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Abstract
We prove a dimension-free stability result for polydisc
slicing due to Oleszkiewicz and Pełczyński. Intriguingly,
compared to the real case, there is an additional asymp-
totic maximizer. In addition to Fourier-analytic bounds,
we crucially rely on a self-improving feature of polydisc
slicing, established via probabilistic arguments.
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1 INTRODUCTION

The study of sections of convex bodies has a long and rich history. Many results about extremal
sections and their stability are known (see the recent survey [40], and the references therein).
An influential result of this type is Ball’s cube slicing theorem from [4], which states that the
hyperplane sections of the unit volume cube [−1

2
, 1
2
]𝑛 in ℝ𝑛 have volume bounded between 1 and√

2 (the lower bound had been known earlier and goes back to the independent works [26] of
Hadwiger and [27] of Hensley). Ball’s upper bound famously gave a simple counterexample to the
Busemann–Petty problem indimensions𝑛 ⩾ 10 (see [5, 14, 24, 32]). Formany other ensuingworks,
see, for instance, [2, 6, 8, 10, 29–31, 37, 38, 41, 43, 44, 49], as well as the comprehensive surveys [40,
50]. Both bounds for cube slicing are sharp, the lower one uniquely attained at hyperplanes orthog-
onal to the vectors 𝑒𝑖 , 1 ⩽ 𝑖 ⩽ 𝑛, the upper bound uniquely attained at hyperplanes orthogonal to
the vectors 𝑒𝑖 ± 𝑒𝑗 , 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, where 𝑒1, … , 𝑒𝑛 are the standard basis vectors in ℝ𝑛. However,
only recently quantitative stability results have been developed: for every hyperplane 𝑎⟂ in ℝ𝑛
orthogonal to the unit vector 𝑎 in ℝ𝑛 with 𝑎1 ⩾ 𝑎2 ⩾⋯ ⩾ 𝑎𝑛 ⩾ 0, we have

1 +
1

54
|𝑎 − 𝑒1|2 ⩽ vol𝑛−1([−12 , 12 ]𝑛 ∩ 𝑎⟂) ⩽√2 − 6 ⋅ 10−5||||||𝑎 −

𝑒1 + 𝑒2√
2

||||||, (1)
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1166 GLOVER et al.

where here and throughout this paper | ⋅ | denotes the standard Euclidean norm on ℝ𝑛. A local
version of the upper bound has been established by Melbourne and Roberto in [36] (with appli-
cations in information theory), while the stated lower and upper bounds are from [16] (with the
numerical value of the constant in the upper bound from [22], where it is instrumental in extend-
ing Ball’s cube slicing to the 𝓁𝑝 balls for 𝑝 > 1015). Distributional stability of Ball’s inequality has
been very recently studied in [23].
The goal of this paper is to derive a complex analogue of (1). Across the areas in convex geometry,

significant efforts have been made to extend many fundamental and classical results well-known
from real spaces to complex ones. For example, see [3, 7, 9, 11, 12, 18, 19, 21, 30, 31, 33–35] (sometimes
complex-counterparts turn out to be “easier,” e.g., [28, 39, 46], but for certain problems, on the
contrary, satisfactory results have been elusive, e.g., [48]). A counterpart of Ball’s cube slicing in
ℂ𝑛 was discovered by Oleszkiewicz and Pełczyński in [42]. Let 𝔻 be the unit disc in the complex
plane and let

𝔻𝑛 = 𝔻 ×⋯ × 𝔻 = {𝑧 ∈ ℂ𝑛, max
𝑗⩽𝑛

|𝑧𝑗| ⩽ 1}
be the polydisc in ℂ𝑛, the complex analogue of the cube. For 𝑧, 𝑤 ∈ ℂ𝑛, we let as usual⟨𝑧, 𝑤⟩=∑𝑛
𝑗=1 𝑧𝑗�̄�𝑗 be their standard inner product. Oleszkiewicz and Pełczyński proved that for every

(complex) hyperplane 𝑎⟂ = {𝑧 ∈ ℂ𝑛, ⟨𝑧, 𝑎⟩= 0} orthogonal to the vector 𝑎 in ℂ𝑛, we have
1 ⩽

1

𝜋𝑛−1
vol2𝑛−2(𝔻

𝑛 ∩ 𝑎⟂) ⩽ 2. (2)

Interestingly, this is in fact formally a generalization of Ball’s result (see Szarek’s argument
in [42, Remark 4.4]). The lower bound is attained uniquely at hyperplanes orthogonal to the
standard basis vectors 𝑒𝑗 , 1 ⩽ 𝑗 ⩽ 𝑛, the upper one is attained uniquely at hyperplanes orthog-
onal to the vectors 𝑒𝑗 + 𝑒𝑖𝑡𝑒𝑘, 1 ⩽ 𝑗 < 𝑘 ⩽ 𝑛, 𝑡 ∈ ℝ. In this setting, we identify ℂ𝑛 with ℝ2𝑛
via the standard embedding and vol is always Lebesgue measure on the appropriate sub-
space whose dimension is usually indicated in the lower script (as, for instance, here 𝑎⟂
becomes a subspace in ℝ2𝑛 of real dimension 2𝑛 − 2). Note that, in particular, vol2𝑛−2(𝔻𝑛−1) =
𝜋𝑛−1 (obtained as the canonical section 𝔻𝑛 ∩ (1, 0, … , 0)⟂), which is the normalizing factor
above. Thanks to the symmetries of 𝔻𝑛 under the permutations of the coordinates as well
as complex rotations along axes 𝑧 ↦ (𝑒𝑖𝑡1𝑧1, … , 𝑒𝑖𝑡𝑛𝑧𝑛), it suffices to consider real nonnegative
vectors with say nonincreasing components. The main result of this paper is the following
dimension-free stability result that refines (2). It is natural to introduce the normalized section
function,

𝐴𝑛(𝑎) =
1

𝜋𝑛−1
vol2𝑛−2(𝔻

𝑛 ∩ 𝑎⟂), 𝑎 ∈ ℝ𝑛,

so that 𝐴𝑛(𝑒1) =
1

𝜋𝑛−1
vol2𝑛−2(𝔻

𝑛−1) = 1.

