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Abstract. We show that there exist constants α, ε > 0 such that for every positive integer n
there is a continuous odd function f : Sm → Sn, with m > αn, such that the ε-expansion
of the image of f does not contain a great circle. This result is motivated by a conjecture of
Vitali Milman about well-complemented almost Euclidean subspaces of spaces uniformly
isomorphic to `n2 .
Keywords. Anti-Ramsey, antipodal subsphere
Mathematics Subject Classifications. 46B09, 60C05

1. Introduction

Let U be a measurable subset of the sphere Sn. How large must the measure of U be in order
to guarantee that the ε-expansion of U , that is, the set Uε that consists of all points at distance
at most ε from U , contains the unit sphere of a subspace of dimension k? Such questions have
been much studied ever since Milman’s famous proof [Mil71] of Dvoretzky’s theorem [Dvo61].
Milman’s insight was that by the isoperimetric inequality in the sphere, the volume of the ε/2-
expansion (say) is minimized, for a given measure of U , when U is a spherical cap. But when U
is a spherical cap of measure α and n is large, a relatively straightforward calculation shows
that Uε/2, which is again a spherical cap, has measure very close to 1. From this it follows, again
straightforwardly, that under suitable conditions on the parameters, an ε/2-net of the sphere of a
random subspace of dimension k will lie in Uε/2 with high probability, and hence that the entire
sphere will lie in Uε. This basic argument can be used to prove the surprising result that even if ε
is quite small, an exponentially small measure for U is sufficient to guarantee that Uε contains
the sphere of an k-dimensional subspace for some k of dimension that is linear in n.

If U has measure cn and c is too small, then the above argument fails, and the conclusion is
false. Indeed, if U is a spherical cap of volume cn, and if its spherical radius is π/2 − η, then
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unless ε > η the volume of Uε will not be close to 1, and if ε < η then Uε will not even contain
two antipodal points, let alone the sphere of a subspace of dimension k.

One could attempt to rule out this simple example by restricting attention to centrally sym-
metric sets, but that does not achieve much: if U is the cap just discussed, and if its centre is
the unit vector u, then U ∪ (−U) is centrally symmetric, and (U ∪ (−U))ε is disjoint from the
hyperplane orthogonal to u, which implies that (U ∪ (−U))ε does not contain the sphere of any
2-dimensional subspace.

A noticeable feature of this example is that it is in a certain sense zero-dimensional: if we
identify antipodal points and write q for the quotient map, then q(U) is a subset of projective n-
space, and it is homotopic to a point. Having made this observation, it is natural to wonder what
happens if we impose a condition that forces q(U) to have a higher dimension in this topological
sense. That motivates the following definition.

Definition 1.1. Anm-dimensional antipodal subsphere of Sn is the image of a continuous func-
tion f : Sm → Sn that preserves antipodal points.

If anm-dimensional antipodal subsphere of Sn is the unit sphere of an (m+ 1)-dimensional
subspace of Rn+1, then we shall call it linear.

Anm-dimensional antipodal subsphere is in a certain sense “genuinelym-dimensional”. For
instance, if X is such a subsphere and g : X → Rm is a continuous function, then g ◦ f is a
continuous function from Sm to Rm, which implies, by the Borsuk–Ulam theorem, that there is
some x ∈ Sm such that g(f(x)) = g(f(−x)), and therefore that g(f(x)) = g(−f(x)). Thus,
for any continuous map from X to Rm there will be two antipodal points with the same image.
Essentially the same argument shows that in projective n-space there is no homotopy from q(X)
(where q is the quotient map defined above) to a lower-dimensional set.

We now ask the following question.

Question 1.2. Let ε > 0, let k be a positive integer, and let X be an m-dimensional antipodal
subsphere of Sn. How large does m have to be in order to guarantee that Xε contains a linear
subsphere of dimension k?

In order to tackle this question, an obvious first step is to see how well one can do using
concentration of measure. That is, we consider instead a slightly stronger question.

Question 1.3. Let ε > 0, let k be a positive integer, and let X be an m-dimensional antipodal
subsphere of Sn. How large does m have to be in order to guarantee that Xε contains almost all
linear subspheres of dimension k?

By standard arguments, that is roughly the same as asking for Xε to have measure at
least 1− εk.

The following estimate is well known. See for example [Art02].

Lemma 1.4. Let m = αn and let ε(α) be such that sin ε(α) =
√

1− α. Then if X is a linear
m-dimensional subsphere, the measure of Xε tends to 1 if ε > ε(α) and to 0 if ε < ε(α).
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This implies that for the second question we needm to be at least αn, where
√

1− α = sin ε,
or α = cos2 ε ≈ 1− ε2/2.

However, it is not obvious what this observation tells us about the first question, since these
examples are linear subspheres, which are good sets to choose for the second question but the
worst possible sets to choose for the first. That is, if we wish to find an antipodal subsphere X
of dimension m such that Xε contains only a very small proportion of all linear k-dimensional
subspaces, then we should takeX itself to be linear, but if we would likeXε to contain no linear
k-dimensional subspace, then obviously we cannot take X to be linear (unless its dimension is
less than k).

The main result of this paper is that even when k = 1, the dimension ofX can be quite large.

Theorem 1.5. There exist constants α, ε > 0 such that for every n there is an bαnc-dimensional
antipodal subsphere X of Sn such that Xε contains no linear subsphere of dimension 1.

To put this less formally, there is an antipodal subsphere X ⊂ Sn of dimension linear in n
such that the expansion Xε does not contain any 1-dimensional linear subsphere.

We informally call such an antipodal subspace a tennis ball because it brings to mind the
seam of a genuine tennis ball (though the resemblance is not perfect, since the seam of a genuine
tennis ball is not centrally symmetric). We shall also refer to 1-dimensional linear subspheres
as great circles.

Theorem 1.5 has a simple corollary that can be thought of as an anti-Ramsey theorem for
linear subspheres.

Corollary 1.6. There exist constants α, η > 0 such that for every n there is a partition of Sn
into two subsets M and N such that Mη does not contain the unit sphere of any subspace of
codimension less than bαnc and Nη does not contain the unit sphere of any 2-dimensional sub-
space.

Proof (assuming Theorem 1.5). Let α, ε and X be as given by Theorem 1.5. Let N = Xε/2,
and M its complement on Sn. Then since Xε does not contain a great circle, every great circle
contains a point that does not belong to (Xε/2)ε/2 = Nε/2, which implies that this point is at
distance at least ε/2 from N .

