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Abstract 

 Homogeneous electrode structures used in Li-ion batteries (LIB) lead to inhomogeneous active material 

utilization and gradients of overpotential and Li-ion concentration at the cell-scale, which are detrimental for 

both capacity retention at high charge-discharge rates and for battery life-time. To account for these gradients, 

we demonstrate that heterogenous electrode structures with engineered gradients in material distribution can 

improve LIB C-rate and long-term cycling performance when compared with conventional uniform electrodes 

in LiFePO4 || Li4Ti5O12 full-cell LIBs. An improvement in C-rate performance of > 120% and a capacity 

degradation rate reduced to <50% over uniform electrode cells was achieved at 1C, and graded cells showed a 

dramatically improved power-energy density balance. Graded electrodes had a relatively low cell polarization 

that became more marked as the C rate increased. Cycled graded electrodes had reduced solid electrolyte 

interphase (SEI) formation when compared with uniform electrodes according to XPS surface analysis, which 

was consistent with their reduced charge transfer resistance measured by impedance spectroscopy. The origin 

of the improved performance arises from a more uniform overpotential distribution across the thickness of the 

graded hetero-electrodes. 

Graphical abstract 
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1. Introduction 

Li-ion battery (LIB) electrodes comprise the electrochemically active material, electrical conducting 

enhancer (usually carbon based) and a polymetric binder [1]. Optimization of electrode performance occurs by 

trial-and-error iteration to identify the best fraction of each constituent [2], alongside optimization of electrode 

thickness [3], pore fraction and exploitation of any opportunity to control  directional pore distribution [4-8], 

porosity grading [2, 6, 9], and layering of constituents [10, 11]. These optimizations can significantly improve 

battery performance in terms of ion transport kinetics [3, 12], cell-scale energy density [2], degradation [13], or 

ohmic heat generation [14, 15], which are critical issues for practical applications such as electric vehicles [16-

18].  

The typical LIB electrode structure is isotropic at the macro-scale, comprising a homogenous mixture 

of constituents including active materials, carbon conductive additives, polymetric binders, and randomly 

distributed inter-connected porosity [19, 20]. However, due to restricted ion mobility in the tortuous pore 

structure [21, 22], the location of the current collectors, and anisotropic electric-field distribution when in 

operation, the Li-ion concentration and activation overpotential are inevitably inhomogenous through the 

electrode [23], especially at high charge-discharge rates when through-thickness or in-plane local ion 

concentration and overpotential gradients become more steep [24]. As a result, the electrochemically active 

material is inhomogeneously utilized in the critical energy storage reactions. For instance, neutron diffraction 

studies of a commercial LIB pouch cell showed that active material was mainly activated in the centre of the 

2D electrode plane, while active material at the edges and far away from the current collector tabs was almost 

entirely inactive [25], resulting in capacity reduction at increased C-rate and inhomogeneous local degradation. 

This situation was similar for both cathode and anode [25], and is a generic issue not related to any particular 
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material. Similarly, through the electrode thickness, X-ray photoelectron spectra (XPS) surface analysis of 

cycled electrodes has shown that surface side-reactions leading to solid electrolyte interphase (SEI)  formation 

were more extensive at the outer electrode surface near the separator compared with close to the current collector, 

which arose from inhomogeneous overpotential and reaction rates through the electrode thickness [26-28].  

Thus, inhomogeneous material activation and spatially varying reaction rate induced by homogeneous 

electrode structures are inefficient and have detrimental effects on battery performance and lifetime, local 

capacity degradation, overheating and stress concentration [13]. This is an electrode-scale problem in LIBs, 

regardless of the specific electrode materials [29, 30]. 

The principal approach to improve (or homogenise) active materials utilization in LIB electrodes has 

been to reduce the pore tortuosity and/or to increase the pore fraction – both of which improve ion mobility and 

capacity at increasing charge/discharge rates. However, both approaches can have disadvantages, such as a 

decrease in overall volumetric capacity and/or difficulties in scaling the sacrificial pore template methods used 

for tortuosity control. These studies have shown that local porosity manipulation can be effective in improving 

overall active material utilization, but may not be the only approach to improving electrode performance for a 

given cell chemistry. 

In this paper we investigate an alternative hypothesis: can changing (specifically, spatially grading) the 

local conductive carbon concentration in an electrode make a positive difference to electrode and full cell 

performance? We expect that changing the local conductive carbon fraction may change the local electronic 

conductivity (and resistance), and thus may have a direct, homogenizing effect on the local overpotential and 

active material utilization. Some simulation-based studies have suggested this may be a promising line of 

enquiry [31], and building on recent developments in manufacturing capability for graded electrodes [28], we 

now investigate the effect of micro-scale composition grading in detail and in full cells. We design, manufacture 

and assess the performance of carefully controlled heterogeneous, graded electrode structures with the aim of 

promoting greater uniformity in overpotential distribution, and reaction rates across the electrode thickness. We 

investigate the arising polarization, and impedance behavior, as well as side reactions such as SEI formation. 

We demonstrate that micro-scale composition-graded electrodes provide enhanced capacity retention at fast 

charge-discharge rates and slower battery degradation in both half-cell and full-cell LIB configurations.  
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2. Experimental 

2.1. Graded electrode fabrication 

A layer-by-layer spray deposition route for supercapacitor and LIB electrodes has been developed by 

our group over several years (Fig. 1), and produces A5-size double-sided electrodes for pouch cells [10, 11, 32-

34]. The process operates with essentially the same slurries and compositions used in the widely-used slurry 

casting route for the production of electrodes, but requires more dilute versions of the slurries to enable 

atomization into a spray that is then deposited on a current collector to form incrementally an electrode. The 

principal benefit is the ability to change the spray composition in time, or to mix multiple sprays, allowing 

electrodes with through thickness (or in-plane) variations in composition, particle size, binder fraction, discrete 

inter-layers, etc. to be fabricated quickly and reliably.  

