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Abstract: Heated pipe flow is widely used in thermal engineering applications, but the

presence of buoyancy force can cause intermittency, or multiple flow states at the same

parameter values. Such changes in the flow lead to substantial changes in its heat transfer

properties and thereby significant changes in the axial temperature gradient. We therefore

introduce a model that features a time-dependent background axial temperature gradient,

and consider two temperature boundary conditions—fixed temperature difference and

fixed boundary heat flux. Direct numerical simulations (DNSs) are based on the pseudo-

spectral framework, and good agreement is achieved between present numerical results and

experimental results. The code extends Openpipeflow and is available at the website. The

effect of the axially periodic domain on flow dynamics and heat transfer is examined, using

pipes of length L = 5D and L = 25D. Provided that the flow is fully turbulent, results show

close agreement for the mean flow and temperature profiles, and only slight differences in

root-mean-square fluctuations. When the flow shows spatial intermittency, heat transfer

tends to be overestimated using a short pipe, as shear turbulence fills the domain. This

is particularly important when shear turbulence starts to be suppressed at intermediate

buoyancy numbers. Finally, at such intermediate buoyancy numbers, we confirm that the

decay of localised shear turbulence in the heated pipe flow follows a memoryless process,

similar to that in isothermal flow. While isothermal flow then laminarises, convective

turbulence in the heated flow can intermittently trigger bursts of shear-like turbulence.

Keywords: mixed convection; pipe flow; direct numerical simulation

MSC: 76F06; 76F10

1. Introduction

In the heated flow context, flow driven by an external pressure gradient is referred

to as ‘forced’ flow, while buoyancy resulting from the expansivity of the fluid close to a

heated wall can provide a force that partially or fully drives the flow, referred to as ‘mixed’

or ‘natural convection’, respectively. In a model, buoyancy may only need to counter drag

forces in the vertical pipe. In practice, we are likely to encounter what could be called

‘super-natural’ convection, where the buoyancy must be larger than the local drag in order

to drive flow in a wider circuit. In this case, flow in the vertical section of the circuit is

subject to a reversed pressure gradient that limits the flow rate.

Turbulent mixed convection in a vertical pipe is a representative model for heat

transfer that can be found in thermal engineering applications, e.g., heat exchangers, nuclear
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reactors, chemical plants and cooling systems for electronic components [1]. Despite the

relatively simple geometry, the flow state and heat transfer can be difficult to predict in

the presence of buoyancy. Buoyancy can enhance the heat transfer in a heated downward

pipe flow but suppress heat transfer in upward heated pipe flow [1–5]. In an upward pipe

flow, with the enhancement of heating, heat transfer first deteriorates slowly, then suddenly

drops when shear-driven turbulence collapses, then recovers, and finally can approach as

large values as for downward flow at large buoyancy parameters [1].

Heat transfer presents some complicated features in upward heated pipe flow, as well

as the flow dynamics. Previous research has confirmed three flow states in different heating

conditions and Reynolds numbers, i.e., shear turbulence, the laminar state, and convective

turbulence [6,7]. The laminar state can persist up to Reynolds numbers of around 3000,

versus approximately 2000 in isothermal flow. The addition of buoyancy suppresses and

can laminarise shear turbulence. Research on the phenomenon of laminarisation in mixed

convection can be traced at least as far back as that of Hall et al. [8], which provided a

theoretical explanation of this phenomenon, suggesting that reduced shear stress in the

buffer layer leads to a reduction in or even elimination of turbulence production. More

recently, He et al. [9] modelled the buoyancy with a radially dependent axial body force

added to isothermal flow, successfully reproducing the laminarisation phenomenon. They

found that the body force makes little change to the key characteristics of turbulence,

and proposed that laminarisation is caused by the reduction in the ‘apparent Reynolds

number’, which is calculated based only on the pressure force of the flow (i.e., excluding the

contribution of the body force). Similar laminarisation phenomena have also been observed

for the isothermal case in the presence of a modified base flow [10,11]. It is conjectured that

a flattened velocity profile reduces transient growth [12], thus suppressing shear turbulence.

Chu et al. [13] examined the self-sustaining process [14] in this context and found that

the flattened velocity profile can suppress the instability of streaks thereby disrupting the

self-sustaining process of shear turbulence.