It remains to prove that ifM = Sn\N and r < m, wherem = bαnc, thenMε/2 does not con-
tain the sphere of a subspace of codimension r, since then we will be done
with η = ε/2. Since Mε is disjoint from X , it is sufficient to prove that X intersects every
subspace of codimension r.

Let V be such a subspace. We are given that X is the image of some continuous odd func-
tion f : Sm → Sn. Hence, after composing f with a rotation, we may assume without loss
of generality that V = {x : x1 = · · · = xr = 0}. Let Pr be the coordinate projection to the
first r coordinates. Then Pr ◦ f is a continuous map from Sm to Rr, so by the Borsuk–Ulam
theorem there exists x ∈ Sm such that Prf(x) = Prf(−x). Since Pr ◦ f is also odd, it follows
that Prf(x) = 0, and therefore that f(x) ∈ V , as claimed.

We actually deduce Theorem 1.5 from a stronger result that trivially implies it and is of
independent interest.



4 Timothy Gowers, Katarzyna Wyczesany

Theorem 1.7. There exist constants α, ε > 0 and a continuous map ψ : Sn → Sn such that ψ
preserves antipodal points and such that if X is a random linear subsphere of dimension bαnc
then with probability 1− o(1) the set ψ(X)ε does not contain a great circle.

1.1. A remark about a question of V. Milman

Let us briefly explain our original motivation for the above result. We were interested in the fol-
lowing question of Vitali Milman, concerning a possible strengthening of Dvoretzky’s theorem.

Question 1.8. Let k be a positive integer, let C > 1 and let ε > 0. Does there exist n such that
if X = (Rn, |||·|||) is any normed space such that ‖x‖ 6 |||x||| 6 C‖x‖ for every x ∈ X , then X
has a subspace of dimension k that is (1 + ε)-complemented and has Banach–Mazur distance at
most 1 + ε from `k2?

For the reader unfamiliar with the terminology, the Banach–Mazur distance between two
isomorphic normed spaces X and Y is the infimum of ‖T‖‖T−1‖ over all linear isomorphisms
T : X → Y , and a subspace V ⊂ X is α-complemented if there is a projection P : X → V
with ‖P‖ 6 α.

We initially attempted to obtain a positive answer to a stronger question, namely the follow-
ing.

Question 1.9. Let k be a positive integer, let C > 1 and let ε > 0. Does there exist n such that
if X = (Rn, |||·|||) is any normed space such that ‖x‖ 6 |||x||| 6 C‖x‖ for every x ∈ X , then X
has a subspace V of dimension k such that there exists β with β‖v‖ 6 |||v||| 6 β(1 + ε)‖v‖ for
every v ∈ V and such that ‖P‖ 6 1 + ε, where P is the orthogonal projection from X to V ?

In relation to this conjecture, we identified a class of points x ∈ X that we called ε-good:
these are points x such that the orthogonal projection to the 1-dimensional space spanned by x
has norm at most 1 + ε. The second question turns out (by a not very difficult argument) to be
equivalent to asking whether for sufficiently large n there is a k-dimensional subspace consisting
entirely of ε-good points.

A number of examples have led us to believe that for any normed space satisfying the con-
ditions of the question, the set of ε-good points should be “genuinely cn-dimensional” for some
positive constant c that depends on C and ε. (We have not formulated a suitable conjecture, but
one possible definition of a set X ⊂ Sn such that X = −X being “at least m-dimensional”
is that when we regard X as a subset of projective n-space, it is not homotopic to a subset of
dimension less than m.) Also, a point that is close to an ε-good point is 2ε-good. Therefore, a
positive answer to the question would follow if one could show that the ε-expansion of a “gen-
uinely high-dimensional” subset of the sphere contains a k-dimensional linear subsphere.

However, the main result of this paper shows that this is false. In a separate paper we show
that the answer to Question 1.9 is also negative [GW21]. However, while the two results arose
from the same line of thought, the constructions are somewhat different, and neither result di-
rectly implies the other.
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2. The construction

Throughout this note we shall write ‖ · ‖ for the norm given by the formula

‖x‖2 = n−1
n∑
i=1

x2i . (2.1)

The advantage of the factor n−1 on the right-hand side is that a typical coordinate of a random
vector of norm 1 has order of magnitude 1 rather than order of magnitude n−1/2. This norm is
often called the Ln2 norm on Rn, and we write Ln2 = (Rn, ‖ · ‖). It is the Euclidean norm most
commonly used in additive combinatorics. Following the standard terminology in that field, we
shall sometimes write the right-hand side of the formula above as Eix2i . Moreover, from this
point on we shall think of spheres concretely, so Sn−1 will denote the unit sphere of Ln2 .

2.1. The tennis ball map

We are aiming to prove Theorem 1.7, or in other words to prove that there exists a continu-
ous map (in fact it will be bi-Lipschitz) ψ : Sn−1 → Sn−1 that preserves antipodal points,
with the property that if X is a random bαnc-dimensional subsphere of Sn−1, then with high
probability ψ(X)ε contains no linear subsphere of dimension 1. We shall achieve this by iden-
tifying a set Γ ⊂ Sn−1 such that with high probability ψ(X ∩ Sn−1) ⊂ Γ, or equivalent-
ly X ∩ Sn−1 ⊂ ψ−1(Γ), and such that every great circle contains a point that does not belong
to Γε.

These properties are clearly in tension with each other: we need Γ to have small measure,
or else its expansion Γε will contain a great circle, but on the other hand we also need ψ−1(Γ)
to have measure very close to 1, or else it will not contain almost all bαnc-dimensional linear
subspheres.

In order to resolve this tension, we define a map ϕ that takes “typical” vectors to highly
“atypical” vectors and let Γ to be the set of “atypical” vectors. One should think of an “atypi-
cal” vector as a vector in Sn−1 whose coordinates belong to a set of small measure., which we
call B. Moreover, the set B will have a special structure so that the normalization of ϕ to a map
from Sn−1 to itself, also mostly has “atypical” coordinates.

