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Abstract
In this note we study order reversing quasi involutions and their properties. These
maps are dualities (order reversing involutions) on their image. We prove that any
order reversing quasi involution is induced by a cost. Invariant sets of order reversing
quasi involutions are of special interest and we provide several results regarding their
existence and uniqueness. We determine when an order reversing quasi involution on
a sub-class can be extended to the whole space and discuss the uniqueness of such an
extension. We also provide several ways for constructing new order reversing quasi
involutions from given ones. In particular, we define the dual of an order-reversing
quasi-involution. Finally, throughout the paper we exhibit a “zoo” of illustrative exam-
ples. Someof themare classical, somehave recently attracted attention of the convexity
community and some are new. We study in depth the new example of dual polarity
and obtain a Blaschke-Santaló type inequality for a corresponding Gaussian volume
product. The unified point of view on order reversing quasi involutions presented in
this paper gives a deeper understanding of the underlying principles and structures,
offering a new and exciting perspective on the topic, exposing many new research
directions.
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1 Definitions and Results

Duality theory in mathematics at large, and in geometry in particular, is a pervasive
and important concept with manifestations in many areas. It has been a cornerstone in
convexity theory, in which several characterization theorems have been proven (see,
among others, [1, 6–8, 11, 14, 17, 20, 23, 32, 34, 35]). As we shall demonstrate,
dualities show up in unexpected places, fueling new research directions and affecting
old ones.

In the context of this paper, a duality is defined as a mapping T from a partially
ordered set C to itself that is order reversing and which satisfies T ◦ T = I d (where
I d is the identity operator). In most cases C is a class of sets partially ordered by
inclusion, that is, C ⊆ P(X) = 2X .

Of particular significance in geometry is the class of closed, convex sets in R
n with

the origin in the interior, denoted by Kn
0 , together with the order given by inclusion.

Of equal importance are the following two classes of functions that play a central
role in analysis and optimization: The class Cvx(Rn) of lower semi-continuous con-
vex functions from R

n to (−∞,∞], with the order given by point-wise inequality
(which corresponds to the inclusion of the epi-graphs of the functions) and the sub-
class Cvx0(Rn) ⊆ Cvx(Rn) of non-negative lower semi-continuous convex functions
attaining value zero at the origin with the same order. For each of these examples there
exists a duality on the class (not necessarily unique), which can be extended to be
defined on a much larger class, yet on it, it may no longer be an involution. We call
such a transform an order reversing quasi involution:

Definition 1.1 Let X be a set, and let T : P(X) → P(X), where by P(X) we denote
the power set of X . We will say that T is an order reversing quasi involution if for
every K , L ⊆ X , the following hold

(i) K ⊆ T T K , (quasi involution)
(ii) if L ⊆ K then T K ⊆ T L . (order reversion)

Given a family of sets C ⊆ P(X) and T : C → C which satisfies (i) and (ii) for all
K , L ∈ C we say that T is an order reversing quasi involution on C.

It turns out that these abstract order reversing quasi involutions share many inter-
esting structural properties, some of which are usually proven ad hoc in the literature
when an order reversing quasi involution is discussed. Some of these properties stem
from the fact, which is our first theorem in this note, that all order reversing quasi
involutions can be identified as a form of “cost duality for sets”, introduced by the
authors in [9] in the context of optimal transport. To state the theorem, let us define
the order reversing quasi involution associated with a cost.

Definition 1.2 (Cost duality) Let c : X × X → (−∞,∞] satisfy c(x, y) = c(y, x).
For K ⊆ X define the c-dual set of K as

Kc = {y ∈ X : inf
x∈K c(x, y) ≥ 0}.

Our first main theorem reads as follows:
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Theorem 1.3 Let T : P(X) → P(X) be an order reversing quasi-involution. Then,
there exists a cost function c : X × X → {±1} such that for all K ⊆ X, T K = Kc.

A large portion of this paper is dedicated to the study of the inherent properties
of order reversing quasi involutions. For example, any order reversing quasi involu-
tion is always an order reversing involution on its image and this image has a natural
lattice structure, respected by the quasi involution. In this sense, an order reversing
quasi involution comes always together with its associated class of sets (closed under
intersection). Sometimes, as in the case of the polarity transform on convex bodies,
the order reversing quasi involution is unique.

We accompany the general results by many examples of order reversing quasi
involutions to highlight that one can obtain in this way a vast amount of classical
families of sets as well as some less standard ones, which have received attention in
recent years, and also completely newand interesting examples. This extensive array of
examples shows how fundamental the notion of an order reversing quasi involution is,
and offers a unifying point of viewwhich deepens our understanding of the underlying
principles and structures. For example, it allows for an integrated approach to the study
of invariant sets of a given order reversing quasi involution. Invariant sets are of interest
for multiple reasons; we give an example where the invariant sets of an order reversing
quasi involution are exactly the sets of equal width in R

n , a class studied in convexity
withmany open questions about it. Often invariant sets have extremal propertieswithin
a given family with respect to some functional. In the direction of invariant sets we
prove, for instance, the following theorem.

Theorem 1.4 Let T : P(X) → P(X) be an order reversing quasi involution and let
X0 = {x ∈ X : x ∈ T {x}}. Let K0 ⊆ X satisfy K0 ⊂ T K0. Then there exists some
K ⊆ X with K0 ⊆ K and such that T K ∩ X0 = K. In particular, if X = X0 then for
any x0 ∈ X there exists an invariant set K with x0 ∈ K, namely x0 ∈ T K = K.

We also discuss order reversing quasi involutions defined on a sub-class C ⊆ P(X),
and determine necessary and sufficient conditions for such an order reversing quasi
involution to have an extension toP(X). This is useful as the existence of an extension,
by means of Theorem 1.3, gives the cost representation of the transform and all the
resulting properties. To state the theoremwe need to define the condition of “respecting
inclusions”, which is a strengthening of order reversion.

Definition 1.5 Let X be some set, C ⊆ P(X) and T : C → C. We say that T respects
inclusions if K ⊆ ∪i∈I Ki implies T K ⊇ ∩i∈I T Ki for any K , Ki ∈ C, i ∈ I .

It is easy to see that a mapping respecting inclusions is also order reversing. It is
also clear that if T : C → C is an order reversing quasi involution on C and it has
an extension to an order reversing quasi involution on P(X) then T must respect
inclusions. Our next theorem shows that this condition is not only necessary but is
sufficient.

Theorem 1.6 Let C ⊆ P(X) be a family of sets and T : C → C be an order reversing
quasi involution on C which respects inclusions. Then, T can be extended to an order
reversing quasi involution T̂ : P(X) → P(X), such that T̂ |C = T .
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When the class C is closed under intersections, any order reversing quasi involution T
on it automatically respects inclusions (see Lemma 8.3).

As an outcome of this line of study, we present ways in which one can build new
order reversing quasi involutions from existing ones.We explain how to intersect order
reversing quasi involutions, and in some cases how to average them. We express some
known order reversing quasi involutions as intersections of simpler ones. Finally, we
show how to construct the dual of an order reversing quasi involution, which results in
a new quasi-involution, as described in Definition 4.2. These methods are illustrated
by examples in Sect. 4.

Notably, by taking the dual order reversing quasi involution of the classical polarity
transform from convexity, we find a very natural and basic concept which has been
hiding out of sight for a long time. In Sect. 5 we present a thorough study of the dual
polarity, which turns out to be particularly curious due to its many links with the
classical polarity and with other known operations in convexity. We analyze in detail
the “dual polarity” given by the cost function c(x, y) = 〈x, y〉 − 1, which enables us
to prove the following theorem.

Theorem 1.7 Let K ⊂ R
n be such that for some e ∈ Sn−1 = {x ∈ R

n : |x | = 1}
we have that x + te ∈ K, x ∈ e⊥ implies −x + te ∈ K, where | · | denotes the
Euclidean norm (we then say K is even with respect to this coordinate system). Let
T : P(Rn) → P(Rn) be given by T K = {x ∈ R

n : 〈x, y〉 ≥ 1 ∀y ∈ K }. Then,

γn(K )γn(T K ) ≤ γn(K0)
2

where K0 = {(x, t) ∈ R
n−1 × R

+ : |x |2 + 1 ≤ t2}, and γn is the Gaussian measure
on R

n.

Remark 1.8 In Sect. 5 we analyze T in depth, and, in particular, show that the image of
this transform are “cone-like” sets (closed convex sets satisfying λK ⊆ K for λ ≥ 1),
that K0 = T K0, and that K0 is, up to rotation, the only T -invariant set which is even
with respect to some coordinate system.

The paper is organized as follows: In Sect. 2 we investigate some basic properties
of order reversing quasi involutions. In Sect. 3 we study cost dualities and prove Theo-
rem 1.3. In Sect. 4 we invite the reader into the “zoo of examples”, where we describe
a first selection of illustrative examples that serve as a motivation for further analysis
of the general cost transforms. In Sect. 5 we discuss in detail one of these examples,
which we call “dual polarity”, together with some newBlaschke-Santaló type inequal-
ity. In Sect. 6 we address the question of fixed points of the transform K �→ Kc. In
Sect. 7 we provide a second collection of examples, and finally in Sect. 8 we return
to the general theory of order reversing quasi involutions and describe several con-
structions and properties, in particular, the possibility of extension of order reversing
quasi involutions, their composition and conjugation, and restriction to a sub-class or
a subset.
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2 General Properties of Quasi Involutions on Sets

We begin by gathering a few simple facts about order reversing quasi involutions.
First, every order reversing quasi-involution gives rise to an order reversing involution
on a subset of P(X).

Lemma 2.1 Let T : P(X) → P(X) be an order reversing quasi involution and
let C = Im(T ) = {T K : K ⊆ X} ⊆ P(X). Then T : C → C is an order reversing
involution.

Proof The fact that T reverses order on C is inherited from the same property onP(X).
As for the involution property, it amounts to showing T T T K = T K for any K ⊆ X .
Using the quasi involution property on K , we see that T T K ⊇ K , so applying T and
using order reversion we get T T T K ⊆ T K . On the other hand, we can use the quasi
involution property on T K instead, which yields, T K ⊆ T T T K , and finishes the
proof. ��

Let us remark that the direction of the inclusion in the quasi involution property (i)
is not significant and can be reversed, as there is a one-to-one correspondence between
order reversing quasi involutions as given by Definition 1.1, and those defined with
the reverse inclusion (see Lemma 8.9).

A useful property of an order reversing quasi involution T defined on all the subsets
of the space X is that it respects the lattice structure, with ∧ corresponding to inter-
section and K ∨ L corresponding to T T (K ∪ L), in the sense that T maps unions to
intersections (for more on lattice theory, see e.g. [16]). In addition, the set X is always
themaximal element in the image lattice, and T X (whichmay or may not be the empty
set) is the minimal element in the image lattice. These properties are captured in the
following simple proposition, which, nevertheless, will be of much use to us in what
follows.

Proposition 2.2 Let T : P(X) → P(X) be an order reversing quasi involution. Then
T T X = X and T∅ = X and for any collection of sets Ki ⊆ X, i ∈ I ,

T (∪i∈I Ki ) = ∩i∈I T (Ki ). (1)

Proof The first two properties are straightforward. Indeed, T T X ⊇ X by the quasi
involution condition, so T T X = X . Letting L0 = T X , since ∅ ⊆ L0 we have by
order reversion that T∅ ⊇ T L0 = X and so T∅ = X .

To show the property (1), we start by considering K j ⊆ ∪i∈I Ki for all j ∈ I . Then,
by the order reversion property (i), T (∪i∈I Ki ) ⊆ T (K j ) for any j , and, in particular,
T (∪i∈I Ki ) ⊆ ∩ j∈I T (K j ).

For the other direction, ∩i∈I T (Ki ) ⊆ T (K j ) for any j ∈ I . Applying property (ii)
again, T T (K j ) ⊆ T (∩i∈I T Ki ). Using property (i), this implies K j ⊆ T (∩i∈I T Ki ),
so in particular ∪i∈I Ki ⊆ T (∩i∈I T Ki ). Applying T duality once more

T (∪i∈I Ki ) ⊇ T T (∩i∈I T Ki ) ⊇ ∩i∈I T Ki ,

where for the rightmost inclusion we used property (i) once more. ��
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Remark 2.3 It is useful to note that one may repeat the same proof in the case where
T is defined only on a sub-class C ⊆ P(X), and is an order reversing quasi involution
on C. We then get that property (1) still holds whenever ∪i∈I Ki ∈ C.
In Sect. 8 we discuss order reversing quasi involutions defined on sub-classes and show
that often one can extend them to be defined on the wholeP(X) (e.g. when C is closed
under intersections and X ∈ C, see Lemma 8.3).

It will be useful to note that for any set K ⊆ X , the set T T K is the “envelope” of K ,
namely the smallest set in the image of T which contains K .