There is a developed history of numerical simulations of mixed convection in vertical

pipe flow using various methods. In an early study, a modification of the Redichardt

eddy diffusivity model was used to simulate mixed convection [15], but it proved that this

approach did not adequately account for certain local features of the flow. Cotton et al. [16]

used the low-Reynolds number k − ϵ turbulence model of Lauder et al. [17] to simulate the

vertical heated pipe flow with some success. Behzademhr et al. [18] conducted a study of

upward mixed convection in a longer pipe at two rather low Reynolds numbers (Re = 1000

and 1500) over a range of Grashof numbers, which measures the heat flux at the wall, using

the Lauder–Sharma model. They identified two critical Grashof numbers for each Reynolds

number, which correspond to laminar–turbulent transition and relaminarisation of the

flow. More recently, direct numerical simulation (DNS) has been used in studies of mixed

convection. Kasagi et al. [19] conducted a DNS study at Re = 4300 and several values

of the Grashof number. The simulations show that buoyancy changes the distribution

of Reynolds shear stress and shear production rate of turbulent kinetic energy, leading

to heat transfer enhancement or suppression. You et al. [20] also performed the DNS

for the mixed convection in vertical pipe flow, and compared the results of upward and

downward flow. Kim et al. [21] presented an assessment of the performance of a variety of

turbulence models in simulating buoyancy-aided, turbulent mixed convection in vertical

pipes. They found the use of different methodologies for modelling the direct production

of turbulence through the direct action of buoyancy has been shown to have little effect on

predictions of mixed convection in vertical flows. Chu et al. [22] applied a well-resolved

DNS to investigate strongly heated airflow in a vertical pipe at Re = 4240 and 6020. The
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results showed excellent agreement in heat transfer and flow statistics. Recent calculations

at larger flow rates include [23–25].

We wish to examine the detailed transient nature of transition, for which accurate

DNS is necessary, and since the flow type ultimately affects the heat transfer and hence

the heating of the fluid itself, we wish to explicitly include a time-dependent temperature

gradient. The model developed by Marensi et al. [6] extends the pseudo-spectral code

openpipeflow [26] to include a time-dependent spatially uniform heat sink. This form for

the sink has the advantage of a simple analytic expression for the laminar state. Numerical

results showed good agreement with the experimental results but were improved slightly by

Chu et al. [7] by associating the heat sink with a time-dependent background temperature

gradient along the axis of the pipe. In both Marensi et al.’s [6] and Chu et al.’s [7] works,

fixed temperature conditions were used at the wall. In this work, we provide further

details of the model of Chu et al. [7] and add a second case for the temperature boundary

condition, that of fixed heat flux at the wall.

It should be noted that our model assumes axial periodicity, which implies that it

should be applied to a straight section of pipe, downstream of the effects from an inlet

or bend. This approximation is widely adopted for research in shear turbulence [27,28]

and mixed convection [25] in pipe flows. Another potential limitation is the Boussinesq

approximation [29,30] adopted in our model, which ignores the effect of heating on viscosity

and assumes that changes of density only need be considered in the buoyancy force term

in Navier–Stokes equations. Nevertheless, such modelling simplifies the simulation greatly

and provides good results in many circumstances [29], and has been widely adopted in

the simulations of mixed convection [20,25,31]. As we focus on flow and heating rates

that are transitional with respect to flow regimes, we do not consider extreme parameter

values here. When the Boussinesq approximation holds, there is mathematical equivalence

between upward heated and downward cooled flow, i.e., the case modelled here could

be experimentally examined by considering a hot fluid flowing down a pipe through a

cold room. Although the temperature along the pipe will approach the room temperature

exponentially under such circumstances, it can be modelled to be locally linear over a

reasonable distance, and the temperature gradient along the pipe will depend on whether

the flow is laminar or turbulent. Finally, it should also be noted that turbulence increases

friction drag and hence pumping costs. The relative importance of this cost is very context

specific, and therefore is not considered here. Our focus is on the enhanced heat transfer

due to turbulence.

The plan of the paper is as follows. In Section 2, we present the model for the DNS

of vertical heated pipe flow, including two types of temperature boundary conditions, i.e.,

fixed temperature difference and fixed boundary heat flux. In Section 3, we first show the

results of DNS, then present the results of different lengths of pipe. Next, we show how

the lifetime of shear turbulence changes with buoyancy force. Finally, the paper concludes

with a summary in Section 4.

2. Model for Heated Pipe Flow

Let x = (r, ϕ, z) denote cylindrical coordinates within a pipe of radius R. The total

temperature satisfies
∂Ttot

∂t
+ (utot ·∇)Ttot = κ∇2Ttot , (1)

where κ is the thermal diffusivity. We decompose the total temperature as

Ttot(x, t) = Tw(z, t) + T(x, t)− T0 , (2)

Tw(z, t) = a(t) z + b , (3)
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where a(t) is the time-dependent axial temperature gradient, b is a constant reference

temperature, T(x, t) carries the temperature fluctuations, and T0 is a constant that will

be used as a temperature scale. The factor −T0 is inserted in (2) so that the temperature

fluctuations T are positive and largest at the hot wall. The bulk temperature, we write as

Tb = ⟨T⟩ , (4)

where the angle brackets denote the volume average. The important quantity that measures

the heat flux is the Nusselt number

Nu =
2R qw

λ (T|r=R − Tb)
. (5)

where λ is the thermal conductivity, and qw = λ (∂T/∂r)|r=R is the heat flux at the wall,

where the overline denotes the time average. Note that Nu is an observed quantity, rather

than a prescribed parameter, as it depends on the state of the flow.