To be more precise, let k be a large positive integer to be chosen later, let λ > 1, and de-
fine s = λ1/2k. (The parameter λwill later be chosen to be 4, but we write most of the arguments
in slightly greater generality in order to emphasize a certain flexibility in our construction and
to make the role of this parameter more explicit.) Define “wide” sets Am and “narrow” sets Bm

as

Am = [s2mk+1, s2(m+1)k−1] and Bm = [s2mk−1, s2mk+1]. (2.2)

Hence, the “typical” set is given by A =
⋃
m(Am ∪ (−Am)) and the “atypical” set is

B =
⋃
m(Bm ∪ (−Bm)). Note that A∪B = R, the intersection has measure zero and that B is

significantly smaller than A. We define a function ϕ with the property that ϕ(Am) = Bm+1 for
every m (and then consider its normalization ψ).
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Definition 2.1. Let ϕ : R → R be a strictly increasing continuous odd function such that for
every integer m we have

ϕ(s2mk−1) = s2mk+1 and ϕ(s2mk+1) = s2(m+1)k−1

and such that ϕ is linear on (s2mk−1, s2mk+1) and (s2mk+1, s2(m+1)k−1) for every m.
When x = (x1, . . . , xn) is a vector in Rn we shall abuse notation by writing ϕ(x) to denote

the vector (ϕ(x1), . . . , ϕ(xn)). The tennis ball map is a function ψ : Sn−1 → Sn−1, which is a
normalized version of ϕ, given by the formula

ψ(x) =
ϕ(x)

‖ϕ(x)‖
.

x

y

A

B

Figure 2.1: The “staircase function” ϕ.

Note that the graph of ϕ has a kind of staircase shape with steps of sizes that grow expo-
nentially (see Figure 2.1). Indeed, as x increases from s2mk−1 to s2mk+1, which is only a small
change proportionately speaking, ϕ(x) increases from s2mk+1 to s2(m+1)k−1, which is an increase
by a factor of almost λ. Similarly, as x increases from s2mk+1 to s2(m+1)k−1, which is about λ
times as big, ϕ(x) increases from s2(m+1)k−1 to s2(m+1)k+1, which is only a small increase.

Further, observe that if x, y ∈ B, then xy−1 belongs to an interval of the form
[s2mk−2, s2mk+2], or minus such an interval. Recall that the set BB−1 is defined to be
{xy−1 : x, y ∈ B}. As mentioned above, the set B is a “geometric-progression-like” set. This
ensures thatBB−1 is not much larger thanB itself. It follows thatB2B−2 = {x2y−2 : x, y ∈ B}
consists of all points that belong to an interval of the form [s2mk−4, s2mk+4]. This fact will be
useful later on.

Finally, we have that

‖x‖ 6 ‖ϕ(x)‖ 6 λ‖x‖ (2.3)

for every x. This implies that ψ is a Lipschitz function. Similarly, we observe that the inverse
of ϕ satisfies 1

λ
‖x‖ 6 ‖ϕ−1(x)‖ 6 ‖x‖, and hence we get that ψ−1 is Lipschitz as well. Thus,

the tennis ball map ψ is indeed bi-Lipschitz as claimed.
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In what follows we shall show that the tennis ball map ψ takes random linear subspheres of
appropriate dimension to tennis balls.

2.2. The definition of the set Γ

Now that we have defined the tennis ball map, let us discuss the set Γ. The rough idea is that Γ
is the set of points x ∈ Sn−1 with almost all their coordinates in B. Since A has a small
complement, one would expect almost all coordinates of a random vector to belong to A, and
indeed this is the case. It forms the basis of a probabilistic argument that shows that with high
probability every x ∈ Sn−1∩X has the property that almost every coordinate of x belongs toA,
which implies that almost every coordinate of ϕ(x) belongs to B. Thus a “typical” vector (one
with almost all coordinates in the large set A) is mapped to a highly “atypical” vector (one with
almost all coordinates in the small set B).

This is a slight oversimplification, because of the normalization that replaces ϕ by ψ. The
actual definition of Γ concerns the ratios of the coordinates rather than their actual values.

Now let us give some more details. For the purposes of this problem, it is more natural, when
talking about a unit vector x, to attach a weight of x2i to the ith coordinate. For example, the
statement “almost every ratio xix−1j belongs to BB−1” should be interpreted as meaning that

∑
xix

−1
j ∈BB−1

x2ix
2
j > (1− ε)

n∑
i,j=1

x2ix
2
j

for some small ε, and similarly for other statements about coordinates. More precisely, with
every vector x we define an associated probability measure as follows.

Definition 2.2. For any x ∈ Rn \ {0} define a measure µx on {1, 2, . . . , n} such that for any
subset J ⊂ {1, 2, . . . , n} we have the following formula

µx(J) =
‖PJx‖2

‖x‖2
,

where PJ is the coordinate projection to the subset J .

Let us now fix some useful notation. For functions

f : {1, 2, . . . , n} → R and g : {1, 2, . . . , n} × {1, 2, . . . , n} → R

we write

Exi f(i) = ‖x‖−2Eix2i f(i) and Exi,jg(i, j) = ‖x‖−4Ei,jx2ix2jg(i, j),

where, as mentioned earlier, Ei and Ei,j are the usual averages.
Then, given a property Q of integers in the set {1, 2, . . . , n} we define

Pxi [Q(i)] = Exi 1Q(i) = µx{i : Q(i)}.
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Similarly, we shall write

Pxi,j[Q(i, j)] = Exi,j1Q(i, j) = (µx × µx){(i, j) : Q(i, j)},

where µx × µx is the product measure.
We are now ready to define the set Γ.

Definition 2.3. Let Γ ⊂ Sn−1 be the set given by

Γ = {y ∈ Sn−1 : Pyi,j[yi/yj ∈ BB−1] > 1− 2λ2β}, (2.4)

for a suitable choice of the parameter β.

Also important to us will be a set ∆ defined by

∆ = {x ∈ Sn−1 : Pxi [xi ∈ A] < 1− β}. (2.5)

In this section we will be more interested in the complement

∆c = {x ∈ Sn−1 : Pxi [xi ∈ A] > 1− β}

but our choice of notation is more convenient in further sections.

Proposition 2.4. The image of ∆c under the tennis ball map ψ is a subset of Γ.

Proof. Let x ∈ ∆c and note that if Pxi [xi ∈ A] > 1 − β, then Pxi [ϕ(xi) ∈ B] > 1 − β,
by the definition of the function ϕ. Moreover, from (2.3) it follows that ‖ϕ(x)‖2 always lies
between ‖x‖2 and λ2‖x‖2 and therefore µϕ(x)(E) 6 λ2µx(E) for every vector x ∈ Rn and
every set E ⊂ {1, 2, . . . , n}. From this it follows (considering complements) that

Pϕ(x)i [ϕ(xi) ∈ B] > 1− λ2β.

