two datasets (Coswara and Sarcos)

while almost optimal performance is achieved on a third dataset

(ComParE). A similar trend is seen when performing COVID-

19 classification based on breath and speech audio. However,

these two types of audio appear to contain less distinguishing in-

formation, since the achieved classification performance is a lit-

tle lower than it is for cough. Our best cough classification sys-

tem has an area under the ROC curve (AUC) of 0.982, despite

being trained on what remains a fairly small COVID-19 dataset

with 1171 participants (92 COVID-19 positive and 1079 nega-

tive). Other research reports a similar AUC but using a much

larger dataset with 8380 participants (2339 positive and 6041

negative) [ ]. Application of transfer learning on all three au-

dio types presented in this study shows better performance than

recent studies as well [ ]. While our experiments also show

that shallow classifiers, when used in conjunction with feature

selection, can in some cases match or surpass the performance

of the deeper architectures; a pre-trained Resnet50 architecture

provides consistent optimal or near-optimal performance across

all three types of audio signals and datasets. Due to the very

high computational cost involved, we have not yet applied such

feature selection to the deep architectures themselves, and this

remains part of our ongoing work.

Another important observation that we can make for all

three types of audio signals is that transfer learning strongly

reduces the variance in the AUC (σAUC ) exhibited by the deep



Table 8: COVID-19 speech classifier performance: For the Coswara (fast and normal speech) and the ComParE speech the highest

AUCs were 0.893, 0.861 and 0.923 respectively and achieved by a Resnet50 trained by transfer learning in the first two cases and an

SVM using with bottleneck features in the third case.

Dataset ID Classifier
Best Feature Best Classifier Hyperparameters Performance

Hyperparameters (Optimised inside nested cross-validation) Spec Sens Acc AUC σAUC

Coswara

S1 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 90% 85% 87% 0.893 3×10
−3

Normal

S2 LSTM+TL ” Table 88% 82% 85% 0.877 4×10
−3

Count

S3 CNN+TL ” ” 88% 81% 85% 0.875 4×10
−3

S4 MLP+BNF ” α3=0.25, α7=60 83% 85% 84% 0.871 8×10
−3

S5 SVM+BNF ” α1 = 10
−6, α4 = 10

5 83% 85% 84% 0.867 7×10
−3

S6 KNN+BNF ” α5=50, α6=10 80% 85% 83% 0.868 6×10
−3

S7 LR+BNF ” α1 = 10
2, α2 = 0.6, α3 = 0.4 79% 83% 81% 0.852 7×10

−3

S8 Resnet50+PF M = 26,F = 2
10,S = 120 Default Resnet50 (Table 1 in [ ]) 84% 80% 82% 0.864 51×10

−3

S9 LSTM+PF M = 26,F = 2
11,S = 150 β3=0.1, β4=32, β5=128, β6=0.001, β7=256, β8=170 84% 78% 81% 0.844 51×10

−3

S10 CNN+PF M = 39,F = 2
10,S = 120 β1=48, β2=2, β3=0.3, β4=32, β7=256, β8=210 82% 78% 80% 0.832 52×10

−3

Coswara

S11 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 84% 78% 81% 0.861 2×10
−3

Fast

S12 LSTM+TL ” Table 83% 78% 81% 0.860 3×10
−3

Count

S13 CNN+TL ” ” 82% 76% 79% 0.851 3×10
−3

S14 MLP+BNF ” α3=0.55, α7=70 78% 83% 81% 0.858 7×10
−3

S15 SVM+BNF ” α1 = 10
4, α4 = 10

−2 78% 83% 81% 0.856 8×10
−3

S16 KNN+BNF ” α5=60, α6=15 77% 83% 81% 0.854 8×10
−3

S17 LR+BNF ” α1 = 10
−3, α2 = 0.4, α3 = 0.6 77% 82% 80% 0.841 11×10

−3

S18 LSTM+PF M = 26,F = 2
11,S = 120 β3=0.1, β4=32, β5=128, β6=0.001, β7=256, β8=170 84% 80% 82% 0.856 47×10

−3

S19 Resnet50+PF M = 39,F = 2
10,S = 150 Default Resnet50 (Table 1 in [ ]) 82% 78% 80% 0.822 45×10

−3

S20 CNN+PF M = 52,F = 2
10,S = 100 β1=48, β2=2, β3=0.3, β4=32, β7=256, β8=210 79% 77% 78% 0.810 41×10

−3

ComParE

S21 Resnet50+TL Table Default Resnet50 (Table 1 in [ ]) 84% 90% 87% 0.914 4×10
−3

S22 LSTM+TL ” Table 82% 88% 85% 0.897 5×10
−3

S23 CNN+TL ” ” 80% 88% 84% 0.892 5×10
−3

S24 SVM+BNF ” α1 = 10
−1, α4 = 10

3 84% 88% 86% 0.923 4×10
−3

S25 MLP+BNF ” α3=0.3, α7=60 80% 88% 84% 0.905 6×10
−3

S26 KNN+BNF ” α5=20, α6=15 80% 86% 83% 0.891 7×10
−3

S27 LR+BNF ” α1 = 10
2, α2 = 0.45, α3 = 0.7 81% 85% 83% 0.890 7×10

−3

S28 MLP+PF+SFS M = 26,F = 2
11,S = 150 α3=0.35, α7=70 82% 88% 85% 0.912 11×10

−3

S29 MLP+PF M = 26,F = 2
11,S = 150 α3=0.35, α7=70 81% 85% 83% 0.893 14×10

−3

S30 KNN+PF B = 100,F = 2
10,S = 120 α5=70, α6=15 80% 84% 82% 0.847 16×10

−3

S31 SVM+PF B = 80,F = 2
11,S = 120 α1 = 10

−2, α4 = 10
−3 79% 81% 80% 0.836 15×10

−3

S32 LR+PF B = 60,F = 2
10,S = 100 α1 = 10

4, α2 = 0.35, α3 = 0.65 69% 72% 71% 0.776 18×10
−3

classifiers during cross-validation (Table , and ). This sug-

gests that transfer learning leads to more consistent classifiers

that are less prone to over-fitting and better able to generalise on

the unseen data. This is important because robustness to vari-

able testing conditions is essential in implementing COVID-19

classification as a method of screening.

