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Multi-field Visualization: Trait design and

trait-induced merge trees
Danhua Lei , Jochen Jankowai , Petar Hristov , Hamish Carr , Leif Denby , Talha Bin Masood and Ingrid

Hotz

Abstract—Feature level sets (FLS) have shown significant
potential in the analysis of multi-field data by using traits
defined in attribute space to specify features in the domain.
In this work, we address key challenges in the practical use
of FLS: trait design and feature selection for rendering. To
simplify trait design, we propose a Cartesian decomposition
of traits into simpler components, making the process more
intuitive and computationally efficient. Additionally, we utilize
dictionary learning results to automatically suggest point traits.
To enhance feature selection, we introduce trait-induced merge
trees (TIMTs), a generalization of merge trees for feature level
sets, aimed at topologically analyzing tensor fields or general
multi-variate data. The leaves in the TIMT represent areas in
the input data that are closest to the defined trait, thereby most
closely resembling the defined feature. This merge tree provides a
hierarchy of features, enabling the querying of the most relevant
and persistent features. Our method includes various query
techniques for the tree, allowing the highlighting of different
aspects. We demonstrate the cross-application capabilities of this
approach through five case studies from different domains.

Index Terms—Trait design, Trait-induced Merge Tree, Dic-
tionary learning, Cartesian decomposition, Application-oriented
Visualization design

I. INTRODUCTION

Visualization of simulation data of natural phenomena typi-

cally involves the representation of multiple interacting fields.

Such, so-called multi-fields, can be described as a mapping of

the domain into a higher-dimensional attribute space. Despite

the widespread use of multiple fields, their visualizations are

much less studied compared to those of scalar or vector

fields. In particular, there remains a need for intuitive, easy-

to-configure, feature-based representations of multi-fields.

Recent advances have addressed these issues by adapting

key scalar field visualization methods for multi-variate data.

Examples include volume rendering using feature space repre-

sentatives [2] and the generalization of isosurfaces to feature

level sets (FLS) [3]. In this context, multi-variate features are

introduced as regions within the domain that are induced by

traits in the attribute space. FLSs are then level sets of the

corresponding induced distance field generated with respect to

the trait. In this setting, the multi-variate feature itself is given

by the zero FLS, which in the bi-variate case corresponds to

fiber surfaces specified by a fiber surface control polygon [4].

A major advantage of FLS is that even if the zero level set is

empty, users can investigate how closely the field approaches

the trait by rendering different level sets of the distance field.

As with fiber surfaces, the trait geometry is user-defined and

specifies the parameter configurations of interest.

Since their introduction, feature level sets have been suc-

cessfully applied in various domains, including uncertainty

visualization [5] and flow visualization [6]. However, the suc-

cess of this concept strongly depends on the careful selection

of traits and the iso-levels to be rendered. This paper addresses

these limitations by proposing methods to support the design

of traits in the attribute space, as well as using trait-induced

merge trees that provide automatic levels or transfer function

specifications for rendering the domain.

Trait design: To simplify the specification of traits for FLS

generation, we propose two methods. The first method is based

on the observation that traits in attribute space are typically not

arbitrarily complex geometries, but are composed of simpler

traits in lower dimensions. Usually, these are intervals or points

in a single dimension, or polygons in two or three dimensions.

Exploiting this observation leads to what we call Cartesian

traits, described in Section IV-B. These traits simplify both the

trait design process and the computation of the distance field.

In the second approach, we use attribute space clustering and

sparse dictionary learning [7], as described in Section IV-C, to

automatically propose simple point traits, referred to as atom-

traits. These point traits can then be logically combined using

the concept of Cartesian traits.

Trait induced merge trees: Once the feature definition via

traits is established, the next step is to specify isovalues for

the levels of FLS. The main goal is to highlight regions whose

parameters are close to the trait. A straightforward solution is

to represent FLS for a range of isovalues, but this can lead to

visual clutter. Conversely, using a single global isovalue could

overemphasize some regions and overlook other areas of inter-

est. Topological analysis, particularly the use of merge trees,

addresses these concerns effectively, as introduced by Weber

et al. [8]. We build on this idea by introducing trait-induced

merge trees (TIMTs). They open up an array of topology-based

simplification and query methods that can provide further

insight into the underlying structure of the data. To automat-

ically extract local isovalues and capture the most significant

features, we propose various feature selection strategies within

TIMTs, such as crown features [9]. This approach makes

features extracted through FLS browsable via an interface

for interacting with the corresponding merge tree. Combining

FLS with scalar field topology offers a straightforward method

for topological analysis of multi-variate fields. The method is

flexible regarding the chosen features of interest, represented

by traits in attribute space.

This paper is an extended version of a previously submit-

ted paper to TopoInVis 2023 [10]. It has been significantly

expanded by including new methods for trait specification,

namely, Cartesian traits and point traits based on dictionary

learning, that simplify the design of complex traits and im-
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prove computational efficiency. New case studies demonstrate

these traits in high-dimensional data analysis and vortex-

reconnection data, showcasing the practicality of automatic

trait suggestions compared to manual design. Additionally, a

stability analysis of TIMT has been added in the supplemen-

tary material.

The paper is structured according to the pipeline shown

in Fig. 1. After discussing related work in Sec. II and

providing some background in Sec. III we focus on the

trait design in Sec. IV, specifying the parameter settings of

interest. The trait-induced merge tree (TIMT) is introduced

in Sec. V. Sec. VI presents the different interaction and feature

querying methods. Finally, we demonstrate the method in

several case studies in Sec. VII before concluding with a

discussion Sec. VIII.

II. RELATED WORK

Our work combines recent advancements in multi-field

visualization and topological data analysis. In the following,

we place our contributions in the context of existing research.

Attribute space interactions for multi-field visualization

Coordinated linked views are frequently employed to visu-

alize multi-fields, as highlighted in the state-of-the-art report

by Roberts et al. [11]. In much of this work, representations

in attribute space play a crucial role in designing multi-

dimensional transfer functions (TFs) [12]. This task is often

supported by clustering or segmentation within the attribute

space. Wang et al. [13] propose segmenting a 2D density plot

in attribute space using a Morse decomposition to generate a

TF automatically. Similarly, Cai et al. [14] suggest a two-level

approach that begins with topology-preserving dimensionality

reduction, followed by a clustering step. Dobrev et al. [15] in-

troduce a method for interactive TF generation using a cluster

hierarchy. Their method combines a cluster tree visualization

with parallel coordinates to create an interactive interface.

Jankowai et al. [2] present an interface that utilizes cluster

representatives to design TFs for rendering tensor fields.

Topology guided visualisation

Concepts from topological data analysis, particularly the

contour tree or merge tree are frequently used to guide

visualizations. In an early paper, van Kreveld et al. [16]

augmented a contour tree with seed sets to enable fast iso-

contour computation. Weber et al. [8] presented an approach

for volume rendering of topologically segmented scalar fields,

assigning a distinct transfer function to each segment. Methods

that integrate results from topological analysis into interactive

frameworks have been especially successful. For example,

Bremer et al. [17] used a linked-view interface to analyze

burning cells in turbulent combustion simulations. Bock et

al. [18] employed a combination of merge tree analysis and

an interactive user interface for the efficient segmentation

of micro-CT scan data of fishes. Besides the merge tree,

other topological structures have also been used in visual

frameworks. For example, Shivashankar et al. [19] introduced

a queryable hierarchy of Morse-Smale complexes that allows

astronomers to examine filamentary structures of the cosmic

web at different scales. A comprehensive survey of topology-

based methods in visualization can be found in the report by

Heine et al. [20].