Theorem 1. For 𝑛 ⩾ 2 and every unit vector 𝑎 in ℝ𝑛 with 𝑎1 ⩾ 𝑎2 ⩾⋯ ⩾ 𝑎𝑛 ⩾ 0, we have

𝐴𝑛(𝑎) ⩾ 1 +
1

8
|𝑎 − 𝑒1|2, (3)
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STABILITY OF POLYDISC SLICING 1167

as well as

𝐴𝑛(𝑎) ⩽ 2 − min

{
10−40

||||||𝑎 −
𝑒1 + 𝑒2√
2

||||||, 176
𝑛∑
𝑗=1

𝑎4𝑗

}
. (4)

We do not try to optimize the numerical values of the constants involved (for the sake of clarity).
Before we move to proof, several remarks are in place.

Remark 1. In contrast to the real case, the deficit term in our upper bound (4) is more complicated
and features the minimum over two quantities: the distance to the unique extremizer and the 𝓁4
norm of 𝑎. The latter appears to account for the fact that

lim
𝑛→∞

𝐴𝑛

(
1√
𝑛
, … , 1√

𝑛

)
= 2.

In other words, curiously, polidysc slicing admits an additional asymptotic (Gaussian) extremizer
( 1√
𝑛
, … , 1√

𝑛
)⟂, 𝑛 → ∞. In the real case,

lim
𝑛→∞

vol𝑛−1

([
−1
2
, 1
2

]𝑛
∩

(
1√
𝑛
, … , 1√

𝑛

)⟂)
=

√
6

𝜋
<
√
2.

Remark 2. Up to the absolute constants, (4) is sharp, in that the asymptotic behavior of the right-
hand side as a function of the quantities involved |𝑎 − 𝑒1+𝑒2√

𝑛
| and∑𝑛𝑗=1 𝑎4𝑗 is best possible. Indeed,

for the former quantity, consider vectors 𝑎 = (
√
1

2
+ 𝜖,

√
1

2
− 𝜖, 0, … , 0) and note that, by com-

bining (5) and Lemma 2, we get 𝐴𝑛(𝑎) = (
1

2
+ 𝜖)−1 = 2 − 𝜖 + 𝑂(𝜖2) as 𝜖 → 0, while the left-hand

side is 2 − Θ(𝜖). For the latter quantity, testing with 𝑎 = ( 1√
𝑛
, … , 1√

𝑛
) gives the right-hand side

of the order 2 − Θ( 1
𝑛
), while 𝐴𝑛(𝑎) =

1

2
∫ ∞0 (2𝐽1(𝑡∕

√
𝑛

𝑡∕
√
𝑛
)𝑛𝑡d𝑡 (see Subsection 3.2) which, by using

the power series expansion (the definition) of the Bessel function, 2
𝑡
𝐽1(𝑡) = 1 −

𝑡2

8
+ 𝑡4

3⋅26
+ 𝑂(𝑡6),

𝑡 → 0, leads to 𝐴𝑛(𝑎) = 2 − Θ(
1

𝑛
) as well, as 𝑛 → ∞.

Remark 3. The presence of the asymptotic extremizer also attests to the fact that bound (4) with
a better term

∑𝑛
𝑗=1 |𝑎𝑗|𝑝 with some 𝑝 < 4 in place of ∑𝑛𝑗=1 𝑎4𝑗 would not hold. Indeed, for 𝑎 =

( 1√
𝑛
, … , 1√

𝑛
), 𝐴𝑛(𝑎) = 2 − Θ(

1

𝑛
), as explained in Remark 2, whereas

∑𝑛
𝑗=1 |𝑎𝑗|𝑝 = 𝑛1−𝑝∕2 ≫ 𝑛−1,

if 𝑝 < 4.

2 A SKETCH OF OUR APPROACH

The lower bound is established by quantifying a simple convexity argument leading to the main
term (akin to the real case, as done in [16]).
For the upper bound, we principally follow the strategy developed in [16] (see also [22, sec-

tion 5]). However, the presence of the asymptotic extremizer (see Remark 1) is a new obstacle.
To wit, there are several entirely different arguments, depending on the hyperplane 𝑎⟂ (in what
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1168 GLOVER et al.

follows we always assume as in Theorem 1 that 𝑎 is a unit vector with nonnegative nonincreasing
components). Here is a rough roadmap.

(a) When 𝑎 is close to the extremizer 𝑒1+𝑒2√
2
, we reapply polydisc slicing in a lower dimension to a

portion of 𝑎, which yields its self-improvement and gives a quantitative deficit (this is largely
inspired by a similar phenomenon for Szarek’s inequality from [47] discovered in [20]). This
part crucially uses probabilistic insights put forward in [15–17] and perhaps constitutes the
most subtle point of the whole analysis.

(b) When 𝑎 has all coordinates well below 1√
2
, we employ Fourier-analytic bounds and quantita-

tive versions of the Oleszkiewicz–Pełczyński integral inequality for the Bessel function. This
results in the 𝓁4 norm quantifying the improvement near the asymptotic extremizer.

(c) When 𝑎 has one coordinate around 1√
2
and the others small, 𝑎 is neither close to the extrem-

izer 𝑒1+𝑒2√
2
, nor the Fourier-analytic bounds are applicable. We rely on probabilistic insights

again and use a Berry–Esseen type bound.
(d) When 𝑎 has a coordinate barely above 1√

2
, we use a Lipschitz property of the normalized

section function and reduce the analysis to the previous cases.
(e) When 𝑎 has a coordinate well-above 1√

2
, we use a projection argument.

3 ANCILLARY RESULTS AND TOOLS

As in the proof we consider several cases that require different approaches and tools, this
section that includes auxiliary results is split into several subsections.

3.1 The role of independence

Our approach, to a large extent, relies on the following probabilistic formula for the volume of
sections of the polydisc, obtained in [12] by Fourier-analytic means (see also [17] for a direct
derivation): for every 𝑛 ⩾ 1 and every unit vector 𝑎 in ℝ𝑛, we have

𝐴𝑛(𝑎) = 𝔼
|||||
𝑛∑
𝑘=1

𝑎𝑘𝜉𝑘

|||||
−2

, (5)

where 𝜉1, 𝜉2, … are independent random vectors uniform on the unit sphere 𝑆3 in ℝ4.
To leverage independence and rotational symmetry in (5), we note the following general

observation.

