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Identifiability of Lithium-Ion Battery Electrolyte Dynamics*

Luis D. Couto1, Ross Drummond2, Dong Zhang3, Toby Kirk4 and David A. Howey2,5

Abstract— The growing need for improved battery fast charg-
ing algorithms and management systems is pushing forward the
development of high-fidelity electrochemical models of cells.
Critical to the accuracy of these models is their parameter-
isation, however this challenge remains unresolved, both in
terms of theoretical analysis and practical implementation.
This paper develops a framework to analyse from impedance
measurements the identifiability of electrolyte dynamics—a sub-
component of a general Li-ion model that is key to enabling
accurate fast charging simulations. By assuming that the
electrolyte volume fractions in the electrode and separator
regions are equal, an analytic expression for the impedance
function of the electrolyte dynamics is obtained, and this can
be tested for structural identifiability. It is shown that the only
parameters of the electrolyte model that may be identified are
the diffusion time scale and a geometric coupling parameter.
Simulations highlight the identifiability issues of electrolyte
dynamics (relating to symmetric cells) and explain how the
electrolyte parameters might be identified.

I. INTRODUCTION

Within the last decade, Li-ion batteries have emerged as

the dominant solution for electrical energy storage and are

now near omnipresent and encountered on a daily, even

hourly, basis. The range of applications for Li-ion batteries

is growing and includes providing electricity storage for

renewable energy integration within the grid and powering

electric vehicles, where high energy density, increased power

per unit mass [1] and declining costs have made them the pre-

ferred power sources for transport electrification. Demanding

activities such as these require a battery management systems

(BMS) to monitor internal states to mitigate safety risks and

increase lifetime [1], with the states of the battery typically

estimated using a model.

Several types of battery model have been developed for

different purposes. The simplest are those where the dynam-

ics are based upon equivalent circuits [2], where the electrical

analogy of a battery is exploited. Although a reasonable

voltage prediction can be obtained with this framework, it

suffers from the fact that its internal battery states have
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only faint connections to reality. In order to capture physical

battery behaviour that might then be tracked by next gen-

eration BMSs, electrochemical models are useful. Of these,

the Doyle-Fuller-Newman (DFN) model [3] is now regarded

as a benchmark and is widely used within academia and

industry. However, this model is computationally demanding

and has many parameters, and this has restricted its use

within BMS and for other practically relevant applications.

To reduce this complexity whilst still retaining some of the

physical usefulness of the DFN model, several reduced-order

electrochemical models have been developed.

The most popular reduced-order electrochemical battery

model is perhaps the “single-particle model” (SPM) [4], [5]

which assumes that the cell experiences a uniform spatial

electrochemical reaction rate and a constant electrolyte con-

centration profile across its thickness. These assumptions

allow the battery to be idealised as a single spherical average

particle per electrode whose surface area density is scaled

to that of the porous electrode [5]. Although the SPM has

been shown to be computationally simple and physically

relevant, it has limitations e.g. it only provides accurate

predictions for relatively low C-rates [6]. However, the value

of electrochemical information will be of most significance

for high rate operations, since it is when the battery is acting

near its performance limits that detailed monitoring is most

valuable. One way to increase the applicability of the SPM

is to add more dynamics to it that are relevant at higher

C-rates, notably those for the transport of ions within the

bulk electrolyte, and this results in the “SPM with electrolyte

dynamics” (SPMe) model [7], [8], [9], [10], [6], [11].

Even though these electrochemical models are widely

used, it is becoming increasingly apparent that the validity

of their state predictions is strongly dependent upon the

accuracy of their parameters, and yet we still have very

limited tools for battery model parameter estimation. While

it is widely acknowledged that parameter estimation is an

integral part of the modeling effort, most studies have tended

to avoid the burden of identification and instead obtained the

model parameters directly from literature. Whilst enabling

quick model-to-model comparison, the limitations of this

are i) the parameters might differ from the real parameters

of the specific cell under study, especially as the cells age,

and ii) the release of new battery chemistries is happening

at a faster rate than cell models are being parameterised,

leading to a parameterisation backlog. For these reasons,

in situ determination of cell properties from simple non-

invasive measurements is required for practical applications

of electrochemical models. However, determining parameter

values is hard and requires both time, resources and a range



of experimental techniques [7].

