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OPTIMAL MEASURE TRANSPORTATION WITH RESPECT TO

NON-TRADITIONAL COSTS

S. ARTSTEIN-AVIDAN, S. SADOVSKY, K. WYCZESANY

Abstract. We study optimal mass transport problems between two measures with respect

to a non-traditional cost function, i.e. a cost c which can attain the value +∞. We define

the notion of c-compatibility and strong-c-compatibility of two measures, and prove that if

there is a finite-cost plan between the measures then the measures must be c-compatible,

and if in addition the two measures are strongly c-compatible, then there is an optimal plan

concentrated on a c-subgradient of a c-class function. This function is the so-called potential

of the plan.

We give two proofs of this theorem, under slightly different assumptions. In the first we

utilize the notion of c-path-boundedness, showing that strong c-compatibility implies a strong

connectivity result for a directed graph associated with an optimal map. Strong connectivity

of the graph implies that the c-cyclic monotonicity of the support set (which follows from

classical reasoning) guarantees its c-path-boundedness, implying, in turn, the existence of

a potential. We also give a constructive proof, in the case when one of the measures is

discrete. This approach adopts a new notion of ‘Hall polytopes’, which we introduce and

study in depth, to which we apply a version of Brouwer’s fixed point theorem to prove the

existence of a potential in this case.

1. Introduction and results

The Monge transport problem is concerned with finding a transport map moving mass

from one probability measure1 to another, in a way which is efficient with respect to some

cost function. The most widely studied case of this problem is for the quadratic cost

c(x, y) = ∥x − y∥22/2, for which the Brenier–Gangbo-McCann theorem [10, 11] implies that

under mild conditions on the measures involved, optimal transport maps exist and are given

by gradients of convex functions. In this work the main emphasis will be on non-traditional

cost functions, i.e. costs that can attain the value +∞, as this project is motivated by the

study of transportation with respect to the so-called polar cost given by

(1) p(x, y) = − ln(⟨x, y⟩ − 1),

where p(x, y) = +∞ if ⟨x, y⟩ ≤ 1. This cost function is linked with the polarity transform (see

[2,3]), similarly to the strong connection of the quadratic cost with the Legendre transform.

Transportation with respect to polar cost was first considered in [7].

1All considered measures are Borel measures on Polish spaces, which are complete, separable metric spaces

equipped with their Borel σ-algebra.
1
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We provide necessary conditions on pairs of measures, together with a cost c, for which finite

cost plans exist. To this end, we discuss the class of functions connected with a cost, called

its c-class (see the definition in Section 2.2). The optimality of a plan is linked with the

possibility of finding a “potential” for the plan, which is a c-class function such that the plan

lies on its c-subgradient (yet another important notion we discuss in depth, see the definition

in Equation (7)).

We will see shortly that the mere existence of a finite cost plan between two measures µ and ν

implies that the two measures considered are c-compatible, namely that for any measurable

set A in the measure space (X,µ), one has that µ(A) ≤ ν({y : ∃x ∈ A, c(x, y) < ∞}).
This is quite intuitive – all points (up to measure 0) in A must be mapped to points in the

target space with which they have finite cost. This c-compatibility of two measures is thus a

necessary condition (for the formal definition of c-compatibility see Definition 3.2, and for the

statement of the necessity of this condition see Lemma 3.3). As an example we will show (see

Example 3.5) that c-compatibility is not a sufficient condition for the existence of a finite cost

plan. However, if a finite cost plan exists, a slight strengthening of c-compatibility condition

in which we demand a strict inequality is already sufficient to ensure that the optimal plan

has a potential. We will show later why our notion of “strong compatibility” is a very natural

strengthening of compatibility, and discuss cases where two measures are c-compatible but

not strongly c-compatible and how this implies that the transport problem is decomposable

into sub-problems.

In this note we only consider symmetric cost functions c : X ×X → (−∞,∞] with c(x, y) =

c(y, x), but to see the difference between the two variables we denote the second copy of X

by Y and write c : X × Y → (−∞,∞]. Our results hold for the non-symmetric case as

well, with only minor adjustments. We will also add a lower-bound assumption on the cost

c which allows to integrate it and its marginals (see also Example 2.5). We say that c is

essentially bounded from below with respect to µ and ν if there exist functions a(x) ∈ L1(µ),

b(x) ∈ L1(ν) such that c(x, y) ≥ a(x) + b(y). For the polar cost this condition is satisfied if,

for example, both measures have finite second moment.

Our main theorem is the following (here ∂cφ denotes the c-subgradient of φ, see the definition

in equation (7), and Π(µ, ν) denotes all transport plans between µ and ν, see the beginning

of Section 2).

Theorem 1.1. Let X = Y be a Polish space, let c : X × Y → (−∞,∞] be a continuous and

symmetric cost function, essentially bounded from below with respect to probability measures

µ ∈ P(X) and ν ∈ P(Y ). Assume µ and ν are strongly c-compatible, namely satisfy that for

any measurable A ⊂ X we have

µ(A) + ν({y ∈ Y : ∀x ∈ A, c(x, y) =∞}) < 1.

If there exists some finite cost plan transporting µ to ν, then there exists a c-class function

φ and an optimal transport plan π ∈ Π(µ, ν) concentrated on ∂cφ.

The proof uses results from [5] on c-path-boundedness, which is a notion that replaces c-cyclic

monotonicity from the Rockafellar-Rochet-Rüschendorf result (see [15–17]) in the case when
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the cost is non-traditional. The c-path-boundedness is a necessary and sufficient condition

for a set to be included in a c-subgradient of a c-class function.

Since the initial main interest for us in developing this theory concerned the polar cost,

in which case we have a precise form for c-subgradients, let us state the relevant theorem,

which is almost a direct application of the theorem above, together with some simple analysis

of polar-subgradients as performed in [3]. By Cvx0(Rn) we denote a class of lower semi-

continuous convex functions from Rn to [0,∞] which take the value zero at the origin. By A
we denote the polarity transform on the class Cvx0(Rn), defined in [2] and given in (14).

Theorem 1.2. Let X = Y = Rn and let µ, ν ∈ P(Rn) be probability measures with finite

second moment, which are strongly p-compatible where p(x, y) = − ln(⟨x, y⟩−1)+ is the polar

cost, that is

µ(K) + ν(K◦) < 1

for any convex set K with µ(K) ̸= 0, 1. Assume further that µ is absolutely continuous.

Assume there exists some finite cost plan mapping µ to ν. Then there exists φ ∈ Cvx0(Rn)

such that ∂◦φ is an optimal transport map between µ and ν, where

∂◦φ(x) = {y ∈ Rn : φ(x)Aφ(y) = ⟨x, y⟩ − 1 > 0}.

In particular, for µ-almost every x, the set ∂◦φ(x) is a singleton.

We remark that the existence of a potential function for the cost p and other non-traditional

costs leads naturally to the question regarding regularity of such potentials (as introduced

by Caffarelli in [?] and developed, among others, by Trudinger and Wang in [?]). In this

work we do not pursue this direction, and instead focus on the analysis of the existence of

potentials, leaving the question of regularity for future work.

In the second half of the paper we specialize to the case where ν is discrete. In this case

we give a constructive proof for the existence of a transport map, where the c-class function

is given as a finite infimum of “basic functions” (see (6)) associated with the cost. The

advantage of this method is that much of the geometry of the problem is revealed. In the

proof, we generalize a method used by K. Ball [6] for the quadratic cost, where all possible

maps are parametrized by a weight vector, and the existence of the required one is shown

using Brouwer’s fixed point theorem. However, in contrast with the case of the classical

quadratic cost function and other traditional costs, when the cost attains infinite values the

set of all discrete measures with a given support, to which a measure µ can be mapped with

finite cost, is given by an interesting polytope which we call the Hall polytope of the measure

µ. The condition of strong c-compatibility corresponds to measures with weight vectors in the

interior of the polytope. We present a thorough study of the structure and geometry of Hall

polytopes (which for traditional costs are just simplices), which we use to prove Theorem 1.3

below. An advantage of this method is that we can relax the conditions on the cost function.

We do need a condition of c-regularity for the measure µ (given in Definition 5.1), which for

the polar cost is satisfied if, say, µ is absolutely continuous.
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Theorem 1.3. Let X be some Polish space and Y = {ui}mi=1. Assume c : X×Y → (−∞,∞]

is a measurable cost function, µ ∈ P(X) is c-regular and ν =
∑m

i=1 αi✶ui ∈ P(Y ). Assume

furthermore, that the intersection

{x ∈ X : c(x, ui) <∞} ∩ {x ∈ X : c(x, uj) <∞}

contains an open set for each pair ui, uj. If µ and ν are strongly c-compatible then there

exists an optimal transport plan π ∈ Π(µ, ν) whose graph lies in the c-subgradient ∂cφ of a

c-class function φ : X → [−∞,∞].

The case where the measures µ and ν are c-compatible but not strongly so, can be analyzed

as well. In this case we can write µ = µ1 + µ2 and ν = ν1 + ν2 where µ1(X) = ν1(Y ) (and so

µ2(X) = ν2(Y )), where the measures µ1 and µ2 are concentrated on disjoint sets, as are ν1
and ν2, and in such a way that any finite cost transport plan π ∈ Π(µ, ν) is given as a sum

of π1 ∈ Π(µ1, ν1) and π2 ∈ Π(µ2, ν2). We illustrate this in Section 7.

Structure of the paper. Section 2 is dedicated to gathering all the required definitions and

notions and previous results. In Section 3 we discuss the notion of c-compatibility and strong

c-compatibility together with their geometric interpretation. In Section 4 we prove Theorem

1.1. In Section 5 we go back to the discrete case and show how one may treat it using some

deep structural properties of Hall polytopes, which we establish, proving Theorem 1.3. In

Section 6 we specialize to the polar cost, showing that for absolutely continuous measure

the optimal plan is given by a map. In Section 7 we discuss the case of measures which are

c-compatible but not strongly c-compatible. For completeness an appendix A in which we

review c-subgradients, with detailed examples and geometric intuition.

Acknowledgment. The authors were supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation programme (grant agree-

ment No 770127). The second named author is grateful to the Azrieli foundation for the

award of an Azrieli fellowship.

2. Background and preliminary observations

2.1. Transport plans and maps. Given two measure spaces X, Y , a measurable2 cost

function c : X × Y → (−∞,∞], and probability measures µ on X and ν on Y , we say that

there exists a c-optimal transport map between them if the following infimum is attained:

inf
T

∫

X

c(x, T (x))dµ(x),

2When referring to a function on X × Y as “measurable” we assume it is both measurable with respect

to the product σ-algebra and its fibers f(·, y) and f(x, ·) are measurable functions on X and Y respectively,

for any x ∈ X and y ∈ Y .
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where T : X → Y are measurable transport maps, i.e. ν(B) = µ(T−1(B)) for all measur-

able sets B ⊂ Y . We say that there exists a c-optimal plan between them if the infimum

(2) inf
π

∫

X×Y
c(x, y)dπ(x, y)

is attained, where π ∈ Π(µ, ν), namely π is a probability measure on X × Y satisfying

π(A× Y ) = µ(A), π(X × B) = ν(B)

for all measurable sets A ⊂ X and B ⊂ Y . Every transport map induces a transport plan

supported on its graph, while not every plan is induced by a map. We denote the infimum in

(2), also called the “total cost”, by C(µ, ν). Due to the Kantorovich Duality Theorem [12,13],

when c is lower semi-continuous, the total cost is equal to

(3) sup
ϕ,ψ

{∫

X

φdµ+

∫

Y

ψdν : φ ∈ L1(X,µ), ψ ∈ L1(Y, ν) admissible

}

where (φ, ψ) is called an admissible pair, if φ : X → [−∞,∞], ψ : Y → [−∞,∞] satisfy

∀(x, y) ∈ X × Y, φ(x) + ψ(y) ≤ c(x, y).

In the case where φ = +∞ and ψ = −∞ we stipulate −∞ +∞ = −∞, namely in such a

case the condition above holds regardless of the value of c(x, y).

2.2. The c-transform. Motivated by (3), for every function ψ : Y → [−∞,∞] one may

consider the largest function φ for which (φ, ψ) is an admissible pair, and vice versa. This

gives rise to the c-transform, defined by

(4) ψc(x) = inf
y
(c(x, y)− ψ(y)),

and

(5) φc(y) = inf
x
(c(x, y)− φ(x)).

Remark 2.1. Here if on the right hand side are infinities of opposite signs, which may occur

only if ψ(y) = ∞ (as c ̸= −∞), we use the opposite convention, namely −∞ +∞ = +∞,

since when the cost c(x, y) is infinite there is no restriction on the sum φ(x) + ψ(y). In

general one must be careful with sums of opposite side infinities, as there is no obvious “rule

of thumb” that can apply everywhere.

Note that for a general cost we may lose the measurability of φ when applying the c-transform,

as well as integrability, even under the assumption that c is measurable in the strong sense

we have postulated. When c is continuous, however, this is less of a problem. Also, by trun-

cating the functions and taking limits, the issue of integrability can sometimes be resolved.

Nevertheless, one should be extra careful when using (3) for a pair φ, φc when the cost is

non-traditional, and in the existing literature it is not always clear for which theorems does

the non-traditional case follow from the same proof.
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When X = Y and c(·, ·) is symmetric in its arguments the transforms in (4) and (5) coincide.

Hence, abusing notation, we use the same notation for both. We define the c-class as the

image of the c-transform {ψc : ψ : Y → [−∞,∞]}, or equivalently, as all the functions φ such

that φcc = φ. By definition, any function in the c-class is an infimum of basic functions,

which are functions of the form

(6) c(x) = c(x, y0) + t

for some y0 ∈ Y and t ∈ R. It is useful to notice that the c-class is always closed under

pointwise infimum (this fact is commonly known and used, see e.g. [1,20], and a simple proof

can be found in [22]).

2.3. The c-subgradient. Given a function φ in the c-class, its c-subgradient is the subset

of X × Y given by

(7) ∂cφ = {(x, y) : φ(x) + φc(y) = c(x, y) and c(x, y) <∞}.