Level-set and topological concepts for multi-fields

A core feature of the presented method is the rendering of

relevant isosurfaces for multi-fields. Carr et al. [4] introduced

the concept of fiber surfaces as a generalization of isosurfaces

to bi-variate data using sets of fibers, which are the bi-variate

equivalent to isolines. These allow for generating fiber surfaces

based on control polygons (CP) in attribute space, which can

be considered as a set of line-traits in the context of FLS. Since

then, various extraction and rendering methods for fiber sur-

faces have been developed. Wu et al. [21] offered a system for

the interactive exploration of bi-variate data through real-time

pixel-perfect fiber surface rendering using intersection tests

in range space on the fly. Klacansky et al. [22] implemented

a topology-agnostic and exact calculation of fiber surfaces

significantly speeding up the process. Fiber surfaces were later

generalized to multi-variate data by Raith and Blecha et al.

[23], [24], who introduced interactors–user-defined geometries

in attribute space. These geometries determine points in the

spatial domain that form the isosurface. Feature level sets

(FLS) [3] further extended multi-field isosurface visualization

by generalizing isosurfaces to multi-variate data using distance

field computation in attribute space with respect to traits.

Nguyen et al. [6] and Athawale et al. [25] applied FLS

to separate and visualize structures in Taylor-Couette flow

simulations and examine correlations in numerical simulations

of solar farms, respectively.

III. DATA, TRAITS, AND MERGE TREES

The proposed method is based on three main concepts:

Multi-variate data, feature level sets and traits, and merge trees.

A summary of these concepts is given below.

A. Multi-variate data

We assume multi-variate data as input, given as a set of m

continuous fields F1,F2, · · · ,Fm : X → R defined on the data

domain X. We then construct an attribute space A ⊂ R
M by

combining selected field values and possibly some derived

quantities. The multi-variate data is summarised by a multi-

variate mapping, f :X→A, where M is the number of selected

field values and their derived quantities. Further, we assume

that the attribute space A is equipped with a metric (e.g., the

Euclidean metric), denoted as dA.

Typically, the data is given on a sampled discrete set of

N points in the domain X. For each point xi ∈ X, i = 1 . . .N,

the field values can be represented as a vector f (xi) =
[F1(xi),F2(xi), ...,Fm(xi)]

T ∈R
M . These vectors are assembled

into a matrix F ∈ R
M×N , where each column of F represents

the field values at a specific point in the data domain.
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Distance, similarity field 
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resp similarity field
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Feature query Interactive rendering

Fig. 1: Pipeline. The first step is to design a trait representing the parameter settings of interest (Sec IV). For every vertex in

attribute space, the distance resp similarity to the trait is calculated, which is then pulled back to the domain (Sec III-B). The

resulting distance field serves as input for the computation of the trait-induced merge tree (TIMT) (Sec V) that then can be

queried (Sec VI-A). Finally, the user can interact with the resulting domain segmentation via a legend or a slice of the data.

B. Feature level sets

Feature level sets are built on the concept of trait-induced

features. Thereby, a trait T is defined as a subset in the

attribute space, T ⊂ A. Examples of traits include convex

polygons, points, collections of points, or line segments. A

trait-induced feature is the pre-image of a trait in the data

domain, f−1(T ) = {x ∈ X | f (x) ∈ T ⊂ A}. Since the feature

corresponding to an arbitrary trait may be empty, feature level

sets have been introduced to highlight areas in the domain

with values close to the trait. Therefore, a trait distance field,

dT : A → R
+, is defined, where dT (a) = mint∈T dA(a, t) for

a ∈ A. The trait-induced distance field (or feature distance

field) is a scalar function defined as hT = dT ◦ f : X → R.

Finally, the trait-induced level sets are the level sets of hT ,

given by h−1
T (c) = {x ∈ X | hT (x) = c}. In this paper, we

consider alternatively trait similarity fields, sT : A→R, where

sT (a) = maxt∈T dA(a, t) for a ∈ A.

C. Merge trees

Let g : X→R be a continuous scalar field. For the compu-

tational purpose, assume g is defined on a simply connected

compact simplicial complex X and is linearly interpolated on

the interiors of its simplices. Two points x,y∈X are considered

equivalent, denoted by x ∼ y, if g(x) = g(y) and x and y are

a part of the same connected component of the sub-level set

g−1((−∞,g(x)]). The quotient space X/ ∼ is called a merge

tree of g. The merge tree records birth, death, and merge events

of sub-level set components during a sweep of g from −∞ to

∞. Typically, merge trees are computed using algorithms based

on the work by Carr et al. [26]. It is based on a sub-level set

filtration of g, observing changes in a sequence of nested sub-

level sets connected by inclusions. Analogously, a definition

for super-level sets g−1([g(x),∞)) can be formulated.

D. Merge tree simplification

Since the full merge tree may contain many leaves, hier-

archical representations providing a multi-scale view of the

data are often used. Two common metrics considered in our

pipeline for building such a hierarchy are persistence and

hypervolume.

n1

n2

g

h’

(a)

g

A hv

(b)

Fig. 2: Simplification metrics: 2a The branch decomposition

tree highlights the persistence of paired critical points yi and

xi, defined as the difference in their function values, h′ =
g(yi)− g(xi). 2b Hypervolume is calculated by accumulating

the volume associated with an arc of the tree multiplied by

its height. While persistence relates only to the data range,

hypervolume considers also the spatial embedding of the data.

a) Persistence: In context with merge trees, persistence

arises from a sub-level set filtration generating a pairing of

critical points (xi,yi). During filtration, a feature is gener-

ated in one critical point and disappears in the other. The

interval spanned by the function values of the critical points

[g(xi),g(yi)] represents the feature lifetime interval. To each

pair of critical points, one can then assign a persistence

value which is the difference of the scalar values in the two

critical points g(xi)−g(yi), see Fig. 2a. It gives some notion

of feature stability [27]. This critical point pairing can be used

for a controlled simplification of the data removing features

ordered by their persistence value. A branch decomposition

tree derived from a merge tree is a hierarchical representation

of these pairs of critical points [28], see Fig. 4(b).

The geometric interpretation of a low persistence feature

in a two-dimensional example would be a shallow valley on a

height-field map. Likewise, a high persistence value equates to

a deep intrusion in a field. Low persistence values often occur
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in noise where small differences in function values create

irrelevant extremal points.

b) Hypervolume: Hypervolume [18] is a measure taking

the local geometric extent of the sub-level sets in the data

domain into account. As illustrated in Fig. 2b, hypervolume

is the product of arc height and the volume contained by the

region corresponding to the arc. In our implementation, this is

the number of voxels contained in a segment multiplied by the

difference in function values at the minimum and the saddle

connected by the arc.