To support these efforts, this paper develops a structural

identifiability analysis of the electrolyte sub-model of the

SPMe by analysing the electrolyte’s impedance function as

might be measureable from, e.g., electrochemical impedance

spectroscopy (EIS). In the language of control theory, the

impedance function is the transfer function which is known

to contain information about kinetic and transport parameters

and can also be used to study reaction mechanisms and

degradation effects [12]. The usefulness of battery model

parameterisation from EIS data has motivated several exist-

ing studies on this problem, including [13] and [14], which

we extend in this paper in the following ways:

• An impedance model for the electrolyte dynamics is

derived;

• The resulting electrolyte impedance model is analyzed

under different conditions;

• The associated identifiability properties are studied, and

a possible strategy to improve identifiability is proposed.

By developing the theory of what is achievable for electro-

chemical battery model parameterisation, it is hoped that this

work will eventually contribute to enabling more effective

practical tools to increase model accuracy, enabling the

models to be tuned online to improve BMS operation, fast

charging algorithms and state-of-health predictors.

II. ELECTROLYTE DYNAMICS

In this section, a frequency-domain model of electrolyte

dynamics is considered. We first introduce electrolyte-phase

model equations, followed by the voltage measurement equa-

tion and the impedance model.

A. Electrolyte-phase model

In contrast to the solid-phase model for battery electrodes

whose transcendental transfer functions have been reported

in several papers (see e.g. [15]), the derivation of the transfer

functions associated with the electrolyte-phase model is more

scarce.

The electrolyte-phase dynamics in a lithium-ion battery

are described by the following partial-differential equation

(PDE) system [3],

∂c−e
∂t

(x, t) =
D−

e,eff

ε−e

∂2c−e
∂x2

(x, t) +
1− t0c
ε−e

a−s j
−
n (x, t) (1)

∂cse
∂t

(x, t) =
Ds

e,eff

εse

∂2cse
∂x2

(x, t) (2)

∂c+e
∂t

(x, t) =
D+

e,eff

ε+e

∂2c+e
∂x2

(x, t) +
1− t0c
ε+e

a+s j
+
n (x, t),(3)

where ce(x, t) and jn(x, t) are the molar electrolyte concen-

tration per unit volume of electrode and the pore-wall molar

flux, respectively, x and t stand for the longitudinal direction

along the cell thickness and the temporal dimension, respec-

tively, and superscripts {+, s,−} indicate positive electrode,

separator and negative electrode domains, respectively. The

effective electrolyte diffusion coefficient De,eff has the form

D±s
e,eff = De(ε

±s
e )b where the shorthand notation ”±s” in

superscript denotes positive electrode (+), negative electrode

(−) and separator (s), εe is the electrolyte volume fraction

and b is the Bruggeman’s exponent. The transference number

is denoted as t0c . The PDE system (1)-(3) is subject to the

following boundary conditions,

∂c−e
∂x

(x, t)

∣

∣

∣

∣

x=0

=
∂c+e
∂x

(x, t)

∣

∣

∣

∣

x=L

= 0 (4)

D−
e,eff

∂c−e
∂x

(x, t)

∣

∣

∣

∣

x=Ln

= Ds
e,eff

∂cse
∂x

(x, t)

∣

∣

∣

∣

x=Ln

(5)

Ds
e,eff

∂cse
∂x

(x, t)

∣

∣

∣

∣

x=Lns

= D+
e,eff

∂c+e
∂x

(x, t)

∣

∣

∣

∣

x=Lns

(6)

c−e (x, t)
∣

∣

x=Ln

= cse(x, t)|x=Ln

(7)

cse(x, t)|x=Lns

= c+e (x, t)
∣

∣

x=Lns

, (8)

for a battery cell whose thicknesses for negative electrode,

separator and positive electrode are denoted as Ln, Ls and

Lp respectively, L = Ln + Ls + Lp and Lns = Ln + Ls.

The pore-wall molar flux in (1)-(3) can be simplified by

assuming a uniform reaction across the electrode thickness,

which is a typical reduction of SPM-type models, given by

j±n (x, t) ≈ ∓
i(t)

a±s FL±A
(9)

where i(t) is the applied battery current, as is the specific

interfacial area, F is Faraday’s constant, L is the electrode

thickness and A is the transverse cell area. Moreover, we can

normalise the model equations by defining c∗e = ce/ce,m and

i∗ = i/ityp where ce,m and ityp are a nominal electrolyte

concentration and current, respectively. Let us define the

following grouped parameters

τ±e,c =
ε±e FAL±ce,m
(1− t0c)ityp

, α±s = De

(

ε±s
e

)b−1
. (10)