Proposition 2.4 Let T : P(X) → P(X) be an order reversing quasi involution, and
let K ⊆ X. Then,

T T K = ∩{L : L ⊇ K and L = T T L}.

Proof For any L = T T L with K ⊆ L wehave T K ⊇ T L an thus T T K ⊆ T T L = L .
Therefore, letting L0 stand for the intersection L0 = ∩{L : L ⊇ K and L = T T L}
we have T T K ⊆ L0. On the other hand, letting L = T T K , we know K ⊆ L and
thus L participates in the intersection, which means L0 ⊆ L = T T K and the proof
is complete. ��

3 Cost Dualities

A natural source for order reversing quasi involutions, that emerged from authors’
previous work [9] on optimal transport, are cost transforms for sets. We recall the
definition given in the introduction, though we include an extra parameter.

Definition 1.2 Let c : X × X → (−∞,∞] satisfy c(x, y) = c(y, x). Fix t ∈
(−∞,∞] (which will be omitted in the notation as it is a fixed parameter). For K ⊆ X
define the c-dual set of K as

Kc =
⋂

x∈K
{y ∈ X : c(x, y) ≥ t} = {y ∈ X : inf

x∈K c(x, y) ≥ t}.

Let us point out (see also Example 1) that in the case of the classical cost c(x, y) =
−〈x, y〉 and t = −1, we get the well known polar set K ◦. Polarity can also be
represented by the so-called polar cost given by c(x, y) = − ln(〈x, y〉 − 1)+ and
t = ∞. This cost was introduced in [12] and studied in [9, 37], and is linked with
the Polarity transform A (see Example 11). The classical cost c(x, y) = −〈x, y〉 and
t = −5 gives K �→ 5K ◦. With t = 1, and c(x, y) = 〈x, y〉, however, we get

K �→ {x : ∀x ∈ K , 〈x, y〉 ≥ 1}

which is very different from polarity, and which we discuss in depth in Sect. 5. We
will see many other examples of cost dualities in Sect. 4.
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We remark that the notion of c-duality may be generalized further. One may asso-
ciate with a cost function c : X × Y → (−∞,∞] the corresponding transform from
P(X) to P(Y ), and its counterpart, from P(Y ) to P(X). For simplicity we restrict
here to the case X = Y and symmetric c.

Note that very little of the information given by c is used for the definition of the
transform. The choice of t is immaterial as we may exchange c with c − t and take
t = 0, or, if t = ∞, we can replace c by − exp(−c) with t = 0. Moreover, two costs
c1, c2, with parameters t1, t2, produce the same transform if and only if

{(x, y) : c1(x, y) ≥ t1} = {(x, y) : c2(x, y) ≥ t2}.

In other words, the transform is actually defined by this subset of X × X , and the main
reason to keep in mind the cost function and the parameter t is that for a fixed cost
function and a varying parameter t we get a family of transforms which is sometimes
of interest to study as a whole. In what follows, when t is not specified we always
mean t = 0.

Lemma 3.1 Fix a set X and a cost c(x, y) = c(y, x) : X × X → (−∞,∞]. The
transform K �→ Kc is an order reversing quasi involution.

Proof Order reversion is immediate from the definition, since if K ⊆ L and c(x, y) ≥ t
for all x ∈ L then c(x, y) ≥ t for all x ∈ K . For the property K ⊆ T T K note that if
x ∈ K and y ∈ Kc then c(x, y) ≥ t so that x ∈ Kcc. ��
Remark 3.2 As mentioned above, our motivation for studying abstract dualities for
subsets arose from our study of optimal transport maps and potentials in [9]. In
this setting, we consider a measure space X together with a symmetric cost func-
tion c : X × X → (−∞,∞]. Given a probability measure π on X × X we define the
“total cost” of π by

∫
X×X c(x, y)dπ(x, y). When this expression is finite, we say that

π is a finite cost plan between its two marginals, μ and ν, given by μ(A) = π(A× X)

and ν(B) = π(X × B), where A and B are any measurable subsets of X .
A necessary condition for the total cost of π to be finite is that π is concentrated on

a set S ⊆ X × X such that c(x, y) < ∞ for any (x, y) ∈ S. Studying requirements for
the existence of finite cost plans between given measures in [9], a natural construction
of the “c-dual” of a subset of X arose, which, roughly speaking, is as follows: Given
a subset A ⊆ X , we look at all of the elements y ∈ X which have finite cost with at
least one element of A. The complement of this set is then given by

T A = {y ∈ X : ∀x ∈ A, c(x, y) = ∞}.

It is easy to check that a necessary condition for the existence of a finite cost
plan transporting a probability measures μ to a probability measure ν is that μ(A) +
ν(T A) ≤ 1 for all A ⊆ X .

Our main observation in this section is that all order reversing quasi involutions on
sets are induced by costs, and in fact, by costs attaining only two values, for example,
costs into {±1}.
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Theorem 1.3 Let T : P(X) → P(X) be an order reversing quasi involution. Then,
there exists a cost function c : X × X → {±1} such that for all K ⊆ X, T K = Kc.

Proof We shall construct a cost c as required. To do so, define the following subset of
X × X

S = {(x, y) : y ∈ T ({x})},

and define c(x, y) = 1 if (x, y) ∈ S and −1 elsewhere. Note that S is a symmetric
set (that is, (x, y) ∈ S implies (y, x) ∈ S): Indeed, y ∈ T ({x}) implies T ({y}) ⊇
T T ({x}) ⊇ {x} so that x ∈ T ({y}).

Let K ⊆ X , we claim that T K = Kc. Note that

Kc = {y : ∀x ∈ K c(x, y) ≥ 0} = {y : ∀x ∈ K (x, y) ∈ S}
= {y : ∀x ∈ K y ∈ T ({x})}.

Thus,

Kc ⊆ ∩x∈K T ({x}) = T (∪x∈K {x}) = T K .

Next let y ∈ T K , then T ({y}) ⊇ T T K ⊇ K so that for every x ∈ K we have
x ∈ T ({y}) which, by the symmetry of S mentioned above, means that for every
x ∈ K , y ∈ T ({x}) so that for every x ∈ K , c(x, y) ≥ 0 namely y ∈ Kc as required.

��
As the proof above demonstrates, to every symmetric (with respect to (x, y) �→

(y, x)) subset S ⊆ X × X there corresponds a unique order reversing quasi involution.
Indeed, given S we define a cost by c(x, y) = 1 if (x, y) ∈ S and −1 elsewhere. Let

T ({x}) = {x}c = {y : c(x, y) ≥ 0} = {y : (x, y) ∈ S} =: Sx

(which can be called the fiber of X ). For any K ⊆ X

T K = T (∪x∈K {x}) = ∩x∈K Sx .

Clearly different sets S produce different order reversing quasi involutions T , since at
least one of the fibers is different.

In what follows we will associate an order reversing quasi involution T with either
a cost function c or a set S ⊆ X × Y , according to what is more convenient for the
clarity of the proof.

Remark 3.3 It will be useful to have another representation of the set S defined in the
proof of Theorem 1.3 above. This set can be equivalently written as

S̃ = ∪{T K × T T K : K ⊆ X} ⊆ X × X .
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Indeed, we have that S = ∪x {x} × T ({x}) = ∪x T ({x}) × {x} ⊆ ∪x T ({x}) ×
T T ({x}) ⊆ ∪K T K × T T K . For the reverse inclusion S̃ ⊆ S note that if we choose
a point (x, y) in S̃ then there is some K ⊆ X such that (x, y) ∈ T K × T T K and
it follows that since x ∈ T K we have that T T K ⊆ T ({x}) and hence y ∈ T ({x}),
which means that (x, y) ∈ S.

4 A Selection of Examples

Many of the classical operations considered in convexity theory are order reversing
quasi involutions. In this section, we gather what we find to be a selection of illuminat-
ing examples some of which are well known, some less known and some completely
new. Another collection will be presented in Sect. 7.

Example 1 (Polarity) Consider the polarity transform T : P(Rn) → P(Rn) given by

T K = K ◦ = {y : ∀x ∈ K 〈x, y〉 ≤ 1}.

The associated set is S = {(x, y) : 〈x, y〉 ≤ 1}. The image class for this transform
is Kn

0 , the class of closed convex sets which include the origin. To write it as a cost-
transform, one may take c(x, y) = −〈x, y〉+ 1 so that Kc = {y : ∀x ∈ K −〈x, y〉+
1 ≥ 0} = K ◦. As is well known, K ◦◦ = conv(K , 0), the smallest set in the class
which includes K . The only invariant set is Bn

2 = {x ∈ R
n : |x | ≤ 1} (we discuss

invariant sets for order reversing quasi involutions in Sect. 6). In [14], Böröczky and
Schneider showed that polarity is essentially the only order reversing involution on
Kn

0 . For an overview of polarity in classical convexity see, for example, [33, Section
1.6].

Another known and important duality, which we present in the setting of order revers-
ing quasi involutions, is the Legendre transform L which maps the class Cvx(Rn)

(consisting of proper lower semi continuous convex functions ϕ : R
n → R ∪ {+∞})

to itself. We identify a function with its epigraph, and then the transform can be
extended to an order reversing quasi involution on R

n+1 with a natural associated cost
function.

Example 2 (Legendre transform) Fix a partition R
n+1 = R

n × R. Given a subset
A ⊆ R

n+1, complete it to be a set A′ which is an epi-graph of a function ϕ : R
n →

[−∞,∞] (letting (x, s) belong to A′ whenever (x, t) ∈ A and s ≥ t). Consider the
transform T : P(Rn+1) → P(Rn+1) defined by T A = epi (Lϕ). Here, L denotes the
Legendre transform,

Lϕ(y) = sup
x

(〈x, y〉 − ϕ(x)) ,

and epi (ϕ) = {(x, t) : t ≥ ϕ(x)}. The associated set is

S = {((x, t), (y, s)) : 〈x, y〉 ≤ s + t}.
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The image class for this transform is the class of epi-graphs of functions in Cvx(Rn)

together with the constant+∞ and the constant−∞ functions. It is easy to check that
T is an order reversing quasi involution using, in particular, the fact that LLϕ ≤ ϕ

for all ϕ ∈ Cvx(Rn). To write it as a cost transform, one may take c((x, t), (y, s)) =
t + s − 〈x, y〉. The only invariant set is epi (‖x‖2/2), see [4, Section 9.2.5].

The Legendre transform is just one of many functional cost transforms, all of which
fit into this framework in a similar manner, see Example 12.

Our next example is in the setting of metric spaces, and does not require a linear
structure on the space X .

Example 3 (Complements of neighborhoods) Consider the transform T : P(X) →
P(X) where (X , d) is a metric space, given by

T A = {y : d(x, y) ≥ ε ∀x ∈ A},

which corresponds to taking a set to the complement of its ε-neighborhood. It is clear
that A ⊆ T T A and that T reverses order. The associated set is S = {(x, y) : d(x, y) ≥
ε}. The image class for this transform consists of complements of unions of ε-balls.
For example, all convex sets are in the class. To write T as a cost transform, one may
take c(x, y) = d(x, y) − ε. Clearly, there are no invariant sets.

The next example is quite trivial, but will show up unexpectedly in a few pages;
we emphasize that any choice of symmetric cost function induces an order reversing
quasi involution and generates a class of sets, so one may view this example as simply
“experimenting" with artificial cost functions.

Example 4 (Balls) Consider the cost function c(x, y) = 1−‖x‖‖y‖ on R
n where ‖ · ‖

is any fixed norm. Equivalently, consider

S = {(x, y) : ‖x‖‖y‖ ≤ 1}.

Then,

T A = {y : ∀x ∈ A ‖y‖ ≤ 1/‖x‖} = 1

R
K

where R = sup{‖x‖ : x ∈ A} and K is the unit ball of the norm ‖ · ‖, i.e. K = {x ∈
R
n : ‖x‖ ≤ 1}. The image class consists of positive multiples of K , as well as {0}

and R
n , and K is the only invariant set in the class.

In the next example, the induced class is that of complements of “flowers”. A flower

is defined as a union of the form A = ⋃
x∈C B

(
x
2 ,

|x |
2

)
, whereC ⊆ R

n is some closed

set. The class of flowers is closed under unions (not intersections), which explains why
we need to consider complements (for the relation between a class and the class of
complements see Lemma 8.9). The class of flowers was recently investigated in [28,
29], and the flower transform K �→ K♣, mapping a convex body to its “flower”, was
defined to be the star shaped set with radial function rK♣ = hK .
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Example 5 (Flowers) Consider the set S ⊆ R
n × R

n given by

S = {(x, y) : 〈x, y〉 <
1

2
|x |2|y|2}.

The associated transform maps a set A to the set

T A = R
n \

⋃

x∈A

B( x
|x |2 ,

1
|x | ).