IV. TRAIT DESIGN

Trait specification is a crucial step in the pipeline, requiring

a thorough understanding of the data. Our framework supports

several basic methods for manually constructing traits. To

enhance this process, we offer automatic suggestions for point

traits based on data-specific dictionaries, as well as a Cartesian

combination of basic traits that we call Cartesian traits.

A. Interactive trait specification

(a) (b) (c)

A1 A2 An-1 An

Fig. 3: Methods for manually specifying traits: (a) selecting

point traits by choosing a glyph from a rendered tensor slice,

(b) defining traits as lines or areas in parallel coordinates, and

(c) drawing polygons within a bi-variate subspace.

Similar to the original paper on feature level sets [3], we

offer an interface for manually specifying traits. This interface

allows users to configure attribute spaces using available pa-

rameters selected from a drop-down menu. The configured at-

tribute space is visualized in parallel coordinates, enabling the

simultaneous representation of all parameters. Alternatively,

two variables can be chosen to form a bi-variate subspace.

Both visualizations facilitate trait specification and provide an

overview of the data, such as a continuous scatterplot in the

bi-variate setting. This setup enables the specification of point

traits as lines in the parallel coordinates plot or cubical traits as

a set of intervals, Fig. 3(b) or more general polygons in the bi-

variate setting, Fig. 3(c). For tensor fields, where tensors are

typically visualized as domain-specific glyphs our interface

also supports the selection of tensors as point traits through a

glyph rendering of the dataset, Fig. 3(a).

B. Combinations using Cartesian traits

For more advanced manual trait specification, we support

the combination of multiple traits via Cartesian traits, an

extension of Cartesian fiber surfaces [29]. The idea behind

Cartesian traits stems from the observation that scientists

rarely conceptualize features in a high-dimensional space.

Thus, it is more intuitive to define high-dimensional traits

implicitly as combinations of simpler low-dimensional traits,

using robust trait primitives such as points, lines, polygons,

and polyhedrons. For example, instead of defining a trait in

four-dimensional space directly, we decompose it as the region

where the scalar v1 is in the range of values [a,b] and the

scalars v2,v3 are not in an area A of their joint distribution or

the scalar v4 is below a certain threshold c.

We can combine two traits T1 ⊂ A1 and T2 ⊂ A2 using the

boolean operators AND, OR, and NOT to obtain a higher

dimension trait T in the Cartesian product space T ⊂A1×A2.

For example, to obtain all points inside the volume bounded

by the feature level set h−1
T1
(c1) of T1 and inside the volume

bounded by the feature level set h−1
T2
(c2) of T2, we can combine

the trait-induced distance fields with efficient distance field

operations [30]. We can use the min operator and define the

distance field of the combination of the traits as h(T1 & T2)(x) =
min(hT1

(x),hT2
(x)) for all x ∈ X. The boolean operations OR

and NOT are obtained using the max operator and negation,

respectively. This approach can be extended to combine any

number of traits with any of the boolean operators.

C. Atom-traits using Dictionary learning

We propose using dimensionality reduction methods, such

as data-specific dictionaries from sparse representation, to

provide automatic guidance for trait design. This can be

effectively achieved through dictionary learning [7].

Dictionary learning decomposes data into an overcomplete

set of basis functions [31], where the number of basis functions

(or atoms) exceeds the dimensionality of the data. The main

idea is to cluster data into distinct categories, each represented

by a linear combination of selected atoms. Coefficients for

unselected atoms remain zero, which creates a sparse represen-

tation. By using a minimal subset of atoms for each category,

this approach provides a compact, interpretable representation

that captures essential data features and patterns.

Given a discrete set of N points x in the data domain X

and their corresponding values Fj(x)( j = 1,2, . . . ,M) across M

different fields, this multi-variant data is typically represented

as a matrix F ∈R
M×N in the context of sparse representation.

The goal is to find a dictionary D ∈ R
M×K , which contains

K column vectors or atoms, and its corresponding sparse

coefficients C ∈ R
K×N to represent the data in the form of

matrix multiplication F = DC. The number of atoms K is

generally higher than the dimension of the original attribute

space M. The sparsity level determines the maximum number

of atoms used to represent each data point. This task can be

formulated as the following optimization problem

min
D,C

∥F−DC∥2
F s.t. ∥Ci∥0 ≤ T0, ∀i ∈ {1, . . . ,N}, (1)

where ∥ · ∥F denotes the Frobenius norm, T0 is a user-defined

parameter to control the sparsity level. For details on obtaining

the dictionary and its coefficients using alternative optimiza-

tion of equation 1, we refer readers to Section 4 of [7].

This approach can loosely be interpreted as a ’weak cluster-

ing’, where each data point is associated with a few clusters

represented by the atoms with non-zero coefficients. This

interpretation suggests that the atoms serve as a set of basis

functions that effectively represent the data. This leads to the
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idea of using atoms as point traits, referred to as atom-traits to

explore features. To assess how well atoms align with the data

points, we utilize cosine similarity as a measure. This metric

quantifies how closely two vectors align in multidimensional

space, focusing on their directional similarity irrespective of

magnitude. A value closer to 1 indicates higher similarity

in the multidimensional space. Using coefficients, we can

explore any region within the volume to determine which

atoms are involved and their contribution to data or feature

representation. Furthermore, we provide support for users

to use logical operators such as AND and OR to visualize

combinations of different traits, Sec. IV-B.

V. TRAIT-INDUCED MERGE TREES

Feature level sets (FLS) allow users to extract features as

isosurfaces, highlighting areas in the domain with values close

to the selected trait. However, as with isosurfaces, FLS leave

the question of selecting an appropriate isovalue open. To

address this issue, we use a topological approach similar to

methods proposed for scalar fields [8]. By combining FLS

with scalar field topology, we introduce the concept of trait-

induced merge trees, defined as the merge tree of the trait-

induced distance field in the domain.

Definition. Given a multi-field f : X → A and a fixed trait

T ⊂ A, let h = hT : X→ R be its trait-induced distance field.

The trait-induced merge tree (TIMT) is defined as the merge

tree of the distance field h, tracking how the sub-level sets

h−1(∞,c] merge as we vary the distance parameter c.

The leaves of a TIMT correspond to points in the domain

that have values closest to the trait. The TIMT can be used

as an interface to guide the exploration of multi-variate data,

offering options to select and filter individual features. A cru-

cial property of TIMT is that it is robust with respect to minor

perturbations of the trait specification. Refer to supplementary

material for the proof of stability of TIMTs showing that

the interleaving distance between TIMTs is bounded by the

Hausdorff distance between the corresponding traits.

VI. VISUALIZATION AND INTERACTION

Data sets and research questions vary, requiring different

settings. To address this, we provide an interactive interface

for designing traits and features. Our system supports both

manual and automated trait design using Cartesian traits and

learned dictionaries. For feature selection, we offer various

simplification and query methods for the trait-induced merge

tree, each emphasizing different aspects of the data.

The method has been implemented in an interactive visual-

ization framework using Inviwo [32] providing a large variety

of rendering options.