By taking the Laplace transform of (1)-(3) normalised by

ce,m, the following ordinary-differential equation system in

the frequency domain is obtained

sC−,∗
e (x, s) = α− d2C−,∗

e

dx2
(x, s) +

1

τ−e,c
I∗(s) (11)

sCs,∗
e (x, s) = αs d

2Cs,∗
e

dx2
(x, s) (12)

sC+,∗
e (x, s) = α+ d2C+,∗

e

dx2
(x, s)−

1

τ+e,c
I∗(s), (13)

where s is the Laplace variable and C∗
e (s) and I∗(s) are

the transforms of the normalised electrolyte-phase lithium

concentration c∗e and current i∗, respectively.

The general solutions of (11)-(13) are given by

C−,∗
e (x, s) = K1 exp

(

β−x
)

+K2 exp
(

−β−x
)

+
1

τ−e,c s
I∗(s) (14)

Cs,∗
e (x, s) = K3 exp (βsx) +K4 exp (−βsx) (15)

C+,∗
e (x, s) = K5 exp

(

β+x
)

+K6 exp
(

−β+x
)

−

1

τ+e,c s
I∗(s) (16)

where β±s =
√

s/α±s and Ki, i = 1, . . . , 6 are unknown

constants. These constants are obtained by substituting (14)-

(16) into the normalised version of the boundary condi-

tions (4)-(8) and solving the resulting set of six algebraic



equations. Doing so gives an algebraic characterisation (see

Appendix) of the impedance function, expressed in terms of

parameters such as diffusion coefficients, electrodes thick-

nesses, etc.

Inspecting the algebraic characterisation of the electrolyte

impedance given in (A.1) of the Appendix, it is apparent

that this expression is both long and convoluted, with many

(at least 10) parameters, including τ±e,c, τ−,n
ed , τ s,ned , τ s,nsed ,

τ+,ns
ed , τ+ed (defined in Table I), and D±s

e,eff/L
2, with no

trivial parameter groupings. The non-existence of a clean,

relatively simple and preferably analytical (for tractability)

expression for the coefficients K1:6 complicates the goal of

this paper which is to investigate the structural identifiability

of these electrolyte dynamics. Therefore in the following

subsection we describe two different forms that these local

electrode impedances can take, based upon two simplifying

assumptions on the electrode microstructure.

B. Electrolyte model simplification

To simplify the impedance expressions, the following

assumption is applied:

(A1) The volume fraction of the electrolyte phase εe is

uniform throughout electrolyte regions, i.e. εe = ε−e =
εse = ε+e , which implies a uniform effective diffusion

coefficient De,eff = Deε
b
e and therefore β =

√

s/α.

Note that since the volume fraction is bounded by ε
{+,−,s}
e ∈

[0, 1] and typically only differs by ≈ 0.2 between each

domain, this assumption is generally not too restrictive.

Applying Assumption (A1) greatly simplifies the problem,

giving a compact analytic expression for the impedance

model for each electrolyte region.

Defining the electrolyte-phase diffusion timescales

τ je,d =
β2

s
L2
j =

L2
j

Deε
b−1
e

, (17)

with j = {n, ns, ·} attributed to Ln, Lns and L, respectively,

the following parameterised transfer functions for the nor-

malised electrolyte concentration in the negative and positive

battery terminals are obtained:

H0,∗
e (s,θe) =

1

τ−e,c s

−

1

τ
−

e,c

sinh

(

√
τe,d s−

√

τn
e,d

s

)

+ 1

τ
+
e,c

sinh

(

√
τe,d s−

√

τns
e,d

s

)

s sinh
(√

τe,d s
)

(18)

HL,∗
e (s,θe) = −

1

τ+e,cs
+

1

τ
−

e,c

sinh

(

√

τn
e,d

s

)

+ 1

τ
+
e,c

sinh

(

√

τns
e,d

s

)

s sinh
(√

τe,d s
)

(19)

Here, H
{0,L},∗
e (s,θe) = C

{0,L},∗
e (s)/I∗(s) where

C0,∗
e (s) = C−,∗

e (0, s) and CL,∗
e (s) = C+,∗

e (L, s). The

transfer functions H
{0,L},∗
e (s,θe) in (18),(19) can be

parameterised by θe = [τe,d τne,d τnse,d τ−e,c τ+e,c]
⊤.