The image class is thus clearly (using that �(x) = x/|x |2 is a bijection) all comple-
ments of flowers. In terms of the flower transform we have T (�(K/2)) = R

n \ K♣.
The image of a single point x0 ∈ X is given by

{y : 2〈z0, y〉 < |y|2} = R
n \ B(z0, |z0|)

where z0 = x0/|x0|2. We discuss in Sect. 6 the easily verifiable fact that there is a
unique invariant set for T , namely the set {x : |x | ≥ √

2}.
We shall use the next example to demonstrate a way to use given order reversing

quasi involutions to build new ones by way of intersection. We start by presenting an
order reversing quasi involution whose image is the class of reciprocal convex sets,
studied by Milman, Milman and Rotem [28]. We then show that it can be obtained as
an intersection of a family of simple order reversing quasi involutions.

Example 6 (Reciprocals) Consider the set S ⊆ R
n × R

n given by

S = {(x, y) : 〈x, θ〉〈y, θ〉 ≤ 1 ∀θ ∈ Sn−1}.

One may compute the associated transform

T A = {y ∈ R
n : 〈x, θ〉〈y, θ〉 ≤ 1 ∀x ∈ A ∀θ ∈ Sn−1}

= {y ∈ R
n : (sup

x∈A
〈x, θ〉)〈y, θ〉 ≤ 1 ∀θ ∈ Sn−1}

= {y ∈ R
n : hA(θ)〈y, θ〉 ≤ 1 ∀θ ∈ Sn−1}.

Note that when hA(θ) < 0 then, as hA(−θ) ≥ −hA(θ), we may ignore, in such
cases, the condition hA(θ)〈y, θ〉 ≤ 1. In fact, one may easily check that T A =
T (conv(0, A)). The image class of T is the class of so-called “reciprocal bodies”,
namely the Wulff shapes (or Alexandrov bodies) associated with the functions 1/hA

(on the sphere), where A ∈ Kn
0 , i.e. the set

{y ∈ R
n : ∀θ ∈ Sn−1 〈y, θ〉 ≤ 1/hA(θ)}.

The transform itself is the “reciprocal transform” considered in [28], denoted there
by T K = K ′. The only invariant set is the euclidean unit ball. A natural cost to
consider is of course c(x, y) = 1 − supθ∈Sn−1〈x, θ〉〈θ, y〉.
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It turns out that many properties of the reciprocal transform shown in [28] follow
immediately from the theory of order reversing quasi involutions. Firstly, by Lemma
2.1 we have that K ′′′ = K ′. Secondly, it follows that K ′ ⊆ K ◦. Indeed, we have

c(x, y) = 1 − sup
θ∈Sn−1

〈x, θ〉〈y, θ〉 ≤ 1 − 〈x, y/|y|〉〈y, y/|y|〉 = 1 − 〈x, y〉 =: c2(x, y),

and since c2 is the cost inducing polarity, the claim follows.
Additionally, one may present this example in multiple interesting ways, for exam-

ple, we show that it can be viewed as an intersection of order reversing quasi
involutions. In terms of costs, “intersection” corresponds to taking the minimum of
the given costs, and in terms of the associated sets S, it is simply their intersection.

Fact 4.1 Assume T1 and T2 are two order reversing quasi involutions. Then also T3,
defined by T3A = T1A ∩ T2A is an order reversing quasi involution. Similarly, if Tα

is an order reversing quasi involution for any α ∈ I , then T A = ∩α∈I TαA is an order
reversing quasi involution as well.

Therefore, one can think of Example 6 as an intersection of a continuum of the
following simple order reversing quasi involutions:

Example 7 (θ -slabs) For a fixed θ ∈ Sn−1 consider the cost function cθ on R
n ×

R
n given by cθ (x, y) = 1 − 〈x, θ〉〈y, θ〉. The associated set is Sθ = {(x, y) :

〈x, θ〉〈y, θ〉 ≤ 1}. The image class consists of slabs and half-spaces, containing the
origin, in direction θ . More precisely, denoting the transform Tθ , we have

Tθ A = {y : 〈y, θ〉 ≤ 1/〈x, θ〉 ∀x ∈ A},

which simply means that Tθ A = (PθRA)◦.
As ∩θ∈Sn−1 Sθ gives the set S from Example 6, we see that the reciprocal transform

is an intersection of these simple slab-transforms.

This representation again offers a new insight into the geometry of reciprocals,
namely that

K ′ = ∩θ (PθK )◦.

We proceed to yet another representation of the reciprocals, which places the fam-
ily of reciprocal bodies as an average of polarity presented in Example 1 and balls
from Example 4. More precisely, we consider a continuous family of order reversing
quasi involutions by means of averaging two cost functions. Undoubtedly one can
average any two costs to get new examples, however, since a transform does not have
a uniquely associated cost, the family of “intermediate transforms” is not uniquely
defined. Nonetheless, when there is a natural cost associated with an order reversing
quasi involution, some interesting examples can be produced. As already mentioned,
our examplewill be that of the reciprocal transform expressed as the arithmetic average
of polarity (Example 1) and balls (Example 4).
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Example 8 (Reciprocal-type transform) Consider a family of costs on R
n × R

n given
by cλ(x, y) = 1 − (1 − λ)|x ||y| − λ〈x, y〉. The associated sets are given by

Sλ = {(x, y) : (1 − λ)|x ||y| + λ〈x, y〉 ≤ 1}

The image class of the associated transform depends, of course, on λ. In the case
λ = 1

2 , as mentioned above, the image class consists of reciprocals convex bodies, as
in Example 6. Indeed,

sup
θ∈Sn−1

〈x, θ〉〈θ, y〉 = sup
θ∈Sn−1

|x ||y| cos(�θx) cos(�θ y)

= 1
2 |x ||y| sup

θ∈Sn−1
(cos(�θx + �θ y) + cos(�θx − �θ y))

= 1
2 |x ||y|(cos(�xy) + cos(0)) = 1

2 (〈x, y〉 + |x ||y|)

where the supremum is obtained at θ = x̂+ŷ
|x̂+ŷ| where v̂ = v/|v|.

In the last part of this section we present a new construction, which produces
a “dual” of a given order reversing quasi involution. That is, order reversing quasi
involutions come in pairs. Moreover, this pairing reverses the natural order on order
reversing quasi involutions (on a given space X ) given by the pull back of the inclusion
order on the associated sets S ⊆ X × X .

As we have seen in Sect. 3, every order reversing quasi involution T : P(X) →
P(X) is determined by the set S = {T K × T T K : K ⊆ X} ⊆ X × X . In many cases
(e.g. all of the cases above except for Example 5) the set S is closed, which ensures that
the image class consists of closed sets. This is a desirable property (usually) which is
why, below, we chose to define the pairing in a way that includes a closure operation
(we let A stand for the closure of A with respect the standard topology).

Definition 4.2 Given a topological space X and an order reversing quasi involu-
tion T : P(X) → P(X) with an associated set ST = {T K × T T K : K ⊆ X} ⊆
X×X we define its dual order reversing quasi involution to be T ′ : P(X) → P(X)

with an associated set ST ′ = X × X \ ST (here closure is taken with respect to the
product topology).

Since ST is symmetric, so is ST ′ . When c is “reasonable”, the cost associated with
T ′ is simply −cT where cT is the cost associated with T . We next dualize two of the
above examples. First, consider the dual to Example 3.

Example 9 (Ball intersections) Let (X , d) be some metric space. Let

S = {(x, y) : d(x, y) ≤ ε}.

The associated transform is given by

T A = ∩x∈AB(x, ε).

123



238 Page 14 of 40 S. Artstein-Avidan et al.

The image class consists of all sets obtained by intersections of balls of radius ε.
In particular, these sets are closed and of diameter at most 2ε. When X is a linear
space, the sets in the image class are convex, and the transform is shift invariant
T (a + A) = a + T A (which incidentally happens for a transform associated with a
set S if and only if S = S + D for the diagonal D = {(x, x) : x ∈ X}). An exciting
feature of T is that its invariant sets are the so-called “diametrically complete” sets,
and when X = R

n with the Euclidean distance d, these are precisely sets of constant
width ε. The analysis of invariant sets of order reversing quasi involutions in general,
and of T in particular, will be presented in Sect. 6.

The next example is extremely rich, and we devote a full section to it (Sect. 5). It is
the dual (in the sense of Definition 4.2) of the classical polarity from Example 1.

Example 10 (Dual polarity) Let

S = {(x, y) : 〈x, y〉 ≥ 1} ⊆ R
n × R

n .

The associated transform is given by

T A = {y : 〈x, y〉 ≥ 1 ∀x ∈ A}.

The image class consists of intersections of affine half-spaces that do not include the
origin. In particular, these are unbounded, closed and convex sets. We analyze this
class and the transform in detail in the next section.

Remark 4.3 This section included just a few of themany interesting examples for order
reversing quasi involutions. We included more examples in Sect. 7. We mention that
the dual of the ‘Legendre-induced’ order reversing quasi involution from Example 2
remains the same type up to a change of coordinate system since

ST ′ = {((x, s), (y, t)) : 〈x, y〉 ≥ s + t} = {((x, s), (y, t)) : 〈−x, y〉 ≤ −s − t}

is a linear image of ST = {((x, s), (y, t)) : 〈x, y〉 ≤ s + t}.
Remark 4.4 Let us mention that while many geometric families of sets appear as
images of order reversing quasi involutions or their complement, some classical fam-
ilies of convex bodies cannot arise in this way. For example, the classes of Zonotopes
(Minkowski sums of a finite number of segments) or Zonoids (limits of Zonotopes)
cannot be the image class of an order reversing quasi involution as they are not closed
under intersection (nor can their complements, as they are not closed under unions
either).

5 Dual Polarity

The classical polarity transform plays a central role in convex geometry (see e.g.
[33]). Its dual, given in Example 10, is the object we carefully analyze in this section.
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Throughout this section, T : P(Rn) → P(Rn) will denote the order reversing quasi
involution given by

T A = {y : 〈x, y〉 ≥ 1 ∀x ∈ A}.

5.1 The Image of T and a Connected Functional Transform

By definition, the image of the transform consists of intersections of affine half-spaces
that do not include the origin. We can characterize the image in several useful ways.

To begin with, note that the image of a point {x0} is the halfspace

Hx0 = {y : 〈x0, y〉 ≥ 1}.

By Proposition 2.2, the image class consists of all possible intersections of such half-
spaces. In particular, if K is in the image class, then K is convex and λK ⊆ K for
any λ > 1, a property one might call “cone-like”. Together with the property of not
including the origin, this characterizes sets in the image.

Lemma 5.1 The class C = {T K : K ⊆ R
n} consists of R

n together with all closed
convex sets K ⊆ R

n that do not include the origin and satisfy for all λ ≥ 1 that
λK ⊆ K.

Proof Let us denote

C1 = {K ⊆ R
n : ∃(ui )i∈I �=∅ and K = ∩i∈I {x : 〈x, ui 〉 ≥ 1}},

C2 = {K ⊆ R
n : K is closed, convex, 0 /∈ K , λK ⊆ K for all λ ≥ 1}.

We need to show that the two are equal. The fact that C1 ⊆ C2 is obvious since
the intersection of closed sets remains closed and the other cone-like properties are
preserved by the intersection. For the other direction, given K ∈ C2, using that it is
closed and convex, there exists a collection of vectors v and constants η(v) such that

K = ∩v{x : 〈x, v〉 ≥ η(v)}.

When η(v) > 0, we consider u = v/η(v). We claim that the condition λK ⊆ K for
λ > 1 implies that one may dismiss the pairs (v, η(v)) for η(v) < 0. Indeed, since
the set {x : 〈x, v〉 ≥ η(v)} is monotone in η(v), we may assume that for a given v,
we chose the maximal among all constants η(v) such that K ⊆ {x : 〈x, v〉 ≥ η(v)}.
Therefore, assuming towards a contradiction that η(v) < 0 means that K � {x :
〈x, v〉 ≥ η(v)/2}, and so there is some x0 ∈ K with 〈x0, v〉 < η(v)/2. However,
then 3x0 (which must also be in K as 3K ⊆ K ) satisfies 〈3x0, v〉 < 3η(v)/2 < η(v)

contradicting K ⊆ {x : 〈x, v〉 ≥ η(v)}.
Finally, we need to consider the case η(v) = 0. We claim that if {x : 〈x, v〉 ≥ 0}

participates in the intersection defining K , we may replace it by an intersection of
the form ∩{〈x, wt 〉 ≥ ηt > 0}, in the sense that K ⊆ ∩{〈x, wt 〉 ≥ ηt > 0} ⊆ {x :
〈x, v〉 ≥ 0}. To define wt and ηt , consider some hyperplane {x : 〈x, w〉 = η1}
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separating the origin and K . Consider wt = (1 − t)v + tw and ηt = tη1. Then we
have

K ⊆ {x : 〈x, wt 〉 ≥ tη1}

and on the other hand if 〈x, wt 〉 ≥ tη1 for all t ∈ (0, 1) then (1 − t)〈x, v〉 ≥ t(η1 −
〈x, w〉) so taking t → 0 we see 〈x, v〉 ≥ 0. This, completes the proof. ��

The class C decomposes into sub-classes Cu , u ∈ Sn−1, which are invariant under
T , in the following way: Every set K ∈ C (except for the empty set and all of R

n)
contains a unique point 0 �= x ∈ K which is closest to the origin. Indeed, it contains
at least one such point by closedness, whereas convexity implies the uniqueness. The
sub-class Cu consists of those K ∈ C whose closest point to the origin lies on the ray
uR

+. We notice that Cu is a rotation of Cv for any two directions u, v ∈ Sn−1 and that
the mapping T maps Cu to itself for any u ∈ Sn−1. Moreover, for a rotationU ∈ O(n)

and a set A ⊆ R
n one has T (U A) = UT (A).