For the fixed temperature boundary condition, Tw is the value of the temperature

at the wall. Evaluating (2) at the wall gives T|r=R = T0. The wall temperature is locally

isothermal (does not deviate from Tw), while the heat flux may exhibit variations. However,

qw can be measured and is expected to be statistically steady, except when interrupted by a

change in state of the flow, such as from shear turbulence to convective turbulence.

For the fixed heat-flux boundary condition, qw takes the same value everywhere. Local

variations in the boundary temperature are possible, so that here, Tw represents an averaged

wall temperature. Note that Nu will still vary through changes in Tb.

Throughout the rest of this work, dimensionless variables and equations are presented,

except in the definition of the scales and dimensionless parameters. We use R as the length

scale and twice the bulk flow speed 2Ub for the velocity scale, which for isothermal laminar

flow coincides with the centreline speed. For the temperature scale, we use T0, which will

be linked to the boundary conditions in the following sections. Using these scales, we

arrive at the dimensionless governing equation

∂T

∂t
+ (utot ·∇)T =

1

Re Pr
∇

2T − utot · ẑ a(t), (6)

where it is assumed that variations in the temperature gradient are much slower than

variations in the local fluctuations, i.e., ∂ta(t) ≪ ∂tT(x, t). The dimensionless parameters

are the Reynolds and Prandtl numbers Re = 2UbR/ν and Pr = ν/κ, where ν and κ are

the kinematic viscosity and thermal diffusivity. A Prandtl number of 0.7 is used in all

calculations. The last term on the right-hand side is a sink term that withdraws the energy

that enters through the boundary. The value for a(t) at each instant is determined via the

spatial average of (6) and depends on the boundary condition on the temperature as shown

in the following sections. Axial periodicity over a dimensionless distance L = 2π/α is

assumed for the temperature fluctuation field T(x, t).

Axial periodicity is also assumed for the velocity field utot(x, t). Under the Boussinesq

approximation [30], the dimensionless Navier–Stokes (NS) equations are

∂utot

∂t
+ (utot ·∇)utot = −∇p +

1

Re
∇

2
utot +

γgRT0

(2Ub)2
Tẑ +

4

Re
(1 + β(t))ẑ , (7)

with continuity equation

∇ · utot = 0 , (8)

and no-slip condition utot = 0 at the wall, where γ is the thermal expansivity and g is

acceleration due to gravity. Here, ⟨∂z p⟩ = 0, and the non-zero component of the axial
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pressure gradient appears in the final term of (7); β(t) is the excess pressure fraction,

relative to isothermal laminar flow, required to maintain the fixed dimensionless mass flux

⟨utot · ẑ⟩ = 1/2. Further decomposing the variables as

utot(x, t) = u0(r)ẑ + u(x, t) , u0 = 1 − r2 , (9)

T(x, t) = Θ0(r) + Θ(x, t) , Θ0 = r2 , (10)

leads to governing equations for the deviation fields Θ and u = (ur, uϕ, uz)

∂Θ

∂t
+ u0

∂Θ

∂z
+ ur

dΘ0

dr
+ (u ·∇)Θ =

1

RePr
∇

2Θ +
4

RePr
− (u0 + uz)a(t) , (11)

∂u

∂t
+ u0

∂u

∂z
+ ur

du0

dr
ẑ + (u ·∇)u = −∇p +

1

Re
∇

2
u +

4

Re
(C(Θ + Θ0) + β(t))ẑ , (12)

with continuity condition ∇ · u = 0 and boundary condition u = 0. The parameter C

measures the buoyancy force relative to the pressure gradient for laminar flow. Equating

buoyancy terms in (7) and (12), we have

4

Re
C =

γgRT0

(2Ub)2
, (13)

where T0 will be specified according to the boundary condition on Θ. To determine β(t), we

take the spatial average of the z-component of (12). By Gauss’s theorem and the divergence-

free condition, many terms drop. Noting also that ⟨u0⟩ = ⟨Θ0⟩ = 1/2, the β(t) that fixes

⟨uz⟩ = 0 is given by

β(t) = −C

(

1

2
+ ⟨Θ⟩

)

−
1

2

∂(uz)00

∂r

∣

∣

∣

∣

r=1

, (14)

where (·)00 denotes averaging over ϕ and z.