A planetary ball mill at 300 rpm for 1 hour (FRITSCH pulverisette 6) was used to mix electrode 

materials followed by high energy probe ultrasonication for 2 hours (20Hz and 750W, Vibra-cell, Sonics Inc.). 

The cathode active material was LiFePO4 with a particle size of ~ 300 nm (Hydro-Québec, Canada), the anode 

active material was Li4Ti5O12 spinel with a particle size of ~ 80 nm (Sigma-Aldrich), the carbon additive was 

Super-P (MTI, USA), the binder was PVDF (polyvinylidene fluoride, Mw~534,000, Sigma-Aldrich), and the 

solvent was a mixture of 1-Methyl-2-pyrrolidinone, (≥99.0%, Sigma-Aldrich) and IPA (2-propanol, 99.5%, 

Sigma-Aldrich) at 1 : 9 volume ratio.  

http://scholar.google.co.uk/scholar_url?url=https://www.sciencedirect.com/science/article/pii/S0009250904004567&hl=zh-CN&sa=X&scisig=AAGBfm33F-hydXsez4a5c8GCNpyZ2M-OSQ&nossl=1&oi=scholarr
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Fig. 1. (a) Illustration of the layer-by-layer spray deposition equipment for the fabrication of composition graded 

electrodes. (b-d) Schematic diagrams of the intended uniform, AC@ type and CAC@ type materials distribution 

across the thickness of the electrodes, where A (red) denotes the active material-rich region and C (green) 

denotes carbon black-rich region. Distance refers to the distance from the surface of the electrode (i.e. at the 

electrode/separator interface) towards the current collector. 
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Taking the fabrication of an AC@ type graded electrode as an example (Fig. 1c), suspension A with an 

initial weight ratio of active material:carbon:binder of 16:5:8 was pumped into an industrial spray nozzle at a 

controlled volumetric flow rate by a peristaltic pump, and the suspension atomized into a spray using 

compressed air. At the same time, suspension B with an initial weight ratio of active material:carbon:binder of 

64:5:2 was pumped into suspension A to gradually change the overall weight ratios of the materials in latter 

suspension with time. The nozzle was attached to a stiff x-y-z linear manipulator gantry in which the position 

and speed of the nozzle was controlled by computer. The sprayed material dried almost instantaneously when 

deposited onto the metal foil current collector, which was attached to a heated vacuum chuck. A MATLAB® 

code [28] was used to calculate the required changes in composition ratio for suspensions with time in order to 

achieve the desired through-thickness composition gradients, which are shown schematically in Figs. 1b to 1d. 

For the AC@ type graded electrodes, the weight ratio of active material gradually decreased from the top surface 

to the current collector, while the weight ratio of carbon additive and binder gradually increased (Fig. 1c); for 

the CAC@ type graded electrodes, the active material was concentrated in the middle of the electrode and 

followed a parabola shape with thickness, while the carbon and binder was distributed in the opposite way (Fig. 

1d). Overall, both AC@ and CAC@ graded electrodes had the same average weight ratio of active material: 

carbon: binder of 80:10:10 as the uniform electrode, and the overall weight of the sprayed electrode materials 

for each electrode type was kept constant, allowing a fair back-to-back comparison of electrode performance. 

The most critical aspect of controlling the fine-scale micro-graded structures produced by spray deposition is 

ensuring high suspension(s) stability over the duration of the spray fabrication step, which can vary from a few 

minutes to 30 min, depending on the thickness of electrode required. 

2.2. Coin cell assembly 

The electrodes were dried overnight at 60 oC and then calendared to 138 ± 5 µm for anodes and 109 ± 

6 µm for cathodes, from which disks of 12 mm diameter were punched. The electrode material loadings were 

15.8 ± 2.5 mg cm-2 for anodes and 15.5±1.8 mg cm-2 for cathodes and the overall electrode porosities were 62.1 

± 4.6% for anodes and 52.6 ± 3.8% for cathodes, based on the measurement of approximately 50 anodes and 50 

cathodes. These electrode loadings were relatively high compared with some reports in the literature (3-5 mg 

cm-2) [35, 36] but facilitated clear distinction between electrodes, both in terms of microstructural characteristics 

and electrochemical performance. Despite the higher electrode loadings, which may undermine capacity at 
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higher charge/discharge rates, the performance of some of the thick, graded electrodes was nonetheless 

competitive with the much lower loading and thinner electrodes more commonly found in the literature. 

Considering the theoretical capacity of Li4Ti5O12 to be 175 mAh g-1 and LiFePO4 to be 170 mAh g-1, the areal 

and gravimetric capacity ratio of anode to cathode in full-cells was approximately 1.05.  

Three types of CR2032 full-cells were assembled: (i) uniform cathode against uniform anode; (ii) AC@ 

graded cathode against AC@ graded anode, and (iii) CAC@ graded cathode against CAC@ graded anode. 

CR2032 half-cells were assembled with the cathode or anode working against Li foil. A Celgard separator was 

used and the electrolyte was 1M LiPF6 in ethylene carbonate and dimethyl carbonate (EC/DMC = 50/50 v/v, 

Sigma-Aldrich). Care was taken to ensure that the volume of electrolyte was used in every cell. Before 

assembling, all cell components were stored in a vacuum oven at 70 oC in an Ar filled glovebox for more than 

5 hours to reduce residual moisture and then assembled into cells within the same glovebox. As-assembled cells 

were aged for 6 to 12 hours before testing.  