Remark 1: Assume that

(A2) The proportions of electrolyte regions δn = Ln/L and

δns = Lns/L are known,

TABLE I

GROUPED PARAMETERS OF THE ELECTROLYTE MODEL

Parameter Symbol

Geometric coupling parameter in negative electrode τ−e,c
Geometric coupling parameter in positive electrode τ+e,c
Diffusion timescale in negative electrode at Ln τ−,n

e,d

Diffusion timescale in separator at Ln τs,n
e,d

Diffusion timescale in separator at Lns τs,ns

e,d

Diffusion timescale in positive electrode at Lns τ+,ns

e,d

Diffusion timescale in positive electrode at L τ+
e,d

then the electrolyte diffusion timescales in (17) can be

written in terms of the total cell thickness L, i.e. τne,d =
δ2nτe,d and τnse,d = δ2nsτe,d. Under this further simplification,

the impedances in (18), (19) become

Ĥ0,∗
e (s,θe,3)=

1

τ−e,c s

−

1

τ
−

e,c

sinh
(

(1− δn)
√
τe,d s

)

+ 1

τ
+
e,c

sinh
(

(1− δns)
√
τe,d s

)

s sinh
(√

τe,d s
)

(20)

ĤL,∗
e (s,θe,3)=

−1

τ+e,cs
+

1

τ
−

e,c

sinh
(

δn
√
τe,d s

)

+ 1

τ
+
e,c

sinh
(

δns
√
τe,d s

)

s sinh
(√

τe,d s
)

(21)

and these are characterised by 3 parameters, namely

θe,3 = [τe,d τ−e,c τ+e,c]
⊤. In this case, the relationship

τ−e,c/τ
+
e,c = δn/(1 − δns) holds, which means that δn can

be written in terms of the other parameters.

Remark 2: Impedances (20), (21) can be simplified even

further if it is assumed that

(A3) A geometrically symmetric cell is considered, meaning

that the electrode thicknesses are equivalent, namely

Ln = Lp.

In this case, τe,c = τ−e,c = τ+e,c and the models reduce to

H̄0,∗
e (s,θe,2)=

1

τe,c

(

1

s
−

sinh
(

δ̄n
√
τe,d s

)

+ sinh
(

δ̄ns
√
τe,d s

)

s sinh
(√

τe,d s
)

)

(22)

H̄L,∗
e (s,θe,2)=−

1

τe,c

(

1

s
−

sinh
(

δn
√
τe,d s

)

+ sinh
(

δns
√
τe,d s

)

s sinh
(√

τe,d s
)

)

(23)

with δ̄{n,ns} = 1 − δ{n,ns} and which are characterised by

2 parameters, θe,2 = [τe,d τe,c]
⊤.

C. Voltage drop from the bulk electrolyte

Recall that impedance requires one to know the mapping

from the applied current to the measured voltage drop. In

terms of the electrolyte contribution, the voltage drop is

related to the difference in the electrolyte concentrations at

either current collector, described by

v∗(t) = kc
(

ln(cL,∗
e (t))− ln(c0,∗e (t))

)

+Ri∗(t) (24)

with resistance

R =
(Ln + 2Ls + Lp)ityp

2κAµ
(25)

and where the non-dimensional voltage v∗ is defined as v∗ =
v/µ, v is the dimensional voltage and µ = RgTref/(α0F )
is the thermal potential with Rg the universal gas constant,

Tref a reference temperature and α0 the charge transfer



coefficient. The ionic conductivity is denoted as κ, kc =
2α0(1 − t0c)(1 + d ln fc/a/d ln ce) and fc/a is the activity

coefficient.

In the following, it will be assumed that the contributions

to the measured voltage drop from the bulk electrolyte

(described above) are essentially decoupled from those of

the active particles and kinetics. Such an assumption is

immediate at the points when the open-circuit potential

function of the electrodes is flat versus the state-of-charge,

as can occur with LFP or LTO cells, but can also follow

from the fact that there is a timescale separation between Li

diffusion in the particles (≈ 103 s), bulk electrolyte (≈ 10 s)

and double layer (≈ 10−3 s), with this separation meaning

that the relevant frequencies where these three phenomena

are dominant are somewhat disjoint

Assuming that the current magnitude i(t) is small and

the battery is operated close to a given initial equilibrium

condition c
{0,L},∗
e , the voltage equation can be linearized

using a first-order Taylor series approximation about the

reference point z∗0 = [c0,∗e,0 cL,∗
e,0 i∗0]

⊤ = 0 resulting in

ṽ∗(t) ≈
∂v∗

∂c0,∗e

∣

∣

∣

∣

z∗
0

c̃0,∗e (t) +
∂v∗

∂cL,∗
e

∣

∣

∣

∣

z∗
0

c̃L,∗
e (t) +

∂v∗

∂i∗

∣

∣

∣

∣

z∗
0

ĩ∗(t)

(26)

where notation such as ṽ∗ = v∗− v∗0 for voltage denotes the

difference between a given variable v∗ and the equilibrium

point v∗0 (similarly for c
{0,L},∗
e and i∗).