Since this is true for every x ∈ ∆c we get that

ϕ(∆c) ⊂ {y : Pyi [yi ∈ B] > 1− λ2β}. (2.6)

In order to show the inclusion for ψ, note that if we have y as above then

Pyi,j[yi ∈ B and yj ∈ B] > 1− 2λ2β,

which in turn gives us
Pyi,j[yi/yj ∈ BB−1] > 1− 2λ2β.

From this follows that such a y belongs to Γ. Since Γ is invariant under positive scalar multiples,
we conclude using (2.6) that ψ(∆c) ⊂ Γ.

In the next section we shall prove that the expansion Γε contains no great circle, and in the
following one we shall prove that for a suitable constant α > 0, a random linear subsphere of
dimension bαnc is contained in ∆c with high probability.
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3. Proving that no great circle is contained in Γε

We begin with a couple of lemmas that help us to describe the set Γε. Recall that if x is a vector
in Rn, then ‖x‖ is its norm in Ln2 (as defined in (2.1)).

Lemma 3.1. Let y, z be unit vectors inLn2 with ‖y−z‖ 6 ε, and letE be a subset of {1, 2, . . . , n}.
Then

∣∣Pyi [E]− Pzi [E]
∣∣ 6 2ε.

Proof. The left-hand side is equal to |Ei(y2i −z2i )1E(i)| 6 Ei|y2i −z2i |. By the Cauchy–Schwarz
inequality it follows that

Ei|y2i − z2i | = Ei|yi − zi| |yi + zi|
6 ‖y − z‖‖y + z‖
6 2ε,

which proves the result.

Recall from §2.1 that BB−1 is the union of all intervals of the form [s2mk−2, s2mk+2],
and B2B−2 is the union of all intervals of the form [s2mk−4, s2mk+4], where s = λ1/2k was
one of the parameters used to define the “staircase function” ϕ. It follows that if t ∈ BB−1

and u /∈ B2B−2, then |t/u| /∈ [s−2, s2], which implies in particular that |t/u− 1| > 1− s−2.

Lemma 3.2. Let τ = 1− s−2 and ε < τ 2. Then for z ∈ Γε we have

Pzi,j[zi/zj ∈ B2B−2] > 1− 2λ2β − 6ε.

Proof. Let y ∈ Γ with ‖y‖ = 1 be such that ‖y−z‖ 6 ε. Then Pyi,j[yi/yj ∈ BB−1] > 1−2λ2β,
or equivalently

Ei,jy2i y2j1[yi/yj∈BB−1] > 1− 2λ2β.

By Lemma 3.1 (and recalling that Eiy2i = 1), it follows that

Ei,j(y2i − z2i )y2j1[yi/yj∈BB−1] 6 2ε

and hence combining both inequalities gives

Ei,jz2i y2j1[yi/yj∈BB−1] > 1− 2λ2β − 2ε. (3.1)

If the conclusion that Pzi,j[zi/zj ∈ B2B−2] > 1− 2λ2β − 6ε is not true, then we would have

Ei,jz2i z2j1[zi/zj /∈B2B−2] > 2λ2β + 6ε,

and by Lemma 3.1 again it follows that

Ei,jz2i y2j1[zi/zj /∈B2B−2] > 2λ2β + 4ε. (3.2)

By summing (3.1) and (3.2), and estimating trivially the probability of the union of the events
by 1, we deduce that

Ei,jz2i y2j1[yi/yj∈BB−1 and zi/zj /∈B2B−2] > 2ε.
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As remarked before the lemma, if yi/yj ∈ BB−1 and zi/zj /∈ B2B−2, then |yizj
yjzi
− 1| > τ .

It follows that
Ei,jz2i y2j

(yizj
yjzi
− 1
)2
> 2τ 2ε.

But since Eiy2i = Eiz2i = 1 we have

Ei,jz2i y2j
(yizj
yjzi
− 1
)2

= Ei,j(yizj − ziyj)2

= Ei,j(y2i z2j + y2j z
2
i − 2yiyjzizj)

= 2− 2〈y, z〉2.

Furthermore, if 2−2〈y, z〉2 > 2τ 2ε, then 〈y, z〉2 < 1−τ 2ε, which implies that 〈y, z〉 < 1−τ 2ε/2,
which in turn means that

‖y − z‖2 = 2− 2〈y, z〉 > τ 2ε,

and therefore that ‖y − z‖ > τ
√
ε. However, since by assumption we have τ >

√
ε, this is a

contradiction.

Corollary 3.3. It follows directly from Lemma 3.2 that

Γε ⊂ {z : Pzi,j[zi/zj ∈ B2B−2] > 1− 2λ2β − 6ε}.

This bigger set resembles Γ but is defined using slightly different parameters. We now turn
to the proof that every great circle contains a point that does not belong to this slightly expanded
Γ-like set.

3.1. Finding a suitable point in an arbitrary 2-dimensional subspace

Let Y be a 2-dimensional subspace of Ln2 and let {u, v} be an orthonormal basis for Y . Then
the unit sphere of Y consists of vectors u cos θ + v sin θ. The ith coordinate of such a vector,
ui cos θ + vi sin θ, can be rewritten as ai sin(θ + φi), where ai =

√
u2i + v2i and φi is chosen

such that ai sinφi = ui and ai cosφi = vi. Let a = (a1, . . . , an) and note that ‖a‖2 = 2.
We start by proving that there are plenty of pairs (i, j) such that φi is not close to φj or −φj .

Lemma 3.4. With a1, . . . , an and φ1, . . . , φn as above, we have the inequality

Pai,j[cos(2(φi − φj)) 6 1/2] > 1/3.

Proof. Since u, v are fixed, orthogonal unit vectors (in Ln2 ) we have that ‖a‖2 = Ei(u2i +v2i ) = 2
and henceEai sin2(θ+φi) = ‖a‖−2Eia2i sin2(θ+φi) = 1

2
Ei(u2i sin2 θ+v2i cos2 θ) = 1

2
for every θ.

Therefore, we find on differentiating with respect to θ that

2Eai sin(θ + φi) cos(θ + φi) = Eai sin(2θ + 2φi) = 0

for every θ, and hence, on differentiating again, that

Eai cos(2θ + 2φi) = 0
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for every θ as well.
From that it follows that

Eai,j
(

cos(2θ + 2φi) cos(2θ + 2φj) + sin(2θ + 2φi) sin(2θ + 2φj)
)

= Eai,j cos(2(φi − φj)) = 0.