2.3. Electrochemical testing 

Coin cells were tested using a battery cycler (Arbin Instruments, USA, Models: BT-G-25 and 

IBT21084LC) in the potential range 1.0 to 2.5V for full-cells, 2.5 to 4.2 V vs. Li/Li+ for LiFePO4 half-cells, and 

1.0 to 2.5 V vs. Li/Li+ for Li4Ti5O12 half cells at room temperature and at various C-rates from 0.1 to 7C. Here, 

0.1C corresponded to 17.0 mA g-1 for LiFePO4 half-cells and 17.5 mA g-1 for Li4Ti5O12 half-cells. For the full 

cells, the current density for C-rate tests was calculated based on the cathode capacity. Within each cycle, 

charging and discharging were performed at the same C-rate. Electrochemical impedance spectroscopy (EIS) 

was performed after discharging and aging of approximately 12 hours, with a 10 mV sine-wave perturbation in 

the frequency range 1 MHz down to 0.01 Hz [37-40]. 

2.4. Materials characterization 

The cross-section of pristine electrodes was observed in a Carl-Zeiss Merlin high resolution field 

emission scanning electron microscope (FE-SEM) combined with an Oxford Instruments Xmax 150 energy-

dispersive X-ray spectroscopy (EDX) detector. EDX mapping and line scans across the electrode thickness were 

performed to obtain qualitative element distributions. After battery cycling to the discharged state, anodes and 

cathodes from full-cells were recovered by dissembling cells in a glove box, washed in DMC (dimethyl 

carbonate) and then dried in glove box. X-ray Photoelectron Spectroscopy (XPS) was performed on the top-
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surface of cycled electrodes (close to the separator) in a K-Alpha XPS system (Thermo Scientific). XPS samples 

were prepared by fixing the recovered electrodes on a sample holder in a glove box, sealed into a vacuum lock, 

and then transferred to the XPS system without air contamination. Quantitative analysis of XPS data was 

performed using CasaXPS software (Casa Software, Ltd).   

 

3. Results and discussion 

3.1. Graded materials distribution 

Fig. 2 shows SEM-EDX element maps of the cross-section of fabricated Li4Ti5O12-based anodes (Figs. 

2a-2c) and LiFePO4-based cathodes (Figs. 2d-2f), each after calendaring. The color bar below each map 

indicates the concentration intensity of a particular element measured by EDX. For the uniform electrodes 

shown in Figs. 2a and 2d, the distribution of active material (given by Ti and Fe respectively), and carbon and 

binder (given by C and F respectively) were approximately homogenous through the electrode thicknesses; for 

AC@ graded electrodes, the anode and cathode active materials showed a gradual decrease in intensity from 

the electrode surface to the current collector, while the carbon and binder distribution followed an opposite 

tendency; for CAC@ graded electrodes, the active material had the highest intensity approximately in the 

middle of the electrode and reduced intensity gradually towards both the electrode surface and the current 

collector. Overall, the experimental materials distribution conformed qualitatively to the designed distribution 

profiles shown in Figs. 1b-1d.  

The SEM-EDX line scans across the electrodes shown in Fig. S1 further confirmed the intended, 

approximate uniform and graded materials distribution through electrode thickness. The traces are highlighted 

by the yellow lines on the SEM images in Figs. S1a-S1f. The uniform, AC@ and CAC@ electrodes showed 

good qualitative agreement of actual with intended composition variation shown in Figs. 1b-1d, noting that 

quantitative weight ratio measurement, especially for carbon, was judged insufficiently accurate by EDX.  
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Fig. 2. SEM-EDX element maps of the cross-section of electrodes. (a-c) Li4Ti5O12 based anodes and (d-f) 

LiFePO4 based cathodes, with (a, d) uniform, (b, e) AC@ graded, and (c, f) CAC@ graded materials distribution. 
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The sub-figures within each figure show the SEM image, active material distribution, carbon, and binder 

distribution, where Ti Kα1, Fe Kα1, C, and F Kα1 are attributed to Li4Ti5O12, LiFePO4, carbon conductive 

additive and PVDF binder, respectively. Black scale bar = 50 µm. 

 

3.2. C-rate and cycling performance 

Discharge capacity from galvanostatic charge-discharge tests on half and full cells with uniform, AC@ 

graded and CAC@ graded electrodes at 0.1 to 7C are shown in Figs. 3a, 3c and 3e. For Li4Ti5O12 half-cells at 

low C-rates ≤ 0.2C, both uniform and graded electrodes had similar discharge capacities, indicating that the 

graded material distributions did not change or sacrifice the intrinsic capacity of active materials. With C-rate 

increasing from 0.5 to 7C, both AC@ graded and CAC@ graded electrodes exhibited similar discharge 

capacities, and both higher than the uniform electrode equivalent: 3% higher at 0.5C, 16% at 2C, 41% at 3C, 

and 180% at 5C.  These differences showed that the principal benefit of graded electrodes was to improve 

kinetic performance, which is further explored later. 
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Fig. 3. (a, c, e) C-rate and (b, d, f) long-term cycling performance of (a, b) Li4Ti5O12 half-cells, (c, d) LiFePO4 

half-cells, and (e, f) LiFePO4 || Li4Ti5O12 full-cells, with uniform (black), AC@ graded (red), and CAC@ graded 

(green) materials distributions. For long-term cycling, the first three cycles were performed at 0.1C and the 

following 200 cycles were performed at 1C. Two or three pristine cells were tested at each condition.  
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For LiFePO4 half-cells in Fig. 3c, both AC@ and CAC@ graded electrodes had higher capacities than 

uniform electrodes from 0.5C to 7C, i.e. 9% higher at 0.5C, 240% at 2C, and 520% at 3C. The smaller relative 

capacity improvements by grading the Li4Ti5O12 half cells compared with the graded LiFePO4 half-cells was 

likely due to the higher porosity of Li4Ti5O12-based electrodes (~62.1%) compared with the LiFePO4-based 

electrodes (~52.6%), i.e. Li mobility was already less constrained in the Li4Ti5O12 electrodes. Also, the particle 

size of Li4Ti5O12 (~80nm) was smaller than that of LiFePO4 (~300nm), which supports faster intrinsic Li 

insertion/deinsertion kinetics of Li4Ti5O12-based electrodes; conversely electrodes based on larger-sized active 

particles were more effectively improved by the use of a graded structure. 

