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Abstract: Circuit and electrochemical models of supercapacitor electrical energy storage devices
are related via their energy dissipation. A method for the synthesis of linear, low-order finite
dimensional circuits from nonlinear infinite dimensional electrochemical partial differential
equations is analysed with this method involving discretisation, linearisation, model order
reduction and circuit synthesis. It is shown that a circuit with three time constants sufficiently
captures the input/output response of the electrochemical model. Using absolute stability, the
local nature of the resistance of the nonlinear electrochemical model is shown. The problem of
supercapacitor design is also discussed, with the device capacitance and resistance being linked
to its electrochemical parameters.

Keywords: Supercapacitors, modelling, absolute stability theory.

INTRODUCTION

This paper uses control theory to relate two modelling ap-
proaches for electrochemical energy storage devices known
as supercapacitors. One of these approaches uses a set
of partial differential equations derived from the electro-
chemistry, while the other is based on equivalent circuits.
Supercapacitors, summarised in Burke (2000), are energy
storage devices that store electrical energy electrostatically
on porous electrodes typically made from carbon. Because
they store charge electrostatically, supercapacitors have
higher power densities, reduced temperature dependence,
reduced degradation, but they have lower energy densities
compared to lithium ion batteries. The typical construc-
tion of a supercapacitor is similar to a battery and is
shown in Figure 1 with two porous electrodes separated
by an electrically insulating separator. Flowing thorough
the device is an aqueous ionic electrolyte carrying charge.
Current is transferred to and from the system via current
collectors. Supercapacitors have higher energy densities
than standard dielectric capacitors composed of flat plates
as the distance between the charges in the electrode and
the electrolyte is typically the width of a solvated water
molecule that surrounds the ions. The interface between
the solid electrode and the electrolyte is known as the
double layer. Since capacitance is inversely proportional to
charge separating distance, this results in high capacitance
values. Also, the highly porous nature of the electrodes
means they have high surface areas which increases the
amount of charge that can be stored. Currently, capac-
itance values are in the range of several hundreds of
farads per gram, although this figure is increasing with
the development of new materials such as metal organic
⋆ This work was supported in part by funding from the EPSRC.

frameworks of Sheberla et al. (2016). For more details on
supercapacitors and their charge storing mechanism, see
Lu et al. (2013).

The majority of supercapacitor research has focussed on
the development of new materials to increase capacitance.
Recently, control theory has been employed to understand
how the supercapacitor stores and dissipates energy during
its operation leading to improvements in design and imple-
mentation. This approach requires a suitable model of the
device with there being two main modelling approaches.
The first uses (generally nonlinear) partial differential
equations (PDEs) to describe the electrochemistry and the
second maps the current to voltage using a circuit com-
posed of resistors and capacitors. The PDE electrochemi-
cal models describe the evolution of the potential gradients
and the ionic concentration in the spatially homogenised
porous electrodes using conservation relations. These mod-
els are relatively high fidelity, which makes them partic-
ularly useful for supercapacitors designers, as numerical
experiments can then be used to reduce the number of
time consuming physical experiments. By contrast, circuit
models are generally linear and have a state-space that is
finite-dimensional and low order. They are typically used
in implementation due to their low computational com-
plexity as in Dey et al. (2016). They are also used to obtain
models from electro-impedance spectroscopy data as in
Rafik et al. (2007). Examples of electrochemical models
include Allu et al. (2014); Verbrugge and Liu (2005); Srini-
vasan and Weidner (1999); Romero-Becerril and Alvarez-
Icaza (2010); Drummond et al. (2015); d’Entremont and
Pilon (2014). Equivalent circuit models include Robinson
(2010); Buller et al. (2001); Rafik et al. (2007) and are
reviewed in Zhang et al. (2015).



C
u

rr
e

n
t 
C

o
lle

c
to

r

C
u

rr
e

n
t 
C

o
lle

c
to

r

Anode Cathode

Separator

Electrode Electrode

Figure 1. Typical construction of a supercapacitor.

The aim of this paper is to study the two modelling
approaches by considering how they dissipate energy. This
paper will extend the authors’ previous results of Drum-
mond et al. (2017), Drummond et al. (2016b) and Val-
morbida et al. (2016). A procedure for synthesizing cir-
cuits from an electrochemical supercapacitor model was
introduced in Drummond et al. (2017) and this paper
will analyse how the steps of this synthesis affect the
resulting current to voltage dynamics. The dynamics of
the synthesized circuits are compared to the dynamics of
an electrochemical model whose current to voltage gain
is upper bounded using absolute stability theory given in
Drummond et al. (2016b). In this paper, we show how
the gain of this system changes with the local domain of
the state-space and how this affects the accuracy of the
equivalent circuits models.