Let F be the event that cos(2(φi− φj)) 6 1/2. We have seen that Eai,j cos(2(φi− φj)) = 0, and
we also know that cos(2(φi − φj)) ∈ [−1, 1]. So, using the total probability formula we get

0 = Eai,j cos(2(φi − φj)) >
1

2
Pai,j[F c]− Pai,j[F ] =

1

2
− 3

2
Pai,j[F ],

from which the desired inequality follows.

Next, we need a technical lemma that will help us to show that if φi is not approximately±φj ,
then sin(θ+φi)/ sin(θ+φj) is not often close to an element of some given geometric progression.

Lemma 3.5. Let θ be chosen randomly from [−π, π] and let 0 < a < b. Then

P [a 6 cot θ 6 b] 6
b− a

π(1 + a2)
,

and the same bound holds for the probability that cot θ ∈ [−b,−a].

Proof. Since cot is periodic with period π and is decreasing in the interval (0, π), the proba-
bility in question is (cot−1 a − cot−1 b)/π. By the mean value theorem, cot−1 a − cot−1 b is
at most |a− b| times the absolute value of the derivative of cot−1 at a. Since that derivative
is −1/(1 + a2), the first result follows. The second then holds by symmetry.

Recall once again that B2B−2 is the set of all real numbers x such that

|x| ∈ [λms−4, λms4]

for some positive integer m.
The main point about the bound in the next lemma is not its exact form, but simply that it

is O(ξ) except when φi is close to φj or φj + π.

Lemma 3.6. Let ξ = s8 − 1 and let θ ∈ [0, 2π] be chosen uniformly at random. Then

P
[
ai sin(θ + φi)

aj sin(θ + φj)
∈ B2B−2

]
6

4ξλ

π(λ− 1)
(4 + | cot(φi − φj)|).

Proof. Since θ is fixed, by the change of variables θ + φj 7→ θ and θ + φi 7→ θ + φi − φj it
follows that the distribution of ai sin(θ+φi)

aj sin(θ+φj)
is the same as the distribution of

ai sin(θ + φi − φj)
aj sin(θ)

=
ai
aj

(
cos(φi − φj) + sin(φi − φj) cot θ

)
.

Therefore, we are interested in the probability that cot θ ∈ aj
ai sin(φi−φj)B

2B−2 − cot(φi − φj).
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Let t = | ajs
−4

ai sin(φi−φj) |. Then

aj
ai sin(φi − φj)

B2B−2 =
⋃
m

(
[tλm, tλms8] ∪ [−tλms8,−tλm]

)
.

By Lemma 3.5, we get the bound

P
[
cot θ ∈

[
tλm − cot(φi − φj), tλms8 − cot(φi − φj)

]]
6
ξtλm

π

for all m, and in addition if tλm > 2 cot(φi − φj), then since s−2 < 1 we have an upper bound
of

ξtλm

π(1 + t2λ2m/4)
6

4ξ

πtλm
.

If cot(φi− φj) > 0, then the probability that cot θ+ cot(φi− φj) lies in the positive part of
aj

ai sin(φi−φj)B
2B−2 is therefore at most ξ/π multiplied by the sum

∑
tλm6S

tλm + 4
∑
tλm>S

1

tλm
,

where S = max{2 cot(φi − φj), 1}. Let m0 = b ln(S/t)
lnλ
c, so that tλm0 6 S. By the formula for

the sum of a geometric progression, and recalling that λ > 3
2
, the first sum can be estimated by

∑
tλm6S

tλm = t

m0∑
m=−∞

(
1

λ

)m
= t

(1/λ)−m0

1− λ−1
6 S

λ

λ− 1
,

and similarly the second sum is at most S−1 λ
λ−1 . Therefore, the total is at most

(S + 4S−1)λ

λ− 1
6

(5 + 2 cot(φi − φj))λ
λ− 1

.

Therefore, we obtain an answer of at most ξλ(5 + 2 cot(φi − φj))/π(λ− 1).
If cot(φi − φj) < 0, then in the same way we get that the probability that

cot θ ∈
[
tλm − cot(φi − φj), tλ

ms8 − cot(φi − φj)
]

is at most ξtλm/π for all m but now
it is also at most ξ/πtλm for all m. Using the first bound when tλm 6 1 and the second when
tλm > 1, we obtain an upper bound of at most

2ξλ

π(λ− 1)
.

Considering the negative part ofB as well and combining these two estimates, we obtain the
result stated.

Let us recall that in Subsection 2.1 we defined s = λ1/2k, where λ > 1 and k ∈ N large
enough. We have further, for convenience, defined parameters τ = 1− s−2 and ξ = s8 − 1.
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Corollary 3.7. If τ 6 10−4 and λ > 3/2, then in every 2-dimensional subspace of Ln2 there is
a vector y such that

Pyi,j[yi/yj /∈ B2B−2] > 1/8.

Proof. Let a typical unit vector y in the subspace have ith coordinate yi = ai sin (θ + φi). We
will bound the desired probability from below by adding an additional constraint. We will con-
sider the probability that yi

yj
/∈ B2B−2 and | cot(φi−φj)| 6 2, which can be found by calculating

the expected probability that | cot(φi − φj)| 6 2 and subtracting from it the probability of the
event { yi

yj
∈ B2B−2 and | cot(φi − φj)| 6 2}.

We have for each i, j that

Eθ sin2(θ + φi) sin2(θ + φj) =
1

4
Eθ
(

cos(φi − φj)− cos(2θ + φi + φj)
)2

=
1

4

(
cos2(φi − φj) + Eθ cos2(2θ + φi + φj)

)
=

1

4

(
cos2(φi − φj) +

1

2

)
>

1

8
.

