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Abstract. Consider a convex cone in three-dimensional Minkowski space which either contains the light
cone or is contained in it. This work considers mean curvature flow of a proper spacelike strictly mean
convex disc in the cone which is graphical with respect to its rays. Its boundary is required to have constant
intersection angle with the boundary of the cone.We prove that the corresponding parabolic boundary value
problem for the graph admits a solution for all time which rescales to a self-similarly expanding solution.

1. Introduction

We study the capillary problem for mean curvature flow of spacelike surfaces Mt

with free boundary on a non-degenerate (i.e. Riemannian or Lorentzian) surface � in
Minkowski space. It is well known that spacelike mean curvature flow with gradient
estimates is well behaved, see, for example, [2–5,20]. One particularly intriguing class
of capillary boundary conditions is therefore given by� being a Riemannian subman-
ifold, as this immediately implies uniform spacelikeness at the boundary (depending
only on barriers), which in turn yields global gradient estimates in the compact case.
However, as we shall see, this necessarily leads to other issues such as the possibility
of boundary collapse. In this paper, we deal with the capillary problem when � is
the boundary of any convex cone with a non-degenerate induced metric. This prob-
lem carries with it several technical difficulties: Typically, a surface being spacelike
implies that the surface is graphical, but for the form of graph that we require (see
(1.2) below) this is not true if � is a Riemannian cone. Instead, graphicality is a
property that we must show is preserved along the flow. A second difficulty is the
appearance of unwanted curvature terms in boundary derivatives of first order, terms
which are present due to the non-perpendicular boundary condition. We deal with this
by exploiting two-dimensional techniques and good bounds on the mean curvature.
We denote three-dimensional Minkowski space of signature (+ + −) by R

3
1 and

take � ⊂ R
3
1 to be a cone with non-degenerate metric and apex at 0. Then, mean
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curvature flow with a capillary boundary condition is given by the following PDE
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∂t x)⊥ = �H = H ν on � × [0, T )

x(·, 0) = x0(·) in �

x(ξ, t) ∈ � for (ξ, t) ∈ ∂� × [0, T )

−〈ν(ξ, t), μ(x(ξ, t))〉 = α for (ξ, t) ∈ ∂� × [0, T ),

(1.1)

for some fixed α ∈ R. Furthermore, μ is the future-directed normal to �, see (2.5).
Let C ⊂ R

3
1 be an open convex cone such that � = ∂C. Our convex cone C arises

from the following construction. Let � ⊂ R
2 be a convex, bounded and open domain

containing the origin. We may also view �, without renaming it, as a subset of R3
1

within the slice {x3 = 1}. Then � generates an open convex cone C in R
3
1 by radial

extension with apex being the origin of R3
1, i.e. � and C are related via

� = C ∩ {x ∈ R
3
1 : 〈x, e3〉 = −1}.

The boundary condition in (1.1) has a special name.

Definition 1.1. For α ∈ R when � is Lorentzian and α > 1 when � is Riemannian,
we say that a surface M ⊂ C with boundary ∂M is α-capillary, if ∂M ⊂ � and along
∂M there holds

−〈ν, μ〉 = α.

Finally, we say that M is graphical, if we can parametrize M via its graph function

u : � → (0,∞),

so that the embedding x of � into C is given by

x(ξ) = u(ξ)(ξ + e3). (1.2)

Here we identify ξ ∈ � ⊂ R
2 × {1} ∼ R

2 × {0} ⊂ R
3
1, so that 〈ξ, e3〉 = 0.

Our main result is the following.

Theorem 1.2. Suppose that C ⊂ R
3
1 is a strictly convex cone with non-degenerate

boundary� and suppose that M0 ⊂ C is α-capillary, spacelike, graphical and strictly
mean convex. Then:

(1) A solution of (1.1) exists for all time and leaves any compact subset of R3
1 for

large t.

(2) We define the rescaled flow to be M̃t := (1 + t)− 1
2 Mt . The rescaled solution

stays in a bounded region and converges uniformly to a piece of an expanding
solution to MCF satisfying the boundary conditions as t → ∞.

Remark 1.3. (i) We require α ≥ 1 in the Riemannian case, since by properties
of future-directed timelike vectors α = −〈ν, μ〉 ≥ 1. In fact, for this to be
an oblique boundary condition for the PDE we require the strict inequality, see
Lemma 2.3.
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(ii) Note that in the above not every α admits mean convex data in the Lorentzian
case. However, it can easily be seen that for α < 0 such initial data always exists.

(iii) For a full treatment of regularity at the initial time, see Theorem 7.2.

Mean curvature flow in semi-Riemannian manifolds has seen a great deal of interest
over the years,with applications in producing prescribedmean curvature hypersurfaces
in the works of K. Ecker and G Huisken [5] and C. Gerhardt [9] and in producing
homotopies between manifolds by G. Li and I. Salavessa [21]. A variant of mean
curvature flow constrained to lie inside null hypersurfaces has recently been used by
H. Roesch and the third author as a method to find MOTS in general relativity [23],
with an interesting connection to Yamabe-flow [27].
Mean curvature flow with boundary conditions in semi-Riemannian spaces has

been considered by a range of authors such as K. Ecker [4], the second author [16,18]
and S. Gao, G. Li and C. Wu [8]. In particular, the case of a perpendicular boundary
condition on a Lorentzian cone was proven in all dimensions by the second author [17]
(equivalent to α = 0 in the present paper). Similar perpendicular timelike boundary
conditions have also been considered for a mean curvature type flow by F. Guo, G. Li
and C. Wu [12]. In the Riemannian setting a wide range of boundary problems have
been considered for mean curvature flow and we do not give a full bibliography here
but mention the works of G. Huisken [14], A. Stahl [25], A. Freire [7], B. Guan [11],
V. Wheeler [26], and N. Edelen, R. Haslhofer, M. Ivaki and J. Zhu [6].
As mentioned in the introduction, one might hope for good behaviour from space-

like mean curvature flow with uniform spacelike estimates (e.g. by applying interior
estimates such as in [4,20]). However, we note that in the case that � is Riemannian,
even with uniform spacelike estimates, boundary singularities can occur via boundary
collapse. Indeed, the self-shrinker examples of Halldorsson [13, Theorem 7.1] pro-
vide self shrinkers satisfying capillary boundary conditions with � the x-axis in R

2
1

(for all angles) and form singularities, with the whole boundary shrinking to a point.
We expect similar rotationally symmetric self shrinkers to exist in R