Electrochemical interpretations of circuits have already
been proposed in the literature, but these interpretations
are typically not derived from the electrochemical PDE
equations in a methodical manner. The problem of de-
signing supercapacitors was considered in Robinson (2010)
with the circuit representing the pore dynamics. A set
of supercapacitor circuits including the Cauer and Foster
forms of the first kind was described in Zhang et al. (2015).
A phenomenological circuit for lithium ion batteries was
proposed in von Srbik et al. (2016) that used spatial dis-
cretisation to synthesize a circuit with nonlinear elements.
The synthesis method here is general as it enables a wide
class of circuits with different topologies to be synthesized
from a set of electrochemical equations, with the synthesis
procedure being both methodical and computationally ef-
ficient. In this setting, the circuits are considered to be
state-space realisations of the impedance function with
the non-uniqueness of the realisations resulting in many
circuits being realisable.

Due to space constraints, proofs are omitted for the
stability conditions in the propositions although these
proofs can be easily seen from those of the circle and Popov
criterions of absolute stability and the L2 gain bounds of
linear systems from Boyd et al. (1994).

Definition Value Units

Global Parameters

T Temperature 298 K
t+ Transference number 0.75

dq+/−

dq
Charge transfer coef. -0.5

c0 Rest ionic concentration. 500 mol m−3

Electrode Parameters

κ Electrolyte conductivity 0.026 S m−1

D Diffusion coef. 3.67 ×10−11 m2 s−1

ǫ Porosity factor 0.67
σ Electrode conductivity 1.14 ×10−4 S m−1

aC Specific capacitance 1.87 ×105 F m−2

Lelec Electrode length 25 ×10−6 m

Separator Parameters

κ Electrolyte conductivity 5.78 ×10−5 S m−1

D Diffusion coef. 8.19×10−15 m2 s−1

ǫ Porosity factor 0.6
Lsep Separator length 10 ×10−6 m

Table 1. Parameters of the electrochemical supercapacitor
model obtained from Drummond et al. (2016a).

Outline

The paper is structured as follows. The electrochemical
model equations are described in Section 1. The circuit
synthesis method is presented and analysed in terms of its
resistance in Section 2. The local L2 gain of the nonlinear
electrochemical model is analysed in Section 3 and the
application to supercapacitor design is considered.

Notation

The set of real valued matrices of dimension n are denoted
R
n, the set of positive definite symmetric matrices of

dimension n are S
n
>0 and the set of diagonal positive

and positive semidefinite matrices of dimension n are
respectively D

n
>0 and D

n
≥0. The row vector of dimension

n containing 1’s is denoted 1n. The jth row of a vector is
denoted by the subscript j. The sublevel sets of a function
V (x) are denoted E(V, α) = {x ∈ R

n|V (x) ≤ α}.

1. ELECTROCHEMICAL SUPERCAPACITOR
MODEL

The supercapacitor electrochemical model used to synthe-
size the equivalent circuits is now described. The partial
differential algebraic equations describing the electrochem-
istry were obtained from Verbrugge and Liu (2005). In the
electrode, the dynamics are

ǫ
∂c

∂t
= D

∂2c

∂x2
−K1

∂(φ1 − φ2)

∂t
, (1a)

aC
∂(φ1 − φ2)

∂t
= σ

∂2φ1
∂x2

, (1b)

K2

∂

∂x
ln (c) + σ

∂φ1
∂x

+ κ
∂φ2
∂x

,+i = 0 (1c)

where

K1 =
aC

F

(

t−
dq+
dq

+ t+
dq−
dq

)

, K2 =
κ RT

F
(t+ − t−) ,

(2)

with the model parameters given in Table 1. The model
states are ionic concentration c, electro-potential in the



electrode φ1 and the electro-potential in the electrolyte
φ2. The model output is the voltage v and the input is
the current density i. The diffusion of the electrolyte ions,
with a forcing term due to the potential gradient across the
double layer, is described by (1a). The relaxation of the
potential difference across the double layer is described by
(1b). Conservation of current is enforced by (1c), which can
be considered as an infinite dimensional form of Kirchoff’s
current law. The model equations in the separator are the
same as (1) except without any terms involving φ1 or
φ1 − φ2 because the separator is an electrical insulator.
These dynamics can be considered as coupled diffusion
equations with forcing terms whose solutions are pinned to
the manifold (1c) with the input entering via the manifold.
The boundary conditions between the current collector
and the electrode are