An informal listening assessment of the Coswara and the

ComParE data indicates that the former has greater variance and

more noise than the latter. Our experimental results presented in

Table , and found that, for speech classification on a noisy

data, fine-tuning the pre-trained networks demonstrates better

performance, while for cleaner data, extracting bottleneck fea-

tures and then applying a shallow classifier exhibits better per-

formance. It is interesting to note that MFCCs are always the

features of choice for this noisier dataset, while the log ener-

gies of linear filters are often preferred for the less noisy data.

Although all other classifiers have shown the best performance

when using these log-filterbank energy features, MLP has al-

ways performed the best on MFCCs and has been proved to be

the best classifier in classifying COVID-19 speech. A similar

conclusion was also drawn in [ ], where coughs were recorded

in a controlled environment with little environmental noise. A

higher number of segments also generally leads to better perfor-

mance as it allows the classifier to find more detailed temporal

patterns in the audio signal.

9. Conclusions

In this study, we have demonstrated that transfer learning can

be used to improve the performance and robustness of the

DNN classifiers for COVID-19 detection in vocal audio such

as cough, breath and speech. We have used a 10.29 hour au-

dio data corpus, which do not have any COVID-19 labels, to

pre-train a CNN, an LSTM and a Resnet50. This data con-

tains four classes: cough, sneeze, speech and noise. In addition,

we have used the same architectures to extract bottleneck fea-

tures by removing the final layers from the pre-trained models.

Three smaller datasets containing cough, breath and speech au-

dio with COVID-19 labels were then used to fine-tune the pre-

trained COVID-19 audio classifiers using nested leave-p-out

cross-validation. Our results show that a pre-trained Resnet50

classifier that is either fine-tuned or used as a bottleneck ex-

tractor delivers optimal or near-optimal performance across all

datasets and all three audio classes. The results show that trans-



fer learning using the larger dataset without COVID-19 labels

led not only to improved performance, but also to a smaller stan-

dard deviation of the classifier AUC, indicating better general-

isation. The use of bottleneck features, which are extracted by

the pre-trained deep models and therefore also a way of incor-

porating out-of-domain data, also provided a reduction in this

standard deviation and near-optimal performance. The exper-

iments show that cough audio carries the strongest COVID-19

signatures, followed by breath and speech. The best-performing

COVID-19 classifier achieved an area under the ROC curve

(AUC) of 0.982 for cough, followed by an AUC of 0.942 for

breath and 0.923 for speech.

Finally, we note that, for the shallow classifiers, hyperpa-

rameter optimisation selected a higher number of MFCCs and

also a more densely populated filterbank than what is required to

match the resolution of the human auditory system. This agrees

with an observation we have already made in our previous work

that the information used by the classifiers to detect COVID-19

signature is at least to some extent not perceivable by the human

ear.

We conclude that successful classification is possible for

all three classes of audio considered. However, deep transfer

learning improves COVID-19 detection on the basis of cough,

breath and speech signals, yielding automatic classifiers with

higher accuracies and greater robustness. This is significant

since such COVID-19 screening is inexpensive, easily deploy-

able, non-contact and does not require medical expertise or lab-

oratory facilities. Therefore it has the potential to decrease the

load on the health care systems.

As a part of ongoing work, we are considering the appli-

cation of feature selection in the deep architectures, the fusion

of classifiers using various audio classes like cough, breath and

speech, as well as the optimisation and adaptation necessary to

allow deployment on a smartphone or similar mobile platform.
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and Jan Cernockỳ, “BUT/Phonexia Bottleneck Feature Extrac-
tor.,” in Odyssey, 2018, pp. 283–287.

[41] Yan Song, Ian McLoughLin, and Lirong Dai, “Deep Bottleneck
Feature for Image Classification,” in Proceedings of the 5th ACM

on International Conference on Multimedia Retrieval, 2015, pp.
491–494.

[42] Quoc Bao Nguyen, Jonas Gehring, Kevin Kilgour, and Alex
Waibel, “Optimizing deep bottleneck feature extraction,” in The

2013 RIVF International Conference on Computing & Communi-

cation Technologies-Research, Innovation, and Vision for Future

(RIVF). IEEE, 2013, pp. 152–156.

[43] Shiqin Liu, “Leave-p-Out Cross-Validation Test for Uncertain
Verhulst-Pearl Model With Imprecise Observations,” IEEE Ac-

cess, vol. 7, pp. 131705–131709, 2019.

[44] Tom Fawcett, “An introduction to ROC analysis,” Pattern Recog-

nition Letters, vol. 27, no. 8, pp. 861–874, 2006.

[45] Pierre A Devijver and Josef Kittler, Pattern recognition: A statis-

tical approach, Prentice Hall, 1982.

[46] Javier Andreu-Perez, Humberto Pérez-Espinosa, Eva Timonet,
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