To illustrate the relevance of c-subgradients to the study of optimal transport, let us present

a folklore argument, which can be made precise for traditional costs, and which we only use

as motivation but do not claim it holds in general.

In Kantorovich Duality Theorem, recalled as (3) above, one is inclined to replace ψ with the

largest admissible partner of φ (at least so long as it is measurable and in L1(ν)), and then

replace φ by φcc. In this sense, one may think of (3) applied only to admissible pairs (φ, φc),

where φ = φcc is in the c-class. However, for any π ∈ Π(µ, ν) and φ is in the c-class,
∫

X

φdµ(x) +

∫

Y

φc(y)dν(y) =

∫

X×Y
(φ(x) + φc(y))dπ(x, y) ≤

∫

X×Y
c(x, y)dπ(x, y)

So for equality between the left and right hand side to be obtained for some (potential) φ

and (optimal plan) π, we see that π must be concentrated on the set ∂cφ. In other words,

finding optimal plans admitting a potential is equivalent to finding some plan supported on

a c-subgradient. While this argument is not precise (in particular, we ignored measurability

and integrability assumptions, applying (3) to a pair (φ, φc)), it constitutes the motivation

behind searching for potentials in optimal transport problems.

The above observation shows the importance of the notion of the c-subgradient mapping. The

name c-subgradient is connected to the fact that for the classical cost c(x, y) = −⟨x, y⟩, the
c-class consists of upper semi-continuous concave functions, the c-transform of −φ is −L(φ),
and the c-subgradient of −φ at x is the usual subgradient ∂φ(x). So as not to disturb the flow

of the paper, we gathered some basic facts about the c-subgradient, including the geometric

intuition behind it, in Appendix A.

2.4. c-cyclic monotonicity and c-path-boundedness. The connection between optimal-

ity of a plan and some geometric information on its support is quite intuitive: if a plan is opti-

mal, then we should not gain any profit by interchanging several portions of it. This is the idea

behind the well known notion of c-cyclic monotonicity. Given a cost c : X × Y → (−∞,∞],
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a subset G ⊂ X × Y is called c-cyclically monotone if c(x, y) <∞ for all (x, y) ∈ G, and for

any m, any (xi, yi)
m
i=1 ⊂ G, and any permutation σ of [m] = {1, . . . ,m} it holds that

(8)
m
∑

i=1

c(xi, yi) ≤
m
∑

i=1

c(xi, yσ(i)).

This definition seems to have been first introduced by Knott and Smith [18], as a generaliza-

tion of cyclic monotonicity considered by Rockafellar [16] in the case of quadratic cost. It is

easy to check that if φ is a c-class function then any set G ⊂ ∂cφ is c-cyclically monotone.

The theorems of Rockafellar, Rochet and Rüschendorf give the reverse implication, in the

case of a traditional cost. Namely, when c : X × Y → R, a set G ⊂ X × Y is c-cyclically

monotone if and only if there exists a c-class function such that G ⊂ ∂cφ.

For non-traditional costs, this is no longer the case, and one may construct c-cyclically

monotone sets which admit no potential. In [5], the corresponding result for non-traditional

costs is provided. Cyclic monotonicity has to be replaced by a stronger notion, which we

called c-path-boundedness.

Definition 2.2. Fix sets X, Y and c : X×Y → (−∞,∞]. A subset G ⊂ X×Y will be called

c-path-bounded if c(x, y) <∞ for any (x, y) ∈ G, and for any (x, y) ∈ G and (z, w) ∈ G,
there exists a constant M = M((x, y), (z, w)) ∈ R, such that the following holds: For any

m ∈ N and any (xi, yi)
m−1
i=2 ⊂ G, denoting (x1, y1) = (x, y) and (xm, ym) = (z, w), we have

m−1
∑

i=1

(c(xi, yi)− c(xi+1, yi)) ≤M.

The fact that a c-path-bounded set is also c-cyclically monotone is easy to establish (see [5]).

With this definition the main theorem of [5] can be stated.

Theorem 2.3. Let X, Y be sets and let c : X × Y → (−∞,∞] be given. A set G ⊂ X × Y
is c-path-bounded if and only if there exists a c-class function φ such that G ⊂ ∂cφ.

It was also demonstrated in [5] that under certain conditions, the notions of c-cyclic mono-

tonicity and c-path-boundedness do coincide. One such instance, which will be used in this

paper, is explained and formulated in Proposition 4.1 in Section 4.

2.5. Some know results about existence of optimal plans and potentials. Having

fixed a cost, the discussion about the structure of an optimal plan naturally splits into several

components. The first, which is relevant only when the cost is non-traditional, is the existence

of some finite cost plan (necessary conditions will be discussed in the next section). Further,

one can ask whether an optimal plan exists. This is the object of the next theorem, which is

quoted from Villani [21].

Recall that Π(µ, ν) denotes the set of all probability measures on X×Y whose marginals are

µ ∈ P(X) and ν ∈ P(Y ), and that c : X×Y → (−∞,∞] is essentially bounded with respect

to µ and ν if there exist upper semi-continuous function a : X → (−∞,∞], a ∈ L1(µ) and

b : X → (−∞,∞], b ∈ L1(ν) such that c(x, y) ≥ a(x) + b(y) for all x ∈ X, y ∈ Y .
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Theorem 2.4. Let X, Y be two Polish spaces, let µ ∈ P(X) and ν ∈ P(Y ). Let c : X×Y →
(−∞,∞] be a lower semi-continuous cost function which is essentially bounded with respect

to µ and ν. Then there exists a c-optimal plan π ∈ Π(µ, ν).

Let us note that, in the above theorem, the existence of a plan with finite total cost is not

assumed as when no finite cost plan exists, any plan (say, µ ⊗ ν) is optimal in a trivial

sense. Further, a simple example demonstrates that without some kind of assumption on

boundedness from below of the cost, the total cost may be −∞, and in this case optimal

measures can be concentrated on sets which are far from being c-cyclically monotone.

Example 2.5. Let p(x, y) = − ln(xy− 1)+ be the polar cost on R+×R+. Let µ be a discrete

probability measure on R+ given by µ =
∑∞

n=2 αn✶n, where αn are such that
∑∞

n=2 αn = 1

and
∑∞

n=2 n
3/2αn =∞. Consider transport plans of µ to itself, namely Π(µ, µ).

WE claim that in this case, the identity map x 7→ x is a transport plan whose total cost

is −∞ (in particular, it is optimal) but it is not supported on a p-cyclically monotone set.

Indeed, consider the measure πµ on the diagonal whose projection is µ. Its total cost is
∞
∑

n=2

− ln(n2 − 1)αn ≤ −
∞
∑

n=1

n3/2αn = −∞.

Clearly even for two points (x1, y1) = (2, 2) and (x2, y2) = (3, 2) it holds that

− ln(2 · 2− 1)− ln(3 · 3− 1) = − ln(24) > − ln(2 · 3− 1)− ln(3 · 2− 1) = − ln(25).

We thus see that an optimal plan (albeit with negative infinity cost) may have support which

is not c-cyclically monotone.

Analysing the geometric structure of an optimal plan, after showing its existence, is a problem

which has a long history. After Brenier [10], following Rüschendorf [17] determined the clas-

sical structure of cyclic monotonicity of optimal plans, Gangbo and McCann [11] extended

the result to lower semi-continuous cost functions bounded from below. They showed that

every finite optimal plan with respect to such costs lies on a c-cyclically monotone set. Bei-

glböck, Goldstern, Maresch, and Schachermayer [8] generalised the result further by removing

regularity assumptions on the cost:

Theorem 2.6 (See [8, Theorem 1.a]). Let X, Y be Polish spaces equipped with Borel proba-

bility measures µ, ν and let c : X ×Y → [0,∞] a Borel measurable cost function. Then every

finite optimal transport plan is c-cyclically monotone.

The reverse implication, that c-cyclic monotonicity implies optimality, is not true in general

as shown in Example 3.1 in [1]. In [8] Theorem 1.b, it was shown that for a measurable cost

function c the assumption that the “infinity” set {(x, y) : c(x, y) =∞} is a union of a closed

set and a µ⊗ ν-null set, implies that every finite c-cyclically monotone plan is optimal.

Finally, the question of the existence of a potential for the optimal plan remains. A result

in this direction was presented in [8]; it states that, with assumptions as in Theorem 2.6, a

finite cost plan admits a potential if and only if it is “robustly optimal” (see Definition 1.6.
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in [8]). In particular, their result implies that a plan which admits a potential is optimal.

In this note, our main goal is to find conditions on the pairs of measures that guarantee the

existence of a potential for the optimal transport plan between them, thus guaranteeing, in

fact, robust optimality.

3. Compatibility

Given two probability measures, before trying to find an element of Π(µ, ν) with some good

structure (say, a potential), or an optimal element with respect to the cost, one must figure

out whether any element π ∈ Π(µ, ν) has a finite cost. Clearly, if the cost function is bounded,

we may find a finite cost plan between any pair of measures. However, if the cost admits the

value +∞, an obvious necessary condition for the existence of a finite cost plan is that every

set in (X,µ) has “enough” points in (Y, ν) to which it can be mapped for a finite cost.

In the case of two discrete measures, this necessary condition is also sufficient, which is the

subject of Hall’s marriage theorem. We start with this simple case as it gives some intuition

for our next steps.

3.1. Starting point: Hall’s Marriage Theorem. In the following motivating example,

for some (xi)
m
i=1 ⊂ X let µ =

∑m
i=1

1
m
✶xi be a probability measure on X, and for (yi)

m
i=1 ⊂ Y

let ν =
∑m

i=1
1
m
✶yi be a probability measure on Y . Let c : X × Y → (−∞,∞] be an

arbitrary cost. A finite cost map is a given by a bijection T : (xi)
m
i=1 → (yi)

m
i=1, such that

c(xi, T (xi)) <∞ for all i = 1, . . .m. The bijection T corresponds, of course, to a permutation

σ : [m]→ [m]. By Birkhoff’s theorem on the extremal points of bi-stochastic matrices, every

transport plan π ∈ Π(µ, ν) is a convex combination of permutation maps T .

The condition for the existence of a finite cost map/plan can be thus reformulated in a graph-

theoretic way: Let G be a bipartite graph with a vertex set V = (xi)
m
i=1 ∪ (yi)

m
i=1 and edges

E = {(xi, yj) : c(xi, yj) < ∞}. A finite cost map T corresponds a matching in this graph.

Hall’s Marriage Theorem gives the necessary and sufficient conditions for such a matching to

exist.

Theorem 3.1 (Hall’s Marriage Theorem). A bipartite graph G with a vertex set V1 ∪ V2,
such that |V1| = |V2|, contains a complete matching if and only if G satisfies Hall’s condition

|NG(S)| ≥ |S| for every S ⊂ V1,

where NG(S) ⊂ V2 is the set of all neighbors of vertices in S.

The condition can be reformulated in terms of the measures, as

µ(A) ≤ ν({y : ∃x ∈ A, c(x, y) <∞})
for any A ⊂ X, or, equivalently,

µ(A) + ν({y : ∀x ∈ A, c(x, y) =∞}) ≤ 1.

In fact, in this discrete and finite case, once we have determined the existence of a finite cost

map, we may consider, among the finite number of possible matchings, the one with minimal
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cost (there may, of course, be more than one). It is then not hard to show (and will follow

from our results as well) that this resulting optimal plan must lie on a c-subgradient of a

c-class function. (This fact follows from a variation of a theorem of Rüschendorf [17], see

also [5].)

3.2. The c-compatibility condition. The continuous counterpart for Hall’s condition is

an obvious necessary condition for the existence of a finite cost plan.

Definition 3.2. Let X, Y be measure spaces and c : X×Y → (−∞,∞] be a measurable cost

function. We say that two probability measures µ ∈ P(X) and ν ∈ P(Y ) are c-compatible

if for any measurable A ⊂ X it holds that

µ(A) + ν({y : ∀x ∈ A, c(x, y) =∞}) ≤ 1.

It is not hard to check that c-compatibility is in fact a symmetric notion, and the above

condition holds if and only if for any B ⊂ Y we have

ν(B) + µ({x : ∀y ∈ B, c(x, y) =∞}) ≤ 1.

Indeed, to get the latter we let A = {x : ∀y ∈ B, c(x, y) =∞}, in which case B ⊂ {y : ∀x ∈
A, c(x, y) =∞}. Applying the assumed inequality, we get

ν(B) + µ(A) ≤ ν({y : ∀x ∈ A, c(x, y) =∞}) + µ(A) ≤ 1.

The fact that any plan π ∈ Π(µ, ν) which has finite cost must be concentrated on the

finiteness set

S = {(x, y) : c(x, y) <∞} ⊂ X × Y
implies the necessity of the condition, as is given in the following lemma.

Lemma 3.3. Let X, Y be measure spaces and c : X × Y → (−∞,∞] be a measurable

cost function. Given µ ∈ P(X) and ν ∈ P(Y ), assume there exists π ∈ Π(µ, ν) which is

concentrated on S = {(x, y) ∈ X × Y : c(x, y) <∞}. Then µ and ν are c-compatible.

Proof. Let A ⊂ X. As π ∈ Π(µ, ν), we know µ(A) = π(A × Y ), and by assumption,

π(A× Y ) = π((A× Y ) ∩ S). Similarly,

ν({y : ∀x ∈ A, c(x, y) =∞}) = π((X × {y : ∀x ∈ A , c(x, y) =∞}) ∩ S).

However, these two sets are disjoint, since if (x, y) ∈ S then c(x, y) < ∞, so if x ∈ A then

clearly y does not satisfy that for all x ∈ A, c(x, y) = ∞. Therefore, the π-measures of the

two sets sum to at most 1. □

It is useful to know that in certain situations the c-compatibility condition is also sufficient

for the existence of a finite cost plan; such is the case when the finiteness set S is closed.

One may then use the following theorem of Strassen [19].



OPTIMAL MEASURE TRANSPORTATION WITH RESPECT TO NON-TRADITIONAL COSTS 11

Theorem 3.4 (Strassen). Let X, Y be complete separable metric measure spaces and let S be

a non-empty closed subset of X×Y . Given µ ∈ P(X) and ν ∈ P(Y ), there exists π ∈ Π(µ, ν)

which is supported on S if and only if for all open B ⊂ Y

(9) ν(B) ≤ µ(PX(S ∩ (X × B))),

where PX is a projection onto X.