∂φ1
∂x

= −
i

σ
, φ1|x=0 = 0, (3)

∂φ2
∂x

= 0,
∂c

∂x
= 0,

and those at the electrode/separator boundary are

∂φ1
∂x

= 0, D
∂c

∂x

∣

∣

∣

∣

elec

= D
∂c

∂x

∣

∣

∣

∣

sep

(4)

K2

∂ ln(c)

∂x
+ κ

∂φ2
∂x

∣

∣

∣

∣

elec

= K2

∂ ln(c)

∂x
+ κ

∂φ2
∂x

∣

∣

∣

∣

sep

.

The subscripts sep and elec respectively describe the sep-
arator and electrode domains. These are a combination of
Neumann and Dirichlet conditions. The Neumann condi-
tions ensure that all the current is in the solid phase at the
current collectors and in the liquid phase at the separator,
while the Dirichlet condition imposes a reference potential.
The model output is the voltage v = φ1|x=0−φ1|x=L where
L = 2Lelec + Lsep is the total length of the domain.

2. EQUIVALENT CIRCUITS

Using the method proposed in Drummond et al. (2017),
a set of circuits is generated to locally approximate the
nonlinear partial differential equations of (1). This method
follows:

[1] Begin with electrochemical PDEs that describe the
system in sufficient detail.

[2] Obtain a finite state realisation by discretising the
PDEs in space.

[3] Linearise this model around its equilibrium point.
[4] Check positive realness of the resulting impedance

function.
[5] Reduce the model order using the balanced trunca-

tion method.
[6] Synthesize circuits via expansions of the impedance

function.

Step [2] gives a finite dimensional approximation to the
infinite dimensional system with this approximation be-
ing validated by experimental data in Drummond et al.
(2016a). The discretisation method affects how well the
finite dimensional approximation captures the PDEs, and
in this paper, spectral collocation is used as in Drum-
mond et al. (2015). The linearisation of [3] results in the
synthesized circuits having fixed resistors and capacitors.
[4] is a necessary condition for the synthesis of a passive

R1

R

C1 C2 C3

C

R2 R3

Figure 2. Foster form of the first kind circuit with three RC
pairs. Image obtained from Drummond et al. (2017).

circuit from an impedance function. [5] allows low order
circuits to be realised, as the number of grid points of the
PDE discretisation is generally greater than the number
of circuit branches. The synthesis of [6] uses standard
techniques of circuit theory from Guillemin (1977). In this
paper, Foster form of the first kind circuits are realised,
although it is stressed that a much wider class of circuit
could also be realised using alternative realisations of the
impedance function. The choice of model reduction also
affects the class of circuits considered. We have chosen the
balanced method [Xia et al. (2012)] due to its generality
and the fact that it is passivity preserving.

The three branch Foster form realisation equivalent circuit
is shown in Figure 2, where the combination RjCj is
referred to as an RC branch. This circuit has dynamics

[

ẋc,i
ẋc,d

]

=

[

0 0
0 −(RC)−1

] [

xc,i
xc,d

]

+





1

Cc
C−11nc,dT



 i (5a)

vc,i = xc,i (5b)

vc,d = 1nc,dxc,d +Rsi (5c)

vc = vc,i + vc,d (5d)

where R = diag(R1, . . . , Rnd
) and C = diag(C1, . . . , Cnd

)
with Rj and Cj being the resistors and capacitor of the
jth RC branch. The state-space model in (5) is formed of
“integrated states” xc,i ∈ R and “dissipative states” xc,d ∈
R
nc,d . The integrator states store the energy supplied by

the current, while the dissipative states describe the losses.
The L2 gain from current to voltage of the dissipative
dynamics of (5) satisfying γcirc‖i‖2 ≥ ‖vc,d‖2 is used to
evaluate how the dynamics are affected by the number of
circuit RC branches. This gain corresponds to the resis-
tance. Using the Lyapunov function Vc(xc,d) = xTc,dPxc,d,
the L2 gain is upper bounded by solving the semi-definite
program (SDP):

Proposition 1. If there exists a matrix P ∈ S
nc,d

>0 and scalar
γcirc > 0 such that the solution of

minimise γcirc (6a)
[

AcircP + PATcirc + 1nc,dT1nc,d PBcirc + 1nc,dTRs
BTcircP +Rs1

nc,d R2
s − γcirc

]

< 0

(6b)

where Acirc = −(RC)−1 and Bcirc = C−11nc,dT is
feasible, then γcirc is a global minimum upper bound for
γcirc‖i‖2 ≤ ‖vc,d‖2.