Fig. 3e shows the C-rate performance of the various LiFePO4 || Li4Ti5O12 full-cells that were constructed 

with uniform cathode vs. uniform anode, AC@ graded cathode vs. AC@ graded anode, and CAC@ graded 

cathode vs. CAC@ graded anode. These full cells are shown schematically in Figs. 4a, 4d, and 4g, respectively. 

The capacity improvement due to the graded electrodes started immediately from 5% at 0.2C and then steadily 

increased. The difference in C-rate performance between AC@ graded and CAC@ graded electrodes became 

more obvious at > 1C than in half-cells (Figs. 3a and 3c) and both graded electrodes had higher capacity 

retention with increasing C-rate when compared with uniform electrodes: 27% at 0.5C, 120% at 1C, and 1300% 

at 2C for AC@ graded electrodes; and 21% at 0.5C, 97% at 1C, 570% at 2C for CAC@ graded electrodes.  

Overall, the superior performance of graded electrodes previously shown for half-cells was enhanced 

in the full-cells. For example, compared with uniform electrodes at 1C, both AC@ and CAC@ graded electrodes 

increased capacity by 7% in Li4Ti5O12 half-cells and by 47% in LiFePO4 half-cells; while for LiFePO4 ||Li4Ti5O12 

full-cells, the AC@ and CAC@ graded electrodes increased capacity by 126% and 97%, respectively.  

During long-term cycling shown in Figs. 3b, 3d, and 3f, graded electrodes retained capacity better than 

uniform electrodes. After 200 cycles at 1C, discharge capacities for uniform, AC@ graded and CAC@ graded 

electrodes were 84 mAh g-1, 104 mAh g-1 and 103 mAh g-1 in Li4Ti5O12 half-cells; 33 mAh g-1, 58 mAh g-1, and 

60 mAh g-1 in LiFePO4
 half-cells; and 49 mAh g-1, 74 mAh g-1 and 80 mAh g-1 for LiFePO4 || Li4Ti5O12 full-

cells. The capacity degradation rate for Li4Ti5O12 half-cells and LiFePO4 half-cells were ~0.2 and ~0.3 mAh g-

1 per cycle, respectively, with no obvious difference between uniform and graded electrodes; however, in the 

full-cells, the capacity degradation rates for the uniform, AC@ graded and CAC@ graded electrodes were 0.21, 
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0.08, and 0.05 mAh g-1 per cycle, respectively, i.e. the degradation rate of graded electrode full cells was less 

than half that of cells with uniform electrodes.  

 

Fig. 4. (a, d, g) Schematic illustration of the LiFePO4 || Li4Ti5O12 full-cell configurations with uniform, AC@ 

graded and CAC@ graded materials distribution, respectively. (b, e, h) Galvanostatic charge-discharge curves 

of the full-cells at 0.1, 0.2, 0.5, 1 and 2C, respectively. (c, f, i) first derivatives of capacity with respect to voltage 

(dQ/dE) against voltage corresponding to (b, e, h), respectively.  

 

3.3. Cell polarization 

Figs. 4b, 4e, and 4h show the full-cell charge and discharge profiles. As previously described, the 

uniform electrode cell capacity decreased faster than the AC@ and CAC@ graded full-cells, although they had 

similar capacities at 0.1C. To investigate cell polarization effects, defined as the potential difference between 

charge and discharge curves, the 1st derivative of the charge-discharge profiles (dQ/dE) was plotted as a function 
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of voltage in Figs. 4c, 4f and 4i, where Q is the capacitance and E is voltage. The polarization was assessed by 

comparing the potential difference in first derivative peaks in charge and discharge plots at the same C-rate, 

with an example indicated by the dashed line in Fig. 4c. Figs. 4c, 4f and 4i show the polarization of uniform 

full-cells increased faster than graded cells with increasing C-rate. The polarizations were measured only up to 

3C because beyond 3C, the uniform electrode cell did not provide obvious peaks due to severe capacity decay. 

 

Fig. 5. (a, b, c) Polarization obtained from the voltage difference between galvanostatic charge and discharge 

curves as a function of C-rate, and (d-f) Discharge capacity as a function of C-rates, for Li4Ti5O12 half-cell, 

LiFePO4 half-cell, and LiFePO4 || Li4Ti5O12 full-cell, respectively. 

 

Figs. 5a to 5c show these trends in more detail by plotting the cell polarization of Li4Ti5O12 half-cells, 

LiFePO4 half-cells, and LiFePO4 || Li4Ti5O12 full cells as a function of C-rate. For both half and full cells, the 

cell polarization increased almost linearly with C-rate, however, the polarization of uniform electrode cells 

increased much faster than graded electrode cells. Figs. 5d to 5f show the discharge capacities of the same cells, 

again as a function of C-rate. The larger polarization difference generally corresponded to a more rapid loss of 
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capacity. Consolidating these data, Fig. S2 shows that discharge capacity had an approximate linear decrease 

with increasing polarization, regardless of whether uniform or graded electrodes. The overlapping data between 

Li4Ti5O12 and LiFePO4 half-cells in Fig. S2 was due to their similar theoretical capacities. Because the cell 

polarization usually reflects the cell resistance, the charge transfer resistance of the same graded and uniform 

cell arrangements was investigated further by electrochemical impedance spectroscopy (EIS).  