The first two terms in the right-hand-side (RHS) of (26)

take the form

∂v∗

∂c0,∗e

∣

∣

∣

∣

z∗
0

= −kc
1

c0,∗e,0

,
∂v∗

∂cL,∗
e

∣

∣

∣

∣

z∗
0

= kc
1

cL,∗
e,0

, (27)

and the last term in the RHS of (26) is

∂v∗

∂i∗

∣

∣

∣

∣

z∗
0

=
(Ln + 2Ls + Lp)ityp

2κAµ
= R. (28)

For the sake of simplicity, this work assumes that the param-

eter R in (26)-(28) can be estimated independently of the

other parameters [13] and is therefore ignored in the rest of

this analysis. Taking the Laplace transform of the linearized

voltage equation (26)-(28) and dividing by the current I∗(s)
yields the transfer function H∗

v (s,θ) = Ṽ ∗(s)/I∗(s) about

the equilibrium point z∗0 = [c0,∗e,0 cL,∗
e,0 i∗0]

⊤ = 0 given by

H∗
v (s,θ) =

kc
c∗e,L

ȞL,∗
e (s,θ)−

kc
c∗e,0

Ȟ0,∗
e (s,θ) (29)

In this work, the transfer functions Ȟ
{0,L},∗
e take the

reduced-order form of (20), (21) when the model in

Remark 1 is considered (i.e. Ȟ
{0,L},∗
e = Ĥ

{0,L},∗
e and θ =

θe,3), and the form of (22),(23) when the form of Remark 2

is used (i.e. Ȟ
{0,L},∗
e = H̄

{0,L},∗
e and θ = θe,2). Note that

in (29) the parameter kc is required to be known. However,

if it is not known, the analysis is unchanged since kc can be

grouped with τ±e,c in the transfer functions Ȟ
{0,L},∗
e to form

a new unknown lumped parameter.

III. MODEL IDENTIFICATION

In order to estimate the parameters of the electrolyte

impedance model in (29), we first verify its structural iden-

tifiability and then propose a cost function for parameter

identification.

A. Structural identifiability

The identifiability properties of the considered system are

assessed through structural identifiability [16], [17].

Definition 1 (Structural identifiability): Consider a model

structure M with the transfer function H(s,θ) parameterised

by θ ⊂ R
n where n denotes the number of parameters of

the model. The identifiability equation for M is given by:

H(s,θ) = H(s,θ′) for almost all s (30)

where θ,θ′ ∈ D. The model structure M is said to be

• globally identifiable if (30) has a unique solution in D,

• locally identifiable if (30) has a finite number of solu-

tions in D,

• unidentifiable if (30) has a infinite number of solutions

in D.

A globally identifiable model is said to be structurally

identifiable and the parameter estimation problem in theory

admits a unique solution. Once structural identifiability is

verified for a given number of parameters, then the model

parameters can be estimated from data.

B. Frequency-domain parameter estimation

The measured impedance of a cell at a given frequency

ωi is given by the complex number Z(ωi) = Z ′(ωi) +
iZ ′′(ωi), where Z ′ and Z ′′ denote the real and imaginary part

respectively. The optimal parameter estimate can be obtained

by solving the following optimization problem [13]

min
θ

J(θ) = min
θ

Nω
∑

i=1

|Z(ωi)−H(ωi,θ)|
2 (31)

where Nω is the number of evaluated frequencies. This

cost function is used below to create the estimation error

surface for two parameters varying simultaneously, with the

minimum corresponding to the best parameter fit.

IV. RESULTS AND DISCUSSION

Simulations are now developed to evaluate the identifi-

ability issues highlighted in the previous sections. In the

following, we first analyze the electrolyte impedance model

in terms of frequency response then study the identifiability

properties of the model by estimating the model parameters.

A. Model analysis

Let us first consider the simplest models H̄
{0,L},∗
e (s,θe,2)

with 2 parameters, as stated in Remark 2, given by (22),(23).