A. TIMT based features

Based on the trait-induced merge tree we can apply different

feature definitions, an overview is shown in Fig. 4.

(a) (b) (c) (e)

∆

∆

(d)

c

Fig. 4: Query methods. (a) original tree. Users may choose

between segmentation of the tree based on (b) branch decom-

position, (c) leaf nodes, (d) sub-trees, and (e) crown features.

a) Branch decomposition: The branch decomposition is

a common representation for merge trees (see Fig. 4(b)).

It allows for hierarchical simplification and querying. For

segmentation, the user specifies a simplification threshold

(persistence or hypervolume), and the method returns a domain

segmentation based on this threshold. This approach always

includes one branch connecting the global minimum to the

maximum, which can be problematic in visualization as its

vertices often enclose all others, potentially obscuring other

segments and the global minimum.

b) Extremal points and their incident arcs: This method

extracts the leaf nodes and their neighboring vertices and

segments the domain accordingly (see Fig. 4(c)). Here too, the

user first specifies a simplification threshold. Unlike in the first

method, it is now the merge tree itself that is simplified and

then queried. This method has the advantage of highlighting

every minimum separately which gives a detailed overview of

the spatial distribution of minima.

c) Sub-trees: Sub-trees are extracted by first simplifying

the tree as above and then cutting it at a user-specified level

(see Fig. 4(d)). The segments are then given by the vertices

whose function value is below the threshold and which are

contained within the branches that are directly affected by

the cut. The result is something similar to contour forests

where each segment in the domain is specified by a sub-tree

originating from the cut downward.

d) Crown features: Crown features [9] are based on

local thresholding of the merge tree. Each minimum a with

value h(a) and a persistence value above the crown height ∆

carries a crown feature. The feature is defined as the level

set component at h(a) +∆ containing the a. It represents a

subtree of height ∆ clustering its minima. The advantage of

crown features is that they prevent the main minima from

overshadowing other, less prominent features, allowing these

features to be extracted and visible as distinct elements.

B. Visualization and segmented volume rendering

We provide the option to visualize the extracted features by

coloring the voxels according to their segmentation, as shown

in Fig. 8. Alternatively, a direct volume rendering (DVR) of

the segmented trait-induced distance field is possible. Here,

random colors are automatically assigned to all segments,

which can be toggled on and off. Users can use a global

transfer function or specify transfer functions separately for
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(a) Atom-trait 4, DA (b) Atom-trait 6, DA (c) Atom-trait 1, DA (d) Atom-trait 15, DB

Fig. 5: Using TIMTs to explore two dictionaries DA (6 atoms) and DB (30 atoms) for the phantom data set. Images (a) and

(b) show the volume renderings of selected atoms as point traits, highlighting segments with the highest similarity in color.

Light green parts with low similarity values are rendered to provide context. (c) Atom 1 mainly represents the background,

which is least similar to the trait shown. Image (d) demonstrates that the selected atom cannot be directly associated with one

direction.

individual segments. Depending on the selected feature, dif-

ferent isovalues are recommended to highlight the respective

features.

C. Interaction

We provide two ways of interacting with the segmentation

of the domain for locating the feature. The first interface

consists of a legend positioned below the 3D rendering.

The legend contains a button for every segment in the data.

Clicking on such a button will toggle the voxel-wise rendering

of that segment. Active buttons are highlighted with a red

boundary. For navigation, the colors of the buttons and the

rendered segments correspond to each other. Additionally, the

buttons show the value of the segment’s minimum, which

measures the distance to the trait. This way, the user can

select segments based on their distance to the trait. The second

interface is a volume slice, see Fig. 7. After positioning the

slice in the volume, the user can select segments on the slice

by clicking on them. After selecting segments, the user may

extract a connected surface of all selected segments either for

further analysis or for rendering it in a DVR context.

VII. CASE STUDIES

We demonstrate the powerful utility and generality of our

proposed framework through use cases across various appli-

cations, including scalar, vector, and tensor field datasets.

A. Understanding of dictionary learning using TIMT

In Section IV-C, we proposed using sparse dictionaries to

design point traits. In this initial case study, we demonstrate

that TIMTs can also provide a deeper understanding of the

learned dictionary. By integrating dictionary learning with

TIMT, we explore how atoms capture and represent the

underlying structure and features of the data, enhancing the

interpretability of the learned dictionary.

We utilize the phantom HARDI dataset [34], a simple yet

high-dimensional dataset sized 71 × 71 × 15 × 60, designed

to simulate diffusion behaviors of fiber bundles within the

brain, as described in [35]. This dataset represents a fiber

(a) Atom glyphs showing the 60 measurement directions

Atom 1 Atom 2 Atom 3 Atom 4 Atom 5 Atom 6

(b) Atoms as ODF (Orientation Distribution Function)

Fig. 6: A compact dictionary of 6 atoms with a sparsity

level of 3 is used to explore the diffusion phantom data.

These atoms reveal the essential patterns extracted from the

data and each atom captures distinct fiber features (fiber

orientations, fiber crossing). In (a), the 60 diffusion directions

of the learned values are visualized as a glyph, where red

and blue represent higher and lower values, respectively. In

(b), the orientation distribution function (ODF) is depicted

using spherical harmonics and the Funk-Radon transform [33],

commonly used to indicate fiber bundle orientation, with red

and blue denoting lower and higher values, respectively.

structure that features cross-sections, splittings, and curved

regions, serving as a benchmark for testing fiber tractography.

Each voxel in this dataset contains 60 diffusion-weighted

measurements. According to the simple structure represented

by the data, it is naturally sparse. The goal of this case

study is to explore the properties of the learned dictionary

by comparing different parameter settings.

Determining the optimal number of atoms for a dictio-

nary lacks a universal answer. While guidelines exist for

compression-focused tasks, they do not apply when priori-

tizing the representational power of atoms, where the goal

is to find a dictionary to effectively represent this phantom

data. This challenge resembles finding the optimal number of

clusters in clustering. To address this, we tested and compared

dictionaries of varying sizes. Therefore, we treat atoms as

point traits (atom-traits) to construct FLS, highlighting areas

in the volume that exhibited high similarity with the original
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atoms. Starting with a dictionary consisting of 30 atoms (DB),

we quickly observed that there is high redundancy between the

FLS for some of the atoms. To get a better understanding of

the dictionary, we computed pairwise similarities of the atoms,

which confirmed our observation. These similarity matrices

show that the atoms form approximately six clusters (details,

including the similarity matrices, can be found in the supple-

mentary material). Selecting one representative atom-trait from

each cluster provided good data coverage, capturing distinct

features—specifically, fiber directions. However, results for

two atoms from the same cluster were very similar. A reduced

dictionary (DC) of 10 atoms produced similar results, leading

us to finalize a six-atom dictionary (DA) for further analysis.

The atoms for this configuration are illustrated using spherical

harmonics in Fig. 6b.

Some of the results for the different dictionaries are shown

in Fig. 5, one with six atoms, denoted as DA, and another with

30 atoms, denoted as DB. (More results can be found in the

supplementary material.) In DA, four atoms distinctly capture

different directions. Fig. 5a illustrates Atom-trait 4, which

represents a distinct direction with two connected components

(orange and blue). In contrast, Fig. 5b shows Atom-tait 6

guiding a different direction with three connected components.