In the case of a non-traditional cost c, the relevant set S considered in Lemma 3.3 is not

necessarily closed. If S is closed, and c is bounded on it, then the condition in Strassen’s

Theorem is sufficient for the existence of a finite-cost transport plan. In some cases, one may

use this together with the theorems stated in Section 2.5 and the results from [5] to show that

a minimizing plan exists and is concentrated on the graph of a c-subgradient. An example

of such reasoning for some explicit cost functions will appear in the forthcoming [4].

However, for certain important costs, and in particular for the polar cost p defined in (1)

which serves as a motivating example for this study, the set S of finite-cost pairs is not closed.

To illustrate the problem, let us give an example of two measures on intervals which are c-

compatible (we will use the one dimensional polar cost) but do not admit any plan supported

on the finiteness set S.

Example 3.5. Consider once more the polar cost p(x, y) = − ln(xy − 1)+ on R+ × R+.

Its finiteness set is S = {(x, y) : xy > 1}. Let γ be the uniform measure on the set S1 =

{(x, 1/x) ∈ R2 : x ∈ [1/2, 2]} and let µ be its marginal on the first coordinate and ν its

marginal on the second coordinate.

It is not hard to check that the measures µ and ν (which are the same measure) are p-

compatible. Indeed, let A ⊂ R+ be open, note that

PX((R+ × A) ∩ S) = ∪y∈A(1/y,∞) = (1/ sup(A),∞).

Additionally, for any number α ∈ [1/2, 2] we have, by definition, that ν([1/2, α]) = µ([1/α, 2]).

Combining these observations with the continuity of µ and ν we see that the measures are

polar compatible

ν(A) ≤ ν([1/2, sup(A)]) = µ([1/ sup(A), 2]) = µ([1/ sup(A),∞)) = µ(PX((A×X) ∩ S)).

We turn to show that there is no transport plan π ∈ Π(µ, ν) supported on S. Assume towards

a contradiction that there exists such a transport plan π. In particular, this implies that there

exists some rectangle B = [x1, x2] × [y1, y2] ⊂ S of positive measure. By the definition of S,

we have that x1y1 > 1. As π is supported in S we see that

µ([1/2, x1]) = π([1/2, x1]× [x−1
1 , 2]) ≤ ν([x−1

1 , 2]) = µ([1/2, x1])

where the last equality follows from the definition of µ and ν. We thus have equalities all

along. Similarly,

ν([1/2, x−1
1 ]) = π([x1, 2]× [1/2, x−1

1 ]) ≤ µ([x1, 2]) = ν([1/2, x−1
1 ]).
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So we conclude that π([1/2, x1]×[x−1
1 , 2])+π([x1, 2]×[1/2, x−1

1 ]) = µ([1/2, x1])+µ([x1, 2]) = 1,

that is, π is supported on [1/2, x1]× [x−1
1 , 2]∪ [x1, 2]× [1/2, x−1

1 ]), which is a contradiction to

the fact that π(B) > 0.

Figure 1. A schematic drawing of Example 3.5.

3.3. The Hall polytope. Let us consider a special case, which will be the focus of Section

5, when one of the measures is discrete and the other one arbitrary. In such a case, the

compatibility condition can be realized geometrically by a polytope, which we call the Hall

polytope. We use ∆m = {α ∈ Rm : αi ≥ 0,
∑m

i=1 αi = 1} to denote the (m− 1)-dimensional

simplex.

Definition 3.6. Let X be some measure space, and Y = {ui}mi=1. Assume c : X × Y →
(−∞,∞] is a measurable cost function, and let µ be a probability measure supported on

{x ∈ X : ∃i ∈ [m], c(x, ui) <∞}. Define the Hall polytope associated with (ui)
m
i=1 and µ

by

P = P ((ui)
m
i=1, µ) =

⋂

I⊂[m]

{α ∈ ∆m :
∑

i∈I
αi ≤ µ(AI)},

where

AI := {x ∈ X : ∃i ∈ I c(x, ui) <∞}.

Note that the definition implies that µ and ν =
∑m

i=1 αi✶ui are c-compatible if and only if

α ∈ P ((ui)mi=1, µ).

We get back to this definition, and present a careful study of the resulting polytopes, in

Section 5.

3.4. Strong c-compatibility. We saw in Example 3.5 that c-compatibility is not a sufficient

condition for the existence of a finite cost plan. In fact, we will see in Example 7.2 that there

exist c-compatible measures which do admit a finite cost plan but not a potential. Therefore,

we consider a slight strengthening of c-compatibility, which will ensure that the existence

of a finite cost plan implies the existence of a potential. We call this condition strong c-

compatibility, and it amounts to asking for a strict inequality in the defining inequalities.



OPTIMAL MEASURE TRANSPORTATION WITH RESPECT TO NON-TRADITIONAL COSTS 13

Definition 3.7. Let X, Y be measure spaces and c : X × Y → (−∞,∞] be a measurable

cost function. We say that two probability measures µ ∈ P(X) and ν ∈ P(Y ) are strongly

c-compatible if they are c-compatible and for any measurable A ⊂ X with 0 < µ(A) < 1 it

holds that

µ(A) + ν({y : ∀x ∈ A, c(x, y) =∞}) < 1.

The motivation for this specific strengthening of the condition of c-compatibility is twofold:

First, if two measures are c-compatible and not strongly c-compatible, this means that there

exists a decomposition of the transport problem into two sub-problems (see Section 7). In-

deed, this is quite clear from the definition: if some set A of measure µ(A) ∈ (0, 1) satisfies

the equality

µ(A) + ν({y : ∀x ∈ A, c(x, y) =∞}) = 1,

then letting B = {y : ∀x ∈ A, c(x, y) = ∞} we see that A must be mapped to Y \ B (and

they have the same measure) and the preimage of B must be X \ A. That is, the original

transport problem is in fact decomposed into two disjoint transport problems.

Second, in the discrete setting of Section 3.3, strong c-compatibility corresponds to the weight

vector α residing in the interior of the Hall polytope, which makes for an elegant assumption.

We stress that strong c-compatibility is not a necessary condition, only c-compatibility is.

Even if one of the measures is discrete, it could be that the Hall polytope has an empty

interior, but good transport maps, admitting a potential, exist.

3.5. The geometric meaning of strong c-compatibility. It will be very useful to rephrase

the condition of strong c-compatibility in terms that are more geometric. In fact, looking

back at the proof of the symmetry of the notion of c-compatibility, it seems evident that we

do not need to assume an inequality µ(A) + ν({y : ∀x ∈ A, c(x, y) = ∞}) ≤ 1 (or a strict

inequality, in the strong c-compatibility assumption) for all sets A, and it suffices to consider

sets of the form {x : ∀y ∈ B, c(x, y) = ∞}. To make this observation more precise, we

introduce the notion of the c-dual of a set.

Definition 3.8 (c-duality). Let X, Y be two sets and let c : X × Y → (−∞,∞]. Fix

t ∈ (−∞,∞] (which will be omitted in the notation as it is a fixed parameter). For K ⊂ X

define the c-dual set of K as

Kc =
⋂

x∈K
{y ∈ Y : c(x, y) ≥ t} = {y ∈ Y : inf

x∈K
c(x, y) ≥ t}.

It will be convenient to assume X = Y and that the cost is symmetric, and as this is the

case relevant for this note, we restrict to this case. However, the reader will find it easy

to generalize to the case where X ̸= Y , in which case there are two different “c-duality”

operations, one mapping sets in X to sets in Y , and one mapping sets in Y to sets in X,

similarly to the c-transform.

Let us point out that for the polar cost p(x, y) = − ln(⟨x, y⟩ − 1)+ and t = ∞, the set

Kp is the well known polar set K◦. Indeed, we have that infx∈K p(x, y) = ∞ if and only if
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supx∈K⟨x, y⟩ ≤ 1. For the classical cost c(x, y) = −⟨x, y⟩ and t = −1, we also get the polarity

map.

Remark 3.9. If one adds the assumptions that X and Y are measure spaces and that the

cost is upper semi-continuous, it follows that for a fixed x, say, the set {y : c(x, y) ≥ t} is
closed, and hence so is Kc.

Having defined an operation on sets, let us notice some basic properties.

Lemma 3.10. For every K,L ⊂ X, the following hold

(i) K ⊂ (Kc)c = Kcc,

(ii) if L ⊂ K then Kc ⊂ Lc,

(iii) Kc = Kccc.

Proof. (i) This follows directly from the definition. If x ∈ K and y ∈ Kc then c(x, y) ≥ t so

that x ∈ Kcc.

(ii) Assume that L ⊂ K, and y ∈ Kc, then c(x, y) ≥ t for all x ∈ K and in particular for all

x ∈ L, so y ∈ Lc.
(iii) From (i) we know that K ⊂ Kcc, so from (ii) we get Kc ⊃ Kccc. On the other hand,

applying (i) directly to Kc we get Kccc ⊂ Kc, and equality is obtained. □

The similarity of c-duality to the c-transform is apparent. We are thus motivated to define

the c-class of sets, on which the c-duality is an order reversing bijection. In order to avoid

confusion, as we suppressed t in the notation, we restrict the next definition to t = ∞, the

case relevant for this note.

Definition 3.11 (c-class and c-envelope). Fix t = ∞. The c-class of sets consists of all

closed sets K ⊂ X such that there exists some L ⊂ X with K = Lc. For any set K ⊂ X we

define its c-envelope as the set Kcc, which is the smallest c-class set containing K.

Let us note again that for the polar cost and t =∞, the p-class consists of closed convex sets

containing the origin, and the p-envelope is the polar convexification operation K 7→ K◦◦ =
conv{0, K}.
Our first observation is that in Definitions 3.2 and 3.7 it is sufficient to consider c-class sets,

for t =∞, instead of all measurable sets.

Lemma 3.12. Let c : X × Y → (−∞,∞] be an upper semi-continuous symmetric cost

function. Two probability measures µ ∈ P(X) and ν ∈ P(Y ) are c-compatible if and only if

for every set K = Kcc ⊂ X in the c-class we have

ν(Kc) ≤ 1− µ(K).

They are strongly c-compatible if and only if in addition when ν(Kc) ̸= 0, 1 we have

ν(Kc) < 1− µ(K).
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Proof. If µ and ν are c-compatible then in particular ν(Kc) ≤ µ({x : infy∈Kc c(x, y) <∞}),
which can be rewritten as ν(Kc) ≤ µ(X \Kcc) = µ(X \K).

For the other direction let A ⊂ X be a measurable set, and consider the set K = Acc. Then

{y : inf
x∈A

c(x, y) =∞} = {y : ∀x ∈ A c(x, y) =∞} = Ac = Kc.

The last equality holds due to Lemma 3.10 (iii). Thus, using the condition on c-class sets

and Lemma 3.10 (i), we get

ν(Ac) = ν(Kc) ≤ 1− µ(K) = 1− µ(Acc) ≤ 1− µ(A),

so that µ and ν are c-compatible.

Similarly, two probability measures µ and ν are strongly c-compatible if and only if they are

c-compatible and for all c-class sets K ⊂ X such that ν(Kc) ̸= 0, 1 we have

ν(Kc) < 1− µ(K).

This follows from the same proof, the only difference being if A ̸= Acc = K, one gets a strong

inequality by ν(Ac) ≤ 1− µ(Acc) < 1− µ(A), which follows by Lemma 3.10 (i). □

In the next lemma we show that the strong c-compatibility of two measures implies a vital

condition on the distribution of the transport plan between them.

Lemma 3.13. Let µ be a probability measure on X, ν a probability measure on Y , and

π ∈ Π(µ, ν) a finite cost plan, with respect to the symmetric cost c : X × Y → (−∞,∞].

Then µ and ν are strongly c-compatible if and only if for every c-class set K such that

ν(Kc) ̸= 0, 1, we have that

π((X \K)× (Y \Kc)) > 0.

Proof. First we note that the existence of a finite cost plan π ∈ Π(µ, ν) implies c-compatibility

(see Lemma 3.3). Thus, under our assumptions, strong c-compatibility is equivalent, by

Lemma 3.12, to the fact that for every c-class K with ν(Kc) ̸= 0, 1 we have that ν(Kc) <

1− µ(K) = µ(X \K). Since π ∈ Π(µ, ν) this can be rewritten as, for ν(Kc) ̸= 0, 1,

π(X ×Kc) < π((X \K)× Y ),

and if ν(Kc) = 1 then µ(K) = 0. Note that as π has finite cost, it is concentrated on

S = {(x, y) : c(x, y) <∞}, and so for (x, y) in the support of π, if y ∈ Kc then we must have

x ̸∈ K. In particular, from the point of view of the measure π, the set on the left hand side

is contained in the set on the right hand side. We can thus rewrite the first inequality as

0 < π(((X \K)× Y ) \ (X ×Kc)) = π((X \K)× (Y \Kc)).

completing the proof of the statement claimed. □
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4. Transportation of measure

Let us recall our main theorem, to be proved in this section.

Theorem 1.1. Let X = Y be a Polish space, and c : X × Y → (−∞,∞] be a continuous

and symmetric cost function, essentially bounded from below with respect to µ ∈ P(X) and

ν ∈ P(Y ). Assume (µ, ν) are strongly c-compatible, and C(µ, ν) < ∞. Then there exists a

c-class function φ and an optimal transport plan π ∈ Π(µ, ν) concentrated on ∂cφ.

In order to prove the theorem we will use a combination of Theorems 2.3, 2.4, and 2.6. We will

show that once we have an optimal transport plan supported on a c-cyclically monotone set

then it must be c-path-bounded. This will follow from an observation presented in [5] which

states that indeed in some special cases c-cyclic monotonicity implies c-path-boundedness.

In order to formulate the condition let us introduce some notation.

We consider a directed graph, associated with a cost function c : X × Y → (−∞,∞] and a

set G ⊂ S = {(x, y) : c(x, y) < ∞} ⊂ X × Y , in which the vertices are elements of G and

there is a directed edge from (x, y) to (z, w) if c(z, y) < ∞. Since G ⊂ S we may say that

for every point in G there is an edge (loop) with this point as a start and end vertex.