Note that the lumped parameters {τe,d, τe,c} are mapped to

the physical parameters {Ln, εe} and we make the latter vary.

Fig. 1a shows the Nyquist plots of the electrolyte impedance

at x = L for different values of electrode thickness Ln

(lowest value as solid blue curve and increasing up to highest



value as solid red curve). The same figure also shows the

frequency response at x = 0 with the lowest value as a

dashed magenta curve and the highest value as a dashed cyan

curve1. From the figure, it follows that the electrolyte system

exhibits a response similar to an RC pair characterised by a

semi-circle [18], [19]. This is interesting since the transfer

functions in (22),(23) appear at first glance to have a pole at

s = 0 (i.e. ω = 0), but this does not appear in the Nyquist

plot. This is due to the fact that the pole at the origin is

canceled by a pole from the second term of the expression.

To see this, take the Laurent series expansion of (22) or (23)

around s = 0,

H̄{0,L},∗
e (s,θe,2) =

1− δn − δns
τe,c s

+ · · ·

For a symmetric cell model, δn = δp and therefore δn+δns =
1, which explains the disappearance of the pole at the origin

for the electrolyte concentration in an electrode domain.

a) b)

Fig. 1. Nyquist plots of electrolyte impedance response for 2-parameters

model H̄
{0,L},∗
e (s,θe,2) with frequency range of 2 µHz to 160 kHz

considering a) constant εe and b) constant Ln.

The same method of Fig. 1a was used to build Fig. 1b

but with the electrolyte volume fraction εe varying. Similar

results in terms of x = {0, L} symmetry and RC-pair

behaviour can be seen in that figure, but the main difference

with respect to the thickness parameter is that the increase

in the volume fraction εe reduces the impedance response

(smaller semi-circles from solid blue curves to solid red

curves). Larger volume fractions for the electrolyte can be

practically seen as a result of having more electrolyte vol-

ume in the battery, which effectively reduces the associated

impedance.

To evaluate the differences between the simpler and more

complex models, we performed a similar study as before

but with the model Ĥ
{0,L},∗
e (s,θe,3) with 3 parameters, as

stated in Remark 1 and given by (20), (21). Similarly as

before, the lumped parameters {τe,d, τe,c} are mapped to the

physical parameters {Ln, εe} and we make the latter vary.

The obtained results are shown in Fig. 2a for variations in

Ln, where it can be seen that the semi-circle impedance

response is preserved. Again, consideration of the Laurent

series expansion of (20), (21) around s = 0 results in

Ĥ{0,L},∗
e (s,θe,3) = ±

(τ+e,c)
−1(δns − 1) + (τ−e,c)

−1δn

s
+ · · ·

1These plot conventions are used throughout this section and are only
stated here to avoid repetition.

where the sign + and − correspond to the expression for

x = 0 and x = L, respectively. Since δns − 1 = −δp
and (τ+e,c)

−1 = (τ−e,c)
−1δn/(1 − δns), the numerator be-

comes zero and the pole at the origin is cancelled. Note,

moreover, that the impedance again increases with larger

electrode thickness. However, the symmetry is lost between

the electrolyte responses, with a higher impedance for the

x = 0 position (dashed magenta and cyan curves) than for

the x = L position (solid blue and red curves) given that

the negative electrode volume is different than the positive

electrode one (Ln 6= Lp).

a) b) c)

Fig. 2. Nyquist plots of electrolyte impedance response for 3-parameters

model Ĥ
{0,L},∗
e (s,θe,3) with frequency range of 2 µHz to 160 kHz

considering a) constant εe and Lp, b) constant εe and Ln and c) constant
Ln and Lp.

Fig. 2b shows the results for changes in the positive

electrode thickness Lp whereas variations in the electrolyte

volume fraction εe are considered in Fig. 2c for constant

values of Ln. In these cases, similar results are obtained:

the impedance increases with larger Lp, the symmetry at

x = 0 and x = L is lost due to Lp 6= Ln (Fig. 2b) and the

impedance decreases for higher values of εe (Fig. 2c). These

results reveal that, for the considered two simplified models,

the frequency characteristics of the electrolyte impedance

response are similar when some specific geometric parame-

ters are manipulated. Usually the individual electrochemical

parameters of a cell are numerous, and not available, and

therefore parameters are often grouped in a relevant set of

lumped parameters as presented in Section II (as in [13], [11],

[14]), which alleviates over-parameterisation and facilitates

the parameter identification process. Next, we evaluate the

identification properties of both simplified models, the one

with 2 parameters and the other one with 3 parameters, under

the assumption that the model parameters are unknown and

therefore we consider their lumped versions.