Lemma 2. Let 𝑑 ⩾ 3 and let 𝑋 and 𝑌 be independent rotationally invariant random vectors in ℝ𝑑.
Then

𝔼|𝑋 + 𝑌|2−𝑑 = 𝔼min{|𝑋|2−𝑑, |𝑌|2−𝑑}.
In particular, in ℝ4,

𝔼|𝑋 + 𝑌|−2 = 𝔼min{|𝑋|−2, |𝑌|−2}. (6)
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STABILITY OF POLYDISC SLICING 1169

The special case of 𝑑 = 3 appeared as [16, Lemma 6.6], whereas for the general case we follow
the argument from [17, Remark 15] (see also Corollary 17 therein).

Proof of Lemma 2. Let 𝜉1, 𝜉2 be independent random vectors uniform on the unit sphere 𝑆𝑑−1 in
ℝ𝑑. By rotational invariance, 𝑋 and 𝑌 have the same distributions as |𝑋|𝜉1 and |𝑌|𝜉2. Condition-
ing on the values of the magnitudes |𝑋| and |𝑌|, it thus suffices to show that for every 𝑎1, 𝑎2 ⩾ 0,
we have

𝔼|𝑎1𝜉1 + 𝑎2𝜉2|2−𝑑 = min{𝑎2−𝑑1 , 𝑎2−𝑑2 }.

By homogeneity and symmetry, this will follow from the special case of 𝑎1 = 1, 𝑎2 = 𝑡 ∈ (0, 1). By
rotational invariance, we have

ℎ(𝑡) = 𝔼|𝜉1 + 𝑡𝜉2|2−𝑑 = 𝔼|𝑒1 + 𝑡𝜉2|2−𝑑 = 1

vol𝑑−1(𝑆
𝑑−1) ∫𝑆𝑑−1 |𝑒1 + 𝑡𝜉|2−𝑑d𝜉,

(in the sense of the usual Lebesgue surface integral) and our goal is to argue that this equals 1 for
all 0 < 𝑡 < 1. Let 𝐹(𝑥) = |𝑥|2−𝑑. On the sphere, for every 𝑥 ∈ 𝑆𝑑−1, 𝑥 is the outer-normal, hence
the divergence theorem yields

d

d𝑡 ∫𝑆𝑑−1 𝐹(𝑒1 + 𝑡𝜉)d𝜉 = ∫𝑆𝑑−1⟨∇𝐹(𝑒1 + 𝑡𝜉), 𝜉⟩d𝜉
= ∫𝐵𝑑

2

div𝑥(∇𝐹(𝑒1 + 𝑡𝑥))d𝑥

= 𝑡 ∫𝐵𝑑
2

(Δ𝐹)(𝑒1 + 𝑡𝑥)d𝑥 = 0

asΔ𝐹 = 0 (𝑒1 + 𝑡𝑥 never vanishes for 𝑥 ∈ 𝐵𝑑2 , 0 < 𝑡 < 1). Noting that clearly ℎ(0) = 1, this finishes
the proof. □

3.2 Integral inequality

Another key ingredient is the Fourier-analytic expression for the section function,

𝐴𝑛(𝑎) =
1

2 ∫
∞

0

(
𝑛∏
𝑗=1

2𝐽1(𝑎𝑗𝑡)

𝑎𝑗𝑡

)
𝑡d𝑡 (7)

(see [42, (5)]) and, crucially, the resulting upper bound obtained from Hölder’s inequality with
𝐿𝑎−2
𝑗
norms (this idea perhaps goes back to Haagerup’s work [25]): for every 𝑛 ⩾ 1 and every unit

vector 𝑎 in ℝ𝑛, we have

𝐴𝑛(𝑎) ⩽ 2

𝑛∏
𝑘=1

Ψ(𝑎−2
𝑘
)𝑎
2
𝑘 , (8)
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1170 GLOVER et al.

where for 𝑠 > 0,

Ψ(𝑠) =
𝑠

4 ∫
∞

0

|||||2𝐽1(𝑡)𝑡
|||||
𝑠

𝑡d𝑡. (9)

Here 𝐽1(𝑡) =
𝑡

2

∑∞
𝑘=0

(−1)𝑘

22𝑘𝑘!(𝑘+1)!
𝑡2𝑘 is the Bessel function (of the first kind) of order 1. As 𝐽1(𝑡) =

𝑂(𝑡−1∕2) as 𝑡 → ∞ (see, e.g., [1, 9.2.1.]), Ψ(𝑠) is finite for all 𝑠 > 4
3
(for 𝑠 ⩽ 4

3
, we let Ψ(𝑠) = ∞, so

that (8) formally holds).
Oleszkiewicz and Pełczyński’s approach crucially relies on the fact that

sup
𝑠⩾2
Ψ(𝑠) = 1,

and that the supremum is attained at 𝑠 = 2 as well as when 𝑠 → ∞. Implicit in their proof of this
subtle claim is the following quantitative version, crucial for us.

Lemma 3. For the special function Ψ defined in (9), we have

Ψ(𝑠) ⩽

{
1 − 1

12
(𝑠 − 2)2, 2 ⩽ 𝑠 ⩽ 8

3
,

1 − 1

151𝑠
, 𝑠 > 8

3
.

(10)

Proof. When 2 ⩽ 𝑠 ⩽ 8
3
, we have

Ψ(𝑠) ⩽
𝑠

2
𝑒−
𝑠−2
2 ,

as showed in [42] (Proof of Proposition 1.1 in Case (II), p. 290). It remains to apply an elementary
bound to 𝑣 = 𝑠

2
− 1 ∈ [0, 1

3
],

(𝑣 + 1)𝑒−𝑣 ⩽ (𝑣 + 1)(1 − 𝑣 + 𝑣
2

2
) = 1 − 𝑣

2

2
+ 𝑣

3

2
⩽ 1 − 𝑣

2

3
.

When 𝑠 ⩾ 8
3
, it is showed in [42] (Proof of Proposition 1.1 in Case (I), p. 288) that

Ψ(𝑠) ⩽ 1 −
1

3𝑠
+
1

3𝑠2
+
8𝑠

3𝑠 − 4
(60𝜋2)−𝑠∕4

= 1 −
1

𝑠

(
1

3
−
1

3𝑠
−
8𝑠2

3𝑠 − 4
(60𝜋2)−𝑠∕4

)
.