Lemma 5.2 For any u ∈ Sn−1 the sub-class Cu is invariant under T .
Proof For K ∈ Cu we let H denote the halfspace of the form {x : 〈x, u〉 ≥ a} and
� the ray {λu : λ ≥ a}, where a > 0 and au is the point in K closest to the origin.
Then � ⊆ K ⊆ H , and so T H ⊆ T K ⊆ T �. A direct computation gives that
T � = {x : 〈x, u〉 ≥ 1/a} and T H = {λu : λ ≥ 1/a}. Therefore, T K belongs to Cu as
well. ��

As is clear from the above proof, Cu = ∪a>0Cu,a where K ∈ Cu,a if its point closest
to the origin is au, and further, it follows that the transform T maps Cu,a to Cu,1/a . In
addition, the mapping K �→ λK is a bijection between Cu,a and Cu,λa .

Therefore, having fixed an orthonormal basis {ei }ni=1 for R
n , in order to study T

it suffices to focus on one sub-class Cen ,1. We call this sub-class S := Cen ,1. In the
next lemma we demonstrate that one can identify S with a class of functions and we
provide with a functional transform that corresponds to T .

For ϕ : R
n−1 → (0,∞] we let epi (ϕ) = {x + ten : t ≥ ϕ(x), x ∈ e⊥

n } ⊂ R
n ,

where we have chosen an orthonormal basis so as to identify e⊥
n and R

n−1.

Proposition 5.3 Let K ∈ S and let ϕ : R
n−1 → (0,∞] be given by

ϕ(x) = min{t : (x, t) ∈ K }.

Let

T̃ϕ(y) = sup
x∈Rn−1

1 − 〈x, y〉
ϕ(x)

.

Then epi (ϕ) = K and T K = epi (T̃ϕ).
The identification K �→ ϕ is a bijection between S and the class of lower semi

continuous convex functions on R
n−1 with minimal value ϕ(0) = 1, and satisfying

−1 ≤ Lϕ|dom(Lϕ) ≤ 0.
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Proof Clearly ϕ defined above is convex, attains its positive minimal value 1 at the
origin, and

epi (ϕ) = {(x, t) ∈ R
n−1 × R : ϕ(x) ≤ t} = K

as K is closed and (x, t) ∈ K implies (x, s) ∈ K for any s > t , which follows from
the fact that (x, s) ∈ conv([1,∞)en ∪ {(x, t)}). We can thus compute

T K = {(y, t) ∈ R
n−1 × R : 〈x, y〉 + λϕ(x)t ≥ 1 ∀x ∈ R

n−1, ∀λ ≥ 1}
= {(y, t) ∈ R

n−1 × R : t ≥ 1 − 〈x, y〉
λϕ(x)

∀x ∈ R
n−1, ∀λ ≥ 1}.

Note that in fact we must have t ≥ 1−〈x,y〉
ϕ(x) and hence, we may define the order

reversing transform T̃ on functions as in the statement of the Proposition. Clearly, this
T̃ is an order reversing bijection on functions associated with sets in S (and since at
x = 0 the value of the expression in the supremum is 1, it is enough to consider the
supermum over all x such that 1 ≥ 〈x, y〉).

We are thus left with proving the characterization for functions associated with
sets in S. To this end let ϕ be a function associated with some K ∈ S and assume
that y ∈ dom(Lϕ) ⊆ R

n−1. Let v = (−y, 1) ∈ R
n and let c(v) = max{c : K ⊆

{z : 〈z, v〉 ≥ c}}. We claim that c(v) > −∞ if and only if y ∈ dom(Lϕ), that is,
Lϕ(y) < ∞. Indeed,

Lϕ(y) = sup
x

(〈x, y〉 − ϕ(x)) = sup
x

〈(x, ϕ(x)), (y,−1)〉 = sup
(x,t)∈epi (ϕ)

〈(x, t),−v〉

so that inf z∈K 〈z, v〉 = −Lϕ(y). From the proof of Lemma 5.1 we see that either
c(v) ≥ 0 or c(v) = −∞ (in which case v is not to be chosen in the collection of half-
spaces intersected), which means precisely that Lϕ(y) ≤ 0 on its domain. Clearly,
−Lϕ(y) = c(v) ≤ 1 since en ∈ K and 〈en, v〉 = −1.

For the opposite inclusion, let ϕ be a convex function such that−1 ≤ Lϕ|dom(Lϕ) ≤
0 and min ϕ(x) = ϕ(0) = 1. As we have computed, (x, y) ∈ epi (ϕ) implies
〈(x, t), (y,−1)〉 ≤ Lϕ(y) for all y ∈ dom(Lϕ), and in the other direction, if
〈(x, t), (y,−1)〉 ≤ Lϕ(y) for all y then t ≥ LLϕ(x) = ϕ(x), so we have

epi (ϕ) = ∩{(x, t) : 〈(x, t), (y,−1)〉 ≤ Lϕ(y),∀y ∈ dom(Lϕ)}.
It then follows from Lemma 5.1 that epi (ϕ) belongs to C. Since the unique minimum
of ϕ is 1 and is attained at the origin, we can conclude that in fact epi (ϕ) belongs to
S, completing the proof. ��
Remark 5.4 It turns out that a variant of the transform T̃ has been considered, as a
special case, by Rotem [31]. There, a transform 
 is defined as

f 
(x) = 1

supy

[
f (y)

(
1 + 〈x,y〉

β

)β
] .
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Clearly,
(
1
ϕ

)


(−x) = 1
T̃ (x)

holds when β = 1. The a priori small modification of

taking a reflection of x in the definition of 
 will be crucial when discussing invariant
sets (see Sect. 6).

5.2 The J Transform as the Link with Polarity

It turns out that the transform T , when restricted to the subclass Cen ,1 ⊂ P(Rn),
say, is, up to a minus sign, the pull-back of the classical polarity transform under a
point-map on the upper half-space. This point map is the one associated with the order
preserving transform J defined in [8] and studied intensively in [1]. We illustrate this
connection in this subsection. However, one should bare in mind that the mapping J
is defined only on subsets of a half space, and when considered as transforms on the
whole spaceP(Rn) the polarity and the dual-polarity are not conjugate, and are in fact
quite different.

Recall that the J transform on subsets of R
n−1 × R

+ is defined as J K = F(K ),
where F(x, t) = (x/t, 1/t). This is a convexity preserving map that maps rays ema-
nating from the origin to rays parallel to the ray {0}×R

+. Consider a set K ∈ Cen ,1 ⊂
P(Rn). We already showed that it consists of rays, K = {t(x, 1) : t ≥ a(x)} where
a : R

n−1 → [1,∞]. Note that a(0) = 1 and when a(x) = ∞ this means the ray
R(x, 1) does not intersect K .

Thus, J K = {(x, 1
t ) : t ≥ a(x)} = {(x, s) : s ≤ 1

a(x) }. Since K was convex so is
J K , hence 1/a(x) is a concave function on its support (which consists precisely of
those x’s such that the ray (x, 1)R intersects K or is asymptotically tangent to it). In
this way, we can associate to every K ∈ Cen ,1 a convex body in R

n given by

J̃ (K ) = {(x, t) : |t | ≤ 1/a(x)}.

Note that this operation is simply applying J to K and taking a unionwith the reflection,
i.e. J̃ (K ) = J K ∪ Ren J K where Ren y = y − 2〈en, y〉en . The resulting body always
includes the segment [−en, en], is included in the slab {|〈·, en〉| ≤ 1}, and is invariant
under reflections about e⊥

n .

Lemma 5.5 For K ∈ Cen ,1 ⊂ P(Rn) we have that

− J̃ (K )◦ = J̃ (T (K )).

Proof Let K = {(x, s) : s ≥ ϕ(x)} ∈ Cen ,1, then by definition of J we get that

J K = {( x
s
,
1

s

)
: s ≥ ϕ(x)

} = {
a
( x

ϕ(x)
,

1

ϕ(x)

) : 0 ≤ a ≤ 1
}
,

and thus

J̃ (K ) = {(
a

x

ϕ(x)
,±a

1

ϕ(x)

) : 0 ≤ a ≤ 1
}
.
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Therefore

J̃ (K )◦ = {(y, r) : 〈x, y〉 + rs ≤ 1 ∀(x, s) ∈ J̃ (K )}
= {(y, r) : 〈ax, y〉 ± ra ≤ ϕ(x) ∀x ∈ R

n−1, 0 ≤ a ≤ 1}
= {(y, r) : 〈x, y〉 ± r ≤ ϕ(x) ∀x ∈ R

n−1}
= {(y, r) : 〈x, y〉 − ϕ(x) ≤ r ≤ ϕ(x) − 〈x, y〉 ∀x ∈ R

n−1}.

On the other hand,

T (K ) =
{
(x, s) : s ≥ sup

z

1 − 〈x, z〉
ϕ(z)

} = {(x, s) : sϕ(z) ≥ 1 − 〈x, z〉 ∀z ∈ R
n−1

}
.

Thus,

JT K =
{( x

s
,
1

s

) : sϕ(z) ≥ 1 − 〈x, z〉 ∀z ∈ R
n−1

}

=
{
(y, r) : 1

r
ϕ(z) ≥ 1 − 〈y/r , z〉 ∀z ∈ R

n−1
}

=
{
(y, r) : r ≤ ϕ(z) + 〈y, z〉 ∀z ∈ R

n−1
}

.

We thus see that

J̃ (T K ) = {(y, r) : −ϕ(z) − 〈y, z〉 ≤ r ≤ ϕ(z) + 〈y, z〉 ∀z ∈ R
n−1}.

Plugging in −y instead of y in J̃ (K )◦, gives J̃ (T K ) (since the bodies are invariant
under reflection with respect to e⊥

n , the map r �→ −r does not change the set). ��
Lemma 5.5 essentially tells us that J̃ is a bijection between sets in Cen ,1 and convex

bodies which include the segment [−en, en], are included in the slab {|〈·, en〉| ≤ 1},
and are invariant to reflections about e⊥

n . Moreover, the mapping T is the pull back of
the mapping L �→ −L◦ on this class.

In particular, the invariant sets for T correspond to convex sets invariant under
L �→ −L◦. The only centrally symmetric such set is the ball, but in general there are
many sets invariant with respect to this operations, such as the simplex (which is not
in the class), a half-slab (which is in the class), and many more.

Remark 5.6 It is useful to note that the set K0 = {(x, y) ∈ R
n ×R

+ : |x |2 +1 ≤ |y|2}
corresponds to the ball under this transform. More precisely we have

J̃ (K0) = Bn
2 .

Indeed,

{(x/s, 1/s) : s ≥
√
1 + |x |2} = {a(x/

√
1 + |x |2, 1/

√
1 + |x |2) : a ≤ 1}

= {(y, z) : |y|2 + z2 ≤ 1, z ≥ 0}.

123



238 Page 20 of 40 S. Artstein-Avidan et al.

5.3 A Blaschke–Sanataló Type Inequality

Blaschke-Sanataló type inequalities are a well-investigated topic in convexity,
but many intriguing open problems remain. The classical inequality states that
Vol(K )Vol(K ◦) ≤ Vol(Bn

2 )2 for all centrally symmetric bodies K in R
n , see e.g. [3,

Section 1.5.4]. For a non-centrally symmetric body, one needs to translate the body
first (otherwise both the body and its dual can be huge). For example, the inequality is
true when the origin is the bodies center of gravity, see [27] or [4]. Many variants of
the Blaschke-Santaló inequality have been proven along the years, see, among others,
[5, 18, 19, 25], where different size functionals and duality operations are considered,
or see [4, Section 9.3.1-2] and references therein. The reverse question, of bound-
ing the volume product from below, is the famous Mahler’s conjecture [26], for a
discussion and more references see [3, Section 8.1]. The three-dimensional centrally
symmetric case of Mahler’s conjecture was recently settled in [22]. Some open prob-
lems of Blaschke–Sanataló type include Cordero’s conjecture [15], which stipulates
that Vol(K ∩ L)Vol(K ◦ ∩ L) ≤ Vol(Bn

2 ∩ L)2 for centrally symmetric convex bodies
K , L (a version of this inequality where intersection is replaced by a new notion of
2-intersection was proved in [24]).