Here Eθ is just the usual average over θ ∈ [0, 2π). Recall that y is such that ‖y‖ = 1 and
yi = ai sin(θ + φi) for some such θ. For any event Q that depends on two coordinates i, j, we
get

EyPyi,j[Q] = EθEi,ja2i a2j sin2(θ + φi) sin2(θ + φj)1Q(i, j)

>
1

8
Ei,ja2i a2j1Q(i, j)

=
‖a‖4

8
Eai,j1Q(i, j)

=
1

2
Pai,j[Q],

where we used that ‖a‖2 = 2.
It is easy to check the identity cot2 α = 2 cos2 α

1−cos(2α) , so if cos(2(φi − φj)) 6 1/2, then
| cot(φi − φj)| 6 2. Therefore,

EyPyi,j[| cot(φi − φj)| 6 2] > EyPyi,j[cos(2(φi − φj)) 6 1/2]

>
1

2
Pai,j[cos(2(φi − φj)) 6 1/2] >

1

6
,

where the last inequality follows from Lemma 3.4.
Now, by Lemma 3.6, if y is a random such vector, then for each i, j the probability that

yi/yj ∈ B2B−2 is at most 4ξλ
π(λ−1)

(
4 + | cot(φi − φj)|

)
6 4ξ

(
4 + | cot(φi − φj)|

)
, where the

last inequality uses the fact that λ > 3/2, which implies that λ/π(λ − 1) 6 1. Note also that
since y2i 6 a2i for each i, and Eiy2i = 1

2
Eia2i , we have that Pyi,j[Q(i, j)] 6 4Pai,j[Q(i, j)] for every



14 Timothy Gowers, Katarzyna Wyczesany

event Q(i, j) that depends on two coordinates i, j. It follows that

EyPyi,j[| cot(φi − φj)| 6 2 and yi/yj ∈ B2B−2]

6 4EyPai,j[| cot(φi − φj)| 6 2 and yi/yj ∈ B2B−2]

6 16ξ(4 + 2)

= 96ξ.

Together with the estimate in the previous paragraph, this implies that

Pyi,j
[
| cot(φi − φj)| 6 2 and yi/yj /∈ B

]
> 1/6− 96ξ.

It is straightforward to check that our assumption that τ 6 10−4 implies that this is at
least 1/8, and the result follows.

Corollary 3.8. Provided that 2λ2β+ 6ε < 1/8, every great circle contains a point that does not
belong to Γε.

Proof. The previous corollay, applied to the subspace whose unit sphere is the great circle, gives
us a point y such that Pyi,j[yi/yj /∈ B2B−2] > 1/8. Since the event in square brackets is invariant
under positive scalar multiples, we may assume that y is a unit vector and thus that it belongs to
the great circle.

We showed in Corollary 3.3 that if z ∈ Γε, then Pzi,j[zi/zj ∈ B2B−2] > 1 − 2λ2β − 6ε,
where β is a parameter used in (2.4) to define the set Γ. Hence, if 2λ2β+ 6ε < 1/8, this implies
that y /∈ Γε, which finishes the proof.

4. Almost every point has an “atypical” image

In this section we want to show that there exists a subspace X of linear dimension such that
X ∩ Sn−1 ⊂ ∆c = {x ∈ Sn−1 : Pxi [xi ∈ A] > 1 − β}, so that ψ(X ∩ Sn−1) ⊂ ψ(∆c) ⊂ Γ.
Indeed, we shall show that for an appropriate constant α > 0, almost all subspaces of dimension
at most αn have this property. To this end, it will be sufficient to show that ∆ has exponentially
small measure. Note that

P[x ∈ ∆] = P[Pxi [xi ∈ A] < 1− β] = P[Pxi [xi ∈ B] > β],

where B is, as before, the set ⋃
m

(Bm ∪ (−Bm)),

and Bm = [s2mk−1, s2mk+1] for each integer m. Let η = s − 1 > 0 and as before let λ = s2k.
Then Bm = [(1 + η)−1λm, (1 + η)λm].

Let us say that a positive real number t is an η-approximate power of λ if there exists an
integer m such that

(1 + η)−1λm 6 t 6 (1 + η)λm.
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For γ ∈ [0, 1] and ξ > 0 define ∆ξ
γ by

∆ξ
γ =

{
x ∈ Rn : Pxi [|xi| is a ξ-approximate power of λ] > γ

}
. (4.1)

As mentioned before, we shall end up taking λ = 4. For this reason, although ∆ξ
γ depends on λ,

we suppress this dependence in the notation. We shall be particularly interested in the set ∆η
β ,

which, when restricted to Sn−1, is equal to the set ∆ defined in (2.5).
However, we shall also be interested in the set ∆0

β , which we shall write simply as ∆β . That is,

∆β =
{
x ∈ Rn : Pxi [|xi| is a power of λ] > β

}
. (4.2)

Lemma 4.1. If y ∈ ∆η
β then there exists x ∈ ∆β(1−2η) such that ‖x− y‖ 6 η‖y‖.

Proof. We are given that Pyi [|yi| is an η-approximate power of λ] > β. Let J be the set of all i
such that |yi| is an η-approximate power of λ. For each i ∈ J let |xi| be the nearest power of λ
to |yi| and let xi have the same sign as yi. For each i /∈ J let xi = yi. Then |xi − yi| 6 η|yi|
for i ∈ J , so, writing PJ for the coordinate projection to J , we have that

‖x− y‖2 =
1

n

∑
i∈J

|xi − yi|2 6 η2
1

n

∑
i∈J

|yi|2 = η2‖PJy‖2 6 η2‖y‖2.

We now need a lower bound for ‖PJx‖2/‖x‖2. We know that ‖PJy‖2 > β‖y‖2, and also
that ‖PJx‖2 − ‖PJy‖2 = ‖x‖2 − ‖y‖2. We also have for each i ∈ J that

(1 + η)−2y2i 6 x2i 6 (1 + η)2y2i ,

which implies that

(1 + η)−2‖PJy‖2 6 ‖PJx‖2 6 (1 + η)2‖PJy‖2.

Therefore,
‖PJx‖2

‖x‖2
=

ζ‖PJy‖2

‖y − PJy‖2 + ζ‖PJy‖2

for some ζ ∈ [(1 + η)−2, (1 + η)2]. The right-hand side is minimized when ζ = (1 + η)−2, and
then it is at least ζβ > (1− 2η)β, which finishes the proof of the lemma.

Our next aim is to prove an upper bound for the volume of the η-expansion of ∆β(1−2η),
which by the above lemma contains ∆η

β . We shall do this in a series of simple steps.

Corollary 4.2. Let λ,C > 1 be real numbers and letm be a positive integer. Then the number of
positive integer sequences (a1, . . . , am) such that λa1 + · · ·+λam 6 Cm is at most (e logλC)m.