It remains to note that the function in the bracket is increasing in 𝑠 on [ 8
3
,∞), thus it is at least its

value at 𝑠 = 8
3
, which is greater than 1

151
. □

3.3 Lipschitz property of the section function and complex
intersection bodies

In perfect analogy to the real case, there is a complex analogue of the classical Busemann’s theo-
rem from [13] saying that 𝑥 ↦ |𝑥|

vol𝑛−1(𝐾∩𝑥
⟂)
defines a norm on ℝ𝑛, if 𝐾 is a symmetric convex body

in ℝ𝑛.
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STABILITY OF POLYDISC SLICING 1171

Theorem 4 Koldobsky–Paouris–Zymonopoulou, [34]. Let 𝐾 be a complex symmetric convex body
𝐾 in ℂ𝑛, that is 𝐾 is a convex body in ℝ2𝑛 with 𝑒𝑖𝑡𝑧 ∈ 𝐾, whenever 𝑧 ∈ 𝐾, 𝑡 ∈ ℝ. Then the function

𝑧 ↦
|𝑧|

(vol2𝑛−2(𝐾 ∩ 𝑧
⟂))1∕2

defines a norm on ℂ𝑛.

We use this result to establish a Lipschitz property of the section function 𝐴𝑛.

Lemma 5. For unit vectors 𝑎, 𝑏 in ℝ𝑛, we have

|𝐴𝑛(𝑎) − 𝐴𝑛(𝑏)| ⩽ 4√2|𝑎 − 𝑏|.
Proof. Let 𝐾 = ( 1

𝜋
𝔻)𝑛 be the volume 1 polydisc, so that 𝐴𝑛(𝑎) = vol2𝑛−2(𝐾 ∩ 𝑎⟂). Then, by

Theorem 4, 𝑁(𝑎) = |𝑎|𝐴𝑛(𝑎)−1∕2 is a norm, thus for unit vectors 𝑎 and 𝑏, we have
|𝐴𝑛(𝑎) − 𝐴𝑛(𝑏)| = |𝑁(𝑎)−2 − 𝑁(𝑏)−2| = 𝑁(𝑎) + 𝑁(𝑏)

𝑁(𝑎)2𝑁(𝑏)2
|𝑁(𝑎) − 𝑁(𝑏)|

⩽
𝑁(𝑎) + 𝑁(𝑏)

𝑁(𝑎)2𝑁(𝑏)2
𝑁(𝑎 − 𝑏).

By the definition of 𝑁, the right-hand side becomes

𝐴𝑛(𝑎)𝐴𝑛(𝑏)
𝐴𝑛(𝑎)

−1∕2 + 𝐴𝑛(𝑏)
−1∕2

𝐴𝑛(𝑎 − 𝑏)
1∕2

|𝑎 − 𝑏|
and using the polydisc slicing inequalities, that is 1 ⩽ 𝐴𝑛(𝑥) ⩽ 2 for every vector 𝑥, the result
follows. □

3.4 Berry–Esseen bound

Finally, we will employ a Berry–Esseen type bound with explicit constant for random vectors in
ℝ4. Recently, Raič has obtained such a result for an arbitrary dimension.

Theorem 6 (Raič [45]). Let 𝑋1,… , 𝑋𝑛 be independent mean 0 random vectors in ℝ𝑑 such that∑𝑛
𝑗=1 𝑋𝑗 has the identity covariance matrix. Let 𝐺 be a standard Gaussian random vector in ℝ𝑑.

Then

sup
𝐴

||||||ℙ
(
𝑛∑
𝑗=1

𝑋𝑗 ∈ 𝐴

)
− ℙ(𝐺 ∈ 𝐴)

|||||| ⩽ (42𝑑1∕4 + 16)
𝑛∑
𝑗=1

𝔼|𝑋𝑗|3,
where the supremum is over all Borel convex sets in ℝ𝑑 .
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1172 GLOVER et al.

4 PROOF OF THEOREM 1

In this section, we will present the proof of Theorem 1. We recall that 𝑎 is assumed to be a unit
vector in ℝ𝑛 such that 𝑎1 ⩾ 𝑎2 ⩾ … ⩾ 𝑎𝑛 ⩾ 0.
We begin with a short proof of the lower bound (3). First note that using (5) and the convexity

of (⋅)−1 (Jensen’s inequality),

𝐴𝑛(𝑎) = 𝔼

(|||||
𝑛∑
𝑘=1

𝑎𝑘𝜉𝑘

|||||
2)−1

⩾

(
𝔼
|||||
𝑛∑
𝑘=1

𝑎𝑘𝜉𝑘

|||||
2)−1

=

(
𝑛∑
𝑘=1

𝑎2
𝑘

)−1
= 1,

which gives the sharp lower bound without the error term. This of course can be easily improved
upon (the same idea is used in the proof of [16, Theorem 6.1]). We let 𝑌 = 2

∑
𝑘<𝑙 𝑎𝑘𝑎𝑙⟨𝜉𝑘, 𝜉𝑙⟩ so

that

|||||
𝑛∑
𝑘=1

𝑎𝑘𝜉𝑘

|||||
2

= 1 + 𝑌.

We have an elementary inequality (1 + 𝑦)−1 ⩾ 1 − 𝑦 + 3
4
𝑦2 − 1

4
𝑦3, 𝑦 > −1 (after simplifications,

equivalent to 1
4
𝑦2(𝑦 − 1)2 ⩾ 0). This leads to the bound

𝐴𝑛(𝑎) ⩾ 1 − 𝔼𝑌 +
3

4
𝔼𝑌2 − 1

4
𝔼𝑌3.

Plainly, 𝔼𝑌 = 0 (by symmetry). Moreover, it was shown in the course of the proof of [16, Theorem
6.1] that 𝔼𝑌3 ⩽ 𝔼𝑌2 (the case 𝑑 = 4 therein) and 𝔼𝑌2 ⩾ 1

4
|𝑎 − 𝑒1|2. These result in (3).

We move on to the upper bound (4). Its proof requires considering multiple cases dependent
on the size of the two largest coordinates of the vector 𝑎.
For the convenience of the reader, we include the following pictorial guide to the proof.