In this subsection, we will prove Theorem 1.7, which is a Blaschke–Sanataló type
inequality for the Gaussian measure and the new dual polarity. Central symmetry is
replaced by a condition which we call “essential symmetry”.

Definition 5.7 Let K ∈ C ⊂ P(Rn).We say K is “essentially symmetric” if for u such
that K ∈ Cu , identifying R

n = u⊥ × Ru, we have (x, t) ∈ K implies (−x, t) ∈ K .
Since K ∈ Cu can be interpreted as the epi-graph of a convex function ϕ : u⊥ → R

+u,
essential symmetry is equivalent to ϕ being an even function (ϕ(−x) = ϕ(x) for
x ∈ u⊥).

We recall the statement of the main theorem we are proving in this section

Theorem 1.7 Let K ∈ C ⊂ P(Rn) be essentially symmetric. Then,

γn(K )γn(T K ) ≤ γn(K0)
2,

where K0 = {(x, y) ∈ R
n−1 × R

+ : |x |2 + 1 ≤ |y|2}.
Remark 5.8 Note that in this setting, one cannot simply shift a set in the class to be
centered, however, since the Gaussian measure is a probability measure, it may be the
case that the following theorem still holds without the essential symmetry assumption.

To prove Theorem 1.7 we will use the above interpretation of K as the J image of
some convex body, and an observation on the Jacobian of F , which was given in the
paper [2].

Lemma 5.9 Let K ∈ Cen ,1 ⊂ P(Rn). Then

γn(K ) = ν(J K )

where dν(x, z) = (2π)−ne−|x |2/2z2e−1/2z2 z−(n+1)dxdz is defined on R
n−1 × R

+.
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Proof The mapping F(x, z) = (x/z, 1/z) (which is the point map corresponding
to J ) has a differential which is an upper triangular matrix with diagonal entries
(z−1, . . . z−1, z−2). Therefore, its Jacobian is z−(n+1). ��

Using Lemma 5.5, namely that polarity for J̃ K corresponds to T for K up to a
minus sign, Theorem 1.7 will follow once we show the following theorem.

Theorem 5.10 Let L ⊆ R
n be a centrally symmetric convex body which includes the

segment [−en, en], is included in the slab {|〈·, en〉| ≤ 1}, and is invariant to reflections
about e⊥

n . Then,

ν(L)ν(L◦) ≤ ν(Bn
2 )2,

where, as above, dν(x, z) = (2π)−ne−|x |2/2z2e−1/2z2 z−(n+1)dxdz on R
n−1 × R

+
(and with dν(x, z) is 0 for z ≤ 0).

Wewill use the following inequality which was established in [15] for even dimen-
sions, and as Cordero–Erausquin observes, holds in all dimensions using Steiner
symmetrizations as in Meyer and Pajor’s proof of the Santaló inequality [27] (see
also [18, Corollary 4]).

Lemma 5.11 For a centrally symmetric convex set L ⊆ R
n we have

γn(L)γn(L
◦) ≤ γn(B

n
2 )2.

Moreover, for any α > 0 we have that γn(αL)γn(αL◦) ≤ γn(αBn
2 )2.

Proof (Proof of Theorem 5.10) Given L as in the statement of the theorem, note that

ν(L) = (2π)−n
∫ 1

0
e−1/2z2 z−(n+1)

(∫

{x :(x,z)∈L}
e−|x |2/2z2dx

)
dz

= (2π)−n
∫ 1

0
e−1/2z2 z−2

(∫

{y:(zy,z)∈L}
e−|y|2/2dy

)
dz

= (2π)−1
∫ 1

0
e−1/2z2 z−2γn−1({y : (zy, z) ∈ L})dz.

We define three functions on [0, 1]:

f (s) = e−1/2s2s−2γn−1({x : (sx, s) ∈ L}),
g(t) = e−1/2t2 t−2γn−1({y : (t y, t) ∈ L◦}),

h(r) = e−1/2r2r−2γn−1({z : (r z, r) ∈ Bn
2 }) = e−1/2r2r−2γn−1

(√ 1−r2

r2
Bn−1
2

)
.

We claim that f (s)g(t) ≤ h2(
√
st). If we can show this then we can use the

multiplicative version of Prékopa-Leindler [3, Theorem 1.4.1] to get

∫
f
∫

g ≤
(∫

h

)2

,
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which translates to the statement of the theorem. To show that the condition holds, we
rewrite what needs to be shown as

e−1/2s2

s2
γn−1({x : (x, s) ∈ L})e

−1/2t2

t2
γn−1({y : (y, t) ∈ L◦})

≤ e−1/st

(st)2
γ 2
n−1(

√
1 − st

st
Bn−1
2 ).

Note that since 1/s2 + 1/t2 ≥ 2/st we have e−1/2 s2−1/2t2 ≤ e−1/st , and so the result
will follow if we show that

γn−1({x : (sx, s) ∈ L})γn−1({y : (sy, t) ∈ L◦}) ≤ γ 2
n−1

(
√
1 − st

st
Bn−1
2

)
.

Note that if (sx, s) ∈ L and (t y, t) ∈ L◦ then we have that 〈x, y〉 ≤ 1−st
st . Hence,

denoting {x : (sx, s) ∈ L} =: A and {y : (t y, t) ∈ L◦} =: B we see that, in particular,

√
st

1 − st
B ⊆

(√
st

1 − st
A

)◦
.

From this inclusion, and with Lemma 5.11 in hand, we let α =
√

1−st
st to see that

γn−1(A)γn−1(B) = γn−1(α

√
st

1−st A)γn−1(α

√
st

1−st B)

≤ γn−1(α

√
st

1−st A)γn−1

(
α
(√ st

1−st A
)◦)

≤ γn−1

(
αBn

2 )2 = γn−1(

√
st

1−st B
n−1
2

)2
,

which completes the proof. ��

6 Invariant Sets

Finding the invariant sets of a given transform (also called “fixed points”) is an interest-
ing and often difficult task. Apart from the inherent interest of such questions, invariant
sets can be important when analyzing extrema of certain functionals involving a set
and its transform, as these extrema are in many cases (but not always) achieved on
invariant sets (such is the case, for example, when the functional is symmetric with
respect to taking the transform, and the extremum is unique - for instance in the clas-
sical Blaschke-Santaló inequality, see [3, Subsection 1.5.4]). Another motivation to
study invariant sets is that these enable us to study the possibility of two transforms
being conjugate, see the paper [21] for an instance where this method is used in the
particular case of the polarity transform, and the general question of Anderson (for the
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Hilbert cube, which is quite similar to the space of convex bodies as is also illustrated
there) on conjugate dualities is presented.

In this section, wewill study the existence and uniqueness of invariant subsets under
order reversing quasi involutions. The two previously mentioned classical examples,
Example 1 and 2, have only one invariant set. The polarity transform in R

n (Example
1) has as its unique invariant set the Euclidean unit ball Bn

2 . The order reversing
quasi involution associated with the Legendre transform (Example 2) has as a unique
invariant set the epigraph of the function ‖x‖22/2. It is easy to check that some order
reversing quasi involutions (such as the “neighborhood complement” in Example 3)
have no invariant sets, and somehavemultiple invariant sets (such as the “dual polarity”
discussed throughout Sect. 5).

We begin by stating and proving some general facts regarding invariant sets for
an arbitrary order reversing quasi involution. These will capture many of the cases
studied in the literature for well-known transforms. We analyze in detail some specific
cases where more can be said, alluding to the examples previously discussed and other
interesting order reversing quasi involutions.

As above,wewill denote an order reversing quasi involution by T : P(X) → P(X).
As we established in Theorem 1.3 any order reversing quasi involution is induced by
some symmetric cost function c : X × X → R, and it is sometimes useful to use to
notation T K = Kc = {y : ∀x ∈ K , c(x, y) ≥ 0}. Of particular importance in this
section is the set

X0 = {x : c(x, x) ≥ 0} = {x : x ∈ T ({x})},

due to the following simple fact.

Lemma 6.1 Let T : P(X) → P(X) be an order reversing quasi involution. If K =
T K then K ⊆ X0.

Proof Let x ∈ K , then {x} ⊆ K so we have T K ⊆ T ({x}) and as x ∈ T K = K
we see that x ∈ T ({x}) so that x ∈ X0. Since this holds for every x ∈ K the claim
follows. ��

Clearly, if X0 = ∅ (and X is not the empty set, which is a standing assumption in
this note) then there is no invariant set for T because T∅ = X (see Proposition 2.2).
This is the case in Example 3.

There are other instances of order reversing quasi involutions with no invariant sets,
for example one may consider a space X with any order reversing quasi involution T
and construct a space X ∪ {z} for some new point z /∈ X such that c(z, z) = −1 and
c(x, z) = 1 for all x �= z. It terms of T , we define T̃ K = T K ∪ {z} if z /∈ K and
T̃ K = T (K \ {z}) if z ∈ K . In such a case, T̃ will have no invariant sets.

However, the theorem below shows that when X0 = X then invariant sets always
exist. In fact, for any K0 with T K0 ⊇ K0 there exists an invariant set including K0.
Moreover, when X0 �= ∅, omitting the condition X0 = X still there are always “almost
invariant sets”, namely sets for which T K ∩ X0 = K , and in some cases we can use
this to show the existence of invariant sets, see Remark 7.2.
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Theorem 1.4 Let T : P(X) → P(X) be an order reversing quasi involution and let
X0 as above. Let K0 ⊆ X satisfy K0 ⊆ T K0. Then, there exists some K ⊆ X with
K0 ⊆ K and such that T K ∩ X0 = K. In particular, if X = X0 then for any x0 ∈ X
there exists K with x0 ∈ K = T K .

Proof Consider the class S of subsets S ⊆ X with K0 ⊆ S and T S ⊇ S. In terms
of the cost c this means c(x, y) ≥ 0 for all x, y ∈ S. The class S is non-empty, as it
includes K0. Moreover, given a chain Sα (with respect to inclusion) in S, consider the
union of its elements S∞ = ∪Sα . Then K∞ still belongs to S as it will still include
K0 and for any x, y ∈ S∞ there is some α with x, y ∈ Sα so that c(x, y) ≥ 0 as well,
implying S∞ ⊆ T S∞. Thus the conditions of Zorn’s lemma are satisfied, that is, every
chain has an upper bound. Therefore, one may find a maximal element in S. Denote
it by K . Clearly K ⊆ T K (since K ∈ S), which means in particular K ⊆ X0. We
claim that T K ∩ X0 = K . Indeed, give z ∈ T K\K we know by maximality of K that
K1 = K ∪ {z} cannot belong to S. In other words, T (K1) � K1. But as c(x, z) ≥ 0
for all x ∈ K (since z ∈ T K ) and c(x, y) ≥ 0 for all x, y ∈ K , this means that
c(z, z) < 0, that is, z /∈ X0, as claimed. Therefore, K = T K ∩ X0. ��

The only case where a multitude of invariant sets may occur, is when T X0 is a
proper subset of X0. In other cases, there is either no invariant set, or exactly one.
More precisely we prove the following lemma.

Lemma 6.2 Let T : P(X) → P(X) be an order reversing quasi involution and denote
X0 = {x ∈ X : c(x, x) ≥ 0}, as above.
1. If T X0 = X0 then X0 is the unique invariant set for the transform.
2. If T X0 � X0 then there is no invariant set for the transform.
3. If T X0 � X0 then there are examples where no invariant set exists, examples

where only one invariant set exists, and examples where more than one invariant
set exists.

Proof For (1), if T K = K then K ⊆ X0 by Lemma 6.1, and by order reversion we
get that K = T K ⊇ T X0 = X0 and so K = X0.

To see that (2) holds, by the same reasoning, if T K = K then we have that
X0 ⊇ K = T K ⊇ T X0, and so if this inclusion does not hold, there will be no
invariant sets.

For (3), let us give three simple examples: (i)To give an example where no invariant
set exists despite Xc

0 ⊆ X0, let X be a four point space X = {1, 2, 3, 4}. Consider the
cost given by c(1, 1) = c(2, 2) = c(1, 3) = c(3, 1) = c(2, 4) = c(4, 2) = 1, and
−1 for any other pair. If there was some invariant set, it would have to be included in
X0 = {1, 2}. However {1} �→ {1, 3} and {2} �→ {2, 4}, whereas Xc

0 = ∅ (and as usual
∅ �→ {1, 2, 3, 4}).