3
1 indicating the

necessity of the strict convexity assumption on �.
The method of proof is to prove uniform graphicality and spacelikeness estimates,

which ultimately allowus to rewrite (1.1) as a uniformly parabolic PDEwith an oblique
nonlinear boundary condition, see (2.9). The proof is different in the cases that � is
either Riemannian or Lorentzian. In fact, the case that � is Riemannian requires
significantly more work to prove graphicality estimates, while uniform spacelikeness
follows more or less for free as mentioned above. The major difficulty in both cases is
to get boundary estimates and these are obtained using estimates on themean curvature
and careful use of the maximality condition as in [1,19].
In Sect. 2 we describe this reduction and give sufficient conditions for obliqueness

and parabolicity, in Proposition 2.4. In Sect. 3 we collect the required boundary iden-
tities from an analysis of our boundary condition. In Sect. 4 we prove initial estimates
which are true in both the case that � is Lorentzian or Riemannian, including height
estimates and a speed limit. Our proof then splits into two cases:
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• If � is Riemannian: A uniform spacelikeness bound follows immediately in
Lemma 4.2, so the key estimate required is a uniform graphicality estimate. This
is completed in Sect. 5.

• If� is Lorentzian: The flow is automatically graphical, and we require a uniform
spacelikeness estimate. This is proven in Sect. 6.

Finally, we prove the full theorem in Sect. 7, see Theorem 7.2 for full details.

2. Geometric quantities in cone coordinates

Spacelikeness and graphicality

In this section we investigate the property of being graphical further and deduce
formulae for geometric quantities in terms of the graph parametrization as in (1.2). First
of all, it is important to note that spacelikeness does not in general imply graphicality
in the sense of (1.2) if � is Riemannian, in contrast to the more common case that the
surface is graphical over the flat Euclidean subspace. Later, we will show that under
mean curvature flow, each of these properties is preserved in a quantitative sense.
For the sake of compressing some formulas, it will occasionally be useful to work

with

ρ = log u

instead of u.
With the standard basis (e1, e2) in �, the tangent vectors are

xi = uei + Diu(ξ + e3),

where D is the standard directional derivative in�, and in these coordinates the metric
induced on M is

gi j = u2δi j + u(ξi D ju + ξ j Diu) + DiuD ju(|ξ |2 − 1)

= e2ρ
[
δi j + (ξi D jρ + ξ j Diρ) + DiρDjρ(|ξ |2 − 1)

]
.

Its inverse is given by

g jk = e−2ρ
(

δ jk + D jρDkρ + |Dρ|2ξ jξ k − (1 + Dρ · ξ)(ξ j Dkρ + ξ k D jρ)

(1 + Dρ · ξ)2 − |Dρ|2
)

.

(2.1)
By inspection we see that

ν̃ := Du + (u + ξ · Du)e3

satisfies

〈̃ν, xi 〉 = Diu(u + Du · ξ) − Diu(u + Du · ξ) = 0.
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As at ξ = 0, ν̃ has nontrivial positive e3 part, we see that this is a future-directed
normal which must be timelike due to the assumption on M . Hence, we obtain

0 > |̃ν|2 = |Du|2 − (u + ξ · Du)2

and hence
(u + ξ · Du)2 > |Du|2.

This gives us a globally defined unit normal

ν = Du + (u + ξ · Du)e3
√

(u + ξ · Du)2 − |Du|2 . (2.2)

Therefore, the standard measure of spacelikeness satisfies

1 ≤ v := − 〈ν, e3〉 = (u + ξ · Du)
√

(u + ξ · Du)2 − |Du|2 = 1
√

1 − |Du|2
(u+ξ ·Du)2

. (2.3)

The support function of a surface M ⊂ R
3
1 is given by

S := − 〈x, ν〉 = − uDu · ξ − uDu · ξ − u2
√

(u + ξ · Du)2 − |Du|2 = u2
√

(u + ξ · Du)2 − |Du|2 . (2.4)

The Gaussian formula on M is given by

∇XY = ∇XY + II(X,Y ),

where ∇ is the Levi–Civita connection on R3
1, and so the second fundamental is given

by
hi j = − 〈II(∂i , ∂ j ), ν

〉 = − 〈Di j x, ν
〉
.

With this convention the mean curvature of M is given by

H = −
〈
2gi j D juei + gi j Di j u(ξ + e3), ν

〉

= − 2gi j DiuD ju
√

(u + ξ · Du)2 − |Du|2 + ugi j Di j u
√

(u + ξ · Du)2 − |Du|2 .

Geometric quantities on � will be furnished by a hat, e.g. the second fundamental
form is defined by

ĥi j = 〈∇ iμ, y j
〉
,

where y is an embedding of �, and where the future-directed normal μ is defined by

μ = N + N · ξ e3
√|1 − (N · ξ)2| . (2.5)

Here N is the outward pointing unit normal to ∂� ⊂ R
2 (and identified with a vector

in R2 × {0}), i.e. N · ξ is the standard Euclidean support function on R2. The normal
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vector μ is well defined due to the metric non-degeneracy of �. To keep track of the
signature of �, we also define

σ = 〈μ,μ〉 =
{

+1, � is Lorentzian

−1, � is Riemannian.

Note also that the sign of σ coincides with the sign of 1 − (N · ξ)2. As by Definition
1.1, α > 1 if � is Riemannian, we always have that

α2 + σ > 0.

This will be used throughout the following computations. We next deduce some geo-
metric properties of α-capillary surfaces.

For any p ∈ R
3
1 and W ∈ TpR

3
1, when dealing with semi-Riemannian norms of

vectors of unknown causality we write

‖W‖2 = ||W |2| = |〈W,W 〉|.
For p ∈ ∂Mt and a vector W ∈ TpR

3
1, we will write

W� = W + 〈ν,W 〉 ν

for the orthogonal projection of W to TpMt and

W� = W − σ 〈μ,W 〉 μ

for the orthogonal projection of W to Tp�. We will write WM∩� for the projection
of W to Tp∂M = TpMt ∩ Tp�. In particular we have

μ� = μ − αν, ν� = ν + σαμ,

|μ�|2 = α2 + σ, |ν� |2 = −σ(α2 + σ) = −σ‖ν�‖2.

We note that μ� and ν� are orthogonal to ∂Mt and contained in T M and T�, respec-
tively.