3.4. Electrochemical impedance spectroscopy 

After C-rate testing in Figs. 3a, 3c, 3e, and long-term cycling in Fig. 3f, cells were investigated by EIS 

in the discharged states for LiFePO4 half-cells and LiFePO4 || Li4Ti5O12 full cells, and at the charged state for 

Li4Ti5O12 half-cells, as shown in Figs. 6a to 6d. The charge transfer resistance (Rct) can be obtained by numerical 

fitting of EIS data to an equivalent circuit shown in Fig. 6e, and Rct is plotted in Fig. 6f (left). All other fitting 

parameters are provided in Table S1 in the Supplementary Data. The best-fit to the EIS data is shown as solid 

lines in Figs. 6a to 6d, indicating a reasonable fit for all cells. The time constant τ = RctCeff, where Ceff is the 

effective capacity of the constant phase element CPE2 in the equivalent circuit that expresses the time required 

for charge transfer during redox reactions, was below 1 ms for each cell (Fig. 6f, right). For both half and full 

cells, the AC@ and CAC@ graded electrodes had smaller charge transfer resistance than for uniform cells. 

Differences in time constant followed the same trend as charge transfer resistance (Fig. 6f, right). 

The difference in charge transfer resistance between different types of Li4Ti5O12 half-cells was smaller 

than those between different types of LiFePO4 half-cells, again likely due to the higher porosity of the Li4Ti5O12-

based anodes and their smaller active particle size. Moreover, the greatest difference in charge transfer resistance 

between graded and uniform cells was for full-cells, whose charge transfer resistance was mainly due to the 

cathode rather than the anode (Fig. 6f, left). After long-term cycling of full cells (1C for 200 cycles), Fig. 6d 

also shows that the smaller charge transfer resistance of graded electrodes was maintained. Although the full 

cells cycled in Figs. 6c and 6d experienced a different testing history, the AC@ graded electrodes had an obvious 

increase in charge transfer resistance after long-term cycling (Fig. 6f, left), while CAC@ graded electrodes were 

relatively stable. Overall, the CAC@ type electrodes had the best long-term cycling performance. 
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Fig. 6. (a-c) Electrochemical impedance spectroscopy (EIS) Nyquist plots for Li4Ti5O12 (LTO) half-cells, 

LiFePO4 (LFP) half-cells, LTO-LFP full-cells after C-rate testing shown in Figs. 3a, 3c and 3e, respectively. (d) 
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Nyquist plot for LTO-LFP full-cells after 200 cycles at 1C shown in Fig. 3f. (e) Equivalent circuit for EIS fitting. 

The best-fit data is shown by the solid lines in (a-d). (f) Charge transfer resistance (Rct, left) and time constant 

(τ = RctCeff, right) for charge transfer, where Ceff is the effective capacity of the constant phase element, CPE2, 

in the equivalent circuit shown in (e). Along the x-axis, LTO-half, LFP-half, Full C-rate, and Full Cycling 

correspond to the cells in (a), (b), (c), and (d), respectively. 

 

The data in Fig. 6f shows that the resistance of graded electrodes was reduced compared with uniform 

equivalents, and time constants were also reduced (consistent with the polarization data shown earlier). In order 

to understand this behaviour step further, five sprayed, uniform LiFePO4-based electrodes with different 

LiFePO4 : carbon : binder ratios to represent the range of ratios created across a graded electrode (Fig. S4a) 

were manufactured. Further details are given in the Supplementary Data. After the usual amount of calendaring, 

the electrical conductivity of each electrode was measured in a special jig (Fig. S4b), along with the average 

electrode porosity as described in the Supplementary Data. In this way the local electrical conductivity and 

porosity was determined as a function of local composition within a graded electrode, which can be thought of 

as comprising sub-layers of uniform electrodes with different composition stacked on top of one another (Fig. 

S4c). These data showed that increasing the local conductive carbon fraction increased not only the local 

electrical conductivity i.e. reduced the local resistance, but also increased the local porosity. It is these effects 

combined, especially when the carbon-rich part of the graded electrode is placed against the current collector, 

which underpins the superior electrochemical response of the graded electrodes. 

It can be conjectured that it would be useful to decouple and probe the relative contributions of local 

conductivity and local porosity on overall electrode performance even further. However in practice, there is not 

yet a manufacturing process that can produce realistic electrodes with control of local conductivity and porosity 

independently while keeping average composition and material loadings constant. A more fruitful approach may 

be to undertake parametric studies using an appropriate numerical model, calibrated with data of the type 

presented here, to probe their relative contributions to performance enhancement.  

3.5. XPS analysis of cycled electrodes  
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Fig. 7. X-ray photoelectron spectra (XPS) of Li4Ti5O12-based anodes recovered from full-cells after 200 cycles 

at 1C in Fig. 3f. (a-c) pristine (no-cycles) uniform anode, (d-f) cycled uniform anode, and (g-i) cycled CAC@ 

graded anode. (a, d, g) C 1s spectra, (b, e, h) F 1s spectra, and (c, f, i) O 1s spectra. The vertical dashed lines 

indicate the labelled reference chemical bonds taken from the literature [26, 27, 41-43]. The estimated atomic 

ratios of C, F and O obtained by peak deconvolution and integration (filled regions) are noted on the plots.  