4.1 Two largest coordinates are close to 𝟏
√
𝟐
: Local stability via

self-improvement

We set

𝛿(𝑎) =

||||||𝑎 −
𝑒1 + 𝑒2√
2

||||||
2

=

(
𝑎1 −

1√
2

)2
+

(
𝑎2 −

1√
2

)2
+ 𝑎23 +⋯ + 𝑎2𝑛

= 2 −
√
2(𝑎1 + 𝑎2).

When 𝑛 = 2, from Lemma 2, we have

𝐴2(𝑎) = min{𝑎
−2
1 , 𝑎

−2
2 } = 𝑎

−2
1

and we check that this is at most 2 −
√
𝛿(𝑎).
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STABILITY OF POLYDISC SLICING 1173

F IGURE 1 We consider six cases. The labels L𝑘 correspond to the lemmas in which a given case is resolved.
In Subsection 4.1, we explain the case where two largest coordinates are near 1√

2
, corresponding to L7 in the

picture above. In Subsection 4.2, we explain the bound when all coordinates are below
√
3∕8, that is, we cover the

region L8. In Subsection 4.3, we study the case where 𝑎1 is below 1∕
√
2, which we examine in two regimes

depending on the value of 𝑎2 corresponding to L9 and L10. We address the case when 𝑎1 is only slightly above
1√
2
,

marked as L12, in Subsection 4.4. Finally, in Subsection 4.5, we complete the picture by settling the case when 𝑎1
is large (L13). We put these bounds together, proving the theorem, in Subsection 4.6.

One way to verify that 𝑎−2
1
⩽ 2 −

√
𝛿(𝑎) is to set 𝑎1 = cos 𝜃, 𝜃 ∈ [0,

𝜋

4
], so that then 𝛿(𝑎) = 2 −√

2(cos 𝜃 + sin 𝜃) = 2 − 2 cos(𝜋
4
− 𝜃) = 4 sin2(𝜋

8
− 𝜃
2
). Letting 𝑡 = 𝜋

8
− 𝜃
2
∈ [0, 𝜋

8
], we have 𝑎1 =

cos(𝜋
4
− 2𝑡) and the desired inequality becomes 1

cos2( 𝜋
4
−2𝑡)

⩽ 2(1 − sin 𝑡). Moreover, cos2(𝜋
4
−

2𝑡) = 1
2
(cos(2𝑡) + sin(2𝑡))2 = 1

2
(1 + sin(4𝑡)), so it suffices to check that (1 − sin 𝑡)(1 + sin(4𝑡)) ⩾

1, 𝑡 ∈ [0, 𝜋
8
]. Note that on this interval, sin(4𝑡) = 4 sin 𝑡 cos 𝑡 cos(2𝑡) ⩾ 4 sin 𝑡 cos2(2𝑡) ⩾ 2 sin 𝑡 and

(1 − sin 𝑡)(1 + 2 sin 𝑡) = 1 + (1 − 2 sin 𝑡) sin 𝑡 ⩾ 1, as sin 𝑡 < sin(𝜋
6
) = 1

2
.

Hence, Theorem 1 holds when 𝑛 = 2. We can assume from now on that 𝑛 ⩾ 3.
Our goal here is to establish Theorem 1 for vectors 𝑎 that are near the extremizer. This relies on

a self-improving feature of the polydisc slicing result.

Lemma 7. We have, 𝐴𝑛(𝑎) ⩽ 2 −
1

25

√
𝛿(𝑎), provided that 𝛿(𝑎) ⩽ 1

5000
.

Proof. We let 𝑋 = 𝑎1𝜉1 + 𝑎2𝜉2 and 𝑌 =
∑𝑛
𝑗=3 𝑎𝑗𝜉𝑗 . Then, using (5), (6) and the concavity of 𝑡 ↦

min{𝛼, 𝑡}, we obtain

𝐴𝑛(𝑎) = 𝔼min{|𝑋|−2, |𝑌|−2} ⩽ 𝔼𝑋 min{|𝑋|−2, 𝔼𝑌|𝑌|−2}.
By polydisc slicing, 𝔼𝑌|𝑌|−2 ⩽ 2

1−𝑎2
1
−𝑎2
2

. We thus get

𝐴𝑛(𝑎) ⩽ 𝔼min

{|𝑋|−2, 2

1 − 𝑎2
1
− 𝑎2

2

}
= 𝔼|𝑋|−2 − 𝔼(|𝑋|−2 − 2

1 − 𝑎2
1
− 𝑎2

2

)
+

.

Using (6) again, we get that 𝔼|𝑋|−2 = min{𝑎−2
1
, 𝑎−2
2
} = 𝑎−2

1
.
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1174 GLOVER et al.

It will be more convenient to work with the rotated variables

𝑢1 =
𝑎1 + 𝑎2√
2
, 𝑢2 =

𝑎1 − 𝑎2√
2
,

for which 𝑢1 = 1 −
𝛿(𝑎)

2
∈ [1 − 10−4, 1], 𝑢2 > 0 and 𝑢21 + 𝑢

2
2
= 𝑎2

1
+ 𝑎2

2
< 1. Then, in terms of

𝑢1, 𝑢2, we have

1

2
𝐴𝑛(𝑎) ⩽

1

(𝑢1 + 𝑢2)
2
− 𝔼

(
1

2
|𝑋|−2 − 1

1 − 𝑢2
1
− 𝑢2

2

)
+

.

Note also that

|𝑋|2 = 𝑎21 + 𝑎22 + 2𝑎1𝑎2𝜃 = 𝑢21 + 𝑢22 + (𝑢21 − 𝑢22)𝜃,
where 𝜃 is a random variable with density 2

𝜋
(1 − 𝑥2)1∕2 on [−1, 1] (the distribution of⟨𝜉1, 𝜉2⟩that

is the same as the one of⟨𝜉1, 𝑒1⟩). We will use this representation in what follows.
Consider two cases:
Case 1: 𝑢2

1
+ 9𝑢2

2
⩾ 1. We simply neglect the second term (the expectation), to obtain the upper

bound of the form

1

2
𝐴𝑛(𝑎) ⩽

1

(𝑢1 + 𝑢2)
2
⩽

1(
𝑢1 +

√
1−𝑢2

1

9

)2 .