The directed graph induces a (transitive) relation on points in G, namely (x, y) ≺ (z, w) if

there is a directed path from (x, y) to (z, w). We then define an equivalence relation ∼ on

elements of G where we say that (x, y) ∼ (z, w) if (x, y) ≺ (z, w) and (z, w) ≺ (x, y), i.e.

there is a directed cycle passing through both points. To the best of our knowledge, this

equivalence relation was first mentioned in [21, Chapter 5, p.75] and studied in [5,8, 9]. The

following proposition was proved (with a different formulation) in [8] and then in [5].

Proposition 4.1. Let c : X × Y → (−∞,∞] be some cost function and let G ⊂ X × Y be a

c-cyclically monotone set. Assume that all points in G belong to one equivalence class of the

equivalence relation ∼ defined above. Then G is c-path-bounded.

With this proposition in hand, our goal is to show that if π is a finite cost plan between two

strongly c-compatible measures, then we can find a set G, on which π is concentrated, such

that all of points in G are in one equivalence class of ∼.
Proposition 4.2. Let X, Y be two Polish spaces, µ ∈ P(X), ν ∈ P(Y ) and assume (µ, ν) are

strongly c-compatible. Let π ∈ Π(µ, ν) be a finite cost transport plan from µ to ν. Then there

exists a set G on which π is concentrated such that all the points in G are in one equivalence

class of ∼.

Proof. Let G1 denote the support of π, and let G0 denote the set G1 ∩ {(x, y) ∈ X × Y :

c(x, y) <∞}. Fix a point (x, y) ∈ G0. We shall show that the set of points (z, w) ≺ (x, y) in

G0 is of π-measure one, as is the set of points (z, w) such that (x, y) ≺ (z, w). The intersection

of these two sets will also be of measure one, and we denote it by G. We will then explain

why this G fulfills the requirements of the proposition.

Consider H ⊂ G0 consisting of all points (a, b) ≺ (x, y). Assume towards a contradiction

that π(H) < 1. Note that π(H) > 0 since (x, y) ∈ S0 and in the support of π, so that for
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any neighborhood U of (x, y) we have π(U) > 0. Picking a small enough neighborhood U ,

we know that if (z, w) ∈ U then c(z, y) < ∞ and so (z, w) ∈ H (it may be that π(x, y) > 0

and that U consists of this one point alone).

Since π(H) < 1 there is some (z, w) ̸∈ H which is a density point of π, that is, for any

neighborhood V of (z, w) one has π(V ) > 0.

If z ∈ (PXH)cc then (PXH)c = (PXH)ccc ⊂ {z}c by Lemma 3.10 (ii) and (iii). Therefore

Y \ {z}c ⊂ Y \ (PXH)c = {v : ∃u ∈ PXH, c(u, v) < ∞}. Further, since (z, w) ∈ G we

have that c(z, w) < ∞ and hence w ∈ Y \ {z}c. But this means that w ∈ Y \ (PXH)c

and there exists some a ∈ PXH (and b such that (a, b) ∈ G0) with c(a, w) < ∞. Therefore

(z, w) ≺ (a, b), and by transitivity (z, w) ≺ (x, y), a contradiction.

We may therefore assume that (z, w) is such that z /∈ (PXH)cc =: K. Since K is a closed

set in X, there is a neighborhood of z which does not intersect K, and therefore we can find

a neighborhood V of (z, w) which is of positive π measure (as (z, w) is a density point) and

such that its projection onto X does not intersect K. Note that this implies in particular

that 0 < µ(K) = π(K × Y ) < 1, since H ⊂ K × Y and V ∩ (K × Y ) = ∅. We may therefore

use Lemma 3.13 to deduce that

π((X \K)× (Y \Kc)) > 0.

In particular there exists some point (e, f) ∈ G0 Such that e ̸∈ K and f ̸∈ Kc. The fact that

e ̸∈ K means in particular that (e, f) ̸∈ H. The fact that f ̸∈ Kc = (PXH)ccc = (PXH)c

implies that f ∈ {v : ∃u ∈ PXH c(u, v) < ∞}. Hence there is some point a ∈ PXH (and b

such that (a, b) ∈ H) such that c(a, f) < ∞, which means that (e, f) ≺ (a, b) ≺ (x, y), thus

contradicting the fact that (e, f) ̸∈ H. We conclude that the set H satisfies π(H) = 1.

Similarly we consider F ⊂ G0 consisting of all points (a, b) such that (x, y) ≺ (a, b). Using

the same argument as above we get that π(F ) = 1.

Hence, we found sets F and H of π-measure one. Let G = F ∩ H, every point (z, w) ∈ G
satisfies that there is a directed path, going through points in G0, between it and (x, y). We

now claim that these directed paths only go through points in G itself. Indeed, consider a

cycle (in G0) which includes (x, y) and (z, w) ∈ G. The existence of this cycle implies that

every point on it belongs to both H and F , by the definition of the relation ∼, so that the

whole cycle consists of points in G. The proof is now complete.

□

Proof of Theorem 1.1. By assumption, C(µ, ν) < ∞, and we may use Theorem 2.4, the

assumptions of which are satisfied, to find a c-optimal plan π ∈ Π(µ, ν). By Theorem 2.6,

the plan π is concentrated on some c-cyclically monotone set G1. Proposition 4.2 implies

that π is also concentrated on some set G2 such that all points in G2 are in one equivalence

class of the relation ∼ defined above. Let G = G1 ∩ G2, then G is a c-cyclically monotone

set such that all of its elements lie in one equivalence class, therefore, by Proposition 4.1 the

set G is c-path-bounded. Finally, we use Theorem 2.3 which implies that a c-path-bounded

set admits a potential, to find some c-class function φ such that G ⊂ ∂cφ.
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We have thus determined that there exists a c-optimal plan π which is concentrated on ∂cφ

for some c-class φ, as needed. □

5. Transportation to a discrete measure

In this section we present a different approach to the problem of finding transport maps which

lie on c-subgradients of functions. We consider the case where one measure is arbitrary (we

will add some mild assumptions on it, connected with the cost, later on) and the second

measure is discrete. As explained in Section 3.3, fixing the support of ν to be the set {yi}mi=1,

a necessary condition for the existence of a finite cost plan π ∈ Π(µ, ν) is that the weight

vector α ∈ ∆m associated with the probability measure ν =
∑m

i=1 αi✶ui lies in the Hall

polytope

P = P ((ui)
m
i=1, µ) =

⋂

I⊂[m]

{α ∈ ∆m :
∑

i∈I
αi ≤ µ(AI)},

where

AI := {x ∈ X : min
i
c(x, ui) <∞}.

So, our main objective is to show that indeed, for a measure ν corresponding to a weight

vector in the polytope, a finite cost transport plan exists, and further, it is supported on the

c-subgradient of some c-class function. We are able to do this under very general assumptions

on the measure µ, and provided α lies in the interior of the polytope (this is Theorem 1.3).

Let us introduce the notion of c-regularity of a measure, which will be important for the

construction given in this section. Roughly speaking, a measure is c-regular if it gives 0-

measure to sets where two different basic functions c(·, y1)+a1 and c(·, y0)+a0, coincide and
equal some finite number.

Definition 5.1. Let X, Y be measure spaces and let c : X × Y → (−∞,∞] be a measurable

cost function, and µ a probability measure on X. If for any y1 ̸= y0 ∈ Y and t ∈ R

µ({c(z, y1)− c(z, y0) = t}) = 0,

then we say that µ is a c-regular measure.

For example, when the cost is such that {z : c(z, y1) − c(z, y0) = t} is of lower dimension,

and the measure is absolutely continuous, the c-regularity property is satisfied.

5.1. Building transport maps. The idea of the proof is to manually construct functions

whose c-subgradient is a transport map of a c-regular measure µ to a certain discrete measure

ν. We will consider basic functions and use the fact that the c-class is closed under the

pointwise infimum. Formally, we have the following lemma.

Lemma 5.2. Let X, Y be measure spaces and let c : X × Y → (−∞,∞] be a measurable

cost function. Fix a set of vectors (ui)
m
i=1 ⊂ Y and let µ be a c-regular probability measure

on X, which is supported on the set {x ∈ X : ∃i ∈ [m] with c(x, ui) < ∞}. Given numbers

(ti)
m
i=1 ⊂ R let

φ(x) = φ(ui),(ti)(x) = min
1≤i≤m

(c(x, ui) + ti)
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be a function in the c-class and denote Ui = {x ∈ X : argmin1≤j≤m (c(x, uj) + tj) = i}. Then
the mapping T , defined to be equal to ui on the set Ui, is well defined µ-almost everywhere

and satisfies that T (x) ∈ ∂cφ(x) for all x in the support of µ. Moreover, it transports µ to

the measure ν =
∑m

i=1 αi✶ui on Y , where αi = µ (Ui) .

Proof. Let φ(x) be the function defined in the statement and note that it induces a partition

of X into m sets {Ui}mi=1, where

Ui = {x ∈ X : arg min
1≤j≤m

(c(x, uj) + tj) = i}.

By the definition of the c-subgradient given in (7), ui ∈ ∂cφ(x) for all x ∈ Ui. Let T : X → Y

be the map given by T (x) = ui for all x ∈ Ui, so indeed T (x) ∈ ∂cφ(x). For µ which is c-

regular, the intersections of the sets Ui are of zero measure and thus T is well defined µ

almost everywhere.

Clearly, the map T transports the measure µ on X to the measure
∑m

i=1 µ(Ui)✶ui . □

Remarks 5.3. (i) In general, the partition to sets {Ui} as above is not disjoint, so without

the additional assumption of c-regularity of µ the map T is not well-defined.

(ii) Since we may add a constant to all (ti)
m
i=1 without changing the c-subgradient, we will

assume that ti ≥ 0. Thus, given a finite set (ui)
m
i=1 ⊂ Y , it will be convenient for us to

consider the family of functions

φ(x) = min
1≤i≤m

(c(x, ui)− ln(ti)) ,

with t = (ti)
m
i=1 in the m-dimensional simplex ∆m.

Lemma 5.2 guarantees that given a c-regular measure µ and points (ui)
m
i=1 ⊂ Y , the map

φ(ui),(ti) induces a transport map T : X → Y mapping µ to
∑

αi✶ui . This simple idea will

be very important in proving Theorem 1.3, and the bulk of the proof lies in analyzing which

weights αi can be attained. In the classical case of the quadratic cost it was proved by K. Ball

that all weight vectors α = (αi)
m
i=1 ∈ ∆m can be attained [6], from which he then obtained

the Brenier theorem for all absolutely continuous measures µ and compactly supported ν

using a limiting argument.

In contrast, in the case of non-traditional costs one cannot expect that all weight vectors in

∆m will be attained, only those residing in the Hall polytope. Let us briefly describe the main

steps for proving the existence of a transport map of some measure µ to a discrete measure ν

with weight vector in the interior of the Hall polytope (i.e. Theorem 1.3). Fixing a measure

µ and an m-tuple (ui)
m
i=1, the construction in Lemma 5.2 gives rise to a mapping H from the

(m− 1)-dimensional simplex ∆m onto the set of ‘weight vectors’ α = (αi)
m
i=1 of the measure

ν to which µ can be transported. We will show that H is a surjection from the interior of the

simplex onto the interior of the relevant Hall polytope. To this end we define and analyze

Hall polytopes, and in particular construct, under some assumptions, a continuous map R

from the boundary of the polytope to the boundary of the simplex, which respects certain

constraints connected with the face structure of the polytope. We use a variant of Brouwer’s
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fixed point theorem for the composition R ◦ p ◦H, where p is a radial projection from some

point in the polytope, to obtain the surjectivity.

5.2. Structure of the Hall Polytope. We introduce the following notation: For I ⊂ [m],

A ⊂ R|I| and B ⊂ Rm−|I|, we denote by A ×I B points in Rm with I-coordinates in A and

Ic-coordinates in B. For a measure µ and a set A ⊂ X we denote by µ|A the measure that

is equal to µ on A and zero on Ac.

Hall polytopes have faces only in specific pre-determined directions. (Their faces’ normal

cones are spanned by {0, 1}-vectors in Rm, projected onto the span of the polytope which is

(m− 1) -dimensional.) As we shall see in Proposition 5.4, each of these faces has a product

structure, of which each component is a Hall polytope itself.

Proposition 5.4. Let P = P ((ui)
m
i=1, µ) be the Hall polytope associated with some m-tuple

(ui)
m
i=1 ⊂ Y and a probability measure µ ∈ P(X) supported on {x ∈ X : ∃i ∈ [m] c(x, ui) <

∞}. Then for each I ⊂ [m], the face of P given by

FI = {α ∈ P :
∑

I

αi = µ(AI)},(10)

admits a splitting FI = µ(AI)PI ×I µ(AcI)P̂I where PI is the Hall polytope associated with

the measure 1
µ(AI)

µ|AI
and the vectors {ui}i∈I , and P̂I is the Hall polytope associated with

the measure 1
µ(Ac

I)
µ|Ac

I
and the vectors {ui}i∈[m]\I . In particular, in case µ(AI) = 0, we have

PI = {0}I , and in case µ(AcI) = 0, P̂I = {0}[m]\I .

Proof. Let α ∈ FI , then by the definition of FI we have
∑

i∈I αi = µ(AI) and thus α|I ∈
µ(AI)∆|I|. Furthermore, for every J ⊂ I it still holds that

∑

i∈J αi ≤ µ(AJ) and as AJ ⊂ AI
we also get that

∑

i∈J αi ≤ µ|AI
(AJ). Recall that PI is the Hall polytope associated with

(ui)i∈I and µ(AI)−1µ|AI
, so re-normalizing the previous inequalities by µ(AI) we see that the

vector α|I ∈ µ(AI)PI , as claimed.