 

The full-cell batteries cycled in Fig. 3f were investigated by X-ray photoelectron spectra (XPS) 

characterization and Fig. 7 shows XPS spectra for a Li4Ti5O12-based anode after cycling. From the C 1s spectra 

shown in Figs. 7a, 7d and 7g, both uniform and graded electrodes had a higher fraction of C-O single bond and 

C=O double bonds at 285.6 eV and 288.3 eV after cycling [44], which was attributed to ethers and carboxylates, 

respectively. By using peak deconvolution the C-C bond due to the Super-P conductivity enhancer additive as 
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a reference, the atomic ratio of C-O : C-C was 0.55 and 0.30 for cycled uniform and CAC@ graded anodes, 

respectively; the ratio of C=O : C-C  was 0.51 and 0.35 for cycled uniform and CAC@ graded anodes, 

respectively. By assuming that ethers and carboxylates can be attributed to the solid electrolyte interphase (SEI) 

[41-43],  these data support less SEI formation in the graded electrode. Although limited SEI formation on the 

active material of the anode is helpful to stabilize the electrode/electrolyte interface, too much SEI will increase 

the impedance of the electrode, and thus, can be expected to increase polarization and reduce C-rate performance. 

The F1s spectra in Figs. 7b, 7e, and 7h show that the contribution of the F-P bond (685.8 eV) associated 

with LixPOyFz increased strongly after cycling due to the decomposition of the LiPF6 salt in the electrolyte [41]. 

Again using peak deconvolution, the atomic ratio of F associated with the P-F bond to that associated with 

PVDF binder (P-F : C-F) was estimated as 0.43 and 0.37 for cycled uniform and CAC@ anodes, respectively, 

which again may be interpreted as less SEI formation in the CAC@ graded anode.  From the O 1s spectra shown 

in Figs. 7c, 7f, and 7i, both cycled uniform and CAC@ graded anodes developed more intense C-O (or P-O) 

single bond (533.7eV) and C=O double bonds (532.1eV) after cycling, again due to electrolyte degradation at 

the surface of electrode. Using the deconvoluted O peak within Li4Ti5O12 as a reference, the ratios of (C-O plus 

C=O) : Li4Ti5O12 were 0.78 and 0.73 for cycled uniform and CAC@ graded anodes. Therefore, from C1s, F1s, 

and O1s spectra, it can be reasonably hypothesized that SEI formed in the CAC@ graded electrode was either 

thinner and / or at lower overall fraction, and helps to explain its better C-rate performance, lower polarization, 

and smaller charge transfer resistance when compared with a uniform electrode (Figs. 5 and 6).  

Following a similar approach, Fig. S3 shows the XPS spectra for the LiFePO4-based cathodes recovered 

from full-cells after 200 cycles at 1C. From the C 1s spectra in Figs. S3a, S3d and S3g, the cycled AC@ graded 

and CAC@ graded cathodes have less C-O single bond and C=O double bond content compared with the same 

cycled uniform cathodes. For example, the atomic ratio of C associated with C-O to C-C was 0.77, 0.41 and 

0.27 for the cycled uniform, AC@ and CAC@ cathodes respectively, which supported less/thinner SEI 

formation on the graded cathodes. From F 1s spectra shown in Figs. S3b, S3e and S3h, the F-P-O bond attributed 

to the SEI component of LixPOyFz contributed less of the overall spectrum for the cycled graded electrodes. 

With the F response in the PVDF binder as a reference, the atomic ratio of F associated with F-P-O (LixPOyFz) 

to C-F (PVDF) was 0.45, 0.34 and 0.23 for uniform, AC@ graded and CAC@ graded cathodes, respectively. 

From the P 2p spectra, the atomic ratio of P associated with F-P-O (LixPOyFz) to LiFePO4 is 1.20, 0.43 and 0.35 
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for uniform, AC@ graded and CAC@ graded cathodes, respectively. Therefore, XPS data from cycled cathodes 

also strongly suggested that SEI formation on AC@ and CAC@ graded electrodes was reduced. Across anodes 

and cathodes, a consistent picture emerged of reduced SEI formation in graded electrodes that supported their 

more favorable energy storage response over otherwise identical uniform electrodes. To reinforce these findings, 

various avenues to obtain spatially resolved XPS spectra across a single electrode, either by (i) depth profiling 

“down” through an electrode or (ii) from discrete locations across an electrode cross-section were explored. At 

the time of writing no such data of sufficient spatial resolution to be helpful could be obtained, but remains an 

active line of enquiry. 

Using simulation, grading of the type explored here has been suggested to modify and homogenize the 

spatial distribution of the electrode overpotential [31]. The experimental work here provides cell data consistent 

with this prior suggestion and for the first time quantifies the marked benefits of grading by experiment. The 

manufacturing technology is now available to produce electrodes with practically any arbitrary spatial 

arrangement of materials, and it seems likely that even more potent gradations might exist, and may allow 

significant cell improvements without the need for new electrochemical systems. On the other hand, new even 

higher performing electrochemical systems may be enabled, for example, electrodes composed of local mixtures 

of materials contrived to best exploit the particular local overpotential and other conditions at that specific point 

in the electrode, and this forms part of our ongoing work.  

Given the importance of grading on local electrical conductivity and its strong influence on overall 

electrode performance shown here, future work might also consider how conducting carbon grading effects 

change, or might be used to manage, internal ohmic heating effects, particularly once electrodes are stacked or 

wound into planar or cylindrical multi-layers.  