Proof. Ifm−1(λa1 + · · ·+λam) 6 C, then by Jensen’s inequalitym−1(a1 + · · ·+am) 6 logλC,
and hence a1 + · · ·+am 6 am, where a = logλC. The number of sequences with this property
is
(bamc

m

)
6 (ea)m, so the result follows.
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Let η > 0 and consider a set K ⊂ Rn. We say that a subset N ⊂ K is an η-net of K if
every point in K is within distance η of some point of N . We now find an upper bound on the
cardinality of an η-net of a special family of sequences in Rm described below.

Corollary 4.3. Let λ > 1 be a real number, let m be a positive integer, and let η > 0. Let Ω be
the set of all sequences (x1, . . . , xm) such that x21 + · · · + x2m 6 C2m and each |xi| is a power
of λ. Then there is an η-net of Ω of cardinality at most (2e logλ(λ

2C/η))m.

Proof. Let x ∈ Ω. For each i such that |xi| 6 η/λ, replace xi by λ−t sign(xi), where t is chosen
in such a way that η/λ 6 λ−t < η, and let the resulting vector be y. Then |xi − yi| 6 η for
every i, so ‖x − y‖ 6 η. Now let Ω′ consist of all vectors x ∈ Ω such that each |xi| is equal
to λai for some integer ai with ai > −t. We have just shown that Ω′ is an η-net of Ω.

The number of points in Ω′ with positive coordinates is equal to the number of integer se-
quences (a1, . . . , am) such that each ai is at least −t and λ2a1 + · · ·+ λ2am 6 C2m. Rescaling,
we see that is the number of positive-integer sequences (a1, . . . , am) such that
λ2a1 + · · · + λ2am 6 λ2(t+1)C2m, which by Corollary 4.2 is at most (e(t + 1 + logλC))m.
Since there are 2m possible choices of signs, the size of Ω′ is at most (2e(t + 1 + logλC))m.
Noting that t 6 logλ(λ/η) = 1 + logλ(1/η), we obtain the result.

The important thing about the bound above is that the number we raise to the power m
depends logarithmically on η. This shows that an η-net of Ω is much smaller than an η-net of
the full sphere of radius C.

We shall need a lemma concerning the sizes of nets of unit balls. It is standard, but the
version we give is less commonly used, so for convenience we include a proof. (The argument
is essentially due to Rogers [Rog57].)

Lemma 4.4. Let X be an n-dimensional normed space with unit ball BX and let δ > 0. If n is
sufficiently large, then X contains a δ-net of BX of cardinality at most 2en log(n)(1 + 1

δ
)n.

Proof. Let ρ > 0 be a small real number to be chosen later. (It will in fact depend on n.) Then
a standard volume estimate shows that there is an ρ-net of BX of size at most (3/ρ)n. We shall
now cover every point of this net with a union of balls of radius δ−ρ in order to obtain our δ-net,
and then we will optimize over ρ.

To do this, let ζ = δ − ρ and pick points x1, . . . , xN uniformly at random from (1 + ζ)BX .
If y is a point in the ρ-net, then the probability that y is not within any of the balls of radius ζ
about the xi is (1− ( ζ

1+ζ
)n)N 6 exp(−N( ζ

1+ζ
)n). Therefore, we are done as long as(3

ρ

)n
exp
(
−N

( ζ

1 + ζ

)n)
< 1,

which is satisfied if N > n log(3
ρ
)(1 + 1

δ−ρ)n.
It can be checked that 1 + 1

δ−ρ = (1 + 1
n
)(1 + 1

δ
) when ρ = δ( δ+1

n+δ+1
). For this value of ρ and

for n is sufficiently large, we have that log(3
ρ
) < log(3n

δ
), which is at most 3

2
log n. We also have

that (1 + 1
n
)n < 4e

3
when n is sufficiently large, and putting these estimates together we find that

we can take N to be 2en log n(1 + 1
δ
)n, as claimed.
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Next, we need a simple technical lemma about the largest proportion of the unit sphere of Ln2
that can be covered by a ball of radius δ.

Lemma 4.5. LetBδ(x) be a closed ball of radius δ about a point x inLn2 . If n is sufficiently large,
then the probability that a random point of the unit sphere of Ln2 lies in Bδ(x) is at most 2δn.

Proof. The intersection of Bδ(x) with the unit sphere is a spherical cap, and the measure of the
spherical cap is maximized when the centre x of Bδ(x) is a vector of norm

√
1− δ2.

Define C to be the set of all y such that ‖y‖ 6 1 and
∥∥x − y

‖y‖

∥∥ 6 δ. This is a convex hull
of the spherical cap and the origin, and the proportion of its volume to the volume of the entire
unit ball, is equal to the probability we are trying to estimate.

We are going to show that Bδ(x) contains the set C \ (1 − 2δ2)C. Indeed, we claim now
that Bδ(x) contains all points y such that

∥∥x − y
‖y‖

∥∥ 6 δ and 1 > ‖y‖ > 1 − 2δ2. By the
convexity of Bδ(x) it is sufficient to prove this when ‖y‖ = 1− 2δ2. The first assumption on y
implies that

‖x‖2 − 2〈x, y〉
n‖y‖

+ 1 6 δ2,

and therefore, since ‖x‖2 = 1− δ2, that

〈x, y〉 > (1− δ2)n‖y‖.

This implies that

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉
n

6 1− δ2 + (1− 2δ2)2 − 2(1− δ2)(1− 2δ2)

= δ2,

which proves the claim.
We have therefore shown thatBδ(x) contains the set C \ (1−2δ2)C. Now, since (1−2δ2)C

has volume (1− 2δ2)n times that of C, if n is sufficiently large, then Bδ(x) contains at least half
of C. The result follows, since the volume ofBδ(x) is δn times that of the unit sphere of Ln2 .

Now let y be a vector in Ln2 supported on J ⊂ {1, . . . , n} of cardinalitym and satisfying the
inequality ‖y‖2 > β(1− 2η). Again let PJ be the coordinate projection to the set J and define

Vy = {x ∈ Sn−1 : PJx = y}.

We will next obtain an upper bound for the spherical volume of (Vy)ε, which is the ε-
expansion of Vy.

Lemma 4.6. Let δ > η > 0. Then when n is sufficiently large, the probability that a random

unit vector belongs to (Vy)η is at most 4eδnn log n
(

1 +

√
1−β(1−2η)
δ−η

)n−m
.
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Proof. If we cover Vy by N balls of radius δ − η, then the balls of radius δ with the same
centres cover (Vy)η, so by Lemma 4.5 the probability that a random unit vector lies in (Vy)η is at
most 2Nδn. But Vy is an (n−m)-dimensional sphere of radius at most

√
1− β(1− 2η), hence

Lemma 4.4 implies that it can be covered by at most N = 2en log n
(

1 +

√
1−β(1−2η)
δ−η

)n−m
balls

of radius δ − η. This implies the result.