2.1. Fixed Temperature Difference Between Bulk and Boundary

We accompany the fixed temperature boundary condition with a fixed bulk tempera-

ture Tb in (4). Making the choice

T0 = 2 Tb (15)

for the temperature scale, inserting in (13) and rearranging, we find

C∆T =
Gr∆T

16 Re
, Gr∆T =

γ g (T|r=R − Tb)(2R)3

ν2
(16)

wherein we use the dimensional T of (2) and subscript the parameters to clarify that they

are based on a temperature difference. Gr∆T is the Grashof number.

Using the scale T0 = 2Tb to non-dimensionalise (2) and (4), the dimensionless fluc-

tuations satisfy T|r=1 = 1 and ⟨T⟩ = 1/2. As a simple Θ0 is chosen that satisfies these

conditions, we have that (11) is accompanied by the boundary condition Θ|r=1 = 0 and

the condition ⟨Θ⟩ = 0. The latter condition is equivalent to saying that the energy within

the domain is constant, and hence the energy entering the domain through the boundary

must match the energy extracted by the sink term at each instant. This sets a value for a(t).

Taking the spatial average of (11) gives

a(t) =
4

RePr

(

2 +
∂(Θ)00

∂r

∣

∣

∣

∣

r=1

)

. (17)

This model was applied in the simulations of Chu et al. [7].
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2.2. Fixed Heat Flux at the Boundary

As we already have that (∂rΘ0)|r=1 = 2 in the decomposition (10), we suppose that

this is the value of the temperature gradient everywhere, and accompany (11) with the

boundary condition (∂rΘ)|r=1 = 0. Using T0 as the temperature scale, the dimensional flux

at the wall is everywhere

qw = 2 λ
T0

R
, i.e., T0 =

qw R

2 λ
. (18)

Inserting this T0 in (13) and rearranging, we find

Cq =
Grq

128 Re
, Grq =

γ g (2R)4qw

λ ν2
, (19)

where the subscripts are added to the parameters to indicate that they are based on the

heat flux.

The fluctuations may be split into a spatial mean and varying component, Θ(x, t) =

(Θ)00(r, t) + Θ′(x, t), where (·)00 denotes averaging over ϕ and z. To the varying compo-

nents, we apply the boundary condition (∂rΘ′)|r=1 = 0. The mean component evolves

according to the spatial average of (11), which may be written

∂(Θ)00

∂t
−

1

Re Pr
∇2(Θ)00 = (N)00 − (u0 + (uz)00) a(t). (20)

We wish the mean component to be consistent with there being a constant background

reference temperature in (3), and therefore apply the boundary condition (Θ)00|r=1 = 0.

Note that the temperature can still vary at the boundary, as this condition only fixes the

mean value. However, it still remains to apply the boundary condition (∂r(Θ)00)|r=1 = 0,

which is achieved through the variation in a(t). Evaluating the radial derivative at the

wall gives

a(t) =

(

∂(N)00

∂r
+

1

RePr

∂∇2(Θ)00

∂r

)∣

∣

∣

∣

r=1

/ (

−2 +
∂(uz)00

∂r

)∣

∣

∣

∣

r=1

. (21)

It is worth mentioning that accompanying (11) with the condition (∂rΘ)|r=1 = 0 alone,

the problem is ill-posed; see [32,33]. The condition (Θ)00|r=1 = 0 removes non-uniqueness,

but note that it cannot be trivially satisfied by evaluating (20) at the wall—a(t) remains

undetermined, as its coefficient is zero at the wall.

2.3. Time-Integration Code

The calculations are carried out by the open-source code openpipeflow.org (accessed

on 15 March 2024) [26]. Variables are discretised on the domain {r, ϕ, z} = [0, 1]× [0, 2π]×

[0, 2π/α], where α = 2π/L, using Fourier decomposition in the azimuthal and streamwise

directions and finite difference in the radial direction, with points clustered towards the

wall. An arbitrary variable f (x) is expanded in the form

f (rs, ϕ, z) = ∑
k<|K|

∑
m<|M|

( f )km(rs) ei(αkz+mϕ) , s = 1, 2, . . . , S , (22)

and the mode ( f )00 corresponds to the ϕ- and z-average. Temporal discretisation is via a

second-order predictor-corrector scheme, with an Euler predictor and a Crank–Nicolson

corrector applied to the nonlinear terms. The laminar solution is quickly calculated by

eliminating azimuthal and axial variations using a resolution S = 64, M = 1, K = 1. For

a periodic pipe of length L = 5D, the resolution is S = 64, M = 76, K = 80 at Re = 5300,

and the resolution is S = 64, M = 40, K = 44 at Re = 3000. For a periodic pipe of length
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L = 25D, the resolution is S = 64, M = 76, K = 400 at Re = 5300, and the resolution

is S = 64, M = 40, K = 220 at Re = 3000. A time step of ∆t = 0.01 is adopted. These

resolutions ensure a drop-off of three to four orders of magnitude in the amplitude of the

spectral coefficients, which experience has shown to be sufficient for accurately simulating

shear-turbulence, matching the statistics from, for example, [27]. Within the parameter

range considered here, the convective state is less computationally demanding to simulate.