B. Parameter identification

In order to assess the identifiability properties of the

proposed models, surfaces of the output error cost function

(31) were built for different values of two specific parameters

during each simulation. As in the previous section, we

first consider the 2-parameters model H̄
{0,L},∗
e (s,θe,2) and

evaluate τe,c and τe,d. The top view of the resulting surface

is shown in Fig. 3a. The red dot in the point τe,d = 331.55
s and τe,c = 473.75 s corresponds to the nominal parameter

value used as a ground truth. The figure shows a clear valley

in the cost function, indicating that multiple values of the

pair (τe,d, τe,c) can minimize it which indicates structural



identifiability problems. The parameter values causing the

identifiability issues can be obtained by solving (31) with

respect to τe,c for given values of τe,d in H(ωi,θ) where

Z(ωi) is generated with nominal parameters. This is equiv-

alent to verifying (30) numerically. The resulting (τe,d, τe,c)

combination minimizing the cost (31) is also plotted in the

figure as the dashed cyan curve denoted as equilibrium point

1 (eq1), since it was obtained at the nominal electrolyte

concentration equilibrium point ce,0 = ce,L = ce,eq in (29).

From the figure it follows that the relationship between the

two parameters seems to be linear, showing the possible

difficulties in estimating both τe,d and τe,c simultaneously

using model H̄
{0,L},∗
e (s,θe,2).

0

0.5

1

1.5

10
-3

a) b)

c) d)

Fig. 3. Top view of the output error surfaces of electrolyte impedance

response for a) 2-parameters model H̄
{0,L},∗
e (s,θe,2) as well as 3-

parameters model Ĥ
{0,L},∗
e (s,θe,3) with varying b) τ±e,c, c) (τe,d,τ−e,c)

and d) (τe,d,τ+e,c). Parameter combinations that minimize the output error
for each case are represented by magenta and cyan curves for equilibrium
point 1 (eq1, i.e. ce,0 = ce,L = ce,eq) and equilibrium point 2 (eq2, i.e.
ce,0 = 10ce,eq, ce,L = ce,eq/10), respectively.

We now consider the model Ĥ
{0,L},∗
e (s,θe,3) and fixed

the parameter τe,d = 331.55 s while evaluating the parame-

ters τ+e,c and τ−e,c. The resulting top view surface is shown in

Fig. 3b. Similarly as before, multiple parameter combinations

(τ+e,c,τ−e,c) yield a valley in the cost function, whose minima

are represented as the dashed cyan curve. In contrast to the

previous model with a linear relation between τe,d and τe,c,

the relationship between τ+e,c and τ−e,c seems to be nonlinear.

A similar procedure can be applied to the model

Ĥ
{0,L},∗
e (s,θe,3) by fixing the other two free parameters

one at a time, for instance τ+e,c = 568.50 s to evaluate both

parameters τ−e,c and τe,d or τ−e,c = 379.00 s to evaluate both

parameters τ+e,c and τe,d. These results are reported in Fig. 3c

and Fig. 3d, respectively. Multiple parameter combinations

(τ−e,c,τe,d) and (τ+e,c,τe,d) exhibit a valley in the cost function,

whose minima are depicted as the dashed cyan curve. Just

as before, these relationships seem to be nonlinear.

In order to attempt to solve the identifiability problem,

we evaluated an electrolyte concentration equilibrium point

different than eq1 specified above, now corresponding to

ce,0 = 10ce,eq and ce,L = ce,eq/10 and it is denoted as

eq2. This choice is arbitrary, and it implies the case where

a given current signal is injected into the battery to form

an electrolyte concentration gradient in steady-state between

the negative and positive electrodes, or battery terminals at

x = 0 and x = L, respectively2. Using this new condition,

we repeated the experiments previously described and the

parameter combinations that minimize the cost function (31)

are shown in Fig. 3 as dotted magenta curves labelled with

eq2. The different operating condition does not impact the

results obtained with the simple model H̄
{0,L},∗
e (s,θe,2) (see

Fig. 3a) but it does generate a different optimal parameter

combination for model Ĥ
{0,L},∗
e (s,θe,3) (see Fig. 3b to

Fig. 3d) with respect to eq1. Note how the two curves eq1
and eq2 intersect in the red point of nominal parameters.