Theorem 4.7. There is a choice of parameters λ, δ, η and β such that the probability that a
random unit vector belongs to (∆β(1−2η))η is exponentially small.

Before we prove the theorem we remark that if we choose λ = 4, δ = 10−6, η = 10−12

and β = 1
257

, then the probability in question is at most

4en2 log n(0.9982)n.

Proof. Lemma 4.1 tells us that the set ∆β(1−2η) is an η-net of the set of unit vectors in ∆η
β . More-

over, the same is true if we restrict to vectors of norm at most 1 + η 6 2. For
each x ∈ ∆β(1−2η) there is a set J ⊂ {1, 2, . . . , n} such that µx(J) > β(1 − 2η) and |xi| is
a power of λ for every i ∈ J . If |J | = m, then Corollary 4.3 implies that there is an η-net of
size at most

(
2e logλ

(√
2n
m
λ2

η

))m
of the set of vectors y such that |yi| is a power of λ for every

i ∈ J , yi = 0 for i /∈ J , and
∑

i y
2
i 6 2n.

Every unit vector in ∆β(1−2η) lies in Vy for some such J and y. Therefore, summing over all
J and all y in an η-net for each J and applying Lemma 4.6, we find that the probability that a
random unit vector belongs to (∆β(1−2η))η is at most

n∑
m=1

(
n

m

)(
2e logλ

(√2n

m

λ2

η

))m
4eδnn log n

(
1 +

√
1− β(1− 2η)

δ − η

)n−m
.

Now let us set λ = 4. Using the upper bound
(
n
m

)
6 (en/m)m and setting θ = m/n, we can

bound the previous expression above by

4en log n
n∑

m=1

(
2e2δ

1

θ
log4

(16
√

2

η
√
θ

))θn(
δ +

δ
√

1− β(1− 2η)

δ − η

)(1−θ)n
.

To prove that this is exponentially small, it is sufficient to show that( 2e2

log 4

δ

θ
log
(16
√

2

η
√
θ

))θ(
δ +

δ
√

1− β(1− 2η)

δ − η

)1−θ
(4.3)

is bounded above by a constant less than 1 as θ varies. First of all, note that in §3 we obtain the
following bounds on parameters: η 6 10−5 (since η = s− 1 and we need τ = 1− s−2 6 10−4),
ε 6 τ 2 and β < 1

32

(
1
8
− 6ε

)
. We need moreover, that δ > η. Let us note that the above

expression is a decreasing function of β and since ε 6 10−8 we can take β = 1
257

.
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To begin with, we shall show that there exist constants for which the result holds and then we
shall choose some particular values to obtain an upper bound for the maximum. Let us consider
the condition δ +

δ
√

1−β(1−2η)
δ−η < 1. For η = cδ this becomes

δ +

√
1− β(1− 2η)

1− c
< 1,

and we can choose c such that
√

1−β(1−2η)
1−c is less than 1−β/4, and then if δ 6 β/8 the inequality

holds. For the first part of expression (4.3), if we assume that θ >
√
δ (and again take η = cδ)

we have that( 2e2

log 4

δ

θ
log
(16
√

2

η
√
θ

))θ
6

(
2e2
√
δ
(

log(16
√

2) + log
1

cδ
+

1

4
log

1

δ

))θ
6 2e2

√
δ

(
C1 +

5

4
log

1

δ

)θ
,

whereC1 is an absolute constant. Hence, we can choose δ small enough such that this expression
is at most, say, 9

10
.

If θ <
√
δ, then we need to consider the whole expression (4.3). To begin with note that( 2e2

log 4

δ

θ
log
(16
√

2

η
√
θ

))θ
6
(

2e2
δ

θ
(C1 +

5

2
log

1

θ
)
)θ

6

(
C2δ log 1

θ

θ

)θ
6 (C2δ)

θ

(
1

θ2

)θ
6

(
1

θ2

)θ
,

for δ < 1/C2. Moreover, we have that log
(
(1
θ
)2θ
)

= 2θ log 1
θ
6 2
√
θ 6 2δ1/4. Therefore

we can estimate
(

1
θ2

)θ by 1 + 4δ1/4. Recalling that the right hand side part in (4.3) is at most
(1 − β

8
)1−θ 6 (1 − β

8
)1−
√
δ, we deduce that the expression (4.3) is less than 1 if we choose δ

such that (1 + 4δ1/4)(1− β
8
)1−
√
δ < 1. Finally we choose the smallest δ, so that it fulfils all the

inequalities and hence the result follows.
One can check that if we choose η = 10−12, δ = 10−6 and β = 1

257
, then the maximum is at

most 0.9982. Therefore, the desired probability is at most 4en2 log n(0.9982)n.

This gives us the information we need about the set ∆ = ∆η
β defined in (2.5).

Corollary 4.8. There exists α > 0 such that if n is sufficiently large, then the probability that a
random subspace X of dimension at most αn contains a vector x ∈ ∆ is exponentially small.

Proof. Let σ < 1 be such that the probability that a random unit vector belongs to (∆β(1−2η))η
is at most σn when n is sufficiently large. Now choose α > 0 such that (1 + 1

η
)α < σ−1. Then

for sufficiently large n, the unit sphere of any subspace of dimension at most αn has an η-net
of size τ−n for some τ with τ−1 < σ−1. If we take such a net and rotate it randomly, then the
probability that any element of the net lands within η of ∆β(1−2η) is exponentially small.

By Lemma 4.1 we have that ∆η
β ⊂ (∆β(1−2η))η and hence it follows that the probability that

a random subspace intersects ∆ is exponentially small.
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Remark 4.9. For the particular choice of constants made in the proof of Theorem 4.7, the con-
dition we obtain in Corollary 4.8 is

0.9982(4en2 log n)1/n < σ.

The left hand side is a decreasing function of n with limit 0.9982, so for n large enough the
left hand side is less than 0.999. We then have that

α <
− ln(0.999)

ln(1 + 1010)
≈ 4.345× 10−5.

Hence, for n large enough we can take α = 4.3× 10−5 in the construction.
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