Lemma 2.1. Let M ⊂ C be α-capillary. Then μ� is normal to ∂M ⊂ � = ∂C and
points out of C.
Proof. For p ∈ ∂M , Tp∂M is orthogonal to both ν and μ. We immediately see that
μ�(p) is orthogonal to Tp∂M . In the case that � is Lorentzian, a vector V points out
of C at p ∈ ∂M if it is on the same side of Tp� to μ. If � is Riemannian, then V
points out of C if it is on the opposite side of Tp� to μ. In both cases, 〈V, μ〉 > 0.
The lemma follows by calculating

〈
μ,μ�〉 = 〈μ,μ − αν〉 = α2 + σ > 0.

�
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Second fundamental form of �

We suppose that z : [0, �(∂�)] → R
2 is an arc-length parametrization of ∂�, where

�(∂�) is the length of ∂�. We will write differentiation of z with respect to arc-length
parameter, s, by ż. We may now parametrize � by ẑ : [0, �(∂�)] × (0,∞) → R

3
1

given by

ẑ(s, λ) = λ(z(s) + e3).

It is easy to see that ĥ has a zero eigenvector in the ∂
∂λ

direction while in the ∂�

directions, recalling (2.5),

ĥ (ż, ż) = −λ−2 〈̂zss, μ〉 = κ

λ
√|1 − (N · z)2| = κ

√||z|2 − 1|
‖̂z‖√|1 − (N · z)2| ,

where κ denotes the curvature of the plane curve ∂� ⊂ R
2. We may write

ν� = aż + b
ẑ

‖̂z‖ ,

where (as sign(|x |2) = −σ ),

−S‖̂z‖−1 = a

〈

ż,
ẑ

‖̂z‖
〉

− σb

and so

|ν� |2 = a2 + 2ab

〈

ż,
ẑ

‖̂z‖
〉

− σb2 = a2
(

1 + σ

〈

ż,
ẑ

‖̂z‖
〉2
)

− σ S2‖̂z‖−2.

We obtain

a2 = |ν� |2 + σ S2‖̂z‖−2

1 + σ
〈
ż, ẑ

‖̂z‖
〉2 = σ(−‖ν�‖2 + S2‖̂z‖−2)

1 + σ
〈
ż, ẑ

‖̂z‖
〉2 ,

where we note that, by the Cauchy–Schwarz inequality, the denominator is always
positive and depends only on ∂�. As ẑ

‖̂z‖ is a zero eigenvector (as it is in direction ∂
∂λ
)

we immediately see that

ĥ(ν�, ν�)|x = σ(S2‖̂z‖−2 − ‖ν�‖2)
√||z|2 − 1|κ

‖̂z‖
(

1 + σ
〈
ż, ẑ

‖̂z‖
〉2
)√

|1 − 〈N , z〉2 |

=: σ

‖̂z‖ (S2‖̂z‖−2 − ‖ν�‖2)q (̂z), (2.6)

where q : � → R is a bounded positive function with positive lower bound.
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Mean curvature flow of capillary surfaces in cone coordinates

In this paper, we are interested in the motion of α-capillary surfaces in the cone C,
as described in (1.1), where T is the largest time, such that the flow exists as a flow
of spacelike and smooth surfaces. The use of (∂t x)⊥ ensures that this set of equations
is geometric, i.e. invariant under time-dependent reparametrizations of �. If we fix a
parametrization by using cone coordinates, then

x(ξ, t) = u(ξ, t)(ξ + e3) = eρ(ξ,t)(ξ + e3)

evolves by mean curvature flow if

H = −〈∂t x(ξ, t), ν〉 = −∂tρ 〈x(ξ, t), ν〉 = eρ∂tρ
√

(1 + ξ · Dρ)2 − |Dρ|2

and hence
∂tρ = gi j (ξ, ρ, Dρ)Di jρ − gi j (ξ, ρ, Dρ)DiρDjρ.

In particular, we note that

∂tρ = H

S
. (2.7)

We define a “rescaled” ρ by

ρ̃ := ρ − 1

2
log(1 + t) (2.8)

and a modified time function
τ := log(1 + t).

Then (1.1) is equivalent to
⎧
⎪⎪⎨

⎪⎪⎩

ρ̃τ = e−2ρ̃ai j (ξ, Dρ̃)Di j ρ̃ − e−2ρ̃ai j (ξ, Dρ̃)Di ρ̃Dj ρ̃ − 1
2 on � × [0, T̃ )

b(ξ, Dρ̃) = 0 on ∂� × [0, T̃ )

ρ̃(0, ·) = ρ̃0(·) on �,

(2.9)
where, as Dρ̃ = Dρ and using the explicit formula in (2.1),

ai j (ξ, Dρ̃) = e2ρgi j (x, ρ, Dρ)

and, using (2.2) and (2.5),

b(ξ, p) = p · N − N · ξ(1 + ξ · p)
√|(N · ξ)2 − 1|√(1 + ξ · p)2 − |p|2 + α.

In the above T̃ may be taken to be the largest time such that the flow is spacelike,
smooth and graphical.
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Conditions for uniform parabolicity and obliqueness

We now prove that v and S, defined by (2.3) and (2.4), respectively, control parabol-
icity and obliqueness of (2.9).

Lemma 2.2. Suppose that there exist constants cSu−1 ,Cv > 0 such that Su−1 >

cSu−1 and v < Cv for all t ∈ [0, T ). Then there exist constants 0 < c = c(cSu−1 ,

Cv,�) < C = C(cSu−1 ,Cv,�) such that the eigenvalues λi of ai j = e2ρgi j satisfy
c < λ < C.

Proof. Recall that v ≥ 1. We note that in terms of ρ,

Su−1 = 1
√

(1 + Dρ · ξ)2 − |Dρ|2 ,

1 − 1

v2
= |Dρ|2

(1 + Dρ · ξ)2
,

v

Su−1 = 1 + Dρ · ξ.

In particular,

|Dρ|2 = (1 − v−2)
v2

(Su−1)2
≤ v2

(Su−1)2
≤ C2

vc
−2
Su−1 ,

and

|Dρ|2
(1 + Dρ · ξ)2 − |Dρ|2 = (1 − v−2)

(1 + Dρ · ξ)2

(1 + Dρ · ξ)2 − |Dρ|2 = v2 − 1.