These results suggest that by changing the operating con-

ditions, one could favor the estimation of a given group

of parameters, hence alleviating the identifiability problem

originally obtained for a given electrolyte impedance model.

V. CONCLUSIONS

Several impedance models for electrolyte dynamics in

lithium-ion batteries were presented and their identifiability

properties were analyzed. From these impedance responses,

it was shown that simple models with two parameters

and slightly more complex models with three parameters

exhibit similar capacitive behaviour. The minimum number

of parameters uniquely parameterising these models was

characterised. However, it was also shown how these models

suffered from structural identifiability issues, with different

parameter values giving equivalent impedance responses.

This insensitivity in the impedance responses will result

in difficulty in correctly parameterising these models. It

was also observed that these identifiability issues could be

removed for non-symmetric cells by combining impedance

measurements made around different steady-state operating

points. Overall, this work highlights the importance of elec-

trolyte model selection for expected system response and

parameter identification. Future work seeks to determine

model parameters from experimental data.

APPENDIX

The general electrolyte impedance models for positions

x = 0 and x = L are respectively given by (A.1) at the top of

the page with H
{0,L},∗
e (s,θ) = C

{0,L},∗
e (s)/I∗(s). In these

expressions, τ±e,c are given by (10), βi,j with i ∈ {+,−, s}
and j ∈ {n, ns, ·} are given by

β−,n =
√

τ−,n
e,d s, βs,n =

√

τ s,ne,d s, βs,ns =
√

τ s,nse,d s,

β+,ns =
√

τ+,ns
e,d s, β+ =

√

τ+e,ds,

(A.2)

2Enforcing an equilibrium with an electrolyte concentration gradient
requires a non-zero current whose effects will be explored in future work.



H
−,∗
e,0 (s,θ) =

(τ−
e,c)

−1(exp(β−,n)− 1)2Σ1 + (τ−
e,c)

−1(1− exp(2β−,n))Σ2 − (τ+
e,c)

−14ρ+ρsσ5(exp(2β
+,ns)− exp(2β+))

s
(

(1 + exp(2β−,n))Σ1 + (1− exp(2β−,n))Σ2

)

(A.1a)

H
+,∗
e,L (s,θ) =

−(τ+
e,c)

−1(1 + exp(2β−,n))Σ3 − (τ+
e,c)

−1(1− exp(2β−,n))Σ4 + (τ−
e,c)

−14ρ−ρsσ7(1− exp(2β−,n))

s
(

(1 + exp(2β−,n))Σ1 + (1− exp(2β−,n))Σ2

) (A.1b)

the electrolyte diffusion time constants τ i,je,d take the form

τ−,n
e,d =

ε−e L
2
n

D−
e,eff

, τ s,ne,d =
εseL

2
n

Ds
e,eff

, τ s,nse,d =
εseL

2
ns

Ds
e,eff

,

τ+,ns
e,d =

ε+e L
2
ns

D+
e,eff

, τ+e,d =
ε+e L

2

D+
e,eff

,
(A.3)

the variables Σ1:4 are given by

Σ1 = ρs
[

ρs(σ1−σ2+σ3−σ4)+ρ+(−σ1−σ2+σ3+σ4)
]

,
Σ2 = ρ−

[

ρs(σ1+σ2+σ3+σ4) + ρ+(−σ1+σ2+σ3−σ4)
]

,
Σ3 = ρs[ρs(σ3−σ4+σ1−σ2−2σ6σ8) + ρ+(−σ1−σ2+σ3+σ4)],
Σ4 = ρ−[ρs(σ1+σ2+σ3+σ4−2σ6σ9) + ρ+(−σ1+σ2+σ3−σ4)],

(A.4)

the variables ρi are

ρ− =
D−

e,eff

L2
, ρs =

Ds
e,eff

L2
, ρ+ =

D+
e,eff

L2
, (A.5)

and the variables σ1:9 are

σ1 = exp(2βs,n) exp(2β+), σ2 = exp(2βs,ns) exp(2β+),
σ3 = exp(2βs,n) exp(2β+,ns), σ4 = exp(2β+,ns) exp(2βs,ns),
σ5 = exp(β−,n) exp(βs,n) exp(βs,ns), σ6 = exp(β+) exp(β+,ns),
σ7 = exp(β+) exp(β+,ns) exp(βs,ns) exp(βs,n),
σ8 = exp(2βs,n)− exp(2βs,ns), σ9 = exp(2βs,n) + exp(2βs,ns).

(A.6)
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