Denoting for brevity 𝛿 = 𝛿(𝑎) ∈ [0, 1
5000
] we crudely lower bound the denominator of the right-

hand side,

𝑢1 +

√
1 − 𝑢2

1

9
= 1 −

𝛿

2
+

√
𝛿

18

(
2 −
𝛿

2

)
⩾ 1 −

𝛿

2
+

√
𝛿

10
⩾ 1 +

1

2

√
𝛿

10
.

Therefore,

𝐴𝑛(𝑎) ⩽ 2

(
1 +
1

2

√
𝛿

10

)−2
⩽ 2

(
1 −
1

2

√
𝛿

10

)
= 2 −

√
𝛿(𝑎)

10
,

where we used that (1 + 𝑥)−2 ⩽ 1 − 𝑥 holds for 𝑥 ∈ [0, 1
2
].

Case 2: 𝑢2
1
+ 9𝑢2

2
⩽ 1. We use a more refined lower bound on the expectation, namely

𝔼

(
1

2
|𝑋|−2 − 1

1 − 𝑢2
1
− 𝑢2

2

)
+

⩾ 𝔼

⎡⎢⎢⎣
(
1

2
|𝑋|−2 − 1

1 − 𝑢2
1
− 𝑢2

2

)
𝟏{

1
2
|𝑋|−2⩾ 2

1−𝑢2
1
−𝑢2
2

}⎤⎥⎥⎦
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STABILITY OF POLYDISC SLICING 1175

⩾
1

1 − 𝑢2
1
− 𝑢2

2

𝔼

⎡⎢⎢⎣𝟏{ 12 |𝑋|−2⩾ 2

1−𝑢2
1
−𝑢2
2

}⎤⎥⎥⎦
=

1

1 − 𝑢2
1
− 𝑢2

2

ℙ

(|𝑋|2 ⩽ 1 − 𝑢21 − 𝑢22
4

)
.

Recalling that |𝑋|2 = 𝑢2
1
+ 𝑢2

2
+ (𝑢2

1
− 𝑢2

2
)𝜃, the condition |𝑋|2 ⩽ 1−𝑢21−𝑢22

4
becomes 𝜃 ⩽

1−5(𝑢2
1
+𝑢2
2
)

4(𝑢2
1
−𝑢2
2
)
= −1 + 𝜃0 with 𝜃0 =

1−𝑢2
1
−9𝑢2

2

4(𝑢2
1
−𝑢2
2
)
. Note that by our assumption 0 < 𝜃0 and that 𝜃0 < 1.

Indeed, as 𝑢1 > 𝑢2 and 5(𝑢21 + 𝑢
2
2
) ⩾ 5𝑢2

1
= 5(1 − 𝛿∕2)2 ⩾ 5(1 − 10−4)2 > 1we get that −1 + 𝜃0 <

0 and the claim follows.
Therefore, using that 𝜃0 < 1 we estimate the probability of the event |𝑋|2 ⩽ 1−𝑢21−𝑢224

by

ℙ(𝜃 ⩽ −1 + 𝜃0) =
2

𝜋 ∫
−1+𝜃0

−1

√
1 − 𝑥2d𝑥 =

2

𝜋 ∫
𝜃0

0

√
𝑥(2 − 𝑥)d𝑥

⩾
2

𝜋 ∫
𝜃0

0

√
𝑥d𝑥 =

4

3𝜋
𝜃
3∕2
0
.

Putting this together and using the fact that 1 − 𝑢2
1
− 𝑢2

2
⩽ 1 − 𝑢2

1
and 𝑢2

1
− 𝑢2

2
⩽ 1, we get

1

2
𝐴𝑛(𝑎) ⩽

1

(𝑢1 + 𝑢2)
2
−

1

1 − 𝑢2
1
− 𝑢2

2

ℙ

(|𝑋|2 ⩽ 1 − 𝑢21 − 𝑢22
4

)

⩽
1

(𝑢1 + 𝑢2)
2
−

1

1 − 𝑢2
1
− 𝑢2

2

⋅
4

3𝜋

(
1 − 𝑢2

1
− 9𝑢2

2

4(𝑢2
1
− 𝑢2

2
)

)3∕2

⩽
1

(𝑢1 + 𝑢2)
2
−
1

6𝜋

(1 − 𝑢2
1
− 9𝑢2

2
)3∕2

1 − 𝑢2
1

. (11)

We claim that the right-hand side as a function of 𝑢2 is decreasing. Indeed, its derivative equals

−2(𝑢1 + 𝑢2)
−3 +

9

2𝜋

𝑢2(1 − 𝑢
2
1
− 9𝑢2

2
)1∕2

1 − 𝑢2
1

⩽ −2(𝑢1 + 𝑢2)
−3 +

9

2𝜋

𝑢2√
1 − 𝑢2

1

.

As 1 − 𝑢2
1
⩾ 9𝑢2

2
, the second term is at most 3

2𝜋
< 1
2
. Crudely, 𝑢1 + 𝑢2 = 𝑎1

√
2 <

√
2, so the first

term is at most −2
√
2
−3
= − 1√

2
and hence the derivative is negative. Setting 𝑢2 = 0 in (11) thus

gives

1

2
𝐴𝑛(𝑎) ⩽

1

𝑢2
1

−
1

6𝜋

√
1 − 𝑢2

1
=

(
1 −
𝛿

2

)−2
−
1

6𝜋

√
𝛿

2

(
2 −
𝛿

2

)

⩽ 1 + 2𝛿 −
1

6𝜋

√
1 −
1

2
⋅ 10−4

√
𝛿,
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1176 GLOVER et al.

where we have used (1 − 𝑥∕2)−2 ⩽ 1 + 2𝑥, 0 ⩽ 𝑥 ⩽ 1
2
. As 𝛿 ⩽

√
1

5000

√
𝛿, the right-hand side is at

most

1 +

(
2√
5000

−
1

6𝜋

√
1 −
1

2
⋅ 10−4

)√
𝛿 < 1 −

√
𝛿

50
.