(ii) An example with just one invariant set, despite Xc
0 � X0, can be given with a

three point space. Let X = {1, 2, 3} and set c(1, 1) = c(2, 2) = c(1, 3) = c(3, 1) = 1
and all other pairs to have cost −1. In this case it is easy to check that X0 = {1, 2}
and Xc

0 = ∅. The only invariant set is {2}, and the other subsets of {1, 2} satisfy
{1} �→ {1, 3} and {1, 2} �→ ∅ whereas ∅ �→ {1, 2, 3} of course.
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(iii) Finally, fix some X = {xi }i∈I with at least two elements. Let c(xi , xi ) = 1 and
for xi �= x j we let c(xi , x j ) = −1. Then, any {xi } is an invariant set, X0 = X , and
Xc
0 = ∅. ��
While a complete characterization of invariant sets for general order reversing quasi

involutions seems difficult, because of the various scenarioswhich can occur, the above
facts capture many of the interesting examples. Our two favorite examples, classical
polarity and Legendre transform, correspond to case (1) in Lemma 6.2, where for
polarity on R

n we have X0 = Bn
2 and for the set transform associated with Legendre

we have X0 = {(x, t) ∈ R
n × R : t ≥ ‖x‖2/2}.

Invariant Sets for the Flower Duality

Another example with a unique invariant set corresponding to case (1) in the lemma
is that of complements of flowers, see Example 5. Recall that the associated set S
defining the transform is S = {(x, y) : 〈x, y〉 < 1

2 |x |2|y|2}. In this case the invariant
set is X0 = R

n\√2Bn
2 = {x : |x | >

√
2}. Indeed, for x, y ∈ X0 we have that

1

2
|x |2|y|2 > |x ||y| ≥ 〈x, y〉,

where the first inequality holds since |x |, |y| >
√
2, and the second is due to Cauchy–

Schwartz. This implies that X0 ⊆ T X0. For the other direction, assume x /∈ X0,
hence |x | <

√
2. Choosing y = √

2 x
|x | ∈ X0 we get that 1

2 |x |2|y|2 = |x |2 and

〈x, y〉 = √
2|x |. Since the latter is clearly larger we get that (x, y) /∈ S which implies

x /∈ T X0. So T X0 = X0, and Lemma 6.2 item (1) tells us that this is the only invariant
set.

Invariant Sets for Rotem’s Transform

Let us discuss one other case of an order reversing quasi involution with only one
invariant set, namely the order reversing quasi involution we alluded to in Remark 5.4,
which was considered by Rotem in [31].

Rotem considered the functional transform TR given by

TRϕ(y) = sup
x∈Rn−1

1 + 〈x, y〉
ϕ(x)

,

which corresponds, as a set transform for epi-graphs in R
n−1 × R

+, to a cost function
c((x, t), (y, s)) = ts − 〈x, y〉 − 1 ≥ 0. The set X0, therefore, consists of

{(x, t) : t2 ≥ |x |2 + 1}.

It is easy to check that v(x) = √|x |2 + 1 is an invariant function, and we once again
see an instance with exactly one invariant set.
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Invariant Sets for the Dual Polarity

We turn our attention to the new duality transform presented in Example 10 and
discussed in Sect. 5.

While at first seemingly similar to Rotem’s transform, the situation is completely
different when we use the dual-polarity transform as in Example 10, or, for an even
simpler case, the modified transform where in TR we add a negative sign, getting the
transform in Proposition 5.3. Let

TNϕ(y) = sup
x∈Rn−1

1 − 〈x, y〉
ϕ(x)

,

which corresponds, as a set transform for epi-graphs in R
n−1 × R

+, to a cost function
c((x, t), (y, s)) = 〈x, y〉 + ts − 1 ≥ 0. The set X0, therefore, consists of

{(x, t) : t2 ≥ 1 − |x |2},

which is not in the associated class an in particular is not an in variant set. In other
words, the “dual polarity” transform, towhichSect. 5was devoted, is an order reversing
quasi involution corresponding to case (3) in Lemma 6.2 that has many invariant sets.

Indeed, here are a few different invariant sets of the above transform:

K0 = {(x, t) : t2 ≥ |x |2 + 1},
K1 = {(x, t) : x ≥ 0, t ≥ 1},

and in R
2, for example,

K2 = {(x, t) : x ≥ 0 and t ≥ x + 1 or − 1 ≤ x ≤ 0 and t ≥ 1 or x ≤ −1

and t ≥ −x}.

In fact, in R
2 we may give the general form of an invariant set for this transform, as

the following Lemma explains.

Proposition 6.3 Consider the cost c((x, t), (y, s)) = xy + ts − 1 on R
2, and the

associated transform T : A �→ Ac. Let K ⊂ R
2+ such that e2 = (0, 1) ∈ K is its

closest point to the origin, i.e. K ∈ S = Ce2,1. Define

L = (Kc ∩ {(x, t) ∈ R
2 : x < 0, t ≥ 0}) ∪ (Kcc ∩ R

2+).

Then the set L belongs to S and it is an invariant set for T . Moreover, any invariant
set for T which belongs to Ce2 is of this form. (In particular, this characterizes the
invariant sets with respect to TN .)

Proof Let L be of the form given in the statement of the proposition. It follows from
Lemma 5.2, and the discussion that follows it, that L ∈ S.
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To show the invariance, we first prove that L ⊆ Lc. Fix some (x, t) ∈ L . If
x ≥ 0 this means (x, t) ∈ Kcc. Then for any (y, s) ∈ L either y < 0 in which case
(y, s) ∈ Kc and so xy + st ≥ 1, or y ≥ 0 in which case, as x, y ≥ 0 and t, s ≥ 1, we
again get xy + ts ≥ ts ≥ 1. If x < 0 a similar argument works. This shows L ⊆ Lc.

For the opposite inclusion, namely that Lc ⊆ L , let (x, t) ∈ Lc. Assume that
x ≥ 0 and consider a point (y, s) ∈ Kc. Then, either y < 0 from which it follows
that (y, s) ∈ L and hence xy + st ≥ 1 by the definition of the transform, or y ≥ 0
in which case as x ≥ 0 and Lc, Kc ∈ S we get that xy + st ≥ st ≥ 1. Therefore,
we conclude that (x, t) ∈ Kcc, and as we assumed x ≥ 0, we get that (x, t) ∈ L . A
similar argument shows that any point (x, t) ∈ Lc with x < 0 belongs to Kc and thus
to L .

We conclude that all sets of the form given above are invariant. To show that all
invariant sets within the sub-class Ce2 must be of this form, note that they must belong
to Ce2,1 ⊂ Ce2 . Finally, since the sets in Ce2,1 are contained in the upper half plane (and
clearly K = Kcc),weget that K = (Kc ∩ {(x, t) ∈ R

2 : x < 0, t ≥ 0}) ∪ (Kcc ∩ R
2+).
��

In view of Lemma 5.5, invariant sets for the dual polarity correspond, after appli-
cation of J̃ , to invariant sets for the transform K �→ −K ◦, which also have the
property that they are included in the slab {(x, t) : |t | ≤ 1} and include the segment
{(0, t) : −1 ≤ t ≤ 1}. Here again, in R

2 this characterization is quite simple, and in
higher dimensions a clean way of expressing such sets is yet to be given.

One other interesting order reversing quasi involution corresponding to case (3) of
Lemma 6.2 whose invariant sets remain quite mysterious is the one associated with
the functional transformA, whose importance was established in [7, 8]. We delay the
discussion of the transform and its invariant sets to the next section (see Remark 7.2),
and only mention here the fact that many self-dual functions exist, as exhibited in [30],
and that using the methods developed above we can use specially designed subsets K0
which, using Theorem 1.4, allow us to conclude the existence of many invariant sets.

7 Another Set of Examples

In this section, we gather, in no particular order, more examples that are instructive
for the discussion about order reversing quasi involutions. We start with examples of
a functional nature, similar to the one induced by the Legendre transform presented
in Example 2. When considering an order reversing quasi involution on a class of
sets, if these sets are epi-graphs of functions we can view the transform on them as
a functional transform. The inclusion order on epigraphs translates to a pointwise
inequality of the functions. We say that T is an order reversing quasi involution on a
class C of functions f : X → [−∞,∞] if for any f , g ∈ C we have

(i) T T f ≤ f (quasi involution)
(ii) f ≤ g implies T f ≥ Tg (order reversion)

In other words, a functional duality T corresponds to an order reversing quasi
involution on P(X × R), which we also denote by T , whose image class is the set of
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epi-graphs of functions in the image of T . We define it on sets which are epi-graphs
by T (epi ( f )) := epi (T f ).

Example 11 (Functional Polarity) Consider the class Cvx0(Rn) of geometric convex
functions onR

n (non-negative lower semi-continuous convex functionswithminimum
0 at the origin) and on it the order reversing involution A, given by

Aϕ(y) = sup
y∈Rn

〈x, y〉 − 1

ϕ(y)
.

For discussion of this transform and its many properties, see [8]. The family of epi-
graphs of functions in Cvx0(Rn) is closed under intersection. Further, the transform
on it can be geometrically described as a composition of standard duality inR

n+1 with
a reflection (see again [8]). Therefore, the transform is induced by the following cost

c((x, t), (y, s)) = st + 1 − 〈x, y〉.
Remark 7.1 It is well known that L and A agree on the sub-class of Cvx0(Rn) con-
sisting of 2-homogeneous functions. However, on the whole Cvx0(Rn) the transforms
L and A differ substantially, and therefore so do their extensions to P(Rn+1). We
thus have an example of an order reversing quasi involution (on 2-homogeneous con-
vex functions in R

n) which admits two different extensions (See also Subsect. 8.1).
Of course, each of these extensions has a different image (Cvx(Rn) and Cvx0(Rn),
respectively).

Remark 7.2 [Fixed points for A] Let us analyze this important example with regard
to its multiple invariant sets. The rotation-invariant invariant sets for this transform
were analyzed by Rotem in [30]. Let us start with the case of functions on the ray R

+.
In this example, a point in the epigraph can be written as x̄ = (x, t) with x ∈ R

+ and
t ≥ 0. The cost is given by c((x, t), (y, s)) = st + 1 − xy and so X0 is the set (x, t)
with t2 + 1− x2 ≥ 0, or t ≥ √

x2 − 1. If we fix a point (x, t) on the boundary of X0,
then for points outside X0, say (y, s) with s2 < y2 − 1, we have (as clearly x, y ≥ 1)
that

c((x, t), (y, s))

= st + 1 − xy = s
√
x2 − 1 + 1 − xy <

√
y2 − 1

√
x2 − 1 + 1 − xy ≤ 0.

Having chosen some x̄ on the boundary of X0, if K is a set containing x̄ then we
must have Kc ⊆ X0. Putting this together with Theorem 1.4, which guarantees that
there exists a set K̄ that contains x̄ and such that K̄ c ∩ X0 = K̄ , we conclude that
K̄ c = K̄ is an invariant set. In other words, for this specific example, for any point
in the boundary of X0, there exists an invariant set which includes this point. It is not
unique, however, see [30] for a full characterization.

Moreover, no two different points on the boundary of X0 can belong to the same
invariant set (as the inequality above remains valid, where the strictness of the inequal-
ity follows from strictness of the arithmetic geometric inequality when the points are
different). This is a reason for the multitude of invariant sets in this specific case.
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In higher dimensions a similar argument can be used to construct various non-
rotation-invariant sets. For example, consider the set in R

3 given by

K0 = {(1, y, |y|) : y ∈ R} ∪ {(−1, y, |y|) : y ∈ R}.

Note that for any pair of points in this set we have

c((1, y, |y|), (1, z, |z|)) = |y||z| + 1 − 〈(1, y), (1, z)〉 = |y||z| − 〈y, z〉 ≥ 0

c((1, y, |y|), (−1, z, |z|)) = |y||z| + 1 − 〈(1, y), (−1, z)〉 = 2 + |y||z| − 〈y, z〉 ≥ 0

which means K0 ⊆ T K0. Theorem 1.4 then implies that there exists some “almost
invariant set” including it, that is, some K = T K ∩ X0 such that K0 ⊂ K . However,
similar to the two dimensional example above, the set K0 includes specially designed
points on the boundary of X0 which in fact imply that T K = K .

In fact, in this specific example, it is not hard to check that K = K1 := conv(K0)

and this set satisfies T K1 = K1. Indeed, since sets in the class must be convex,
any K which includes K0 must include K1. The fact that T K1 = K1 can be checked
manually: K1 ⊂ T K1 by the same argument as before, since if x, a,∈ (−1, 1), z ≥ |y|
and d ≥ |b| then

c((x, y, z), (a, b, d)) ≥ |z||d| + 1 − 〈(x, y), (a, b)〉 = |z||d| + 1 − xa − 〈y, b〉 ≥ 0.