3. Results

In this section, we compare the two different boundary conditions keeping L = 5D,

then we consider the fixed temperature difference boundary condition and compare the

flow in L = 5D and L = 25D. Finally, we calculate the heat transfer and lifetimes for

localised turbulence in the presence of the buoyancy force.

3.1. Laminar Flow, Shear Turbulence and Convective Turbulence

We first verify that the model produces the well-known properties of the laminar

solution for both models and for increasing buoyancy parameter C [31,34], shown in

Figure 1. The results in Figure 1 are calculated at Re = 5300, but laminar profiles are

dependent on C and independent of Re [31]. The laminar velocity profile becomes flattened

and even ‘M’ shaped with the enhancement of heating. Negative velocity near the centre

of the pipe at C∆T , Cq = 20, 25 indicates the occurrence of reversed flow. The laminar

temperature profile becomes flattened as C increases. For the fixed temperature difference,

an increased temperature gradient near the wall implies increased heat flux and increased

Nusselt number Nu, defined in (5). For the fixed heat flux case, a reduced temperature

difference between the wall and bulk results in increased Nu.

(b)(a)

(c) (d)

- -

- -

Figure 1. Laminar solution for (a,b) fixed temperature difference; (c,d) fixed boundary heat flux.

Turbulent mean profiles at Re = 5300 are shown in Figure 2. Two regimes are observed

in both the velocity and temperature profiles, corresponding to shear-driven turbulence and

convective turbulence. For the velocity profile, the former state has a flattened shape, while

the latter has an ‘M’ shape due to the stronger influence of the buoyancy force. For these

values of C, shear turbulence has much greater heat transfer than convective turbulence.
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As C increases, it is observed that heat transfer first becomes weaker, then collapses, and

finally, it gradually recovers. This trend is consistent with the results reported in the

literature [1,20,35–37]. Both models capture a similar change in heat transfer but with

different critical values of the C parameters.

(b)(a)

(d)(c)

Figure 2. Turbulent mean velocity profiles utot,z and temperature profiles T at Re = 5300, L = 5D:

(a,b) fixed temperature difference; (c,d) fixed boundary heat flux.

Numerical results for the present model are compared with the previous numerical

results [6,20] and experimental results [35–37], shown in Figure 3 (Fixed temperature differ-

ence and uniform heat sink were adopted by Marensi et al. [6], while fixed heat flux was

applied by You et al. [20]). Averages over at least 4000 time units are used in the calculation

of Nu. Two regimes are clearly identified, i.e., the heat-transfer deterioration regime and the

recovery regime, corresponding to shear turbulence and convective turbulence, respectively.

Both temperature boundary conditions achieve good agreement with the experimental

results and previous numerical results.

10!2 10!1 100

Bo

0.4

0.6

0.8

1

N
u
=N

u
f

Present study("T )
Present study(q)
Marensi et al.(2021)
Steiner (1971)
Carr et al. (1973)
Parlatan et al. (1996)
You et al. (2003)

Figure 3. Change in heat flux, normalised by that for the isothermal state (C → 0), as a

function of Bo = 8 × 104(8 Nu Gr∆T)/(Re3.425Pr0.8) (fixed temperature difference) or Bo = 8 ×

104(8Grq)/(Re3.425Pr0.8) (fixed boundary heat flux). Present data from simulations at Re = 5300,

Pr = 0.7. The upper and lower branches correspond to shear and convective turbulence, respectively.

Data from [6,20,35–37].
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At lower Reynolds numbers, there is a laminarisation regime, seen in Figure 4, which

shows the approximate regions of the flow states for the two temperature boundary condi-

tions. Although there is a difference between the values of C∆T and Cq at which transition

between different flow regimes occurs, they are consistent in Figure 3.

(a) (b)

Figure 4. Approximate regions of laminar flow (L), shear turbulence (S), and convective turbulence

(C); SC indicates that the flow may be in either of the two states. (a) Fixed temperature difference;

(b) fixed boundary heat flux.

The time evolution of E3d (energy of streamwise-dependent component of the flow)

and instantaneous Nu(t) at different C∆T and Cq are presented in Figure 5. Generally,

as C is increased, E3d first decreases gradually, then reduces to a much lower energy

level at a critical value of C, indicating a flow state transition from shear turbulence to

convective turbulence [7]. In the convective turbulence state, E3d fluctuates with a much

lower frequency. A clear gap between the shear turbulence regime and the convective

turbulence regime (smaller E3d and Nu) is observed. The critical C is not precise, since close

to the border, both states can be observed. At Re = 5300, the critical values are C∆T ≈ 7 and

Cq ≈ 15. Interestingly, bistability is observed at Cq = 15, which switches between shear

and convective turbulence. In particular, the convective state is capable of intermittently

triggering bursts of shear-like turbulence, whereas at lower Re and in isothermal flow, it

cannot switch back from the linearly stable laminar state.