Fig. 5c effectively filters out the background to capture the

primary structure of the data. In DB we only show results for

one atom, Fig. 5d mainly highlights the curved region of the

fiber with a few clusters and one cluster with a lower similarity

value in the region of the crossing fibers. This demonstrates

that a dictionary with too many atoms can lead to overfitting,

resulting in less expressive atoms.

These results show that designing a tailored dictionary

specific to a dataset is crucial for achieving an efficient and

compact representation, which is foundational for using the

dictionary as a trait to explore features. The characteristics,

dimensionality, underlying structure, and sparseness of the

data significantly impact the dictionary’s performance.

B. Tensor field analysis - Two-point load

Since FLS was originally developed for tensor fields, our

second example uses them. Using an individual tensor as a

trait, FLS introduces tensor level-sets as the zero level-set of

a point trait representing one tensor. Combined with trait-

induced merge trees, this creates a new concept of tensor

field topology. To verify the method, the first case study

examines a numerical material simulation of stresses in a solid

block. Two forces are applied to the top, one pulling and one

pushing, as shown in Fig. 7(a). This data set is referred to as

two-point-load. The simulation output is a stress tensor field

with symmetric tensors having six degrees of freedom. The

expected stress has a high linear anisotropy at impact points,

planar anisotropy along the midsection between these points,

and low stresses at regions far away from the impact points.

An appropriate attribute space for related features is spanned

by the three eigenvectors, referred to in material sciences

as principal stresses λi, i = 1,2,3, ordered as λ1 ≥ λ2 ≥ λ3,

or anisotropy measures. Anisotropy measures of interest are

linear cl , planar cp, and spherical cs anisotropy given by

(a)

(d) Trait 3(c) Trait 2

(b) Trait 1

0.90 0.910.900.900.890.75Inf.065 .067.067.065.039.039Inf

43.7 19519543.71.231.23Inf

Fig. 7: (a) Illustration of the two-point-load data set. The

arrows indicate the forces applied to the block of metal. The

isosurfaces display the anisotropy that occurs in the material.

(b) Trait 1: eigenvalues equal to zero. (c) Trait 2: high isotropy.

(d) Trait 3: planar anisotropy and one high principal eigen-

value. Shown is the segmentation of the distance field. The

active segment buttons are highlighted with a red boundary.

Note that the visibility of the purple volume in (b) is turned

off.

cl =
λ1−λ2

λ
, cp = 2(λ2−λ3)

λ
, and cs =

3λ3
λ

, respectively, with

λ = λ1+λ2+λ3 [36]. A common measure in material sciences

is the maximum shear stress, defined as λ1 − λ3. Fig. 7(a)

shows two level-sets of this measure.

In our example, the traits were defined to match these

criteria to verify the resulting regions. For the first trait, all

three principal stresses were set to zero. Fig. 7(b) shows

regions close to this behavior, aligning with our expecta-

tions since these regions are farthest from the impact points.

Fig. 7(c) shows regions with isotropic behavior, where the

trait was set to high spherical anisotropy (cs) and low linear

and planar anisotropies (cl and cp). Compared to Fig. 7(b),

this trait highlights neighboring regions. This makes sense,

as areas unaffected by the forces have a small band of

isotropic behavior around them before a more distinctive stress

distribution emerges. Lastly, the third trait was set to highly

planar behavior (cp) coupled with a high major principal stress

value (λ1). Fig. 7(d) depicts the resulting regions. As expected,

the middle section corresponds to this trait.

C. Acceptor-donor regions in molecular electronic transitions

In this case study, we analyze molecular electronic transi-

tions using feature level sets and trait-induced merge trees.

The electronic structure of a molecule changes its interaction

with light, represented by two scalar fields, Φh and Φp,

denoting the spatial distribution of electrons before and after

photon absorption during the transition [37]. Chemists are

interested in how the localization of electronic distribution

changes during the transition and how different molecular

configurations affect these transitions. It is crucial to identify
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(a) Acceptor trait 

specified in bivariate attribute space
(b) Segmentation: strongest acceptor areas

Φ
h

Φ
p

Φ
h

Φ
p

(c) Donor trait 

specified in bivariate attribute space
(d) Segmentation: strongest donor 

areas

Fig. 8: Molecular electronic transition data set (copper complex) with symmetric ligands. Images (a) and (c) illustrate the CSP

plots together with the acceptor and donor traits, respectively (red dots). Images (b) and (d) show acceptor regions respective

donor regions. The merge tree has been simplified using the hypervolume metric. The regions correspond to the n lowest leaves

in the tree.

(a) Volume rendering: 

strongest acceptor areas

(b) Segmentation: 

strongest acceptor areas

(c) Volume rendering: 

strongest donor areas

(d) Segmentation: 

strongest donor areas

Φ
h

Φ

Φ
p

Φ
h

Φ

Φ
p

Fig. 9: Molecular electronic transition data set (copper complex) with asymmetric ligands. The CSP plots and the acceptor and

donor traits are shown as inlays in images (a) and (c), respectively (red dots). Images (a) and (c) exhibit the volume rendering

of the acceptor and donor distance field. Images (b) and (d) show the segmentation for the acceptor regions and donor regions

directly. The merge tree has been simplified using the hypervolume metric. The regions correspond to the n lowest leaves in

the tree.

which parts of the molecule lose and gain charge, acting as

donor and acceptor regions, respectively. Recently, Sharma et

al. [1], [38] proposed treating these scalar fields as a single

multi-field and applying bi-variate analysis. They suggested

that examining patterns in the continuous scatter plots [39] of

the bi-variate field for the entire molecule or its sub-regions

can reveal donor and acceptor behavior.

Here, we examine electronic transitions in two copper

complexes with slightly different configurations: one with

symmetric ligands (identical molecular groups around the

copper atom) and one with asymmetric ligands (different

molecular groups). The goal is to identify and compare the

donor and acceptor regions in these complexes. A donor region

has a higher concentration of electronic density before the

transition compared to after, characterized by the condition

|Φh|> |Φp|. In the case of ideal donor behavior, the donor trait

can be defined by points (max |Φh|,0) and (−max |Φh|,0) in

the bi-variate space of Φh ×Φp. Similarly, the acceptor trait

is defined by points (0,max |Φp|) and (0,−max |Φp|). These

traits are indicated by red disks in the continuous scatter plots

(CSPs) shown in Fig. 8 and Fig. 9.

Using these point traits for donor and acceptor regions, we

extract feature level sets for both molecules. In the case of

symmetric ligands, strong donor behavior is expected around

the central copper atom, as copper is known to be a strong

donor. The acceptor regions are expected to be equally dis-

tributed over the two identical surrounding molecular groups,

as there is no preference for one group over the other. We

applied TIMTs to analyze this behavior by querying the

regions corresponding to the leaf nodes with the lowest values

in the donor TIMT. This allowed us to automatically identify

the region around the copper atom Fig. 8(d). Similarly, for the

acceptor trait, the regions were distributed over the two groups

around the copper atom Fig. 8(b). Interestingly, the regions

corresponding to leaves with the lowest values captured the

two molecular groups as separate regions in the TIMT seg-

mentation. This automatic subdivision of the acceptor region

into sub-regions matching the chemical subgroups was much

appreciated by our collaborator.