3.6. Ragone plots 

Figs. 8a-c summarize the gravimetric power density against energy density (Ragone plots) for LiFePO4 

|| Li4Ti5O12 full-cells, LiFePO4-based half-cells and Li4Ti5O12-based half-cells, respectively. Both full and half 

cells share some common features: cells with uniform, AC@ graded, and CAC@ graded electrodes have the 

same maximum energy densities and minimum power densities, which was determined by the intrinsic energy 

storage capability of the active materials. The Li4Ti5O12-based half-cells in Fig. 8c showed a relatively narrow 

band of energy-power combinations over the range studied, consistent with previous results and the higher 
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porosity/smaller particle size in these electrodes. In contrast, the LiFePO4-based half-cells in Fig. 8b showed 

strong sensitivity to structure at intermediate energy-power densities, with graded electrodes significantly 

outperforming uniform equivalents. In full cells, the benefit of grading – particularly in the cathode – were 

carried over, so that, for example, at an intermediate power density of 120 W kg-1, the graded cells provided a 

~65% increase in energy density over uniform cells. To demonstrate scalability, Fig. 8d show an as-sprayed 

LiFePO4-based electrode with area ~23 × 23 cm2 that was manufactured using a single spray nozzle. Adding 

more nozzles to increase production rate is straightforward.  

 

Fig. 8. (a-c) Ragone plots of LiFePO4 || Li4Ti5O12 full-cells, LiFePO4-based half-cells and Li4Ti5O12-based half-

cells, respectively. (d) Example photo of an as-sprayed LiFePO4-based cathode (area ~23 × 23 cm2) on Al foil 

current collector. Five assembled CR2032 coin cells were used to show the scale difference.  
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The suspension deposition route described here allows almost any arbitrary arrangement of active, 

binder and conducting material through the electrode thickness to be realized, representing myriad possibilities 

for performance optimization. Unfortunately, intuition or simple theory can be a poor guide to quickly realizing 

the optimum materials arrangement because so many parameters interact with one another in complex ways, 

and there are too many possibilities for trial and error. Thus there is an opportunity for numerical models to play 

a facilitating role in guiding electrode structural optimization for graded, layered or other hetero-electrodes [45, 

46], providing that these models can represent the micro-scale control we can now achieve experimentally. 

Guided by effective optimization routines, novel balances of capacity, power and lifetime might be achieved, 

across a wide range of cell chemistries. 

 

4. Conclusions  

We have demonstrated that designed electrode hetero-structures for use in Li-ion batteries can be an 

effective way to improve the C-rate and long-term cycling performance compared with uniform but otherwise 

identical electrodes. Li4Ti5O12 based anodes and LiFePO4 based cathodes were fabricated by layer-by-layer 

spray printing that readily facilitated a gradient materials distribution through the electrode thickness with 

micro-scale resolution, and allowed a fair back-to-back comparison with uniform structure electrodes. An 

improvement in C-rate performance of up to 126% at 1C was achieved in full-cells with gradient material 

distributions in both the anode and cathode when compared with full-cells with uniform and otherwise identical 

electrodes. Full-cells with graded electrodes amplified improvements seen in the Li4Ti5O12 and the LiFePO4 

half-cells. The benefits of graded electrodes were more marked for larger diameter active particles, closer to the 

type preferably used in commercial cells. During long-term cycling, the capacity degradation of full-cells with 

graded electrodes was less than half of full-cells with uniform electrodes.  

The improved capacity and power performance of graded cells was due to lower cell polarizations 

compared with uniform electrodes, which was most marked with increasing C-rate. Accordingly, the charge 

transfer resistance of full-cells with graded electrodes was lower than for uniform electrodes. XPS surface 

analysis of cycled electrodes showed less SEI formation on graded electrodes, which was consistent with 

measured lower charge transfer resistances. The origin of the advantage of graded electrodes is suggested to 

arise from the homogenization of local overpotential distribution through the electrode thickness.  
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Fig. S1. SEM-EDX element line scans across the thickness of cross-sections (a-c) Li4Ti5O12 based anodes and 

(d-f) LiFeO4 based cathodes along the yellow lines in the SEM images shown at the top, with (a, d) uniform, (b, 

e) AC@ type, and (c, f) CAC@ type materials distribution, where Ti Kα1, Fe Kα1, C, and F Kα1 are attributed 

to Li4Ti5O12 active material, LiFePO4 active material, carbon conductive additive, and PVDF binder, 

respectively. The x-axis distance starts from the electrode surface, and increases towards current collector. 
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Fig. S2. Discharge capacity across a range of C-rates as a function of polarization for Li4Ti5O12 (LTO) half-

cells, LiFePO4 (LFP) half-cells, and LiFePO4 || Li4Ti5O12 (LTO||LFP) full cells for uniform and graded 

electrodes. 
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Sample 
Rs 
(Ω) 

RC1 RC2 

Zw 

R1 
(Ω) 

CPE1 
1 
(s) 

Rct 
(Ω) 

CPE2 
ct 
(s) Y1 

(S sα1) 
α1 

Ceff1 
(F) 

Y2 
(S sα2) 

α2 
Ceff2 
(F) 

W 
(S 

s1/2) 

LTO-half, Uniform 4.61 2.49 1.119e-6 0.947 5.47e-7 1.36e-6 9.11 6.13e-4 0.553 9.25e-6 8.43e-5 0.338 

LTO-half, AC@ 4.53 4.51 1.75e-4 0.936 1.07e-4 4.83e-4 4.94 2.58e-4 0.555 1.23e-6 6.08e-6 0.152 

LTO-half, CAC@ 4.72 5.15 0.136 0.757 0.121 0.623 8.19 1.27e-3 0.485 9.96e-6 8.16e-5 1.323 

LFP-half, Uniform 5.69 3.85e3 7.14e-2 0.857 0.180 693.0 81.0 2.83e-5 0.759 4.11e-6 3.33e-4 4.24e-2 