Next take (a, b, d) /∈ K1 and apply a simple case analysis for finding (x, y, z) ∈ K1
such that c((x, y, z), (a, b, d)) < 0: If a > 1 take (x, y, z) = (1, 0, 0) and if a < −1
take (x, y, z) = (−1, 0, 0). If −1 ≤ a ≤ 1 then by assumption and d < |b|. Write
d = |b| − ε for some ε > 0, and let x = 0, y = sign(b)z and z > 1/ε. Then,
(x, y, z) ∈ K1 since it is the convex combination of (−1, y, |y|) and (1, y, |y|).
However, c((x, y, z), (a, b, d)) = (|b| − ε)z + 1 − |b|z < 0. We conclude that no
point outside K1 can be in T K1, so that T K1 = K1.

The example of functional polarityA, as well as L, both correspond (up to compo-
sition with a monotone one-dimension function) to a special class of functional order
reversing quasi involutions which are used in optimal transport theory. These are the
so-called cost-transforms (see [36]), defined as follows.

Definition 7.3 Let c : X × X → (−∞,∞] be some cost function. For ψ : X →
[−∞,∞] its c-transform is given by

ψc(x) = inf
y∈X(c(x, y) − ψ(y)).

Example 12 (Hypo-graphs) In general, a cost transform induces a transform on hypo-
graphs of functions, namely on sets K ⊆ R

n+1 such that for any fixed x ∈ R
n the

set {t : (x, t) ∈ K } is of the form (−∞, a] for some a ∈ [−∞,∞], which is a class
closed under intersection. Call {(x, t) : t ≤ ψ(x)} = hypo (ψ). Given T : C → C
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where C is a class of functions ψ : R
n → [−∞,∞], which satisfies T Tψ ≥ ψ and

ψ ≤ ϕ implies Tψ ≥ Tϕ we let

T (hypo (ψ)) := hypo (Tψ).

For example, ψ �→ ψc satisfies these properties (see, e.g., [10]).
As before, since ψcc ≥ ψ we have that hypo (ψcc) ⊇ hypo (ψ) so that T is an

order reversing quasi involution on the class of hypo-graphs of functions in Cvx0(Rn).
It is easily checked that the cost function corresponding to the order reversing quasi

involution on sets is given by

c((x, t), (y, s)) = c(x, y) − s − t .

We remark that there exist much more sophisticated functional quasi involutions
in various settings, for instance, see [13] for various Legendre type transforms on
complex functions.

Going back to some trivial examples, we consider order reversing quasi involu-
tions whose image consists of a finite number of sets. In this case, determining the
various order reversing quasi involutions reduces to a question of a combinatorial
nature.

Example 13 (Simple order reversing quasi involutions)

1. When there is a single element in the class, it must be all of X and then the order
reversing quasi involution is such that all sets are mapped to X .

2. When the image includes two sets they must be K �= X and X , and the only
possible duality takes all subsets of K to X , and anything which is not a subset of
K to K .

3. An order reversing quasi involution whose image has three elements must have
as these three elements the set X , and two comparable sets K1 ⊆ K2, where T
switches X and K1, while K2 is a fixed point for T . The pre-image of X is precisely
all L such that L ⊆ K1. The pre-image of K2 consists of subsets of K2 which are
not subsets of K1. All other sets are mapped to K1.

4. A similarly trivial example is when C = {X , K0, K1, K2} where K0 ⊆ K1 ⊆ K2,
and the mapping switches the two, namely T K1 = K2 and T K2 = K1. If K ⊆ K0
then T (K ) = X , if K ⊆ K1 and K � K0 then T (K ) = K2, if K ⊆ K2 and
K � K1 then T K = K1 and if K � K2 then T X = K0.

One can of course continue in this manner, a path which we will not pursue here.
Moving on, we discuss order reversing quasi involutions corresponding to some

well-known classes of bodies.

Example 14 (Unconditional bodies) Let X = R
n and consider the set

S = {(x, y) :
n∑

i=1

|xi ||yi | ≤ 1}.
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We claim that the associated class is the class of unconditional convex bodies and
that on it, the associated transform is the usual polarity. Moreover, for a general set,
applying this transform twice produces the smallest unconditional bodywhich contains
the set (which we call its unconditional convex hull). Finally, the only invariant set is
the Euclidean unit ball.

To show the first claim, note that if x = (xi )ni=1 ∈ Kc then also (±xi )ni=1 ∈ Kc

since the cost depends only on the absolute values of the coordinates. In particular, we
see that the class consists only of unconditional bodies. The fact that on unconditional
bodies the transform induces the usual polarity is immediate since c(x, y) = 1 −
sup±〈(±xi )ni=1, y〉. It follows that all unconditional convex bodies are in the image,
therefore, in the c-class.

By Proposition 2.4 we get that T T K is the smallest unconditional body which
includes K , and T K is its polar.

Our next example has to do with the space X = R
n and the subset C ⊆ P(X)

of closed star shaped sets, namely those sets A ⊆ R
n which satisfy A = {λx : x ∈

A 0 ≤ λ ≤ 1}. Given a closed star shaped set A, denote by gA its gauge function
which uniquely determines it. We discuss cost dualities whose image is this class. As
it turns out, there are various different dualities on the class.

Example 15 (Star-shaped) Consider the cost

c(x, y) =
{

−〈x, y〉 + 1 y ∈ R+x
+∞ otherwise

.

The image of the c-transform is the class of star shaped bodies, and the c-duality on
it takes the gauge function g to 1/g.

Indeed, consider a star shaped A. Then

Ac = {y ∈ R
n : ∀x ∈ A, c(x, y) ≥ 0}

= {y ∈ R
n : ∀x ∈ [0, y/gA(y)], 〈x, y〉 ≤ 1}

= {y ∈ R
n : 〈y/gA(y), y〉 ≤ 1}

= {y ∈ R
n : |y|2 ≤ gA(y)}.

This set is clearly radially closed, star shaped, and in fact for u ∈ Sn−1, if gA(u) = λ

then

gAc(u) = inf{r : u/r ∈ Ac} = inf{r : |u/r |2
legA(u/r)} = inf{r : 1/r ≤ λ} = 1/λ = 1/gA(u).

In particular, A �→ Ac is an involution on the class of radially closed star shaped
domains (not necessarily bounded, and 0 can be on the boundary). It is also easy to
check that Ac is always radially closed and star shaped.

Remark 7.4 We may generalize the cost from Example 15 to get a large family of
dualities on star shaped domains as follows. For any u ∈ Sn−1 let fu : [0,∞) →
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[0,∞) be an increasing bijective function, such that fu depends continuously and
symmetrically on u. Let F : Sn−1 → Sn−1 be continuous and satisfy F ◦ F = I d.
Then

c(x, y) =
{

− fy/|y|(〈x, |y|F(y/|y|)〉) + 1 y/|y| = F(x/|x |)
+∞ otherwise

is a cost whose image is, again, closed star shaped sets.

8 Some Additional Useful Facts

In this section, we gather many more general facts about order reversing quasi involu-
tions, which we did not want to include in the previous sections so as not to overcrowd
them. These include the investigation of necessary and sufficient conditions for the
possibility to extend an order reversing quasi involution defined on a subset of P(X),
the possibility of composition of maps to induce new order reversing quasi involu-
tions, and the restriction of order reversing quasi involutions to be defined on subsets
of some Y ⊆ X .

8.1 Extensions of Order Reversing Quasi Involutions

In this subsection we will study when and how an order reversing quasi involution T
defined on a subfamily C ⊆ P(X) can be extended to the whole of P(X). This serves
to explain the somewhat surprising phenomenon that while, say, polarity for sets, is
naturally defined on convex subsets which include the origin, it can be defined on a
general subset of R

n . Similarly, while the natural domain for Legendre transform is
Cvx(Rn), one may define the Legendre transform of any function. This turns out to
be a feature of order reversing quasi involutions with a certain additional condition.

We begin by showing uniqueness of the extension, namely that an order reversing
quasi involution on C ⊆ P(X) cannot have more than one extension to P(X) if the
image is to remain T (C).

Proposition 8.1 Let T1, T2 : P(X) → P(X) be order reversing quasi involutions, and
assume T1(P(X)) = T2(P(X)) =: C0 ⊆ P(X), and further assume T1|C0 = T2|C0 .
Then, T1 = T2.

Proof We let T stand for either T1 or T2. From Proposition 2.4, we know that T T L =
∩{K ∈ C0 : L ⊂ K }. Applying T to this equality, we get T L = T (∩{K ∈ C0 : L ⊂
K }). Since the right-hand side coincides for T1 and T2, this completes the proof. ��

Remark 8.2 Within the proof we have shown the useful fact that for an order reversing
quasi involution with image C0,

T L = T (∩{K ∈ C0 : L ⊆ K }) .
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We proceed to showing that given an order reversing quasi involution on a subset
C of P(X), which is closed under intersection, and with X ∈ C, we may extend it to
the full space P(X).

Lemma 8.3 Let C ⊆ P(X) be a class of sets which is closed under intersection, namely
if (Ki )i∈I ⊆ C then∩i∈I Ki ∈ C, with X ∈ C.Givenanorder reversingquasi involution
T : C → C, there exists an order reversing quasi-involution T̂ : P(X) → P(X) with
T̂ |C = T , and Im(T̂ ) = C.

Proof Let C0 = {T K : K ∈ C} and let L0 ∈ C denote the intersection of all elements
in C0 (it may be an empty set). Since X ∈ C, and since for all K ∈ C, K ⊆ X , we
know that T X ⊆ T K for all K ∈ C so that T X ⊆ ∩L∈C0L = L0, and as T X itself
participates in the intersection, we see T X = L0.

For K ⊆ X we define

T̂ (K ) = T (∩{L ∈ C : K ⊆ L}).

First note that as C is closed under intersection, the set on which we apply T (which
we call the “C-hull” of K ) is in C as well. We take into account here the fact that
X ∈ C, so that the intersection is over a non-empty set of elements L . Therefore, T
is well-defined. Next, note that for K ∈ C, this “C-hull” is K itself, and therefore
T̂ |C = T . Let us show that T̂ is an order reversing quasi involution. For the order
reversion, let K1 ⊆ K2, in which case the “C-hulls” satisfy the same inclusion ∩{L ∈
C : K1 ⊆ L} ⊆ ∩{L ∈ C : K2 ⊆ L}, and by order reversion of T on C we get

T̂ (K1) = T (∩{L ∈ C : K1 ⊆ L}) ⊇ T (∩{L ∈ C : K2 ⊆ L}) = T̂ (K2).

For the quasi involution note that a set is always included in its “C-hull”, K ⊆ ∩{L ∈
C : K ⊆ L}, and since T is a quasi-involution we get

K ⊆ ∩{L ∈ C : K ⊆ L} ⊆ T T (∩{L ∈ C : K ⊆ L})
= T̂ T (∩{L ∈ C : K ⊆ L}) = T̂ T̂ (K ).

where we used (for the second equality from the right) that T = T̂ on C, and the
image of T is in C. Finally, due to the fact that T̂ (K ) ∈ C by the definition of T̂ , we
see that Im(T̂ ) = C. ��

As a corollary we get that the image of an order reversing quasi involution onP(X)

is always closed under intersection (this also follows directly from Proposition 2.2).
Some important classes of sets C to which one can apply Lemma 8.3 are closed

sets, convex sets, sets which include the origin, bounded sets (together with the
whole space), sets which are epi-graphs (resp. hypo-graph) of functions with values
in (−∞,∞] (resp. [−∞,∞)), any intersection of the above, and many more.

Joining Proposition 8.1 and Lemma 8.3 we get the following corollary.

123



238 Page 34 of 40 S. Artstein-Avidan et al.

Corollary 8.4 Let C ⊆ P(X) a family of sets which is closed under intersections, and
let T : C → C be an order reversing quasi involution on C with Im(T ) = C. Then, T
can be uniquely extended to an order reversing quasi involution T̂ : P(X) → P(X),
such that T̂ |C = T and Im(T̂ ) = C.

Recall that as the example of Legendre transform L and polarity transform A on,
say, 2-homogeneous convex functions shows, an order reversing quasi involution may
have more than one extension to the whole space if we do not insist on keeping the
same image. For details see Remark 7.1.

It turns out that if one is given an order reversing quasi involution defined on a
subset C ⊆ P(X) which is not closed under intersection, it may be the case that there
is no extension to an order reversing quasi involution on P(X), as is the case in the
following example.

Example 16 Consider the following sets A = {1, 2}, B = {1, 3}, C = {2, 3}, as
subsets of X = {1, 2, 3}. Note that no two of these sets are comparable with respect
to inclusion and hence any involution on these three sets will be order reversing (in
an empty sense). Set T A = B, T B = A and TC = C . We then have that A ⊆ B ∪C
but T A = B � A ∩ C = T B ∩ TC . However, any extension T̂ of T would have to
satisfy (by Proposition 2.2) that

{1, 3} = T (A) = T̂ (A) ⊇ T̂ (B ∪ C) = T̂ (B) ∩ T̂ (C) = T B ∩ TC = {2}

which is not true, therefore, an extension T̂ does not exist.