Next, we analyze the second copper complex with asym-

metric ligands. As before, the donor region is concentrated

on the central copper atom, as can be seen in the volume

rendering and segmentation results in Fig. 9(c) and (d). How-

ever, the acceptor region now concentrates on only one of the

surrounding molecular groups Fig. 9(a) and (b). This indicates

a preference for electronic charge transfer to one group over

the other in the case of asymmetric ligands, a behavior of

particular interest to chemists. Lastly, we want to point out

that the continuous scatter plots for both the complexes look

quite similar, making it difficult to distinguish between the two

transitions based on these plots alone, as seen in Fig. 8(a) and

in the inlays of Fig. 9(a). This demonstrates the importance of
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(a)

(b)

1.08 1.001.091.101.021.100.00

Fig. 10: Vortex re-connection simulation. (a) Volume rendering

of the distance field for a manually designed trait. (b) The

corresponding segmentation using branch decomposition is

shown. The purple segment highlights the horseshoe.

exploring transition behavior in the spatial domain, which is

facilitated by the feature level sets and domain-specific trait-

induced merge tree segmentations.

D. Vortex re-connection

Vortices are rotational fluid flow regions around a core line

defined by a curve in space, playing a crucial role in fluid

dynamics. Various methods exist for identifying and extracting

vortex structures and their core lines [40], [41]. However,

understanding the dynamics of vortices—particularly how they

evolve and interact—is an ongoing area of research [42], [43].

In this case study, we focus on data involving two parallel

counter-rotating vortices that interact over time, leading to a re-

connection event. This phenomenon is commonly observed in

vortices shed by aircraft wing tips, sometimes visible in the sky

as condensation trails. Initially parallel, these trails undergo a

re-connection event, forming closed loop-like structures before

dissipating. Our collaborators conducted numerical simula-

tions to study such re-connection events. One of their main

objectives is to understand the formation of horseshoe-like

structures during the re-connection, which grow over time

and eventually lead to the formation of disconnected loops.

Identifying and analyzing this horseshoe structure is a key

task in the analysis of this simulation data.

This task is challenging because there is no established

definition for automatically extracting horseshoe structures.

Therefore, they are ideal candidates for using FLSs and TIMTs

to explore different trait and feature definitions. Based on input

from our collaborators, we selected a time step after the re-

connection event where the horseshoe structure is visible. One

characteristic of the horseshoe is its appearance as a weaker

vortex in a plane orthogonal to the two parallel vortices. As

vortices in general, they are characterized by a lower pressure

at their cores. We utilize these observations to design a trait

that can capture the horseshoe structure. Given that the two

parallel vortices lie along the Z-axis and are separated in the Y

Atom 11

Atom 9

Atoms |w||v|WzWy WxVzVy VxP

Fig. 11: Illustration of the dictionary of 18 atoms using

parallel coordinates, highlighting their attributes. Each column

represents the values for the different attributes of the atoms.

Negative values in |v| and |w| arise from the optimization

process used to construct the atoms. These can be avoided by

incorporating the positivity constraints into the optimization

process. Atoms 9 and 11 are specifically highlighted. Atom 11

represents a horseshoe structure, characterized by a correlation

with a high value in the vz direction, low vorticity in the x

direction, and mid-range vorticity in the z direction.

direction, we expect the horseshoe to reside in the XY plane,

with its core approximately aligned with the Y -axis.

We start with manually formalizing these properties as a

trait by considering the velocity vector field v, composed of

the three velocity components (vx,vy,vz) and the pressure field

as a multi-field. The trait is defined by high absolute values

of vx and vz, combined with low absolute values of vy and

low-pressure values. Fig. 10 shows the results obtained for

this trait. The purple segment captures the horseshoe structure

that is closest to our trait. For the segmentation, we employ

the branch decomposition segmentation derived from the trait-

induced merge tree. This result indicates that feature level

sets and trait-induced merge trees can be employed to extract

complex features from multi-fields using simple queries, which

would otherwise be challenging to identify.

In a second experiment, we investigate atom-traits from

a learned dictionary, enabling the simultaneous visualization

(a)

(b)

Fig. 12: Example of horseshoe structure that associated with

trait 11. Image (a) demonstrates the segmentations using atom

11 as a trait for TIMT. Image (b) shows the horseshoe structure

automatically extracted by dictionary learning with original

parallel vortices rendered in a different color set as a reference.
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(a)

(b)

Fig. 13: Example of vortex rotation direction component

associated with trait 9. Image (a) exhibits segmentations of the

largest components of computing TIMT. Additionally, image

(b) presents the original vortex flow in grey and black and the

automatically extracted vortex rotation direction component in

purple and green by dictionary training.

of multiple features and providing a more comprehensive

understanding of the data. Here, we configure our multi-field

from pressure, the three velocity components (vx,vy,vz), three

vorticity components (ωx,ωy,ωz), and their magnitudes. Given

that this dataset contains both scalar and vector fields, each

with distinct value ranges and units, we utilized individually

scaled or normalized values for each field. We trained the

dictionary with the recommended number of atoms, twice the

number of dimensions, which is 18. All atoms’ parameters

are displayed in the parallel coordinates plot Fig. 11. By

examining atom-traits, we identified atom 11 that captures

the horseshoe structure similarly to the manually designed

trait. Fig. 12a shows a rendering of regions closest to this

trait 11, such as zones of a horseshoe and the central area

of the data set, similar to the manual trait Fig. 10. Fig. 12b

renders the main segment of atom 11 together with regions of

high vorticity emphasizing the parallel vortices as a reference.

Looking at other atoms reveals that they cluster certain

directional behaviors of the velocity or vorticity, highlighting

areas along the main vortices but not their centers. An example

is shown in Fig. 13(a), illustrating the four main clusters for

atom-trait 9. Fig. 13(b) shows the vortex core in gray relative

to the highest values of the similarity field.

These examples demonstrate that integrating dictionary

learning with TIMT for the analysis of complex flow structures

can reveal interesting patterns within the data. However, it also

shows that not every atom has a strong physical meaning and

requires further investigation.

E. Convective Cloud Formation

The formation of convective clouds is difficult to model be-

cause resolving such a fine-scale process with numerical sim-

ulation is very computationally intensive. To improve climate

and weather predictions, scientists are actively developing sim-

plified models of how convective clouds are formed. One way

to study convective cloud formation is to inject a tracer gas

into numerical weather simulations [44], [45]. This tracer gas

tracks the bulk air movement from the Earth’s surface through

the boundary layer of the atmosphere where clouds are formed.

By setting a threshold on the concentration of that tracer,

scientists define cloud-triggering structures in the atmosphere

as connected components of the tracer field’s super-level sets.

The challenge then is to analyze the physical properties of

these structures, such as temperature and humidity.