(c) (d)

(a) (b)

Figure 5. (a,c) Time series of E3d (energy of the streamwise-dependent component of the flow) and

(b,d) Nu(t) at different C∆T and Cq for Re = 5300.
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The time evolutions of the background temperature gradient a(t) and of Nu(t) are

presented in Figure 6 during the transition from shear turbulence to the laminar state, and

during the transition from shear turbulence to convective turbulence for the two types

of boundary conditions. The transition from shear turbulence to either the laminar state

or convective turbulence leads to a reduced Nusselt number. This is accompanied by a

reduction in the gradient a(t) for the fixed temperature difference model. As the heat

transfer associated with the new flow is lower, the fluid is heated less, and the gradient

reduces. For the fixed heat flux model, however, once the total temperature has adjusted

(giving the change in Nu), the time average of a(t) is forced to remain the same so that

the heat flux out matches the fixed input flux. As the energy of the bulk is fixed for the

fixed temperature difference, the input and output energies respond immediately to each

other, so that a(t) and Nu(t) vary together. For the fixed flux condition, Nu(t) varies due to

differences in the bulk temperature, which responds in a time-integrated fashion relative to

the heat flux out. Hence, fluctuations in Nu(t) are less rapid than those in a(t) for the fixed

flux boundary condition.

(a) (b)

-

Figure 6. Time evolution of (a) a(t) and (b) instantaneous Nusselt number when shear turbulence

collapses to the laminar or convective state for the two boundary conditions.

Root-mean-square (RMS) deviations from (uz,tot)00 and (T)00 are shown in

Figures 7 and 8 for the fixed temperature and fixed flux boundary conditions, respec-

tively, using data from t = 1000 to t = 4000 for each simulation. Interestingly, there are

two peaks of streamwise velocity fluctuation observed in convective turbulence when the

fixed temperature difference is adopted; see Figure 7d. At C∆T = 10, the peak near the wall

dominates, while the peak far away from the wall is larger at C∆T = 25. The two peaks

are in good agreement with You et al. [20] in Figure 4 and Cruz et al. [25] in Figure 3. The

main difference between the two models is in the temperature fluctuations Trms. As only

the mean temperature at the wall is fixed for the fixed flux model, fluctuations are possible

even at the wall. Trms for Cq = 15 is especially large, due to the bistability mentioned

earlier (see Figure 5c,d). Otherwise, the results are similar, and differences between the

shear and convective regimes are observed in the RMS fluctuations for both models. In

the shear turbulence regime, the peak of temperature fluctuation is close to the wall and

moves away from the wall with increased heating. In the convective turbulence regime,

the peak of the temperature fluctuations is much further away from the wall, and moves

closer to the wall again as the heating is increased. The peak fluctuations for all velocity

components are close to the wall in the shear turbulence regime, and weaken as C increases.

For the convective regime, fluctuations are spread more evenly across the domain and

strengthen as C increases further. Results are consistent with other calculations of RMS

quantities [20,25,38].
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(d)

(a) (b)

(c)

Figure 7. Profiles of RMS temperature and velocity fluctuations at Re = 5300, L = 5D: (a) Trms;

(b) ur,rms; (c) uϕ,rms; (d) uz,rms. Fixed temperature difference.

(b)(a)

(d)(c)

Figure 8. The profile of root mean square of temperature and velocity at Re = 5300, L = 5D: (a) Trms;

(b) ur,rms; (c) uϕ,rms; (d) uz,rms. Fixed boundary heat flux.

3.2. Short vs. Long Periodic Pipes

As the two models give consistent results, only the fixed temperature difference

model is considered here. The axially periodic boundary condition could impose some

difference in the results compared to true flow. Thus, here we use a longer pipe, L = 25D,

for comparison. Figure 9 shows the mean velocity and temperature profiles of a short
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pipe (L = 5D) and a longer pipe (L = 25D) in shear turbulence regime (C∆T = 5) and

strong convective turbulence (C∆T = 25). The results for the two pipe lengths are in

good agreement, suggesting that L = 5D is enough for capturing the mean profiles. The

distributions of the RMS of temperature and velocity for the short pipe and long pipes

are shown in Figure 10. There are some small differences, but the agreement is still good.

The differences are smaller for convective turbulence. For shear turbulence, there is a little

deviation in the centre of the pipe for the cross-stream velocity components. The results

in the near-wall region are well matched, suggesting that simulations in a short pipe are

expected to capture the heat transfer processes accurately.