For any unit vector w with respect to the Euclidean metric on �, we have

e−2ρwi gi jw
j ≤ 1 + 2|ξ ||Dρ| + |ξ |2|Dρ|2 < C1(cSu−1 ,Cv,�),

and

e2ρwi g
i jw j ≤ 1 + |Dρ|2 + |ξ |2|Dρ|2 + 2(1 + Dρ · ξ)|Dρ||ξ |

(1 + Dρ · ξ)2 − |Dρ|2
≤ 1 + (1 + |ξ |2)(v2 − 1) + 2v

√
v2 − 1|ξ |

≤ C2(cSu−1 ,Cv,�).

This implies that the eigenvalues are strictly bounded away from zero and infinity.
As gi j > 0 at time zero, this is hence preserved with the claimed estimates being
valid. �

Lemma 2.3. Let M ⊂ C be α-capillary, with radial graph function u. Then

Ni ∂b

∂pi
∣
∣
p=Dρ

=
√

|(N · ξ)2 − 1|
(
α2 + σ

)
Su−1.

Therefore b is uniformly oblique given Su−1 > cSu−1 > 0.
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Proof. We calculate

Ni ∂b

∂pi
= 1 − (N · ξ)2
√|(N · ξ)2−1|√(1 + ξ · p)2 − |p|2−(b − α)

(1 + ξ · p)N · ξ − N · p
(1 + ξ · p)2 − |p|2

=
√|(N · ξ)2 − 1|

√
(1 + ξ · p)2 − |p|2

(

(b − α)2 + 1 − (N · ξ)2

|1 − (N · ξ)2|
)

.

As in (2.9), the α-capillary property gives b = 0, completing the proof. �

We collect Lemma 2.2 and Lemma 2.3 in the following proposition.

Proposition 2.4. Suppose that there exists constants Cv, cSu−1 ,Cρ̃ , cρ̃ > 0 such that
for all t ∈ [0, T ), we have

v < Cv, Su−1 > cSu−1 , and cρ̃ < ρ̃ < Cρ̃ .

Then (2.9) is uniformly parabolic and has a uniformly oblique boundary condition.

3. Boundary identities

We calculate the boundary properties of the flow. We note that Lemma 3.1 and
Lemma 3.2 hold for any manifold � as capillary boundary condition.

Lemma 3.1. (First space derivatives) For any Y ∈ T ∂Mt ,

0 = h(Y, μ�) + ĥ(Y, ν�).

Proof. We have

0 = Y (〈ν, μ〉) = 〈∇Y ν, μ
〉+ 〈

ν,∇Yμ
〉 = h(Y, μ�) + ĥ(Y, ν�).

�

Lemma 3.2. (First time derivative) On ∂Mt ,

∇μ� H = H

[

−σ ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− αh

(
μ�

|μ�| ,
μ�

|μ�|
)]

.

Proof. We consider a reparametrization of mean curvature flow y : B1(0) → R
3
1 such

that Im(y|∂B1(0)) ⊂ �. We have on ∂B1(0),

(
dy

dt

)�
= βμ� + V

where V is a vector field in T ∂Mt and β is some function. By reparametrizing near
the boundary, we may choose V to be zero.
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We know that y ∈ � for all time, so dy
dt ∈ Ty�, which implies that

0 =
〈
dy

dt
, μ

〉

=
〈
Hν + βμ�, μ

〉
= −Hα + β(α2 + σ).

Solving for β,
dy

dt
= Hν + α

α2 + σ
Hμ� = σ

H

α2 + σ
ν�.

Under this velocity, we have
〈
d

dt
ν(y), yi

〉

= −
〈

ν, (Hν + α

α2 + σ
Hμ�)i

〉

= Hi + α

α2 + σ
Hh(yi , μ

�).

Applying this, we have

0 = d

dt
〈ν(y), μ(y)〉 = ∇μ� H + αHh

(
μ�

|μ�| ,
μ�

|μ�|
)

+ σHĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

.

�
The following identities will be useful to us later. Recall that S is defined by (2.4).

Lemma 3.3. On ∂Mt we have

∇μ�S = S

[

−σ ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− αh

(
μ�

|μ�| ,
μ�

|μ�|
)]

.

Proof. We use that 〈x, μ〉 = 0 and represent x using two orthonormal bases:

x = xM∩� + Sν +
〈

x,
μ�

|μ�|
〉

μ�

|μ�| = xM∩� − σ

〈

x,
ν�

‖ν�‖
〉

ν�

‖ν�‖ .

Rewriting and rearranging the second equality,

× −σ
S

‖ν�‖2 ν� = xM∩�. (3.1)

We have

∇μ� S = −h
(
x�, μ�)

= −h

(

xM∩� +
〈

x�,
μ�

|μ�|
〉

μ�

|μ�| , μ
�
)

= ĥ(xM∩�, ν�) −
〈
x�, μ�〉 h

(
μ�

|μ�| ,
μ�

|μ�|
)

= −σ Sĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− 〈x, μ − αν〉 h
(

μ�

|μ�| ,
μ�

|μ�|
)

= S

(

−σ ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− αh

(
μ�

|μ�| ,
μ�

|μ�|
))

,

where we used Lemma 3.1 on the third line and that ĥ has a zero eigenvalue in the x
direction and (3.1) on the fourth line. �
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Recall that v is defined by (2.3).

Lemma 3.4. On ∂Mt the following holds:

∇μ�v = ĥ(eM∩�
3 , ν�) − (〈e3, μ〉 + αv)h

(
μ�

|μ�| ,
μ�

|μ�|
)

.

Proof. We have

e�
3 = eM∩�

3 +
〈
e�
3 , μ�〉μ�(α2 + σ)−1 = eM∩�

3 + (〈e3, μ〉 + αv)μ�(α2 + σ)−1,

so using Lemma 3.1

∇μ�v = −h(e�3 , μ�) = ĥ(eM∩�
3 , ν�) − (〈e3, μ〉 + αv)h

(
μ�
|μ�| ,

μ�
|μ�|

)

.

�

4. Initial estimates

In this section we will prove a priori estimates for the flow (1.1) which hold for
non-degenerate boundaries �, namely either of σ = ±1. Recall that T is the largest
time of smooth and spacelike existence. As is standard, we will use time-dependent
rescalings to understand the asymptotics of this solution. We define

M̃t := (1 + t)−1/2Mt ⊂ R
3
1,

andwewill typically consider M̃t in terms of the rescaled time coordinate τ = log(1+
t). We will add tilde’s to all geometric quantities calculated on M̃τ . We immediately
see that

(∂τ x̃)
⊥ = H̃ ν̃ − 1

2
x̃⊥. (4.1)

Remark 4.1. Note that a solution to (4.1) is stationary if and only if H̃ = 1
2 S̃. Given

an α-capillary manifold M̃0 which satisfies this condition, Mt := (1+ t)
1
2 M̃0 satisfies

(1.1). Such an M̃0 will be called an expanding solution to spacelike mean curvature
flow.