LFP-half, AC@ 5.25 1.40e3 1.26e-1 0.958 0.158 221.2 19.5 6.39e-5 0.695 3.40e-6 6.63e-5 9.24e-2 

LFP-half, CAC@ 4.48 2.87e3 1.21e-1 0.946 0.170 487.9 29.7 8.69e-5 0.637 2.9e-6 8.61e-5 6.83e-2 

Full C-rate, Uniform 8.61 2.61e4 7.85e-2 0.874 0.236 6.16e3 173.5 1.60e-5 0.757 2.42e-6 4.20e-4 9.28e-3 

Full C-rate, AC@ 5.23 4.53e3 1.87e-2 0.918 2.78e-2 1.26e2 21.0 2.48e-5 0.760 2.28e-6 4.79e-5 1.74e-2 

Full C-rate, CAC@ 5.58 5.95e3 1.09e-2 0.910 1.64e-2 97.6 90.4 1.64e-5 0.783 2.70e-6 2.44e-4 1.24e-2 

Full Cycling, Uniform 4.50 1.69e5 1.29e-2 0.717 0.268 4.53e4 147.7 1.70e-5 0.794 3.60e-6 5.31e-4 2.53e-2 

Full Cycling, AC@ 7.28 1.43e4 1.86e-2 0.857 4.72e-2 6.75e2 106.9 2.32e-5 
0.765 

3.67e-6 3.92e-4 1.32e-2 

Full Cycling, CAC@ 
 

5.83 1.80e4 1.02e-2 0.883 2.04e-2 3.67e2 43.9 2.10e-5 
0.790 

3.28e-6 1.44e-4 1.06e-2 

 

Table S1.  Best-fit values of the equivalent circuit corresponding to Nyquist plots shown by the solid lines in 

Figs. 6a-6d.  

 

Rs and Rct denote cell resistance and transfer resistance, respectively. Impedance for constant phase element 

(CPE) was ZCPE = 1/[(j)α Y] and the effective capacity of CPE was calculated by Ceff = [(1/R)(α-1) Y]1/α, where 

 = 2f is angular frequency, 0 < α ≤ 1, Y is a constant with unit S sα, and R is resistance. The time constant  

of each RC circuit was  = RCeff, which represented the time required for charging the capacitor represented by 
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the effective capacitance of the CPE through resistor R.  The Warburg impedance for Li ion diffusion is Zw = 

1/[(j)1/2 W], where 𝑊 = 1 (𝜎√2)⁄  and  is Warburg coefficient [1]. In the equivalent circuit shown above, the 

first RC circuit is usually attributed to the impedance at the active particle surface and the second RC circuit 

usually attributed to the charge transfer of faradaic reactions [2-5]. 

 

 

Fig. S3. X-ray photoelectron spectra (XPS) analysis of the LiFePO4-based cathodes recovered from full-cells 

after 200 cycles at 1C in Fig. 3f. (a-c) cycled uniform cathode, (d-f) cycled AC@ graded cathode, and (g-i) 

cycled CAC@ graded anode. (a, d, g) C 1s spectra, (b, e, h) F 1s spectra, and (c, f, i) P 1s spectra. The vertical 

dashed lines indicate the labelled reference chemical bonds taken from the literature [6-10]. The estimated 

atomic ratio of C, F and P obtained by peak deconvolution and integration (filled regions) is noted on the plots.  
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Fig. S4. (a) Schematic diagram of the intended AC@ type materials distribution across the thickness of the 

electrode, which is the same as Fig. 1c in the main text. Distance refers to the distance from the surface of the 

electrode (i.e. at the electrode/separator interface), increasing towards the current collector. From (a), five 

discrete composition ratios of active material (AM, LFP-based): carbon: binder are selected, denoted as [1] to 

[5]. Five uniform electrodes with these composition ratios were fabricated by the same spraying deposition 

process. After a similar extent of calendaring, the porosity and the electronic conductivity were measured. (b) 

Illustration of the apparatus for the non-destructive measurement of electronic conductivity of the uniform 

electrode. (c) The variation of uniform electrode porosity (left) and electronic conductivity (right) as a function 

of composition, related to five discrete positions through the AC@ graded electrode. 

 

In order to investigate effects of compositional change on the local porosity and electronic conductivity through 

the electrode thickness, a series of composition ratios corresponding to different distances (or depth) through a 

graded electrode, as denoted by [1] to [5] in Fig. S4a were selected. Uniform electrodes of these compositions 
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were then fabricated and their average porosity and electronic conductivity measured. The porosity of the 

uniform electrode was measured according to: 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = [1 − 𝜌𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒  × (𝑀𝐴𝑀𝜌𝐴𝑀 + 𝑀𝐵𝑖𝑛𝑑𝑒𝑟𝜌𝐵𝑖𝑛𝑑𝑒𝑟 + 𝑀𝐶𝑎𝑟𝑏𝑜𝑛𝜌𝐶𝑎𝑟𝑏𝑜𝑛 )] × 100% 

where ρ represents density (units: g/cm3) and M represents the weight fraction (unit: wt.%). The electronic 

conductivity σ of the uniform electrodes was measured using the experimental apparatus shown schematically 

in Fig. S4b and according to: 

𝜎 = 𝑙(𝑅 − 𝑅𝐴𝑙)𝐴 

where l is the thickness of the electrode, A is the surface area of the electrode pressed in between two stainless 

steel plates, R is the resistance measured by the multimeter, and RAl is the resistance of the Al foil without the 

electrode coating.  

 

Fig. S4c shows that both porosity and conductivity increased with increased carbon fraction (and therefore 

decreasing active material fraction).  
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