Similarly in the Ic coordinates, α ∈ FI satisfies
∑

i∈[m]\I αi = µ(AcI). To show α|[m]\I ∈
µ(AcI)P̂I we need to check that for every K ⊂ [m] \ I we have

∑

i∈K αi ≤ µ(AK ∩ AcI). To

this end consider the new subset of [m] given by J = I ∪K. By the assumptions,
∑

i∈J
αi ≤ µ(AJ) = µ

(

⋃

i∈I
{x : c(x, ui) <∞} ∪

⋃

i∈K
{x : c(x, ui) <∞}

)

.

Since the first of these unions is in fact all of AI , we may rewrite the inequality as
∑

i∈J
αi ≤ µ(AI) + µ(AcI ∩

⋃

i∈K
{x : c(x, ui) <∞}).

The sum on the left hand side is simply
∑

i∈I αi+
∑

i∈K αi = µ(AI)+
∑

i∈K αi, since we have
assumed α ∈ FI . Plugging into the inequality and canceling, we see

∑

i∈K
αi ≤ µ(AcI ∩

⋃

i∈K
{x : c(x, ui) <∞}),

as claimed.



OPTIMAL MEASURE TRANSPORTATION WITH RESPECT TO NON-TRADITIONAL COSTS 21

We have thus shown, so far, that FI ⊂ µ(AI)PI ×I µ(AcI)P̂I . For the opposite direction,

assume we are given some point α ∈ µ(AI)PI ×I µ(AcI)P̂I , and we want to show that it

belongs to FI . Clearly, using that if K ⊂ J then AK ⊂ AJ , we have for any J ⊂ [m] that
∑

i∈J
αi =

∑

i∈J∩I
αi +

∑

i∈J∩([m]\I)
αi ≤ µ|AI

(AJ∩I) + µ|Ac
I
(AJ∩([m]\I))

≤ µ|AI
(AJ) + µ|Ac

I
(AJ) = µ(AJ).

This completes the second part of the proof. □

We will discuss the facial structure of the polytope, and make use of the following simple

observation.

Lemma 5.5. Under the conditions and notations of Lemma 5.4, for any I ⊂ [m], the part

of the boundary of FI given by µ(AI)∂PI ×I µ(AcI)P̂I is a subset of ∪J⊊IFJ .

Proof. The boundary of PI consists of points whose I th coordinates add up to one, and for

some J ⊊ I one of the inequalities defining the Hall polytope associated with 1
µ(AI)

µ|AI
and

(ui)i∈I is an equality. In other words, if α ∈ µ(AI)∂PI ×I µ(AcI)P̂I there is some J ⊊ I such

that
∑

i∈J αi = µ(AJ), which means α ∈ FJ , as claimed. □

5.3. Non-degenerate polytopes. In this subsection we continue analyzing properties of

Hall polytopes, under an additional assumption on µ and (αi)
m
i=1 which will imply that all of

the Hall polytopes’ faces FI (defined in (10)) are ‘full dimensional’ in the I coordinates, i.e.

that in the splitting described in Proposition 5.4, the polytope PI is |I| − 1 dimensional.

Definition 5.6. Let X, Y be measure spaces and let c : X × Y → (−∞,∞] be a measurable

cost function. Given (ui)
m
i=1 ⊂ Y , and a probability measure µ which is supported on {x ∈

X : ∃i ∈ [m] c(x, ui) < ∞}, we say that µ is non-degenerate with respect to (ui)
m
i=1 if

for every 1 ≤ i < j ≤ m it holds that

µ ({x : c(x, ui) <∞} ∩ {x : c(x, uj) <∞}) > 0.

(a) Non-degenerate (b) Non-degenerate (c) Degenerate

Figure 2. Examples of 3-dimensional Hall polytopes
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Proposition 5.7. Given a probability measure µ ∈ P(X), which is non-degenerate with re-

spect to (ui)
m
i=1 ⊂ Y , the Hall polytope P = P ((ui)

m
i=1, µ) satisfies that its dimension (meaning

the dimension of its affine hull) is dim(P ) = m− 1.

Proof. We shall prove this fact using induction on m. For m = 1 this is clearly true since

the polytope P consists of one point α = 1, that is, has dimension 0. Assume that the claim

is true for (m − 1)-tuples. Then, for m and a given set of vectors (ui)
m
i=1 ⊂ Y , we know by

Proposition 5.4 that P has faces FI where I ⊂ [m], each of the form FI = µ(AI)PI×Iµ(AcI)P̂I .
Let I1 = [m− 1] and I2 = {m}. The set [m− 1] still satisfies, along with µ|I , the conditions

of the proposition, so by the inductive assumption P1 = PI1 is a polytope of full dimension,

that is, of dimension m− 2.

It remains to show that F2 = FI2 does not lie within the affine hull of F1, and hence P has

dimension at least m− 1 (and of course it cannot have a higher dimension, as it is a subset

of ∆m). Note that the affine hull of F1 is characterized by the equality
∑m−1

i=1 αi = µ(A[m−1]),

which equivalently can be written as αm = 1−µ(A[m−1]). The facet F2 satisfies αm = µ(A{m}).
Assuming towards a contradiction that these two facets do intersect, we would need to have

µ(A[m−1]) + µ(A{m}) = 1. Recall that

A{m} = {x ∈ X : c(x, um) <∞}, A[m−1] = {x ∈ X : ∃i ∈ [m− 1] c(x, ui) <∞}

and that by the non-degeneracy of µ it holds that µ(A{m} ∩ A[m−1]) > 0. Additionally,

µ(A{m} ∪ A[m−1]) = 1, and so

µ(A{m} ∪ A[m−1]) = µ(A{m}) + µ(A[m−1])− µ(A{m} ∩ A[m−1])

implies that µ(A{m} ∩ A[m−1]) = 0 (So in particular µ(A{m} ∩ A{1}) = 0), contradicting the

assumption that µ is non-degenerate. □

Corollary 5.8. Given a probability measure µ ∈ P(X) which is non-degenerate with respect

to (ui)
m
i=1 ⊂ Y , the Hall polytope P = P ((ui)

m
i=1, µ) satisfies that each face FI admits a

splitting FI = PI × P̂I such that dim(PI) = |I| − 1.

Proof. The fact that FI has such a splitting was proven already in Proposition 5.4, with PI
being the Hall polytope of the normalized restriction of the measure µ to AI . µI satisfies, to-

gether with the subset (ui)i∈I , conditions of Proposition 5.7, namely that it is non-degenerate

with respect to (ui)i∈I as one may easily check that µ|AI
is non-degenerate with respect to

(ui)i∈I . Therefore, PI is full dimensional, as claimed. □

Furthermore, in this case the associated polytope satisfies a “good” face-intersection struc-

ture, explained in the next two propositions.

Proposition 5.9. Given a probability measure µ ∈ P(X) supported on {x ∈ X : ∃i ∈
[m] c(x, ui) <∞} which is non-degenerate with respect to (ui)

m
i=1 ⊂ Y , let P = P ((ui)

m
i=1, µ)

be the associated Hall polytope. Given I, J ⊂ [m], the intersection FI ∩FJ is a subset of FI∩J
(we let F∅ = P , so that if I ∩ J = ∅ the claim is trivial).
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Proof. Let α ∈ FI ∩ FJ , so that
∑

i∈I αi = µ(AI) and
∑

i∈[m]\I αi = µ(AcI), as well as
∑

i∈J αi = µ(AJ) and
∑

i∈[m]\J αi = µ(AcJ). Consider the following equation

∑

i∈I∩J
αi +

∑

i∈I∪J
αi =

∑

i∈I
αi +

∑

i∈J
αi = µ(AI) + µ(AJ)

= µ(AI ∩ AJ) + µ(AI ∪ AJ) ≥ µ(AI∩J) + µ(AI∪J),

where the final inequality follows from the inclusion AI∩J ⊂ AI ∩ AJ .
Pairing this with the fact that each of the extreme terms satisfies that

∑

i∈I∩J
αi ≤ µ(AI∩J) and

∑

i∈I∪J
αi ≤ µ(AI∪J),

we conclude that both of these inequalities are in fact equalities, which implies that

∑

i∈I∩J
αi = µ(AI∩J),

so that α belongs to the facet FI∩J . □

In fact, if µ is non-degenerate and I ∩ J = ∅, we know much more.

Proposition 5.10. Given a probability measure µ ∈ P(X) supported on {x ∈ X : ∃i ∈
[m] c(x, ui) <∞} which is non-degenerate with respect to (ui)

m
i=1 ⊂ Y , let P = P ((ui)

m
i=1, µ)

be the associated Hall polytope. Then given I, J ⊂ [m], which are disjoint, the faces FI and

FJ do not intersect.

Proof. By non-degeneracy of P = P ((ui)
m
i=1, µ), we know that for any I, the face FI =

µ(AI)PI ×I µ(AcI)P̂I satisfies that dim(PI) = |I|− 1. Assume |I| = k1, |J | = k2, and, towards

a contradiction, that the intersection FI ∩ FJ is non-empty. Denoting βI = µ(AI) and βJ =

µ(AJ), every point α in the intersection must satisfy
∑

i∈I αi = βI and
∑

i∈J αi = βJ . Letting

K = I∪J , βK = µ(AK), by the fact that I and J are disjoint, we see that
∑

i∈K αi = βI+βJ ,

and since α is a point in P , βI+βJ ≤ βK . However, using again that I∩J = ∅, we know that

all points α ∈ P also satisfy
∑

i∈K αi ≤ βI+βJ , and since by Proposition 5.7 FK is non-empty

(it is full dimensional in its I coordinates), there exists some α ∈ FK such that the equality
∑

i∈K αi = βK is satisfied. This implies βK = βI + βJ . We conclude that FI ∩ FJ = FK .

Indeed, FK ⊂ FI ∩ FJ , since each such α ∈ P satisfies
∑

i∈I αi ≤ βI and
∑

i∈J αi ≤ βJ , and

for points in FK an equality must be attained in both inequalities. The reverse inclusion

FI ∩ FJ ⊂ FK is clear.

However, by Proposition 5.7 the dimension of PI is k1− 1 and the dimension of PJ is k2− 1.

Recalling that K = I ∪ J , we see that the dimension of PK is at most k1 − 1 + k2 − 1 <

k1 + k2 − 1 = |K| − 1, which contradicts the non-degeneracy assumption on P , and implies

that the intersection must be empty.

□
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5.4. Mapping the Hall polytope to the simplex. In this subsection we make one final

preparation, and show that for any Hall polytope P , associated with a non-degenerate mea-

sure and some m-tuple, there exists a special mapping R from ∂P to ∂∆m such that FI is

mapped to ∂I∆m, and on FI , the map only depends on the I coordinates of a point.

Let us explain the notation. The relative boundary of the simplex (its boundary in the affine

space {α ∈ Rm :
∑m

i=1 αi = 1}) will be denoted by ∂∆m, and the Ith component of this

boundary is the lower dimensional simplex defined by

∂I∆m = {α ∈ ∆m :
∑

i∈I
αi = 1}.

Additionally, for I ⊂ [m] we say that ‘a point x ∈ Rm has I th coordinates y ∈ R|I|’ if the
restriction of x to its coordinates indexed by I is equal to y.

Proposition 5.11. Given a probability measure µ ∈ P(X) supported on {x ∈ X : ∃i ∈
[m] c(x, ui) <∞} which is non-degenerate with respect to (ui)

m
i=1 ⊂ Y , let P = P ((ui)

m
i=1, µ)

be the associated Hall polytope. Then there exists a continuous mapping R : ∂P → ∂∆m such

that ∂IP := FI = µ(AI)PI ×I µ(AcI)P̂I is mapped to ∂I∆m with

(11) R(y, z) = R(y, z′)

for y ∈ µ(AI)PI , z, z′ ∈ µ(AcI)P̂I , that is R(x) = R(x′) if x|Ic = x′|Ic.

Proof. The construction of R is recursive. We define the map first only on faces FI with

|I| = 1. We then assume it has been defined on faces FI with |I| < k and define it on FI
with |I| = k. At each step we make sure the map we construct is well defined and continuous

on its domain.

We denote the center of mass of the face ∂I∆m by qI and the center of mass of the polytope

µ(AI)PI (the I-th component of FI) by pI . We will ensure, within the proof, that all points

in FI with I th coordinates pI are mapped to qI , and that in general the map on a face FI
depends only on the I th coordinates of the point.

The basis for the construction are thus faces FI of P with |I| = 1. These are mapped to the

vertices of the simplex ∆m, namely F{i} 7→ ∂{i}∆m (where ∂{i}∆m = ei). As these faces are

disjoint by Proposition 5.9, and the map R is constant on each face, we conclude that it is

continuous.

For the induction step, assume we have defined R on all faces FJ with |J | < k. Let FI be a

face of P with |I| = k. Since FI = µ(AI)PI ×I µ(AcI)P̂I by Proposition 5.4, we have that

∂FI =
(

µ(AI)relint(PI)× µ(AcI)∂P̂I
)

∪
(

µ(AI)∂PI × µ(AcI)P̂I
)

.

Since R is already defined, by assumption, on all faces FJ for I ̸= J ⊂ I, and since µ(AI)∂PI×
µ(AcI)P̂I ⊂

⋃

J⫋I FJ by Lemma 5.5, the map R is already defined on this first component of

the boundary. Furthermore, again by assumption, it is defined in such a way that the image

of FJ is the simplex ∂J∆m, and that on FJ the map R only depends on the J th coordinates

of the point. Note that
⋃

J⫋I ∂J∆m is precisely the boundary of ∂I∆m. So, we essentially are

given a continuous mapping R from the boundary of PI to the boundary of ∂I∆m. We extend
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it by first imposing R(pI , z) = qI for the specified points pI and qI (note that (pI , z) ∈ FI
lies in µ(AI)relint(PI), as PI is full, i.e. I − 1, dimensional), and then extending R radially

for points with I th coordinates in µ(AI)relint(PI). The resulting map R is now defined on

all of FI . We do this for all index sets I of size k. The resulting map is well defined, since

by Propositions 5.9 and 5.10 the intersections of the faces {FI}|I|=k are included in faces FJ
with |J | < k. By construction R is a continuous mapping that sends FI to ∂I∆m and, on FI ,

depends only on the I th coordinates.