□

We note for future reference that the complementary case to the one considered in
Lemma 7 is

𝛿(𝑎) ⩾
1

5000
. (12)

As 𝑎2 ⩽
𝑎1+𝑎2
2
=
1−𝛿(𝑎)∕2√

2
, this in particular implies that 𝑎2 is bounded away from

1√
2
,

𝑎2 ⩽
1 − 10−4√

2
. (13)

4.2 All weights are small

When all weights are small and bounded away from 1√
2
, we can rely on the Fourier analytic bound

(8) because Lemma 3 guarantees savings across all weights. This case results with the term ‖𝑎‖4
4

in (4) that quantifies the distance to the asymptotic extremizer 𝑎 = ( 1√
𝑛
, … , 1√

𝑛
), 𝑛 → ∞.

Lemma 8. We have, 𝐴𝑛(𝑎) ⩽ 2 exp{−
1

151
‖𝑎‖4

4
}, provided that 𝑎1 ⩽

√
3

8
.

Proof. By the assumption, 𝑎−2
𝑘
⩾
8

3
for all 𝑘, thus, using (8) and (10),

𝐴𝑛(𝑎) ⩽ 2

𝑛∏
𝑘=1

Ψ(𝑎−2
𝑘
)𝑎
2
𝑘 ⩽ 2

𝑛∏
𝑘=1

(
1 − 1

151
𝑎2
𝑘

)𝑎2
𝑘
⩽ 2 exp

{
− 1

151

𝑛∑
𝑘=1

𝑎4
𝑘

}
.

□

4.3 Largest weight is moderately below 𝟏
√
𝟐

Suppose that 𝑎1 =
1√
2
. Then Ψ(𝑎−2

1
) = 1 and the Fourier-analytic bound in the proof of Lemma 8

only gives that 𝐴𝑛(𝑎) ⩽ 2 exp{−
1

151

∑𝑛
𝑘=2 𝑎

4
𝑘
}. When 𝑎2 is bounded away from 0, this allows to

conclude that 𝐴𝑛(𝑎) is bounded away from 2. Otherwise, we use the Gaussian approximation for∑𝑛
𝑘=2 𝑎𝑘𝜉𝑘. A toy case illustrating why this works is the vector 𝑎 = ( 1√

2
, 1√
2(𝑛−1)

, … , 1√
2(𝑛−1)

) for

large 𝑛. Then, if 𝐺 denotes a standard Gaussian random vector in ℝ4 independent of the 𝜉𝑗 , the
central limit theorem suggests that 𝐴𝑛(𝑎) is well-approximated by

𝔼

|||||| 1√2𝜉1 + 1√
2

𝐺

2

||||||
−2

= 2(1 − 𝑒−2)
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STABILITY OF POLYDISC SLICING 1177

(for a computation of this expectation, see (14) below). Of course, to make this heuristics
quantitative, we shall use a Berry–Esseen type bound, Raič’s Theorem 6.
Thus, we brake the analysis now into two further subcases.

4.3.1 Second largest weight is small

Lemma 9. We have, 𝐴𝑛(𝑎) ⩽ 2 − 10−5, provided that
√
3

8
⩽ 𝑎1 ⩽

1√
2
and 𝑎2 ⩽ 6 ⋅ 10−5.

Proof. We let 𝑌 =
∑𝑛
𝑗=2 𝑎𝑗𝜉𝑗 and observe that, by (5) and (6),

𝐴𝑛(𝑎) = 𝔼
||𝑎1𝜉1 + 𝑌||−2 = 𝔼min{𝑎−21 , |𝑌|−2} = ∫

𝑎−2
1

0
ℙ
(|𝑌|−2 > 𝑡)d𝑡.

Note that 𝑌 has covariance matrix
1−𝑎2

1

4
Id. Therefore, using the Berry–Esseen bound from

Theorem 6 (applied to 𝑑 = 4 and 𝑋𝑗 =
2√
1−𝑎2

1

𝑎𝑗𝜉𝑗 , 𝑗 = 2,… , 𝑛),

ℙ
(|𝑌|−2 > 𝑡) ⩽ ℙ⎛⎜⎜⎝

(√
1−𝑎2

1

4
|𝐺|)−2 > 𝑡⎞⎟⎟⎠ + (42

√
2 + 16)

𝑛∑
𝑗=2

𝔼

||||||||
2√
1 − 𝑎2

1

𝑎𝑗𝜉𝑗

||||||||
3

,

where 𝐺 denotes a standard Gaussian random vector in ℝ4. As |𝐺|2 has density 𝑥
4
𝑒−𝑥∕2, 𝑥 > 0

(𝜒2(4) distribution), we obtain

∫
𝑎−2
1

0
ℙ

⎛⎜⎜⎝
(√

1−𝑎2
1

4
|𝐺|)−2 > 𝑡⎞⎟⎟⎠d𝑡 = 𝔼min

⎧⎪⎨⎪⎩𝑎
−2
1 ,

(√
1−𝑎2

1

4
|𝐺|)−2⎫⎪⎬⎪⎭

= ∫
∞

0
min

{
𝑎−21 ,

4

1 − 𝑎2
1

1

𝑥

}
𝑥

4
𝑒−𝑥∕2d𝑥

=
1

𝑎2
1

⎛⎜⎜⎝1 − 𝑒
−
2𝑎2
1

1−𝑎2
1

⎞⎟⎟⎠. (14)

Moreover, plainly,

𝑛∑
𝑗=2

𝔼

||||||||
2√
1 − 𝑎2

1

𝑎𝑗𝜉𝑗

||||||||
3

=
8

(1 − 𝑎2
1
)3∕2

𝑛∑
𝑗=2

𝑎3
𝑗
⩽

8

(1 − 𝑎2
1
)3∕2
𝑎2

𝑛∑
𝑗=2

𝑎2𝑗 =
8𝑎2√
1 − 𝑎2

1

.
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1178 GLOVER et al.

Putting these together yields,

𝐴𝑛(𝑎) ⩽
1

𝑎2
1

⎛⎜⎜⎝1 − 𝑒
−
2𝑎2
1

1−𝑎2
1

⎞⎟⎟⎠ +
8(42

√
2 + 16)𝑎2

𝑎2
1

√
1 − 𝑎2

1

.

It can be checked that the first term is a decreasing function of 𝑎2
1
. Consequently, using 3

8
⩽ 𝑎2

1
⩽
1

2
and 𝑎2 ⩽ 6 ⋅ 10−5, we get

𝐴𝑛(𝑎) ⩽
8

3

(
1 − 𝑒−

6
5

)
+
8(42

√
2 + 16) ⋅ 6 ⋅ 10−5

3

8

√
1

2

< 2 − 10−5.