(a) (b)

Figure 9. Comparison of mean (a) streamwise velocity and (b) temperature profile between short

periodic pipe (L = 5D) and long periodic pipe (L = 25D). Two typical flow states are simulated,

i.e., shear turbulence (C∆T = 5) and convective turbulence (C∆T = 25) at Re = 5300. The fixed

temperature difference boundary condition is used.

(b)(a)

(d)(c)

Figure 10. Comparison of (a) Trms, (b) ur,rms,(c) uϕ,rms and (d) uz,rms between short periodic pipe (L = 5D)

and long periodic pipe (L = 25D). Two typical flow states are simulated, i.e., shear turbulence (C∆T = 5)

and convective turbulence (C∆T = 25) at Re = 5300. Fixed temperature difference.

Contours of streamwise velocity and temperature in the rz cross section for the

two pipe lengths are shown in Figure 11 and Figure 12, respectively. The difference in ve-

locity between the shear turbulence (Figure 11a,c) and convective turbulence (Figure 11b,d)
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is clear: shear turbulence has strong low-speed regions near the wall (associated with

streaks). These are essentially absent in convective turbulence, and are replaced with

localised regions of fast flow near the wall, while the core flow moves more slowly. No

obvious difference in the contour plots is observed between short and long pipes, for both

velocity and temperature fields.

(c)

(a) (b)

(d)

Figure 11. Contours of streamwise velocity in rz cross section for shear turbulence (C∆T = 5) in

(a) L = 5D, (c) L = 25D, and convective turbulence (C∆T = 25) in (b) L = 5D, (d) L = 25D at

Re = 5300. For the long pipe, the z-axis is scaled to show the whole pipe.

(a)

(a) (b)

(c)

(d)

Figure 12. Contours of temperature in rz cross-section for shear turbulence (C∆T = 5) in (a) L = 5D,

(c) L = 25D, and convective turbulence (C∆T = 25) in (b) L = 5D, (d) L = 25D at Re = 5300. For the

long pipe, the z-axis is scaled to show the whole pipe.

The time evolution of a(t) for the two pipe lengths is shown in Figure 13a. The curves

at matching C∆T are quite close, but smaller fluctuations in a(t) are observed for the longer

pipe. This is expected, as the larger domain gives more steady volume-averaged quantities

used in the calculation of a(t). Nusselt numbers for the short and long pipes at several C∆T

are compared in Figure 13b. There is almost no difference in the Nusselt number over a

wide range C∆T covering both shear turbulence and convective turbulence. Therefore, it is

concluded that the simulation of a short periodic pipe (L = 5D) is enough to predict the

heat transfer and flow dynamics for fully turbulent flow. For C close to critical, however,

data from either one state or the other are used in the calculation of Nu so that intermittency

is not fully accounted for. We consider this next.

In isothermal flow, localised turbulent patches are called puffs and slugs [39]. Puffs

appear for Re ≈ 1800 and are statistically steady in axial extent. From Re ≳ 2250, they

start to expand and are called slugs. However, within the expanding turbulent region

(that will eventually fill a periodic domain), laminar patches remain present for Re up to

approximately 2800 [40]. Thus, there is a large range over which the intermittent nature of

turbulence cannot be captured in a short periodic domain of length L = 5D. Puffs and slugs
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have frictional drag between the values extrapolated from the fully turbulent or laminar

regimes, and are marked as a hatched area in the Moody diagram [41]. For a heated pipe,

this will affect the estimations of Nu.

(b)(a)

Figure 13. (a) Time evolution of a(t) for short (L = 5D) and longer pipe (L = 25D). (b) Normalised

Nusselt number for the short and longer pipe at Re = 5300. Bo defined as in Figure 3. Fixed

temperature difference model. Data from [6,20,35–37].

In vertical heated pipe flow, intermittent turbulence exists around the boundary

between laminar and shear turbulence at higher Reynolds numbers, at the meeting of the

green and blue regions in Figure 4. Examples of puff and slug at Re = 3000, C∆T = 1.9 are

shown in Figure 14. Nusselt numbers for the short and long pipes at Re = 3000 are shown

in Figure 15. At small C∆T , there is almost no difference, as the turbulence fills the pipe. As

C∆T increases, the difference in Nu between the short and long pipe becomes substantial,

due to the appearance of localised turbulence. Eventually, laminarisation occurs, marked

by the final two points.

(a)

(b)

Figure 14. Contour of streamwise velocity in long pipe (L = 25D at Re = 3000, C∆T = 1.9): (a) puff

and (b) slug.