We first observe the following estimate on v, which was defined in (2.3).

Lemma 4.2. (Uniform spacelikeness ofMt forRiemannian�)Under the assumptions
of Theorem 1.2 and in the case � is Riemannian (i.e. σ = −1), there exists a constant
C = C(α,�) such that for all t ∈ [0, T ),

v ≤ max{sup
M0

v,C} =: Cv.
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Proof. We first bound v on ∂Mt . We write μ = ae3 + V , ν = be3 + W where
V,W ⊥ e3 and a, b > 0. Then |W |2 = b2 − 1, |V |2 = a2 − 1 and α = ab− 〈V,W 〉.
By Cauchy–Schwarz,

ab ≤ α + |V ||W | = α +
√
a2 − 1

√
b2 − 1.

Squaring both sides and rearranging gives

a2 + b2 ≤ α2 + 2α
√
a2 − 1

√
b2 − 1+ 1 ≤ α2 + 2αab+ 1 ≤ α2 + b2

2
+ 2α2a2 + 1,

where we used Young’s inequality to get the last estimate. Finally, we see that

v = b ≤
√

2α2 + 2(2α2 − 1) 〈μ, e3〉2 + 2.

By uniform timelikeness of μ, |〈μ, e3〉| < C(�) and so v ≤ C(α,�) on ∂Mt .
As to the interior, by [4, Proposition 2.3] the evolution of v is given by

(
d

dt
− �

)

v = −|A|2v,

we apply the weak maximum principle for an interior bound. This completes the
proof. �

Lemma 4.3. (Preservation of mean convexity of Mt ) Under the assumptions of The-
orem 1.2, for all t ∈ [0, T ), Mt remains strictly mean convex.

Proof. In the interior of Mt , by [4, Proposition 2.6(i)],

(
d

dt
− �

)

H = −H |A|2

and as H > 0 on M0, any interior point p with H(p) = 0 would contradict the strong
maximum principle. Let t1 be the first time at which the minMt H = 0. Then there
exists a p ∈ ∂Mt such that H(p, t1) = 0, and so, by Lemma 3.2, ∇μ� H = 0. This
contradicts the parabolic Hopf Lemma so no such t1 exists. �

We now estimate S, which was defined in (2.4).

Lemma 4.4. (Preservation of graphicality of Mt ) Under the assumptions of Theorem
1.2, for all t ∈ [0, T ), Mt is graphical, i.e. S > 0.

Proof. In the case that � is Lorentzian, S|x |−1 ≥ 1 and so the above follows auto-
matically. If � is Riemannian (i.e. σ = −1), then by Lemma 4.3, H > 0 is preserved
and so, using [17, Lemma 4.3],

(
d

dt
− �

)

S = −|A|2 S + 2 H ≥ −|A|2 S.
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By the strong maximum principle, there can therefore be no interior minima of S with
S = 0.
As in Lemma 4.3, a boundary minimum with S = 0 would contradict the Hopf

Lemma due to the form of the boundary derivative in Lemma 3.3. Therefore graphi-
cality is preserved. �
Lemma 4.5. (Bound on speed) Under the assumptions of Theorem 1.2, while t ∈
[0, T ), there exist constants 0 < c S

H
< C S

H
depending only on initial data, such that

2(c S
H

+ t) ≤ S

H
≤ 2(C S

H
+ t).

Proof. We have
(
d

dt
− �

)(
S

H
− 2t

)

= S

H

[
1

S

(
d

dt
− �

)

S − 1

H

(
d

dt
− �

)

H

]

+ 2

〈∇H

H
,∇ S

H

〉

− 2

= 2

〈∇H

H
,∇ S

H

〉

.

By Lemma 3.2 and Lemma 3.3, H and S satisfy the same linear boundary condition,
and so

∇μ�

(
S

H
− 2t

)

= 0.

We may apply the maximum principle to S
H − 2t to get the claimed estimates with

C S
H

= 1
2 supM0

S
H and c S

H
= 1

2 infM0
S
H . �

Lemma 4.6. (Bound on rescaled flow) Under the assumptions of Theorem 1.2, there
exist constants cρ̃ < Cρ̃ depending only on M0 such that while t ∈ [0, T ),

cρ̃ ≤ ρ̃ ≤ Cρ̃ .

Proof. Recall that by (2.7), ρt = H/S. By applying Lemma 4.5 and using the defini-
tion of ρ̃, (2.8), we see that

1 − C S
H

2(C S
H

+ t)(1 + t)
≤ ρ̃t ≤

1 − c S
H

2(c S
H

+ t)(1 + t)
.

The lemma now follows by integration in time. �
We also note that for ξ ∈ ∂�, there exist constants 0 < c‖x‖2u−2 < C‖x‖2u−2

depending only on M0 with

c‖x‖2u−2u2(ξ, t) ≤ ‖x(ξ, t)‖2 ≡ u2(ξ, t)||ξ |2 − 1| ≤ C‖x‖2u−2u2(ξ, t). (4.2)

Applying Lemma 4.6 to this, we see that there exist constants 0 < c ‖x‖
1+t

< C ‖x‖
1+t

such

that for the position vector x ∈ ∂Mt ,

c ‖x‖2
1+t

<
‖x‖2
1 + t

< C ‖x‖2
1+t

. (4.3)
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5. The graphicality estimate in case � is Riemannian

In this section we work towards strict graphicality, i.e. improving Lemma 4.4 to
a strictly positive lower bound on S in case � is a Riemannian surface. We start by
noting some useful linear algebra.
By Cauchy–Schwarz, at any boundary point we have

S = − 〈ν�, x
〉 ≤ |x |

√
α2 − 1.

However, if S < |x |√α2 − 1 (i.e. x and ν� are not parallel) then
{
x, ν�

}
is a basis for

T�. In the following computations we will assume that we are in this case. Therefore,
we see that for any Z ∈ T ∂Mt ,

Z = S 〈Z , x〉
|x |2(α2 − 1) − S2

ν� + (α2 − 1)
〈Z , x〉

|x |2(α2 − 1) − S2
x .