We propose to study this multivariate data by using fiber

surfaces, feature level sets, and TIMTs. Once scientists define

the cloud-triggering structures by selecting a threshold for the

tracer concentration, we can compute an isosurface and then

simplify and color-code each connected component using the

merge tree [26]. The volumes that represent the structures are

then projected onto the continuous scatterplot of temperature

and humidity, see Fig. 14(a). The scatterplot and projected

structures guide the selection of fiber surface control polygons,

allowing users to study certain properties of the structures and

relate them to the spatial domain, see Fig. 14(c). For example,

examining areas with low humidity and high temperature.

However, as shown in Fig. 14(b), multiple isosurfaces and

fiber surfaces can intersect and occlude each other. Cartesian

fiber surfaces, proposed by Hristov [29], visualize only the

parts of the cloud-triggering features with desired properties.

Beyond Cartesian fiber surfaces, we can apply Cartesian

traits and TIMTs to generate feature level sets. This approach

offers greater flexibility, enabling us to examine the entire

combined distance field with respect to a trait characterizing

the properties of interest. Initially, we use the control polygon

in a bivariate field of temperature and humidity, as used for the

fiber surfaces in Fig. 14, combined with the trace concentration

threshold as a Cartesian trait. In Fig. 15(a), we present an

isosurface volume rendering of the resulting feature level set

for the zero level, shown in orange, which reproduces the

fiber surface. Moving to higher levels provides the context

for the wider distribution of temperature and humidity within

the structures, depicted as blue and green transparent surfaces.

Similarly, in Fig. 15(b), we demonstrate the use of a point

trait, positioned just above the polygon in the continuous

scatterplot. As expected, near zero, the feature level set is

empty. As we move away from zero, the features in the upper

part, similar to the fiber surfaces, appear and develop like the

polygon trait. Fig. 16 shows a slice comparing the polygon-

based trait and the point trait feature level sets. Note that

the range of distances in the field differs between the two

settings, resulting in different color representations. The most

interesting regions, corresponding to the original fiber surface

and highlighted in brown, are very similar.

Finally, in Fig. 15(c), we present the results of using the

TIMT to obtain a segmentation of the domain into sepa-

rate features. This method allows us to automatically detect

changes in the combined distance field as we increase the dis-

tance from the point trait and intersect new structures. Notably,

the TIMT captures all significant features automatically.
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(a) Cloud-triggering features (b) Cartesian Fiber Surface (c) Continuous Scatterplot

Fig. 14: Convective cloud formation data set. Image (a) illustrates an isosurface of the cloud-triggering structures. Image (c)

shows the continuous scatterplot of temperature and humidity, where the volumes of the structures are projected and overlaid.

Fiber surfaces in (b) can then be defined via a control polygon and compared to the isosurface to examine the properties of

parts of the objects. Image (c) visualizes the parts of the features defined by the isosurfaces with properties inside the control

polygon using a Cartesian fiber surface. This shows that the parts of the cloud-triggering features with lower humidity and

higher temperature are at the top of the spatial domain.

(a) Polygon Trait (b) Point Trait (c) TIMT Segmentation

Fig. 15: Images (a) and (b) demonstrate how the use of a polygon and a point trait allow for more flexibility also visualizing

context to the areas of interest. As the distance to the trait is increased, we increase the allowed range of humidity and

temperature, which sweeps downwards along the features, showing the different physical properties of different parts of the

features. The use of a TIMT in (c) allows for the extraction of regions of interest with domain segmentation. The bottom row

shows the corresponding distance distributions and transfer functions used.

Fig. 16: Closeup of a slice through the data set comparing the

polygon trait (left) and the point trait (right). The structures

of interest are highlighted in brown.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we present methods to enhance the appli-

cation of Feature Level Sets (FLS). Our contributions in-

clude techniques to support trait design through the use of

Cartesian traits, as well as the automatic suggestion of point

traits using dictionary learning. Additionally, we introduce the

Trait-Induced Merge Tree (TIMT), which facilitates feature

selection by providing intuitive guidance. Finally, we enable

users to interact with the merge tree by querying it with various

methods and parameters, generating corresponding renderings

to support analysis and visualization.

Trait-Induced Merge Tree: With TIMTs we have intro-

duced a topology-based segmentation of multi-field data based

on traits. They offer a novel approach to topological data

analysis for multi-variate data and tensor fields by generalizing

fundamental topological concepts, as demonstrated with the

merge tree. Notions like persistence can be naturally extended

to multi-fields or tensor fields, supporting multi-scale analysis.

The concept of TIMTs is straightforward and easier to interpret

compared to previously proposed methods for topological
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analysis of multi-fields. The computation of feature level sets

is simple, and merge tree computation is well-researched and

available through open-source libraries.

We demonstrated how TIMTs can be used to guide the ex-

ploration of multi-variate data by providing intuitive segmen-

tation of the domain. They help to define, select, and interact

with localized features whose properties are determined by the

trait. The user interface supports browsing the segmentation

via a legend or slice. However, determining parameters such as

persistence thresholds or crown height can still be challenging

without visual aids.

A general observation when using feature level sets in visu-

alization is that while the visualization effectively represents

a specific trait, it does not convey detailed information about

the individual fields.

Trait design: In contrast to the computation of TIMTs,

trait design is less straightforward; it can be tedious and

involves several potential pitfalls. To address these challenges,

we propose two complementary approaches to ease this pro-

cess. Cartesian traits are designed for scenarios where domain

experts already have a relatively clear understanding of their

features and traits. They simplify the construction of complex

traits by breaking them down into independent components,

making the process more intuitive. Furthermore, it enhances

the efficiency of distance field computations. For cases where

users are less familiar with the data and its structure, more

automated, data-driven methods are essential. The automatic

suggestion of point traits using dictionary learning is a promis-

ing step in this direction. While this approach shows potential,

demonstrated in our case studies, the properties of the gen-

erated dictionaries remain not fully understood, necessitating

critical evaluation of the results. There remain still lots of

opportunities for improvement and further research.

A remaining key challenge in trait design is determining

which attributes to include in the attribute A. Equally impor-

tant is the task of specifying an appropriate metric for this

space, particularly when the attributes have varying scales and

units. These decisions are crucial yet non-trivial.

Computational aspects: Efficient algorithms for most

steps in the pipeline are well-known and often available as

open-source implementations. The FLS implementation used

in this article has been integrated into the Inviwo frame-

work [32]. It is GPU-based and performed at interactive frame

rates for all data sets used. The computation time of the

merge tree depends on the complexity of the distance field;

in our case studies, the longest computation took less than

a minute (42.9 seconds). Feature extraction based on the

methods presented in Sec. VI-A took a comparable amount

of time. Additionally, the feature extraction process can be

offloaded to the GPU and should be performed at interactive

frame rates in workflows for domain experts. However, there

is one critical aspect related to interpolation: some derived

attributes, such as eigenvalues for tensor fields and the pull-

back of the distance field, are non-linear in the domain. This

can lead to artifacts when interpolating the per-computed

values at the vertices. To compute exact level sets, the distance

field would have to be evaluated during the ray-marching

process for every evaluation. Similar problems might arise in

the computation of the merge tree, which typically assumes a

piecewise linear behavior of the data in the domain [46].

Case studies: The proposed method has been demon-

strated in several case studies with diverse characteristics,

consistently producing the expected and desired outcomes.