Figure 15. Comparison of Nusselt number for transitional C∆T for a short and long periodic domain

(L = 5D, 25D) at Re = 3000. Values for (intermittent) turbulence are shown, except for the final

two laminar points.
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3.3. The Lifetime of Localised Shear Turbulence

The mean lifetimes of turbulent puffs in isothermal flow, and its scaling with Reynolds

number, have been closely investigated [28,42–44]. At each Re, the mean lifetime must be

estimated from a series of simulations or experiments, and data are often truncated, due to

the limited simulation time or the finite length of the pipe [28]. To examine whether the

lifetime of puffs in heated pipes behave similarly, we calculate the survivor functions at

Re = 3000 for several C∆T . To generate the initial conditions for the simulations, a localised

disturbance is applied to the laminar Poiseuille flow at Re = 3000, C∆T = 1.9 and the

resulting puff is evolved for t ≈5000. Snapshots of the full velocity field are recorded every

20 time units, generating a large collection of initial conditions. Subsequently, simulations

at larger C∆T are performed starting from these initial conditions and are monitored until

the flow laminarises. The criterion for laminarisation is E3d < 10−3, below which turbulent

motions are decayed beyond recovery.

The time evolution of E3d of n = 50 arbitrary initial turbulent fields at C∆T = 2 are

shown in Figure 16a. Some cases decay to the laminar state, while others remain turbulent

for the period of the simulation. The decay of turbulence leads to a large drop in the Nusselt

number and an exponential decay of E3d so that laminarisations are clearly identifiable. For

a finite set of samples, the survivor function is approximated by

S(t) =
r

n
, (23)

where r is the number of puffs that survive up to time t. For example, all initial conditions

survive before t = 10, then S(t) = 1 when t < 10. In this way, we can calculate the lifetime

of survivor probability from 1 to 1
50 . However, due to the finite time it takes for E3d to

drop to 10−3, the data in Figure 16b are shifted to the left by the time of the earliest decay

(≈250). As C∆T increases, the mean lifetime of puffs decreases. The distributions remain

exponential in form for each C∆T . This indicates that the puff decay induced by heating is

also a memoryless process, corresponding to the escape from a strange saddle [28,42]. The

enhancement of heating has a similar effect to that of the decrease in Reynolds number in

isothermal flow.

(a) (b)

Figure 16. The time evolution of (a) E3d of 50 arbitrary initial turbulent fields at C∆T = 2. (b) Survivor

function for several values of the buoyancy parameter. n = 50 samples for each case. L = 25D.

4. Conclusions

In this work, we have presented a derivation of a model for vertically heated pipe

flow that includes a time-dependent axial temperature gradient. This gradient adjusts in

response to the flow pattern. A transition from shear turbulence to convective turbulence

is well known to lead to a drop in heat transfer. For the fixed temperature model, reduced

heat transferred into the fluid leads to a reduction in the temperature gradient. With the

fixed heat flux boundary condition, however, as the energy withdrawn from the domain is
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proportional to the gradient, the gradient is forced to remain the same on average to match

the energy entering the domain.

Laminar solutions are calculated numerically for several values of the buoyancy

parameter, and are consistent with previous reports [6,20,31]. For turbulent flow, the time-

averaged velocity and temperature profiles, and their RMS fluctuations, are calculated

for both boundary conditions. The two turbulent regimes, i.e., shear turbulence and

convective turbulence, are easily distinguished in the mean profiles and RMS flucutations.

The dependence of flow state over the space of Re and Nu is calculated for both boundary

conditions along with various statistics. Statistics show minor differences between the

boundary conditions, but both show good consistency with the previous calculations and

experiments. Of particular interest are the RMS temperature fluctuations, as they can be

non-zero at the wall for the fixed-flux case. Also of interest is that convective turbulence can

trigger bursts of shear-like turbulence when close to the critical C between the two states

(For isothermal flow, shear-turbulence cannot return from the linearly stable laminar state).

Further simulations are carried out to examine the effect of the periodic length of the

pipe on the turbulent statistics and heat transfer. The short pipe L = 5D and long pipe

L = 25D show almost no difference in the mean velocity and mean temperature profiles.

However, there are some minor mismatches in the RMS of velocity and temperature. The

length of the pipe is found to have more effect on shear turbulent state, possibly due to

spatial intermittency. The mismatch mainly appears in the centre of the pipe, while there

is always a good agreement in the near-wall regime. Hence, the short pipe still captures

accurate Nusselt numbers, provided that the flow is not too intermittent. In that case,

simulations with a short pipe are likely to overestimate heat transfer, as shear turbulence

fills the domain.

Finally, we have recorded the lifetime of the localised turbulence with heating, con-

firming it also follows a memoryless process corresponding to the escape from a strange

saddle. Using the previous model of [6] close to criticality at larger Re, strong fronts and

puffs have been found to disappear [45].

The code used for these calculations is available at openpipeflow.org (accessed on

15 March 2024).
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