Figure 3 shows the variation of the computed L2 gain
bound with number of circuit RC branches that are related
to the number of time constants in the system. For the cir-
cuits synthesized from the electrochemical supercapacitor
model defined by the parameters of Table 1, there was
little benefit in having a circuit with more than three RC
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Figure 3. Variation of the L2 gain bound of the synthesized
circuit with the number of RC pairs.

branches as the L2 gain converged. This gives an electro-
chemical justification for the popularity of three branch
RC circuits in the literature as in Zhang et al. (2015).
A hypothesis for the physical reason for the three branch
RC circuit is that there are three dynamical equations in
the model, (1a) and (1b) in the electrodes and (1a) in
the separator without the ∂(φ1 − φ2)/∂t term and with
different parameters.

3. LOCAL L2 GAIN OF ELECTROCHEMICAL
MODEL

In this section, we will preserve the nonlinearity of the
electrochemical equations of (1) to analyse its impact on
the induced L2 gain. The circuits developed in Section 2
are derived from the electrochemical equations of (1). In
order to understand the L2 gain of these circuits, the L2

gain of the underlying electrochemical model has to be
considered. The nonlinearity of (1) means that its induced
L2 gain depends upon the magnitude of the input and such
a local property may affect the parameters obtained for the
linearised circuits. A method of computing this gain for the
discretised version of (1) was proposed in Drummond et al.
(2016b). This method involves a change in co-ordinates of
c such the model describes the evolution of concentration
deviations c̃ around an equilibrium c0 with c = c0 + c̃.
This changes ln(c) in (1c) to ln(1 + c̃/c0) + ln(c0). Noting
that ∂/∂t ln(c0) = ∂2/∂x2 ln(c0) = ∂/∂x ln(c0) = 0,
the discretised version of the electrochemical model can
be represented as

ẋi = Binti (7a)

vi = Cintxi (7b)

ẋd = Axd +Bψψ(y) +Bii (8a)

vd = Cdxd +Dψψ(y) +Dii (8b)

y = Cψxd (8c)

ψj(yj) = ln(1 + yj), j = 1, . . . , m (8d)

v = vi + vd (9)

G(s)
i vd

ψ(y)
y

Figure 4. A Lur’e system composed of the feedback inter-
connection of a linear system with a sector bounded
nonlinearity.

which uses a similar notation to (5) with xi ∈ R and
xd ∈ R

nd corresponding to stored and dissipated energy.
The input and output variables are defined as vi ∈ R,

y ∈ R
m, i ∈ R, vd ∈ R. The gain from

∫ T

0
i dt to vi of the

integrator system (7) is (CintBint)
−1 and can be seen to be

the capacitance of the device from the definition of charge

Q =
∫ T

0
i dt = Cvi. When yj ∈ (−1,∞), the nonlinearity

ln(1+yj) lies in a (local) sector. Then (8) can be regarded
as a Lur’e system [Khalil (2002)]. A Lur’e system is given
by the feedback interconnection of a linear system with a
nonlinearity which is decentralised

ψ(y) = [ψ1(y1), ψ2(y2), . . . , ψm(ym)]
T
, (10)

and sector bounded
ψj(yj)

yj
∈ ∆j = [δj , δj ] ∀y ∈ Y0 ⊆ Y ⊆ R

m. (11)

as in Figure 4. Due to the logarithmic nonlinearity of (8d)
being undefined for yj < −1 and limyj→−1 ln(1 + yj) =
−∞, the analysis of (8) was constrained to a local domain
Y0. Define X0 = {x|y(x) ∈ Y0}. The set Y0, defining the
region in the state-space where the nonlinearity is sector
bounded, has the form Y0 = {y : (yj − yj)(yj − yj) ≥ 0 for

j = 1, . . . ,m}. The bounds yj , yj are chosen to contain the

reachable set from bounded inputs satisfying ‖i(t)‖2 ≤ α
with α ∈ R>0.