□

As we described in Subsection 5.1, the main idea of the proof of Theorem 1.3 is to show

surjectivity of a map taking a potential function φ (indexed by some variables (ti) ∈ ∆m) to

the weight vector α of the measure ν to which the c-subgradient ∂cφ maps µ. We present

this formally in the next subsection, where we define and analyse this map.

5.5. Mapping the simplex to the Hall polytope. Having fixed somem-tuple (ui)
m
i=1 ⊂ Y

and a probability measure µ ∈ P(X) supported on {x ∈ X : ∃i ∈ [m] c(x, ui) < ∞} and

c-regular, we define a map on the interior of ∆m, and then extend it (using converging

subsequences) to a set-valued map on the boundary.

More precisely, for t = (ti)
m
i=1 ∈ int(∆m), define

(12) Hµ
(ui)mi=1

(t) = α

with α ∈ ∆m given by

αi = µ

({

x ∈ X : arg min
1≤j≤m

c(x, uj)− ln(tj) = i

})

.

For t ∈ ∂∆m, we let Hµ
(ui)mi=1

(t) be the closure of the function in the usual sense, namely the

set of all limit points limHµ
(ui)mi=1

(t(k)) as t(k) → t and t(k) ∈ int(∆m). When µ and (ui)
m
i=1

are fixed in advance, we denote H = Hµ
(ui)mi=1

. By Lemma 5.2 there is a transport map from

µ to ν =
∑

i αi✶ui when α = H(t) for t ∈ int(∆m), and moreover the transport map’s graph

is included in the c-subgradient of the function min1≤j≤m c(x, uj)− ln(tj). In particular, the

image of H is inside the P = P ((ui)
m
i=1, µ), the associated Hall polytope.

Our first claim regards the continuity of H.

Proposition 5.12. Let X and Y be measure spaces, c : X × Y → (−∞,∞] measurable, let

(ui)
m
i=1 ⊂ Y , and let µ ∈ P(X) be c-regular and supported on {x ∈ X : ∃i ∈ [m] c(x, ui) <∞}.

Then, the function H = Hµ
(ui)mi=1

: ∆m → P ((ui)
m
i=1, µ) is well defined and continuous on

int(∆m).

Proof. First note that the function H is well defined as µ is c-regular, and the subsets

Ui :=

{

x ∈ X : arg min
1≤j≤m

c(x, uj)− ln(tj) = i

}

form a measurable partition of X (the intersections are of measure 0, as well as the set where

the minimum is +∞), as in Lemma 5.2.
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To show that H is continuous on int(∆m), let t ∈ int(∆m), ε > 0 be fixed. We will show that

then there exists δ > 0 such that for all t′ ∈ ∆m with ∥t′−t∥2 < δ, we have ∥H(t′)−H(t)∥2 <
ε. To see this, note that the ith coordinate of the difference is given by µ(Ui)− µ(Vi), where

Vi :=

{

x ∈ X : arg min
1≤j≤m

c(x, uj)− ln(t′j) = i

}

.

Clearly, this difference is bounded (in absolute value) by µ(Ui△Vi), where △ denotes the

symmetric difference of the two sets. To estimate the measure of the symmetric difference,

when t and t′ are close, we use the following sets, which converge to measure 0 sets as k →∞.

Define for i ∈ [m], k ∈ N

Uk
i =

{

x ∈ Ui : ∃j ̸= i, c(x, uj)− ln(tj)− c(x, ui) + ln(ti) ≤
1

k

}

.

Note that Uk+1
i ⊂ Uk

i , and as µ is finite µ(Uk
i )↘ µ(limk U

k
i ). Moreover, µ(limk U

k
i ) = 0 since

by c-regularity of µ the limit set ∪i ̸=j{x ∈ X : c(x, uj)− ln(tj)−c(x, ui)+ln(ti) = 0} has zero
measure. In particular, for every i ∈ [m] there exists some ki such that for all k > ki, we have

µ(Uk
i ) < ε/m. Denote k0 = maxi ki, and note that for any k ≥ k0 we have µ(∪mj=1U

k
j ) < ε

(and in particular for k = k0).

We next claim that there exists δ such that if t′ is such that |t′i − ti| < δ for all i, we have

that Ui△Vi ⊂ ∪mj=1U
k0
j , which completes the proof. Indeed, we will choose δ such that if

|t− t′| < δ then tle
−1/2k0 ≤ t′l ≤ tle

1/2k0 for every l.

First consider the case x ∈ Ui \ Vi, and note that then there exists 1 ≤ l ≤ m such that

x ∈ Vl (since the sets (Vl)
m
l=1 are a partition of X) and hence for all 1 ≤ j ≤ m we have

c(x, ul)− ln(t′l)− c(x, uj) + ln(t′j) ≤ 0.

By taking j = i and by the choice of δ,

c(x, ul)− ln(tl)− c(x, ui) + ln(ti) ≤
1

k0
,

which yields that x ∈ Uk0
i . Similarly, in the case where x ∈ Vi \ Ui, there exists 1 ≤ l ≤ m

such that x ∈ Ul and since x ∈ Vi we have that for all 1 ≤ j ≤ m

c(x, ui)− ln(t′i)− c(x, uj) + ln(t′j) ≤ 0.

By taking j = l and using the assumption on δ, this yields

c(x, ui)− ln(ti)− c(x, ul) + ln(tl) ≤
1

k0
,

which implies x ∈ Uk0
l , and in particular, in both cases, x ∈ ∪mj=1U

k0
j . Since the parameters

were chosen so that the measure of this set is at most ε, we conclude that µ(Ui△Vi) < ε, so

long as |t′ − t| < δ, which completes the proof. □

A main feature of the map Hµ
(ui)mi=1

is that it respects the product structure on the faces of

∆m. More precisely, when applied to a point on a face ∂I∆m, the map is usually set-valued.

The set which such a point is mapped to, however, has a specified I th-coordinate (given by
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another map of such form, associated with a different measure), and the Ic-coordinates of

points in the image span a full Hall polytope of another associated measure – exactly the

one given in the face splitting discussed in Proposition 5.4. This is formally described in the

next proposition.

Proposition 5.13. Under the assumptions of Proposition 5.12, consider some subset I ⊂ [m]

and let t = tI ×I 0Ic be a vector with positive I th-coordinates. Let

µI =
1

µ(AI)
µ
∣

∣

AI
, µcI =

1

µ(AcI)
µ
∣

∣

Ac
I
.

Then,

Hµ
(ui)mi=1

(t1, . . . , tm) = µ(AI)H
µI
(ui)i∈I

(ti)i∈I ×I µ(AcI)H
µcI
(uj)j∈Ic

(∆m−|I|).

In particular, Hµ
(ui)mi=1

maps the face ∂I∆m to the face FI of the Hall polytope P ((ui)
m
i=1, µ).

Proof of Proposition 5.13. We show a two-way inclusion.

For the direction ⊇ take a point (α1, . . . , αm) in the right hand side, which is of the form

µ(AI)H
µI
(ui)i∈I

(ti)i∈I ×I µ(AcI)H
µcI
(uj)j /∈I

(sj)j /∈I

where
∑

i∈I ti = 1 and
∑

j /∈I sj = 1. For δ ∈ (0, 1) define tδ ∈ ∆m in the following way

tδi =

{

(1− δ)ti i ∈ I
δsi i /∈ I

Clearly, tδ → t as δ → 0, thus, by continuity of H (Proposition 5.12), it suffices to show that

(α1, . . . , αm) ∈ lim
δ→0

Hµ
(ui)mi=1

(tδi )
m
i=1.

We will show that for every ε > 0 there exists some δ0 such that for every δ < δ0 we have

||(α1, . . . , αm)−Hµ
(ui)mi=1

(tδ)|| ≤ ε.

Denote (β1, . . . , βm) = Hµ
(ui)mi=1

(tδ). Let us reinterpret βi,

βi = µ({x ∈ X : arg min
1≤k≤m

c(x, uk)− ln(tδk) = i})

= µ({x ∈ AcI : arg min
1≤k≤m

c(x, uk)− ln(tδk) = i})

+µ({x ∈ AI : arg min
1≤k≤m

c(x, uk)− ln(tδk) = i}).

On AcI the minimum is attained for k /∈ I, hence
βi = µ(AcI)µ

c
I({x ∈ X : arg min

1≤k≤m
c(x, uk)− ln(δsk) = i})

+ µ({x ∈ AI : arg min
1≤k≤m

c(x, uk)− ln(tδk) = i})

= µ(AcI)µ
c
I({x ∈ X : arg min

1≤k≤m
c(x, uk)− ln(sk) = i})

+ µ({x ∈ AI : arg min
1≤k≤m

c(x, uk)− ln(tδk) = i}).
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Observe that the first summand is by definition equal to

(13) µ(AcI)µ
c
I({x ∈ X : arg min

1≤k≤m
c(x, uk)− ln(sk) = i}) =

{

0 i ∈ I
αi i /∈ I

.

We first deal with the case i /∈ I, in which (13) gives that

βi = αi + µ({x ∈ AI : arg min
1≤k≤m

c(x, uk)− ln(tδk) = i}).

For x ∈ AI , argmin1≤k≤m c(x, uk)− ln(tδk) = i means, in particular, that

c(uj, x)− ln((1− δ)tj) > c(ui, x)− ln(δsi)

for all j ∈ I. Since si and tj are fixed, we can clearly find δ0 > 0 such that for any δ < δ0
the measure of such x’s is arbitrarily small. Thus, we choose δ0 (depending on s and t) such

that αi ≤ βi ≤ αi + ε/m.

For the case i ∈ I,
βi = µ({x ∈ AI : arg min

1≤k≤m
c(x, uk)− ln(tδk) = i})

≤ µ({x ∈ AI : argmin
k∈I

c(x, uk)− ln(tδk) = i})

= µ({x ∈ AI : argmin
k∈I

c(x, uk)− ln(1− δ)− ln(tk) = i})

= µ(AI)µI({x ∈ AI : argmin
k∈I

c(x, uk)− ln(tk) = i}) = αi.

Thus we have βi ≤ αi. Since
∑m

i=1 βi = 1 =
∑m

i=1 αi, and αi ≤ βi ≤ αi + ε/m when i /∈ I,
we see that

∑

i∈I
αi − ε ≤ 1−

∑

j /∈I
(αj + ε/m) ≤

∑

i∈I
βi ≤

∑

i∈I
αi

and we conclude βi > αi − ε for i ∈ I.
So far we have shown that for any 1 ≤ i ≤ m, we have

αi − ε ≤ βi ≤ αi + ε,

which completes the proof of the first inclusion.

We proceed to show the second inclusion ⊆. Let α ∈ Hµ
(ui)

(t) for t = tI ×I {0Ic}. By the

definition of H on the boundary of the simplex, there exists a sequence

(t
(k)
1 , . . . , t(k)m ) = t(k) → t = (t1, . . . , tm)

with t(k) ∈ int(∆m), and

Hµ
(ui)mi=1

(t(k))→ α.

In particular
∑

i∈I t
(k)
i → 1 and

∑

j /∈I t
(k)
j → 0. Note that for x ∈ AI , as k →∞, the minimum

in the definition will be attained (from some k0 onwards) on an index i ∈ I. Therefore
∑

j∈I
αj ←

∑

j∈I
(Hµ

(ui)mi=1
(t

(k)
i ))j = µ(x ∈ X : arg min

1≤i≤m
c(x, ui)− ln(t

(k)
i ) ∈ I)→ µ(AI)

(limits with respect to k →∞), which implies
∑

i∈I αi = µ(AI) and thus
∑

j /∈I αj = µ(AcI).
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Set t′(k)i =
t
(k)
i

∑
j∈I t

(k)
j

for i ∈ I. It is well defined (for large enough k, as
∑

j∈I tj = 1), and its

limit is clearly t′i =
ti∑
j∈I tj

. Hence,

HµI
(ui)i∈I

(t′i) = (µI({x ∈ X : arg inf
k∈I

c(x, uk)− ln(t′k) = i}))i∈I

= (
1

µ(AI)
µ({x ∈ AI : argmin

k∈I
c(x, uk)− ln(t′k) = i}))i∈I

= (
1

µ(AI)
µ({x ∈ X : argmin

k∈I
c(x, uk)− ln(tk) = i}))i∈I =

1

µ(AI)
(αi)i∈I .

In the second to last step we used again the fact that the minimum can be attained at i ∈ I
only if x ∈ AI . Thus,

(αi)i∈I ∈ µ(AI)HµI
(ui)i∈I

(

ti
∑

i∈I ti

)

= µ(AI)H
µI
(ui)i∈I

((ti)i∈I).

Setting t′′(k)i =
t
(k)
i

∑
j /∈I t

(k)
j

for i /∈ I, the sequence (t′′(k)i )∞k=1 has a converging subsequence in

∆m−|I|, denote this subsequence by (t′′(kl)i )∞l=1, and its limit (t′′i)i/∈I . Once again, by the same

argument as above, the image of this point under the map H corresponding to µcI is exactly

H
µcI
(ui)i/∈I

(t′′j ) =
1

µ(AcI)
(αj)j /∈I .

□

5.6. Transporting a non-degenerate measure to a discrete measure. We proceed

to the proof of the following theorem, which is a version of Theorem 1.3, with an extra

non-degeneracy assumption of µ (recall Definition 5.6).

Theorem 5.14. Let X and Y be measure spaces, c : X × Y → (−∞,∞] measurable, fix

(ui)
m
i=1 ⊂ Y and let µ ∈ P(X) be c-regular and supported on {x ∈ X : ∃i ∈ [m] c(x, ui) <∞}.

Assume, in addition, that µ is non-degenerate with respect to (ui)
m
i=1. Then, the mapping

Hµ
(ui)mi=1

: int(∆m) → (P ((ui)
m
i=1, µ)) covers the set int(P ((ui)

m
i=1, µ)), that is, for any α ∈

int(P ((ui)
m
i=1, µ))) there exists some t ∈ int(∆m) such that Hµ

(ui)mi=1
(t) = α.