As x is a zero eigenvector of ĥ, we may now apply the above identity to get the useful
formula

ĥ(Z , ν�) = (α2 − 1)S 〈Z , x〉
(α2 − 1)|x |2 − S2

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

. (5.1)

Lemma 5.1. Suppose the assumptions of Theorem 1.2 hold and that� is Riemannian.
Then there exist constants c,C > 0 depending on α,�, and on Cv,C S

H
, cρ̃ ,Cρ̃ in

Lemma4.2, Lemma4.5 andLemma4.6, such that the following holds. For any x ∈ ∂Mt

at which S
v
attains a minimum of value S

v
< c|x |, we have

∇μ�
S

v
≥ S

v

[

(1 − C
S

v
|x |−1)̂h

(
ν�

|ν� | ,
ν�

|ν� |
)

− C
S

v
|x |−2

]

.

Proof. Using Lemma 4.2, we choose c < C−1
v

√
α2 − 1 to be determined later so that

S < |x |√α2 − 1. Therefore, x and ν� are linearly independent, and we may apply
the linear algebraic computations above. In particular,

∇μ�
S

v
= S

v

[
S−1∇μ�S − v−1∇μ�v

]

= S

v

[

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

− αh

(
μ�

|μ�| ,
μ�

|μ�|
)

− v−1ĥ(e�∩M
3 , ν�)

+(v−1 〈e3, μ〉 + α)h

(
μ�

|μ�| ,
μ�

|μ�|
)]

= S

v

[(

1 − v−1 (α2 − 1)S
〈
e�∩M
3 , x

〉

(α2 − 1)|x |2 − S2

)

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

−v−1| 〈e3, μ〉 |h
(

μ�

|μ�| ,
μ�

|μ�|
)]

,
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where we used (5.1). By assumption, Sv−1 attains a global minimum over Mt at
x ∈ ∂Mt , and so Sv−1 also attains its minimum over ∂Mt at x . Therefore, writing a
unit tangent to ∂Mt as γ , we have

0 = ∇γ

S

v
= S

v

[
−h(S−1x� − v−1e�

3 , γ )
]

= S

v

[

−
〈
S−1x − v−1e3, γ

〉
h(γ, γ ) +

〈

S−1x − v−1e3,
μ�

|μ�|
〉

ĥ

(
ν�

|ν� | , γ
)]

.

(5.2)

Note that
〈
S−1x − v−1e3, μ

�〉 =
〈
S−1x − v−1e3, μ

〉
= −v−1 〈μ, e3〉 = v−1| 〈μ, e3〉 | > 0,

while

|S−1x − v−1e3|2 = S−2|x |2 − 2v−1S−1 〈x, e3〉 − v−2 = S−2|x |2 + 2v−1uS−1 − v−2.

Therefore, from the previous two equations we have

〈
S−1x − v−1e3, γ

〉2 = S−2|x |2 + 2v−1uS−1 − v−2 − v−2 〈μ, e3〉2 (α2 − 1)−1

≥ S−2(č|x |2 − Čv−2S2)

for some 0 < č and 1 < Č depending only on� and α.We alsomodify these constants
for future estimates (by making č smaller and Č larger depending on the spacelikeness
estimate in Lemma 4.2) so that, as a result of the upper bound on S as above,

|x |2(α2 − 1) − S2 > č|x |2 − Čv−2S2 > 0.

Applying (5.1), we also have

〈

S−1x − v−1e3,
μ�

|μ�|
〉

ĥ

(
ν�

|ν� | , γ
)

= S 〈γ, x〉 v−1| 〈e3, μ〉 |
(α2 − 1)|x |2 − S2

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

.

Using (5.2) at p, along with the above estimates and identities, we see that

h

(
μ�

|μ�| ,
μ�

|μ�|
)

= H − h(γ, γ )

≤ S

2c S
H

+ 2t
−
〈
S−1x − v−1e3, γ

〉−1 S 〈γ, x〉 v−1| 〈e3, μ〉 |
|x |2(α2 − 1) − S2

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

≤ S

2c S
H

+ 2t
+ S2v−1| 〈γ, x〉 〈e3, μ〉 |

(č|x |2 − Čv−2S2)
3
2

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

.

Therefore,
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∇μ�
S

v
≥ S

v

⎡

⎣

⎛

⎝1 − v−1
S(α2 − 1)|

〈
e�∩M
3 , x

〉
|

č|x |2 − Čv−2S2
− S2v−2| 〈γ, x〉 | 〈e3, μ〉2

(č|x |2 − Čv−2S2)
3
2

⎞

⎠ ĥ

(
ν�

|ν� | ,
ν�

|ν� |

)

−v−1| 〈e3, μ〉 | S

2c S
H

+ 2t

⎤

⎦ .

We now choose

c = min

⎧
⎨

⎩

√
č

2Č
,C−1

v

√
α2 − 1

⎫
⎬

⎭
,

and using this bound, we may find a C depending only on α, � and estimates in
Lemma 4.2, 4.5 and 4.6 so that

∇μ�
S

v
≥ S

v

[

(1 − C
S

v
|x |−1)̂h

(
ν�

|ν� | ,
ν�

|ν� |
)

− C
S

v
|x |−2

]

.

�
Proposition 5.2. (Uniform graphicality estimate) If the assumptions of Theorem 1.2
hold and � is Riemannian, then there exists c > 0 depending only on α, � and the
estimates in Lemma 4.2, Lemma 4.5 and Lemma 4.6 such that for all t ∈ [0, T ),

inf
Mt

S

vu
≥ c.

Proof. Throughout this proof, let ci ,Ci > 0, i ∈ N be constants depending on α, �
and the estimates in Lemma 4.2, Lemma 4.5 and Lemma 4.6.We consider the function
S
v
. By (2.6) and Lemma 4.2 there existsC1 and c� = c�(�) such that, at the boundary,

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

= q(x)|x |−1(1− S2|x |−2(α2 − 1)−1) > c� |x |−1 −C1S
2v−2|x |−3,

wherewe used the strict convexity of� for the lower bound on q.While S
v

<
√

c�
2C1

|x |,
we therefore have

ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

>
1

2
c� |x |−1.

Now, for c as in Lemma 5.1, while S
v

< min
{
c,
√

c�
2C1

}
|x |, there holds

∇μ�
S

v
≥ S

v
|x |−1

[
1

4
c� − C2

S

v
|x |−1

]

.

We see that as μ� is outward pointing, a boundary minimum is not possible for

S

v|x | < min

(

c,

√
c�

2C1
,
1

4
c�C

−1
2

)

=: c2.