The reason that this example fails to have an extension is quite simple. For an order
reversing quasi involution on C ⊆ P(X) to admit an extension to P(X), Proposition
2.2 implies that it must satisfy the following property:

Definition 8.5 LetC ⊆ P(X) and letT : C → C be anorder reversingquasi involution.
We say that T respects inclusions if for any K , Ki ∈ C, i ∈ I such that K ⊆ ∪i∈I Ki

one has that T K ⊇ ∩i∈I T Ki .

Note that by Lemma 8.3 we know that if an order reversing quasi involution T is
defined on a family C which is closed under intersections then it can be extended to
the whole space, and in particular, Proposition 2.2 implies that T respects inclusions.

It turns out that the condition of respecting inclusions is not only necessary, but
sufficient for the existence of an extension, as we show next.

Theorem 1.6 Let C ⊆ P(X) be a family of sets and T : C → C be an order reversing
quasi involution which respects inclusions. Then, T can be extended to an order
reversing quasi involution T̂ : P(X) → P(X), such that T̂ |C = T .

Proof Given the transform T define S = ∪{T K × T T K : K ∈ C} ⊆ X × X . We may
then define a cost function c such that c(x, y) = 1 if (x, y) ∈ S and−1 otherwise (this
is the same as in the proof of Theorem 1.3). Clearly, the corresponding cost transform
is defined on the whole of P(X) and we must only check that for any K ∈ C we have
that T K = Kc.
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To show that T K ⊆ Kc note that by definition of c, for any (x, y) ∈ T T K × T K
we have c(x, y) = 1. In particular c(x, y) = 1 for all (x, y) ∈ K ×T K , as K ⊆ T T K
by property (i). Hence,

Kc = {y : ∀x ∈ K c(x, y) ≥ 0} ⊇ {y : (x, y) ∈ K × T K } = T K

which gives T K ⊆ Kc.
For the other direction, note that

Kc = {y : ∀x ∈ K c(x, y) ≥ 0} = {y : ∀x ∈ K (x, y) ∈ S}
= {y : ∀x ∈ K ∃L(x,y) ∈ C with (x, y) ∈ L(x,y) × T L(x,y)}.

Fix some y0 ∈ Kc, and note that the above implies that we must have K ⊆
∪x∈K L(x,y0) and at the same time, since y0 ∈ T L(x,y0) by construction, we know
that y0 ∈ ∩x∈K T L(x,y0). By the assumption that T respects inclusions we conclude
that T K ⊇ ∩x∈K T L(x,y0) and hence y0 ∈ T K . Since y0 ∈ Kc was arbitrary, it
follows that Kc ⊆ T K as required. ��

8.2 Composition and Conjugation

There is a close relation between order reversion and order preservation. We collect a
few facts.

Lemma 8.6 Let S, T : P(X) → P(X) be two order reversing quasi involutions with
the same image C. Then, T ◦ S : P(X) → C is order preserving, and restricted to C
it is a bijection.

Proof Order preservation is immediate, the fact that the image is included in C is
immediate, and bijectivity follows since if A ∈ C then T S(ST A) = T T A = A. ��

Conjugating an order reversing quasi involution T by an order preserving bijection
on Im(T ), one gets an order reversing involution on the image.

Lemma 8.7 Let T : P(X) → P(X) be an order reversing quasi involution, let C =
T (P(X)) be its image, and let R : C → C be an order preserving bijection. Then
S = R−1 ◦ T ◦ R is an order reversing involution on C.
Proof Let A ⊆ B ∈ C. Then RA ⊆ RB ∈ C and so T RA ⊇ T RB, and using order
preservation of R−1 we get SA = R−1T RA ⊇ R−1T RB = SB. The involution
property follows from R−1T RR−1T RA = R−1T T RA = R−1RA = A. ��
Remark 8.8 Clearly C is closed under intersections as it is the image of an order
reversing quasi involution. Using Lemma 8.3 we may thus extend S to be an order
reversing quasi involution on P(X).

Let us mention that the direction of the inclusion in the quasi involution property
(i) can be reversed, and there is a one-to-one correspondence between order reversing
quasi involutions as defined in Definition 1.1, and those that one could define with the
reverse inclusion, as is apparent from the following lemma.
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Lemma 8.9 Let T : P(X) → P(X) be an order reversing quasi-involution. Then the
mapping S : P(X) → P(X) given by SK = X\(T (X\K )) satisfies

(i) K ⊇ SSK , (complemented quasi involution)
(ii) if L ⊆ K then SK ⊆ SL. (order reversion)

Proof Indeed, for the order reversion property, if L ⊆ K then X\L ⊇ X\K and so
T (X\L) ⊆ T (X\L), from which it follows that

SL = X \ T (X \ L) ⊇ X \ T (X \ K ) = SK .

For the quasi involution property, we want to show K ⊇ SSK which can be rewritten
as X\K ⊆ X\SSK , which in turn means X\K ⊆ T (X\SK ) = T T (X\K ), which
follows from the order reversion property given for T on the subset X \ K . ��
Remark 8.10 Let us remark that if we change the quasi involution property (i) in
Definition 1.1 to be in the opposite direction, T T K ⊆ K , then by the above lemma
the condition of being closed under intersection becomes a condition on being closed
under unions, the condition of containing X becomes the condition of containing ∅,
and all of the claims we have proved have their obvious counterparts for this case.

As the reader will readily notice, the transform S amounts to the composition of
the given transform T on both sides with the order reversing involution given by
K �→ X \ K . Hence, we obtained a complemented order reversing quasi involution S,
namely an order reversing map satisfying K ⊇ SSK . Whereas it may seem that in the
specific choice of RK = X \ K we only used that it is an order reversing involution,
one quite easily checks that it is the only order reversing bijection on P(X). However,
this construction can be generalized as follows.

Lemma 8.11 Let T be an order reversing quasi involution and R be a complemented
order reversing quasi involution. Then the composition T RT is an order reversing
quasi involution while RT R is a complemented order reversing quasi involution.

Proof Assume that T , R are order reversing and that for any K ⊆ X we have K ⊆
T T K and RRK ⊆ K . It can be easily checked that a composition of an odd number
of order reversing transforms remains order reversing. To see that T RT is a quasi
involution note that

T T (RT K ) ⊇ RT K ⇒
RT T RT K ⊆ RRT K ⊆ T K ⇒ T RT T RT K ⊇ T T K ⊇ K .

Similarly, we get that the composition RT R is a complemented quasi involution

RR(T RK ) ⊆ T RK ⇒ T RRT RK ⊇ T T RK ⊇ RK

⇒ RT RRT RK ⊆ RRK ⊆ K .

��
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8.3 Restrictions

If an order reversing quasi involution is defined on a class C ⊆ P(X) which is closed
under intersections, we can define a new order reversing quasi involution by restricting
the original transform to some fixed subset. More precisely, we have the following
proposition.

Proposition 8.12 Let T : C → C be an order reversing quasi involution on C, where
C ⊆ P(X) is closed under intersections. Then for any fixed M0 ∈ C, denoting C0 =
{K ∩ M0 : K ∈ C} ⊆ C, we have that S : C0 → C0 defined by SK = T K ∩ M0 is an
order reversing quasi involution.

Proof To see that S is order reversing, consider K , L ∈ C0 such that K ⊆ L . Then
since T is order reversing we get that T K ⊇ T L . Since intersecting withM0 preserves
that inclusion, we get that S is indeed order reversing. To see that for any K ∈ C0
we have K ⊆ SSK note that SK = T K ∩ M0 ⊆ T K . Since C is closed under
intersections we may apply T to both sides again and by the order reversing property
of T we get T (T K ∩ M0) ⊇ T T K ⊇ K . Finally note that since K ∈ C0 it follows
that K ⊆ T (T K ∩ M0) ∩ M0 = SSK . ��
Remark 8.13 Instead of a direct proof one can use the cost associated with T and
restrict it to M0 × M0. Such a cost exists by Lemma 8.3 and Theorem 1.3.

One can use Proposition 8.12 to construct order reversing quasi involutions. For
example, considering the polarity transform on subsets of R

n , and letting M0 = RBn
2 ,

a multiple of the Euclidean ball, the new transform, which is given by

SK = K ◦ ∩ RBn
2 ,

is an order reversing quasi involution on subsets of RBn
2 . Its image, namely the class on

which it is an involution, is the class of all convex subsets of RBn
2 which include 1

R B
n
2 .

If we instead choseM0 to be a linear subspace, wewould simply get polarity within the
subspace. Taking M0 to be some convex set gives the setting of Cordero-Erausquin’s
conjecture [15].

Another naturalway to restrict an order reversing quasi involution on X to a subsetY
it to look at a cost function on X × X inducing the order reversing quasi involution and
restrict it to Y × Y . More precisely, given a space X and a cost function c : X × X →
(−∞,∞] it generates a c-class CX (image of the transform). Fix Y ⊆ X and consider
a cost function c̃ : Y × Y → (−∞,∞] such that c̃(x, y) = c(x, y) for all x, y ∈ Y .
We want to study the c̃-class CY and it relation to CX .
Lemma 8.14 Let X , Y , c, c̃ as above. Assume that Y ∈ CX . It follows that

CY = {B ∩ Y : Y c ⊆ B ∈ CX }.

Proof Wewill first show the inclusion “⊆". Let A ∈ CY . Thismeans that Ac̃c̃ = A ⊆ Y ,
but

Ac̃ = ∩x∈A{y ∈ Y : c̃(x, y) ≥ 0} = ∩x∈A{y ∈ Y : c(x, y) ≥ 0} = Ac ∩ Y
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and further

Ac̃c̃ = ∩z∈Ac̃ {w ∈ Y : c̃(z, w) ≥ 0} = ∩z∈Ac̃∩Y {w ∈ Y : c(z, w) ≥ 0}
= (Ac ∩ Y )c ∩ Y

But the set B = (Ac ∩ Y )c ∈ CX . Moreover, if y ∈ Y c then y ∈ (Ac ∩ Y )c. Indeed,
we have that Y ⊇ Ac ∩ Y and hence by order-reversion Y c ⊆ (Ac ∩ Y )c = B.

In the other direction, consider B ∈ CX such that Y c ⊆ B. We want to show that
B ∩ Y ∈ CY . In fact, it turns out that B ∩ Y = (Bc)c̃ since Y c ⊆ B we have by
order-reversion that Bc ⊆ Y cc = Y , as Y ∈ CX it is well defined. It follows that

(Bc)c̃ =
⋂

x∈Bc

{y ∈ Y : c̃(x, y) ≥ 0} =
⋂

x∈Bc∩Y
{y ∈ Y : c(x, y) ≥ 0} = (Bc ∩ Y )c ∩ Y

= Bcc ∩ Y = B ∩ Y .

This completes the proof. ��
We remark that in the case when Y /∈ CX , i.e. when Y cc �= Y , it is not known if the

statement still holds.

Fact 8.15 A ∈ CY does not imply that A ∈ CX . Take for example unconditional bodies
on X = R

n and Y = (R+)n .

Fact 8.16 Given c̃ : Y × Y → (−∞,∞] which generates CY , for any X ⊇ Y , there
exists c : X × X → (−∞,∞] such that CY = CX .
Proof Define c(x, y) = c̃(x, y) if x, y ∈ Y and −1 otherwise. Then, for any K ⊆ X
we have

Kc = ∩x∈K {y ∈ X : c(x, y) ≥ 0} = ∩x∈K∩Y {y ∈ Y : c(x, y) ≥ 0} = (K ∩ Y )c̃.

��
The next fact is closely related to Lemma 8.14, however for this direction one does

not need to assume that Y ∈ CX .
Fact 8.17 For any cost c : X × X → (−∞,∞] and for any Y ⊆ X we have that every
set A ∈ CY can be written as B ∩ Y , where B ∈ CX .
Proof Let A ∈ CY , i.e. A = Ac̃c̃. Then let B = Acc and we will show that B ∩Y = A.
For the first inclusion, note that A ⊆ Acc and hence, since A ⊆ Y and intersecting
both sides with Y we are done.

In the other direction, let y ∈ B ∩ Y . We will show that y ∈ A ⊆ Y .
Assume towards a contradiction that y /∈ A. Then, y /∈ Ac̃c̃ and hence there exists

some a ∈ Ac̃ such that c(a, y) < 0. But, we have that Ac̃ ⊆ Ac as if z ∈ Ac̃ then for
all w ∈ A we have c̃(z, w) ≥ 0 and c|Y = c̃ hence c(z, w) ≥ 0 for all w ∈ A. Hence,
we get the contradiction with y ∈ Acc ∩ Y as we showed that there is some a ∈ Ac

with c(a, y) < 0 and therefore t /∈ Acc. ��
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