To analyse (8), the Lur’e type Lyapunov function is used

V (xd) = xTd Pxd + 2

m
∑

j=1

λj

∫ yj

0

ψj(υ) dυ (12)

where P ∈ S
nd
>0 and λj ≥ 0. Since the integral terms in

(12) are non-negative, we have

V (xd) = xTd Pxd ≤ V (xd). (13)

Solving the following SDP gives an upper bound for the
locally induced L2 gain related to the resistance

Proposition 2. If there exists Λ = diag(λ1, . . . , λm) ∈
D
m
≥0, P ∈ S

nd
>0, T ∈ D

m
>0 and scalar γ > 0 such that the

solution of

minimise γ (14a)

subject to M∆ ≤ 0, E(V , α) ⊆ X0 (14b)

with M∆ as in (15) where ∆ = diag(δ1, . . . , δm) and
∆ = diag(δ1, . . . , δm) is feasible, then γ is an upper bound
on the locally induced L2 gain γ satisfying γ‖i‖2 ≥ ‖vd‖2
for inputs of bounded energy ‖i‖2 ≤ α

1
2 .

From (13) we have E(V , α) ⊇ E(V, α). Thus (14b) implies
E(V, α) ⊆ Y0. The inclusion condition is formulated as an
LMI condition in Boyd et al. (1995).
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Figure 5. Experimental data and simulation of the discre-
tised version of (1) for a pulsed current charge. Data
and figures obtained from Drummond et al. (2016a).

The L2 bounds of Proposition 2 are evaluated using the
supercapacitor described by the parameters of Table 1.
Figure 5a shows the voltage response from the pulsed
current charge of figure 5b from the simulation of (1)
and experimental data obtained from Drummond et al.
(2016a). To evaluate the local induced gains, we consider
symmetric bounds in Y0, yielding Y0(β) = {y ∈ R

m :
β2y2j−y

2
j ≥ 0 for j = 1, . . . ,m} where β ≥ 0 is a parameter

that scales the set and as a consequence, impacts on the
sector parameters δj , δj .

Figure 6 shows that the solution to (14) for different values
of α, bounds on the input energy ‖i‖2 ≤ α, and β. The
figure illustrates that the L2 gain of the system varies both
with the domain X0 and the input energy. This is in sharp
contrast to the linear model where the gain is independent
of the magnitude of the input.

A major trade-off in the choice of supercapacitor model
is that between complexity and fidelity. One application
that warrants the increased detail associated with an elec-
trochemical model is supercapacitor design. The resistance

200

0.1

0.2

2

γ

α

0.3

100

β

1.5
0 1

Figure 6. Local L2 gain of (8). The bounds on γ from
proposition 2 are computed for different values of the
parameter β which scales the local domain Y0.
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Figure 7. Variation of the bound of the induced L2 gain γ
with electrode conductivity σ.

is a key prperty of the supercapacitor and is desired to be
minimised as it characterises losses. Figure 7 shows the
variation of resistance, defined by γ, with the electrode
conductivity σ. The values of γ correspond to the solution
of (14) with β = 1 and α = 0.65. The inverse relation
of Figure 7 relates to the definition of conductivity, and
it shows that the PDEs of (1) capture this relationship.
The ability to link the performance of a supercapacitor to
its electrical parameters will reduce the number of costly
and time consuming physical experiments that have to be
carried out by designers, replacing them with the solutions
of SDPs. In Drummond et al. (2016b), electrochemical per-
formance was linked to the variation of electrode length.
The electrochemical model also gives insight into the evo-
lution of the internal state of the supercapacitor during
a charge that can flag up regions of ionic depletion for
example. These results are not immediately obvious using
circuits.



M∆ =





ATP + PA+ CTd Cd −∆∆ PBp +ATCTψΛ + CTd Dψ + 0.5CTψ (∆−∆)T PBi + CTd Di

BTψP + ΛCψA+DT
ψCd + 0.5(∆−∆)TCψ ΛCψBψ +BTψC

T
ψΛ +DT

ψDψ − T ΛCψBi +DT
ψDi

BTi P +DiCd BTi C
T
ψΛ +DiDψ DiDi − γ





(15)

4. CONCLUSION

This paper considered the energy dissipation properties
of nonlinear electrochemical models and linear circuits
describing the dynamics of supercapacitors. A synthesis
procedure for the circuits is analysed and it is shown that
a circuit with three time constants sufficiently captures
the input/output response of the linearised electrochemical
equations. The local nature of the L2 gain from current to
voltage of the nonlinear electrochemical model was shown
using absolute stability theory. This result was related to
supercapacitor design, with the electrochemical parame-
ters of the supercapacitor being linked to its electrical
properties.
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