Proof. Denote H = Hµ
(ui)mi=1

and P = P ((ui)
m
i=1, µ). By the non-degeneracy assumption, P is

full dimensional, and in particular has non-empty interior. If the image of H did not cover

the interior of P , there would be some α ∈ intP such that H(t) ̸= α for all t ∈ int(∆m). We

use α to define the radial projection p of P \{α} to its boundary. It follows that p◦H is well

defined and continuous. We then use the function R as given in Proposition 5.11 to map the

boundary of P to the boundary of the simplex. Since H(∂I∆m) ⊂ FI we see that R ◦ p ◦H
is a mapping from the simplex to its boundary which maps the I th facet to itself.

Note that this composition map is a well defined function, i.e. a point-valued map: It is

clearly point-valued on int(∆m). Let t ∈ ∂∆m, and take the minimal I (with respect to

inclusion) such that t ∈ ∂I∆m. Then, the coordinates tI are all non-zero, and by Proposition

5.13 points in the set H(t) differ only on their Ic coordinates. Again by Proposition 5.13,
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H(t) ∈ FI ⊂ ∂P , so p(H(t)) = H(t). Further, since the map R depends only on the I

coordinates of H(t) (as H(t) ∈ FI), we conclude that the set H(t) is mapped to a single

point, and thus R ◦ p ◦H is point-valued.

Next we claim that the composition R ◦ p ◦ H is a continuous function on ∆m. For points

in the interior of ∂∆m this follows from the fact that all three maps are continuous (see

Propositions 5.12 and 5.11). We proceed to explain why the composition is continuous

on the boundary. Let t = tI ×I 0Ic be some boundary point, with ti > 0 for i ∈ I (so,

t ∈ relint(∂I∆m)). Consider a sequence t(k) → t with (R ◦ p ◦ H)(t(k)) converging to some

vector s on the boundary of the simplex. We need to show that s = (R ◦ p ◦ H)(t). By

the definition of H on boundary points, and the continuity of p and R, we may without

loss of generality assume t(k) ∈ int(∆m). Indeed, for any t′ ∈ ∂∆m, y ∈ H(t′) and any

ε > 0, there is some t′ε ∈ int(∆m) with |y −H(t′ε)| < ε, so given any sequence t(k) → t with

(R ◦ p ◦H)(t(k)) converging to s we can construct a sequence in the interior, converging to t,

whose image under R ◦ p ◦H converges to the same s. By definition of H, all accumulation

points of the sequence H(t(k)) belong to H(t). By continuity of R ◦ p, we conclude that all

accumulation points of R◦p◦H(t(k)) (which we have assumed converge to the point s) belong

to (R ◦ p)(H(t)). However, as we have already seen, R ◦ p ◦H(t) is a point, and we get that

s = R ◦ p ◦H(t).

However, there does not exist a continuous mapping from the simplex to its boundary which

preserves the facets. Indeed, this can be shown, for example, using Brouwer’s fixed point

theorem – as such a map could then be composed with a permutation, arriving at a continuous

mapping from the simplex to itself with no fixed point. Hence, H covers the interior of P ,

and for every α ∈ int(P ) there is some preimage t. Moreover, this t satisfies t ∈ int(∆m),

otherwise, if ti = 0 for some set of indices i ∈ I, then by Proposition 5.13, H(t) ∈ FIc , which
does not contain α (as FIc is not in the interior of P ). □

5.7. Removing the non-degeneracy condition. The only difference between Theorem

1.3 and Theorem 5.14, apart from notation, is that in the latter we assume not only that

{x ∈ X : c(x, ui) <∞} ∩ {x ∈ X : c(x, uj) <∞}
contains an open set for any i ̸= j, but that µ is non-degenerate with respect to the vectors

(ui)
m
i=1, namely that

µ ({x : c(x, ui) <∞} ∩ {x : c(x, uj) <∞}) > 0.

To remove this condition, we will use a straightforward perturbation argument, similar to

constructions used for example, by McCann [14], adding in this case uniform measures on

small disks, and taking limits. More formally, make use of the following technical lemma.

Lemma 5.15. Let P = P ((ui)
m
i=1, µ) be the Hall polytope associated with (ui)

m
i=1 and the

measure µ supported on {x ∈ X : ∃i ∈ [m] c(x, ui) <∞}, and assume P is full dimensional.

Further assume that for 1 ≤ i < j ≤ m the intersection

{x ∈ X : c(x, ui) <∞} ∩ {x ∈ X : c(x, uj) <∞}
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contains a disk, for any i ̸= j, and let ηi,j denote a uniform measure on this disk, with the

constants chosen so that
∑

i<j∈[m] ηi,j(X) = 1. For any k ∈ N let

µk =
1

k

∑

i<j∈[m]

ηi,j + (1− 1

k
)µ,

and Pk = P ((ui)
m
i=1, µk) the associated Hall polytope. Then,

(i) Hµk
(ui)mi=1

→k→∞ Hµ
(ui)mi=1

uniformly on ∆m, and

(ii) Pk → P as k →∞ in the Hausdorff metric.

Proof. Note first that each µk is non-degenerate, so by Proposition 5.7 Pk is full dimen-

sional. Furthermore, we may apply Theorem 5.14, and get that the mapping Hk := Hµk
(ui)mi=1

:

int(∆m)→ P (k) covers the set int(P (k)). Denote H = Hµ
(ui)mi=1

.

For (i), let t = (t1, . . . , tm) ∈ int(∆m). It will be convenient to recall the notation Ui =

{x ∈ X : argmin1≤j≤m c(x, uj)− ln(tj) = i}. The ith component of the difference vector sat-

isfies

|(Hk(t)−H(t))i| = |µk (Ui)− µ (Ui)| = |
1

k

∑

i<j

ηi,j (Ui)−
1

k
µ (Ui) | ≤

2

k
.

For (ii), let ε > 0, we will show that for all k > k0 = k(ε), Pk ⊂ P + εBm
2 and P ⊂ Pk+ εB

m
2 .

For the first inclusion, let α ∈ int(Pk), then since Pk is a Hall polytope of a non-degenerate

measure, we apply Theorem 5.14 and get a point t ∈ ∆m for which Hk(t) = α. As H(t) ∈ P ,
the previous assertion (i) gives ∥α −H(t)∥2 ≤ 2

√
m
k

, so int(Pk) ⊂ P + 2
√
m
k
Bm

2 and therefore

Pk itself is also included in the same extension of P . For the second inclusion, let α ∈ P and

let α(k) be given by α
(k)
i :=

(

1− 1
k

)

αi+
1
k

∑

{j:i<j} ηi,j(X). We claim α(k) ∈ Pk; we check that

it satisfies all of the necessary inequalities. Clearly
∑

α
(k)
i = 1, and as the support of ηi,j is

a subset of A{i} ∩ A{j} ⊂ AI for all i ∈ I we have

∑

i∈I
α
(k)
i =

(

1− 1

k

)

∑

i∈I
αi +

1

k

∑

i∈I

∑

{j: i<j}
ηi,j(X) ≤

(

1− 1

k

)

µ(AI) +
1

k

∑

i<j

ηi,j(AI) = µk(AI).

We compute

∥α− α(k)∥2 =





m
∑

i=1

1

k2
(αi −

∑

i∈I

∑

{j: i<j}
ηi,j(X))2





1/2

≤ 2
√
m

k
.

Taking k0 =
2
√
m
ε

we see that both inclusions hold. □

We are now set up to prove the existence of a transport map between strongly c-compatible

measures, one of which is discrete and the other c-regular.

Proof of Theorem 1.3. Let µ be a c-regular measure on X and ν =
∑m

i=1 αi✶ui a discrete

measure on Y which satisfy the assumptions of the theorem, and denote by P = P (µ, (ui)
m
i=1)

the associated Hall polytope.
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The condition of strong c-compatibility means precisely that for I ̸= ∅, [m] we have
∑

αi <

µ(AI), or, in other words, that α = (αi)
m
i=1 ∈ int(P ). In particular P is non-empty and in

fact full dimensional. The conditions of Lemma 5.15 are satisfied so we may use it to define

Pk and Hk and find a sequence of points α(k) ∈ int(Pk) such that α(k) → α as k → ∞.

Take t(k) ∈ int(∆m) such that Hk(t
(k)) = α(k). By the compactness of ∆m, there exists a

converging subsequence of t(k), to some t ∈ ∆m, and we denote t(k) → t, abusing notation

slightly. We claim that t ∈ int(∆m) and that H(t) = α. Indeed,

|H(t)− α| ≤
∣

∣H(t)−H(t(k))
∣

∣+
∣

∣H(t(k))−Hk(t
(k))

∣

∣+
∣

∣Hk(t
(k))− α(k)

∣

∣+
∣

∣α(k) − α
∣

∣ .

Each of the terms tends to 0 as k → ∞: the leftmost by continuity of H (Proposition

5.12), the second by uniform convergence of Hk to H, the third term vanishes for every k by

choice of t(k), and the rightmost by choice of the sequence α(k). Therefore H(t) = α. Since

α ∈ int(P ) we may use Proposition 5.13 to conclude that t ∈ int(∆m).

We have thus established that H is onto the interior of P . Recalling the construction in

Lemma 5.2, we have shown that the function

φ(x) = min
1≤i≤m

(c(x, ui)− ln(ti))

satisfies that its c-subgradient supports a transport map from µ to ν. The function φ is

therefore our desired potential. Indeed, the map T : X → Y which maps the set {x :

min1≤j≤m(c(x, uj)− ln(tj)) = i} to ui for all i ∈ [m], is a transport map (we define T on the

boundary of these sets arbitrarily, as it is µ-negligible) and (x, ui) ∈ ∂cφ for x ∈ Ui by the

first (and easy) part of Lemma A.2 from the appendix. □

6. For the Polar cost: Maps versus Plans

Throughout the paper, we were careful to discuss transport plans, and not just maps. Indeed,

even in the simplest cases of discrete measures, there is no reason for a transport map to

exist, as it may require “atom splitting”, a dangerous endeavor. Nevertheless, in the classical

case, for example, when a transport plan from some absolutely continuous measure µ to a

measure ν is concentrated on the usual subgradient of a convex function, φ ∈ Cvx(Rn), it is

easy to see that in fact one obtains a map, not just a plan. Indeed, a convex function has a

unique subgradient almost everywhere.

For a general cost c this is no longer the case, but for our main motivating example, the

polar cost p(x, y) = − ln(⟨x, y⟩ − 1), a similar argument works. Recall that for this cost the

p-class is given by − ln(φ) where φ ∈ Cvx0(Rn) is a geometric convex function, that is, a

lower semi-continuous non-negative convex function with φ(0) = 0. The p-subgradient of the

function − ln(φ) coincides with the polar subgradient ∂◦, introduced in [3], of the function

φ ∈ Cvx0(Rn), and we have that

∂p(− ln(φ)) = ∂◦φ = {(x, y) : φ(x)Aφ(y) = ⟨x, y⟩ − 1 > 0},

where Aφ(y) = sup{x: ⟨x,y⟩>1}
⟨x,y⟩−1
ϕ(x)

is the polarity transform defined in [2]. More details are

provided in Appendix A together with the proof of the following lemma.
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Lemma A.4. Let φ ∈ Cvx0(Rn) and let x satisfy φ(x) ∈ (0,∞). Then

(i) for any z ∈ ∂φ(x) such that ⟨x, z⟩ ≠ φ(x), we have that y = z
⟨x,z⟩−ϕ(x) ∈ ∂◦φ(x),

(ii) for any y ∈ ∂◦φ(x) there exists some z ∈ ∂φ(x) such that ⟨x, z⟩ ≠ φ(x) and such that

y = z
⟨x,z⟩−ϕ(x) .

When φ(x) = 0 or φ(x) = ∞, then by definition, ∂◦φ(x) = ∅. When φ(x) ∈ (0,∞), the

lemma implies that at a differentiability point of φ, the set ∂◦φ(x) is either a singleton or is

empty, which may happen only if the function φ is linear on [0, x]. Our main theorem thus

implies the following.

Theorem 1.2. Let X = Y = Rn and let µ, ν ∈ P(Rn) be probability measures with finite

second moment, which are strongly p-compatible with respect to the polar cost, that is

µ(K) + ν(K◦) < 1

for any convex set K with µ(K) ̸= 0, 1.

Assume further that µ is absolutely continuous and that there exists some finite cost plan

mapping µ to ν. Then there exists φ ∈ Cvx0(Rn) such that ∂◦φ is an optimal transport map

between µ and ν, where

∂◦φ(x) = {y : φ(x)Aφ(y) = ⟨x, y⟩ − 1 > 0}.
In particular, for µ-almost every x, the set ∂◦φ(x) is a singleton.

Proof. By Theorem 1.1, we find a function φ ∈ Cvx0(Rn) such that there is an optimal plan

π concentrated on the graph of ∂p(− logφ) = ∂◦φ. We claim that µ-almost everywhere, the

set ∂◦φ(x) is a singleton, implying that ∂◦φ is indeed a transport map.

Since π is concentrated on ∂◦φ, the measure µ is concentrated on the projection of ∂◦φ, so
in particular on the set of x ∈ X with φ(x) ̸= 0,∞. We may also restrict to points in the

interior of the domain of φ, as φ is convex and points on the boundary of its domain have

µ-measure zero (using again that µ is absolutely continuous). We have that µ-almost every

point x in the interior of the domain of φ is a differentiability point of φ, and further that

φ does not vanish on µ-almost every such point. Hence, by Lemma A.4, ∂◦φ(x) is either a
singleton or the empty set (in which case x does not belong to the projection of ∂◦φ). We

conclude that indeed ∂◦φ(x) must be a singleton µ-almost everywhere, as required. □

7. Decomposable pairs

We discussed in Section 3 that when considering the transport problem of a measure µ ∈
P(X) to ν ∈ P(Y ), with respect to a cost function c : X×Y → (−∞,∞], where µ and ν are

c-compatible but not strongly c-compatible, the transport problem splits into two transport

problems of disjointly supported measures. Let us make this observation more formal.