Hence, using (4.3) and Lemma 4.6, there exists a c3 > 0 such that at a boundary
minimum there holds
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S

v
≥ c3

√
1 + t .

Next in the interior, using Lemma 4.5,
(
d

dt
− �

)
S

v
= S

v

[

S−1
(
d

dt
− �

)

S − v−1
(
d

dt
− �

)

v

]

+ 2

〈

v−1∇v,∇ S

v

〉

= 2
H

v
+ 2

〈

v−1∇v,∇ S

v

〉

≥ 1

(C S
H

+ t)

S

v
+ 2

〈

v−1∇v,∇ S

v

〉

.

Therefore
(
d

dt
− �

)
S

v
(C S

H
+ t)−

1
2 ≥ 1

2(C S
H

+ t)
3
2

S

v
+ 2

〈

v−1∇v,∇
(
S

v
(C S

H
+ t)−

1
2

)〉

.

Applying the weak maximum principle yields S
v
(C S

H
+ t)− 1

2 > c4(M0, c3,C S
H

). The
lemma now follows by Lemma 4.6. �

Remark 5.3. Wenote that the evolution equation above at first glance appears to allow
for stronger lower bounds. However, such a global estimate cannot hold since smaller
boundary minima would then not be disallowed by the above boundary estimates.

6. A uniform spacelikeness estimate in case � is Lorentzian

We now obtain a uniform upper estimate on S in case� Lorentzian, namely σ = 1.
We have

S2 = ‖x‖2‖ν�‖2
〈

x

‖x‖ ,
ν�

‖ν�‖
〉2

≥ ‖x‖2(α2 + 1),

as the inner product of unit timelike vectors has modulus greater than or equal to 1.
As in the previous section, we only deal with the case S2 > ‖x‖2(α2 + 1) as we are
aiming to bound S from above. In this case

{
x, ν�

}
is a basis of T�. As previously,

for any Z ∈ T ∂Mt we may calculate

Z = (α2 + 1)
〈Z , x〉

S2 − ‖x‖2(α2 + 1)
x − 〈Z , x〉 S

S2 − ‖x‖2(α2 + 1)
ν�.

We therefore have

ĥ(Z , ν�) = − 〈Z , x〉 (α2 + 1)S

S2 − ‖x‖2(α2 + 1)
ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

. (6.1)

Lemma 6.1. Suppose that the assumptions of Theorem 1.2 hold and that � is
Lorentzian. Then for any x ∈ ∂Mt at which S attains its global maximum of value
S2 > ‖x‖2(α2 + 1), we have
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∇μ� S = S

(

− (S2 − ‖x‖2)(α2 + 1)

S2 − ‖x‖2(α2 + 1)
ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− αH

)

.

Proof. We recall that, by Lemma 3.3,

∇μ� S = S

(

−ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

− αh

(
μ�

|μ�| ,
μ�

|μ�|
))

.

As S attains its global maximum at x ∈ ∂Mt , S also attains its maximum over ∂Mt .
Therefore, for a unit vector γ ∈ Tp∂Mt ,

0 = ∇γ S = −h(x�, γ ) = −
〈
x�, γ

〉
h(γ, γ ) +

〈

x�,
μ�

|μ�|
〉

ĥ

(

γ,
ν�

‖ν�‖
)

.

We know that
〈
x�, γ

〉 = 〈x, γ 〉 �= 0 (as otherwise x = βν� and so S2 = ‖x‖2(α2 +
1)). Therefore we may write

h(γ, γ ) =
〈
x�, μ�〉

〈x, γ 〉 (α2 + 1)
ĥ(γ, ν�). (6.2)

We have 〈
x�, μ�〉 = Sα

and so
〈
x�, γ

〉2 = |x�|2 −
〈

x�,
μ�

|μ�|
〉2

= S2

α2 + 1
− ‖x‖2.

Therefore, by (6.1) and (6.2) we have

h

(
μ�

|μ�| ,
μ�

|μ�|
)

= H − h(γ, γ ) = H − Sα

(α2 + 1) 〈γ, x〉 ĥ
(
γ, ν�

)

= H + S2α

S2 − ‖x‖2(α2 + 1)
ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

and so

∇μ� S = S

(

−ĥ

(
ν�

|ν� | ,
ν�

|ν� |
)

− S2α2

S2 − ‖x‖2(α2 + 1)
ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− αH

)

= S

(

− (S2 − ‖x‖2)(α2 + 1)

S2 − ‖x‖2(α2 + 1)
ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

− αH

)

.

�
Proposition 6.2. (Preservation of uniform spacelikeness) Suppose that the assump-
tions of Theorem 1.2 hold and that� is Lorentzian. Then there exists a constant C > 0
depending only on α, � and the estimates in Lemma 4.2, Lemma 4.5 and Lemma4.6
such that for all t ∈ [0, T ), we have S < C‖x‖.
Proof. We first estimate the maximum of S a the boundary. Suppose that S2‖x‖−2 >

2(1 + α2). By (2.6) we have
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ĥ

(
ν�

‖ν�‖ ,
ν�

‖ν�‖
)

= q(x)‖x‖−1
(
S2‖x‖−2

α2 + 1
− 1

)

> c�‖x‖−1
(
S2‖x‖−2

α2 + 1
− 1

)

.

Therefore, at a boundary maximum, as a result of Lemma 6.1, Lemma 4.5, Lemma
4.6, and equation (4.3)

∇μ� S ≤ S

⎛

⎝
−c�
‖x‖

(
S2‖x‖−2

α2 + 1
− 1

)

+ S|α|
2C S

H
+ 2t

⎞

⎠ ≤ S

‖x‖

(

−c�

(
S2‖x‖−2

α2 + 1
− 1

)

+ C1S‖x‖−1

)

for some C1 = C1

(

α, c S
H

,C ‖x‖2
1+t

)

. Therefore ∇μ� S < 0 if S‖x‖−1 > C2 for some

C2 = C2(c�,C1) >
√
2(1 + α2). Using (4.3), this implies that there exists a C3 =

C3(C2,C ‖x‖2
1+t

) such that any global maxima of S2 at the boundary satisfy S2 < C3(1+
t).

We now deal with the interior maximum. Namely we have
(
d

dt
− �

)

S ≤ −|A|2 S + 2 H ≤ −1

2
H2 S + 2 H ≤ 2 S−1,

so (
d

dt
− �

)

S2 ≤ 4 − |∇S2|2
2 S2

.