In Case Study B, within the domain of tensor fields, the

method enabled the computation of features similar to ’ten-

sor isosurfaces,’ fulfilling a long-standing request from our

collaboration partners. For Case Study C, applying TIMTs

to data representing molecular electronic transitions results in

the automatic identification of donor and acceptor regions in

a molecule using a simple point trait. This result was highly

appreciated by domain scientists, as no other analysis methods

are available for this task. This case study also demonstrates

the strength of point traits, which greatly simplify the analysis

compared to previous work using fiber surfaces, where specific

control polygons must be set up for each dataset [1]. Feature

level sets are generally less sensitive to small changes in

the feature. This can be observed in the convective cloud

formation case study E, where the use of a point feature

produces very similar results to a control polygon designed to

use fiber surfaces. Case Study D, which deals with vortex re-

connection, exemplifies the manual configuration of a trait to

extract a complex structure. Moreover, the study demonstrates

that dictionary learning also has the potential to identify and

extract features of interest. The method suggested a trait simi-

lar to the manually defined one. However, it’s important to note

that atoms do not necessarily have semantic meaning and it

can be difficult to interpret the connection between atoms and

features. Using parallel coordinates to visualize the properties

of atoms can aid in this regard. In Case Study A, we attempt

to address this limitation by using TIMT to explore the atoms

of learned dictionaries. By selecting a simple dataset with

well-known features, we could compare dictionaries learned

under different parameters. This approach reveals significant

potential for enhancing and guiding the dictionary learning

process in various contexts, such as introducing constraints

on atoms. A detailed analysis of atoms could provide insights

into finding a balance between representation accuracy and

interpretability, as well as determining the optimal number

of atoms needed to capture the underlying structure without

overfitting.
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N. Röber, M. Böttinger, and G. Scheuermann, “Fiber Surfaces for Many
Variables,” Computer Graphics Forum, vol. 39, no. 3, pp. 317–329,
2020.

[25] T. M. Athawale, B. J. Stanislawski, S. Sane, and C. R. Johnson,
“Visualizing Interactions Between Solar Photovoltaic Farms and the
Atmospheric Boundary Layer,” in Proceedings of the Twelfth ACM

International Conference on Future Energy Systems, ser. e-Energy ’21.
New York, NY, USA: Association for Computing Machinery, 2021, pp.
377–381.

[26] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in all
Dimensions,” Computational Geometry, vol. 24, no. 2, pp. 75–94, 2003.

[27] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko, “Lipschitz
Functions Have lp-Stable Persistence,” Foundations of Computational

Mathematics, vol. 10, no. 2, pp. 127–139, 2010.
[28] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, “Multi-Resolution

Computation and Presentation of Contour Trees,” in IASTED conference

on Visualization, Imaging, and Image Processing (VIIP 2004), 2005, pp.
452–290.

[29] P. G. Hristov, “Hypersweeps, Convective Clouds and Reeb Spaces,”
Ph.D. dissertation, University of Leeds, Jun. 2022. [Online]. Available:
https://etheses.whiterose.ac.uk/31965/

[30] S. F. Frisken and R. N. Perry, “Designing with distance fields,” in ACM

SIGGRAPH 2006 Courses, ser. SIGGRAPH ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 60–66.

[31] M. Elad, Sparse and redundant representations: from theory to appli-

cations in signal and image processing. Springer Science & Business
Media, 2010.

[32] D. Jönsson, P. Steneteg, E. Sundén, R. Englund, S. Kottravel, M. Falk,
A. Ynnerman, I. Hotz, and T. Ropinski, “Inviwo - A Visualization Sys-
tem with Usage Abstraction Levels,” IEEE Transactions on Visualization

and Computer Graphics, vol. 26, no. 11, pp. 32–3254, 2020.
[33] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, “Regular-

ized, fast, and robust analytical q-ball imaging,” Magnetic Resonance in

Medicine: An Official Journal of the International Society for Magnetic

Resonance in Medicine, vol. 58, no. 3, pp. 497–510, 2007.
[34] A. Leemans, B. Jeurissen, J. Sijbers, and D. Jones, “ExploreDTI: a

graphical toolbox for processing, analyzing, and visualizing diffusion
mr data,” in Proc. International Society for Magnetic Resonance in

Medicine, vol. 17, 2009, p. 3537.
[35] A. Leemans, J. Sijbers, M. Verhoye, A. Van der Linden, and

D. Van Dyck, “Mathematical framework for simulating diffusion tensor
mr neural fiber bundles,” Magnetic Resonance in Medicine: An Offi-

cial Journal of the International Society for Magnetic Resonance in

Medicine, vol. 53, no. 4, pp. 944–953, 2005.
[36] C.-F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F. A. Jolesz,

“Geometrical diffusion measures for MRI from tensor basis analysis,”
in Proc. International Society for Magnetic Resonance in Medicine ’97,
Vancouver Canada, April 1997, p. 1742.

[37] T. B. Masood, S. S. Thygesen, M. Linares, A. I. Abrikosov, V. Natarajan,
and I. Hotz, “Visual analysis of electronic densities and transitions in
molecules,” Computer Graphics Forum, vol. 40, no. 3, pp. 287–298,
2021.

[38] M. Sharma, T. B. Masood, S. S. Thygesen, M. Linares, I. Hotz,
and V. Natarajan, “Segmentation driven peeling for visual analysis of
electronic transitions,” in 2021 IEEE Visualization Conference, IEEE

VIS 2021 - Short Papers. IEEE, 2021, pp. 96–100.
[39] S. Bachthaler and D. Weiskopf, “Continuous scatterplots,” IEEE Trans-

actions on Visualization and Computer Graphics, vol. 14, no. 6, pp.
1428–1435, 2008.

[40] T. Günther and H. Theisel, “The state of the art in vortex extraction,”
Computer Graphics Forum, vol. 37, no. 6, pp. 149–173, 2018.

[41] J. Kasten, J. Reininghaus, I. Hotz, and H. Hege, “Two-dimensional time-
dependent vortex regions based on the acceleration magnitude,” IEEE

Transactions on Visualization and Computer Graphics, vol. 17, no. 12,
pp. 2080–2087, 2011.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3525974

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Leeds. Downloaded on January 15,2025 at 13:33:08 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[42] R. Bujack, L. Yan, I. Hotz, C. Garth, and B. Wang, “State of the art
in time-dependent flow topology: Interpreting physical meaningfulness
through mathematical properties,” Computer Graphics Forum, vol. 39,
no. 3, pp. 811–835, 2020.

[43] J. Kasten, I. Hotz, B. R. Noack, and H. Hege, “Vortex merge graphs in
two-dimensional unsteady flow fields,” in EuroVis 2012 - Short Papers,
M. Meyer and T. Weinkauf, Eds. Eurographics Association, 2012.
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at Linköping University, Sweden. Before this, she
received her master’s degree in Scientific Computing
from Heidelberg University, Germany. Her research
interests are diverse and interdisciplinary, encom-
passing the fields of scientific visualization, medical
visualization, and sparse representation.

Jochen Jankowai is a doctoral student at Linköping
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