□

4.3.2 Second largest weight is bounded away from 0

The goal here is to treat the case when 𝑎2 is not too small.
Note that in the following lemma instead of assuming that (13) holds, we assume slightly less,

that is, that 𝑎2 ⩽
1−10−5√
2
. We will use this in Subsection 4.4.

Lemma10. Wehave,𝐴𝑛(𝑎) ⩽ 2 − 10−19, provided that
√
3

8
⩽ 𝑎1 ⩽

1√
2
and 6 ⋅ 10−5 ⩽ 𝑎2 ⩽

1−10−5√
2
.

Proof. Note thatΨ(𝑎−2
𝑘
) ⩽ 1 for each 𝑘, as guaranteed by (10) as 𝑎−2

𝑘
⩾ 2 for each 𝑘. Using this (for

all 𝑘 except 𝑘 = 2) in conjunction with (5) gives

𝐴𝑛(𝑎) ⩽ 2

𝑛∏
𝑘=1

Ψ(𝑎−2
𝑘
)𝑎
2
𝑘 ⩽ 2Ψ(𝑎−22 )

𝑎2
2 .

Furthermore, again by (10),

Ψ(𝑎−22 ) ⩽ 1 − min
{
1

151
𝑎22,

1

12
(𝑎−22 − 2)

2
}
⩽ 1 −min

{
36

151
10−10, 1

3
((1 − 10−5)−2 − 1)2

}
= 1 −

36

151
⋅ 10−10.

Thus,

𝐴𝑛(𝑎) ⩽ 2
(
1 −

36

151
⋅ 10−10

)𝑎2
2
⩽ 2
(
1 −

36

151
⋅ 10−10𝑎22

)
< 2 − 10−19. □

Putting Lemmas 9 and 10 together yields the following corollary, needed in the sequel.

Corollary 11. We have, 𝐴𝑛(𝑎) ⩽ 2 − 10−19, provided that
√
3

8
⩽ 𝑎1 ⩽

1√
2
and 𝑎2 ⩽

1−10−5√
2
.
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STABILITY OF POLYDISC SLICING 1179

4.4 Largest weight is moderately above 𝟏
√
𝟐

Lemma 12. We have, 𝐴𝑛(𝑎) ⩽ 2 − 10−20, provided that
1√
2
< 𝑎1 ⩽

1√
2
+ 6 ⋅ 10−41 and (13).

Proof. We consider the following modification of 𝑎, the vector

𝑏 =

(
1√
2
,

√
𝑎2
1
+ 𝑎2

2
−
1

2
, 𝑎3, … , 𝑎𝑛

)
.

This is a unit vector with 𝑏1 ⩾ 𝑏2 ⩾⋯ ⩾ 𝑏𝑛 and

𝑏22 ⩽

(
1√
2
+ 6 ⋅ 10−41

)2
+

(
1 − 10−4√

2

)2
−
1

2
<

(
1 − 10−5√

2

)2
.

By Lemma 5 and Corollary 11 applied to 𝑏, we get

𝐴𝑛(𝑎) ⩽ 𝐴𝑛(𝑏) + 4
√
2|𝑎 − 𝑏| ⩽ 2 − 10−19 + 8|𝑎 − 𝑏|.

As
√
𝑎2
1
+ 𝑎2

2
− 1
2
− 𝑎2 =

𝑎2
1
− 1
2√

𝑎2
1
+𝑎2
2
− 1
2
+𝑎2

⩽

√
𝑎2
1
− 1
2
, we have

|𝑎 − 𝑏|2 = (𝑎1 − 1√
2

)2
+

(√
𝑎2
1
+ 𝑎2

2
−
1

2
− 𝑎2

)2
⩽ 2𝑎1

(
𝑎1 −

1√
2

)
< 10−40

and, consequently,

𝐴𝑛(𝑎) ⩽ 2 − 10
−19 + 8 ⋅ 10−20 < 2 − 10−20. □

4.5 Largest weight is bounded below away from 𝟏
√
𝟐

Lemma 13. We have, 𝐴𝑛(𝑎) ⩽ 2 − 12
√
2 ⋅ 10−41, provided that 𝑎1 ⩾

1√
2
+ 6 ⋅ 10−41.

Proof. Combining (5) and (6) applied to 𝑋 = 𝑎1𝜉1 gives

𝐴𝑛(𝑎) ⩽ 𝑎
−2
1 ⩽ 2(1 + 6

√
2 ⋅ 10−41)−2 ⩽ 2(1 − 6

√
2 ⋅ 10−41),

where we used that (1 + 𝑥)−2 ⩽ 1 − 𝑥 for 𝑥 ⩽ 1
2
. □
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1180 GLOVER et al.

4.6 Putting things together

Proof of Theorem 1. Let us summarize what we proved.Without loss of generality, we assume that
𝑎 is a unit vector such that 𝑎1 ⩾ 𝑎2 ⩾ 𝑎3 ⩾ … ⩾ 𝑎𝑛 ⩾ 0. We considered several cases depending on
the values of 𝑎1 and 𝑎2, which we illustrated on Figure 1 and which we discussed in Lemmas 7, 8,
9, 10, 12, 13. Putting them together, we get that

𝐴𝑛(𝑎) ⩽ 2 − min
(
1

25

√
𝛿(𝑎),

2

151
‖𝑎‖44, 10−5, 10−19, 10−20, 12√2 ⋅ 10−41)

Recall that 𝛿(𝑎) = |𝑎 − 𝑒1+𝑒2√
2
|2 is assumed to be atmost 1

5000
(Hence, 1√

2
102
√
𝛿 < 1). Therefore,

we may rewrite this as

𝐴𝑛(𝑎) ⩽ 2 − min

(
min{

1

25
,
1√
2
10−3,

1√
2
10−17,

1√
2
10−18, 12 ⋅ 10−39}

√
𝛿(𝑎),

1

76
‖𝑎‖44

)

⩽ 2 −min
(
6

5
10−40

√
𝛿(𝑎),

1

76
‖𝑎‖44),

which finishes the proof. □
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