As a result, there exists a C4 = C4(M0,C3) such that on Mt we have S2 ≤ C4 +
max{4,C3}t by the maximum principle. Therefore, the claim follows by Lemma 4.6
and (4.2). �

Corollary 6.3. Suppose that the assumptions of Theorem 1.2 hold and that � is
Lorentzian. Then there exists a Cv > 0 depending only on α, � and the estimates
in Lemma 4.2, Lemma 4.5 and Lemma 4.6 such that for all t ∈ [0, T ), v < Cv .

Proof. For all x ∈ �, − 〈e3, x‖x‖−1
〉 ≤ C(�), so by estimating literally as in the

proof of Lemma 4.2 but replacing μ with x‖x‖−1 and α with the estimate C(�) we
see that v < Ĉ(�)S‖x‖−1. The estimate now follows from Proposition 6.2. �

7. Proof of theorem 1.2

We have the following improvement on Lemma 4.5.

Lemma 7.1. On the rescaled flow M̃τ we have
∣
∣
∣
∣
H̃

S̃
− 1

2

∣
∣
∣
∣ ≤ Ce−τ .

Proof. By scaling properties we have H̃
S̃

= (1 + t) HS . Using the above evolutions
gives

(
d

dt
− �

)

(1 + t)
H

S
= −2

H

S

(

(1 + t)
H

S
− 1

2

)

+ 2

〈∇S

S
,∇ H

S

〉

.
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Writing φ = (1 + t) HS − 1
2 ,

(
d

dt
− �

)

φ = −2
H

S
φ + 2

〈∇S

S
,∇φ

〉

.

Using Lemma 4.5,

(
d

dt
− �

)

φ2 = −4
H

S
φ2 +

〈

4φ
∇S

S
− 2∇φ,∇φ

〉

≤ − 2

C S
H

+ t
φ2 + 2

〈∇S

S
, ∇φ2

〉

,

and therefore

(
d

dt
− �

)

φ2(C S
H

+ t)2 ≤ 2(C S
H

+ t)φ2 − 2(C S
H

+ t)φ2 + 2

〈∇S

S
, ∇(C S

H
+ t)2φ2

〉

= 2

〈∇S

S
, ∇(C S

H
+ t)2φ2

〉

.

As in the proof of Lemma 4.5, on the boundary ∇μ� H
S = 0 and so we also have the

boundary condition ∇μ�(φ2(C S
H

+ t)2) = 0. Applying the maximum principle leads
to ∣

∣
∣
∣(1 + t)

H

S
− 1

2

∣
∣
∣
∣ ≤ C(M0)

C S
H

+ t
.

�

We define the kth compatibility condition by

dk

dtk
b(x, Dρ̃)

∣
∣
∣
t=0

= 0,

where b is as in (2.9).
We now prove the following which implies Theorem 1.2. We recall from Remark

4.1 that an expanding solution to MCF is stationary for the renormalized flow (2.9).

Theorem 7.2. Suppose that � is the non-degenerate boundary of a strictly convex
cone C ⊂ R

3
1 and that M0 ⊂ C is strictly mean convex, spacelike and graphical

with graph ρ̃0. Suppose furthermore that ρ̃0 satisfies the boundary condition and all
compatibility conditions up to kth order. Then:

(1) A unique bounded solution

ρ̃ ∈ C2k+α; 2k+α
2 (� × [0,∞))) ∩ C∞(� × (0,∞))

of (2.9) exists for all rescaled time τ . The solution is bounded, and given any

fixed ε > 0, we have uniform Cl; l2 (� × [ε,∞)) bounds for all 0 ≤ l ∈ N.
(2) The solution ρ̃ converges uniformly and smoothly to a piece of an expanding

solution to MCF satisfying the boundary conditions as t → ∞.
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Proof. The first part of this follows from uniform parabolicity and obliqueness esti-
mates and an application of standard theory, as in [24, Section 2.6 and 6.1]. We now
give more details.
One obtains short time existence as in [10, Theorem 2.5.7, page 106] where we

also linearize the boundary conditions in an identical way and use [15, Theorem 5.3,
page 320] to ensure suitable existence and estimates on the linearized problem for
τ ∈ [0, T̃1) and some small T̃1 > 0. We now suppose that T̃ < ∞ is the maximal time
interval on which a graphical solution exists.
In case σ = −1, the requirements for uniform parabolicity and obliqueness of (2.9)

in Proposition 2.4 have been shown to be satisfied in Lemma 4.2, Proposition 5.2 and
Lemma 4.6 respectively.

For the case σ = 1, the first condition in Proposition 2.4 follows from Corollary
6.3. Properties of timelike vectors imply that there is a constant C = C(�) > 0 such
that Su−1 ≥ −C

〈
ν, x‖x‖−1

〉 ≥ C > 0 and so the second condition in Proposition
2.4 is satisfied. The final condition in Proposition 2.4 is satisfied due to Lemma 4.6,
and so uniform parabolicity and obliqueness follows.
Furthermore, using these estimates we also have

cρ̃ ≤ ρ̃ ≤ Cρ̃ and |Dρ̃|2 <
v2

S2u−2 < C2
vc

−2
Su−1 .

By Nash–Moser–De Giorgi PDE estimates [22, Lemma 13.22, p353], we now have

uniform estimates in C1+β; 1+β
2 , and, as in [24, Section 2.6 and 6.1], we may bootstrap

further to obtain uniform Ck+β; k+β
2 (� × [0, T̃ )) (for k as in the statement of the

theorem). Furthermore, for any ε > 0, we also have estimates onCl+β; l+β
2 (�×[ε, T̃ ))

depending only on ε and l. As a result, we may smoothly extend our solution to the
interval [ε, T̃ ] with u(T̃ ) satisfying compatibility conditions to all orders. Therefore,
we may apply short time existence again to contradict the maximality of T̃ . Therefore,
T̃ = ∞ and we have the claimed smooth estimates.
By Lemma 7.1 we have exponential decay of ρ̃τ = H̃

S̃
− 1

2 and so there exists a
subsequence of times such that ρ̃ converges to a solution of the stationary equation
H̃ = S̃

2 which we will write ρ̃∞. However, by integration we see that for τ1, τ2 > 0,

|ρ̃(x, τ1) − ρ̃(x, τ2)| < Ce−min{τ1,τ2},

and taking the same subsequential limit in τ2,

|ρ̃(x, τ ) − ρ̃∞(x)| < Ce−τ ,

implying full uniform convergence of the rescaled equation. Smooth convergence now
follows from our smooth estimates and interpolation. �
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