Proposition 7.1. Let c : X × Y → (−∞,∞], and assume µ ∈ P(X), ν ∈ P(Y ) are c-

compatible measures which are not strongly c-compatible. There exists a c-class set A ⊂ X,
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and B ⊂ Y such that Y \ B is c-class, with µ(A) = ν(B) ∈ (0, 1), such that, letting µ|A and

ν|B denote the restricted measures, normalized, the pair µ|A and ν|B is c-compatible, as is

the pair µ|X\A and ν|Y \B. Moreover, any π ∈ Π(µ, ν) which is concentrated in the set S =

{(x, y) : c(x, y) <∞}, can be written as π = µ(A)π1 + (1− µ(A))π2, where π1 ∈ Π(µ|A, ν|B)
and π2 ∈ Π(µ|X\A, ν|Y \B), and C(µ, ν) = µ(A)C(µ|A, ν|B) + (1− µ(A))C(µ|X\A, ν|Y \B).

Proof. Indeed, by Lemma 3.12, the fact that the measures are not strongly c-compatible

implies that there exists some set A ⊂ X, which is a c-class set (this means there is some

D ⊂ Y , which can also be assumed to be a c-class set, such that A = {x : ∀y ∈ D, c(x, y) =
∞}), and such that µ(A) ∈ (0, 1) and

µ(A) + ν({y : ∀x ∈ A, c(x, y) =∞}) = 1.

Rearranging, this means that

µ(A) = ν({y : ∃x ∈ A, c(x, y) <∞}) and µ(X \ A) = ν({y : ∀x ∈ A, c(x, y) =∞}).
Let B = {y : ∃x ∈ A, c(x, y) < ∞} = Y \ D. To see that µ|A and ν|B are c-compatible,

letting µ(A) = a, say, and fixing some set A′ ⊂ A, we see that

µ(A′) + ν({y ∈ B : ∀x ∈ A′, c(x, y) =∞}) =
µ(A′) + ν({y ∈ Y : ∀x ∈ A′, c(x, y) =∞})− ν(Y \B) ≤ 1− (1− a) = a,

as required. Similarly for the complementary measures. If a transport plan π ∈ Π(µ, ν) is

concentrated on S, then π cannot have non-zero measure in A× (Y \B) or in (X \A)×B.

Indeed, as

µ(A) = π((A× Y ) ∩ S) = π(A× B) ≤ ν(B) = µ(A)

implying that we have equalities all along, and π(A× (Y \B)) = 0. Similarly, as Y \B = D

is a c-class set, D = {y : ∀x ∈ A, c(x, y) =∞}, so D must be mapped to X \A, and as these

sets have the same measure,

ν(D) = π((X ×D) ∩ S) = π((X \ A)×D) ≤ µ(X \ A) = ν(D),

and by the same reasoning, π((A \ X) × B) = 0. (Figure 1 is a good illustration of this

event.)

In other words, such a transport plan can be split into its components, π1 = π|A×B and

π2 = π|(X\A)×(Y \B) (where as above, restriction means to restrict, and renormalize to a

probability measure). This completes the proof. □

Of course, the fact that the problem splits into two sub-problems does not necessarily imply

we may solve it in a satisfactory way. Indeed, it may be the case that each sub-problem has

an associated potential function, but these two functions cannot be “glued” so as to form

a potential for the original problem. This is the case for example for the polar cost in the

following example

Example 7.2. Consider the set

A = {(x, y) : x ∈ (1
2
, 1), y = 3− 2x} ∪ {(x, y) : x ∈ (1, 2), y = 3

2
− 1

2
x} ⊂ R+ × R+.
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The set is a p-cyclically monotone (with respect to the polar cost p(x, y) = − ln(⟨x, y⟩−1) since
for every point (x, y) ∈ A we have ⟨x, y⟩ > 1 and it is a graph of non-increasing function on

its domain, which characterized p-cyclically monotone sets on the ray R+, see [5]. However,

the set is not p-path-bounded, and thus admits no potential.

Next, consider the measure µ = ν on [1/2, 2] with density 1 on [1/2, 1] and density 1/2 on

[1, 2]. This is a probability measure. In fact, µ and ν are p-compatible as the normalized

uniform measure on the set A constitutes a plan π ∈ Π(µ, ν). However, they are not strongly

p-compatible since the set A = [1/2, 1] must be mapped to B = [1, 2] and vice versa.

In this case we see the splitting very clearly, and indeed A is written as the union of two sets,

each of which admits a potential (so, in particular, each is c-path-bounded, and is an optimal

plan between the corresponding restricted measures). However, there is no potential for the

full set A, as it is not c-path-bounded, and in particular no “gluing” of the two potentials is

possible.

Appendix A. c-subgradients and polar subgradients

Since c-subgradients play such an important role in this theory, we gather here some relevant

information regarding them but which we did not include in the main text so as not to disturb

its flow.

Let us recall that given a function φ in the c-class, its c-subgradient is defined by

∂cφ = {(x, y) : φ(x) + φc(y) = c(x, y) and c(x, y) <∞}.

Denoting by ∂cφ(x) the set of points y ∈ Y for which (x, y) ∈ ∂cφ, we have by definition

that

x ∈ ∂cφc(y) ⇔ y ∈ ∂cφ(x).
Notice that y ∈ ∂cφ(x) if and only if the function c(·, y) − φc(y) is above φ and coincides

with it at x. This provides the first simple but useful way to think about c-subgradients,

summarized in Lemma A.1. Given a function φ in the c-class, it is the image, under the c-

transform, of another c-class function ψ = φc and therefore, it can be written as an infimum

over basic functions as follows:

φ(x) = inf
y
(c(x, y)− φc(y)) .

All the functions on the right hand side lie above φ. If any one of the basic functions (indexed

by y) on the right hand side is tangent to φ at the point x, then the pair (x, y) belongs to

∂cφ, and y ∈ ∂cφ(x). In other words

Lemma A.1. Let φ be a c-class function, and x ∈ X and assume that φ(x) < ∞. Then

y0 ∈ ∂cφ(x) if and only if c(x, y0) < ∞ and the function ℓ(z) = c(z, y0) − c(x, y0) + φ(x)

satisfies

ℓ(z) ≥ φ(z) for all z ∈ X.
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Proof. By the definition we have that y0 ∈ ∂cφ(x) if and only if

φ(x) + φc(y0) = c(x, y0) <∞.
Using the definition of the c-transform we see that

φ(x) = c(x, y0)− φc(y0) = sup
z
(c(x, y0)− c(z, y0) + φ(z)),

which holds if and only if for all z we have c(z, y0)− c(x, y0) + φ(x) ≥ φ(z). □

It is useful to understand the structure of the c-subgradient of the basic functions. In parallel

to the classical case, where the linear functions have constant subgradient, we show that under

mild assumptions the same is true for c-subgradients of basic functions. This was, of course,

our motivation for using the specific candidates for the potential functions in Section 5.

Lemma A.2. Let X, Y be measure spaces and let c : X × Y → (−∞,∞] be a measurable

cost function. Consider a basic function φ(x) = c(x, y0)+t for some y0 ∈ Y . If c(x, y0) <∞,

then y0 ∈ ∂cφ(x). If, in addition, for any y1 ̸= y0 we have that infz (c(z, y1)− c(z, y0)) is not
attained at x (for example, if the infimum is −∞, or bounded but not attained at all) then

{y0} = ∂cφ(x).

Proof. Indeed, let φ be as in the statement. From the definition it follows that y ∈ ∂cφ(x) if
and only if c(x, y) <∞ and

c(x, y)− φ(x) = φc(y) = inf
z
(c(z, y)− φ(z)),

which can be reformulated as

c(x, y)− φ(x) ≤ c(z, y1)− φ(z) for all z ∈ X.
Plugging in the definition of φ we get

c(x, y)− c(x, y0) ≤ c(z, y)− c(z, y0) for all z ∈ X.
We see that y = y0 always satisfies the equality, so that y0 ∈ ∂cφ(x). Clearly for y1 ̸= y0,

such an inequality means precisely that the infimum is attained at x. □

An important and motivating first example is the one coming from the clasical cost function

c(x, y) = −⟨x, y⟩.

Example A.3. For the cost function c(x, y) = −⟨x, y⟩, whose transport plans and maps

coincide with those associated to the quadratic cost, the c-subgradient coincides, up to a

minus sign, with the well known subgradient. More formally, a function φ is in the c-class if

and only if −φ ∈ Cvx(Rn), namely is convex and lower semi-continuous. Denoting ψ = −φ
and using the definition of the c-transform we see that (x, y) ∈ ∂cφ if and only if for all

z ∈ X we have

ψ(z)− ψ(x) = φ(x)− φ(z) ≥ c(x, y)− c(z, y).
Plugging in the quadratic cost we indeed get that y ∈ ∂cφ(x) if for all z it holds that ψ(x) +

⟨z − x, y⟩ ≤ ψ(z), namely y ∈ ∂ψ(x).
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The second motivating example, which is our main point of interest, is that of the polar cost

p : Rn × Rn → (−∞,∞], which we once again recall

p(x, y) = − ln(⟨x, y⟩ − 1)+ =

{

− ln(⟨x, y⟩ − 1), if ⟨x, y⟩ > 1

+∞, otherwise.

It was shown in [7] that for the polar cost the p-class consists of all functions of the form

− ln(φ), where φ is a geometric convex function, that is, a lower semi-continuous non-negative

convex function with φ(0) = 0. The associated cost transform is linked with the A-transform
defined in [2] and given by

(14) Aφ(y) = sup
{x: ⟨x,y⟩>1}

⟨x, y⟩ − 1

φ(x)
.

More precisely, one may easily verify that − ln(Aφ) = (− ln(φ))p. Further, the p-subgradient

of the function − ln(φ) can be rewritten as the polar subgradient ∂◦, introduced in [3], of the

function φ ∈ Cvx0(Rn). Indeed, we have that

∂p(− ln(φ)) = ∂◦φ = {(x, y) : φ(x)Aφ(y) = ⟨x, y⟩ − 1 > 0}.(15)

This convenient form is a reason for us to sometimes consider a “multiplicative” setting,

where the basic functions are of the form

φu,t(x) = t(⟨x, u⟩ − 1)+.

The next lemma, which is a version of [3, Lemma 3.3], describes the connection between the

polar subgradient and the classical subgradient. We will use the following notation for the

zero set Zϕ = {x : φ(x) = 0} and dom(φ) = {x : φ(x) <∞} for the domain where φ is finite.

Lemma A.4. Let φ ∈ Cvx0(Rn) and let x ∈ dom(φ) \ Zϕ. Then

(i) for any z ∈ ∂φ(x) such that ⟨x, z⟩ ≠ φ(x), we have that y = z
⟨x,z⟩−ϕ(x) ∈ ∂◦φ(x),

(ii) for any y ∈ ∂◦φ(x) there exists some z ∈ ∂φ(x) such that ⟨x, z⟩ ≠ φ(x) and such that

y = z
⟨x,z⟩−ϕ(x) .

Proof. (i) Let z ∈ ∂φ(x) with ⟨x, z⟩ ≠ φ(x), which means that for every w we have ⟨w, z⟩ −
φ(w) ≤ ⟨x, z⟩ − φ(x). In particular, ⟨x, z⟩ − φ(x) > 0. Hence, letting y = z

⟨x,z⟩−ϕ(x) we have

that ⟨x, y⟩ > 1.

To show that y ∈ ∂◦φ(x), it remains to show that φ(x)Aφ(y) = ⟨x, y⟩ − 1. According to the

definition of A, this holds if for every w with ⟨w, y⟩ > 1 and φ(w) > 0, we have

⟨w, y⟩ − 1

φ(w)
≤ ⟨x, y⟩ − 1

φ(x)
.

Plugging in y and rearranging gives

⟨w, z
⟨x,z⟩−ϕ(x)⟩ − 1

φ(w)
≤
⟨x, z

⟨x,z⟩−ϕ(x)⟩ − 1

φ(x)
=

1

⟨x, z⟩ − φ(x) .
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Using that ⟨x, z⟩ − φ(x) > 0, the above inequality is equivalent to our initial assumption

⟨w, z⟩ − φ(w) ≤ ⟨x, z⟩ − φ(x).
(ii) Given y ∈ ∂◦φ(x) it follows from the definition that ⟨x, y⟩ > 1. Consider

z =
yφ(x)

⟨y, x⟩ − 1
,

which is well defined, and also implies that y = z
⟨x,z⟩−ϕ(x) . We need to show that z ∈ ∂φ(x)

and ⟨z, x⟩ ≠ φ(x).

The latter follows easily since ⟨z, x⟩ = φ(x)
(

1 + 1
⟨x,y⟩−1

)

and once again that ⟨x, y⟩ > 1. For

the former, we use as before that if y ∈ ∂◦φ(x) then for any w with ⟨w, y⟩ > 1 and φ(w) > 0

we have ⟨w,y⟩−1
ϕ(w)

≤ ⟨x,y⟩−1
ϕ(x)

. Plugging in y and rearranging, we get that

φ(x) + ⟨w − x, z⟩ ≤ φ(w)

holds for any w such that ⟨w, z⟩ > ⟨x, z⟩ − φ(x) and φ(w) > 0. In the case when w is such

that ⟨w, z⟩ ≤ ⟨x, z⟩ − φ(x), this actually means that φ(x) + ⟨w − x, z⟩ ≤ 0 and since the

geometric convex functions are non-negative the desired inequality trivially follows.

It remains to consider the case when w ∈ Zϕ, i.e. when φ(w) = 0. Then, plugging in the

previously defined z, we have that the inequality defining the subgradient of φ at x becomes

simply

⟨w, y⟩ ≤ 1.

That is, we need to show that ∂◦φ(x) is contained in the polar set of Zϕ. Indeed, y ∈ ∂◦φ(x)
implies in particular that y ∈ dom(Aφ) (since the value of Aφ(y) = ⟨x,y⟩−1

ϕ(x)
< ∞) and it

follows from the definition of A that dom(Aφ) ⊂ Z◦
ϕ, which completes the proof. □

We end this appendix with one explicit example of a function and its p-subgradient. More

examples and applications can be found in [7, 22] and in the forthcoming [4].

Example A.5. Let φ(x) = |x|2/2, in which case Aφ(y) = |y|2/2 and the supremum in the

definition of Aφ is satisfied for x = 2y/|y|2. Hence, ∂◦φ(x) = 2x
|x|2 . Note that the mapping

x 7→ ∂◦φ(x) in this case is a (rescaled) spherical inversion.
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