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Learning-to-control relaxation systems with the step

response
Ross Drummond, Pablo Rodolfo Baldivieso Monasterios and Hamed Taghavian

Abstract—The problem of learning-to-control relaxation sys-
tems from data is considered. The main results of the paper
show that the equilibrium of a relaxation system’s step response
defines the solution of a class of robust control problems and
provides a good suboptimal solution to a class of linear quadratic
regulator problems involving relaxation systems. These results
demonstrate the potential to efficiently learn policies for these
control problems from a single, easy-to-implement trajectory
data point, being the step response. More broadly, these results
highlight how the system structure and problem definition of
the control problem can be exploited to generate data efficient
learning to control methods.

Index Terms—Optimal control, linear quadratic regulator,
relaxation systems, step response.

I. Introduction

Consider the problem of designing a feedback control
policy u(x(t)) : R

n → R
nu for a linear time invariant

systems of the form

d

dt
x(t) = Ax(t) +Bu(x(t)) + w(t), (1)

y(t) = Cx(t) +Du(t), (2)

with state x(t) ∈ R
n, disturbance w(t) ∈ R

n, A ∈ R
n×n,

B ∈ R
n×nu and C ∈ R

ny×n. Throughout this paper, it is
assumed that this system is controllable and detectable.
Particular attention is paid to the case where A ≺ 0, as
in the state transition matrix A is a negative definite ma-
trix. Whilst being somewhat restrictive, systems satisfying
A ≺ 0 are quite common in practice, for example with
the mechanical and electrical systems discussed in [17]. In
fact, the relaxation systems studied in [17] are classical
examples of systems with symmetric realisations.
Definition 1: The system (1) is said to be a relaxation

system if there exists a realisation such that A ≺ 0, D ⪰ 0
and B = C⊤.
Remark 1: It is remarked that some systems (such as

over-damped systems which are diagonalisable with real
modes) may first have have a state transformation applied
to them in order to satisfy A ≺ 0.
In [17], it was shown that the structure imposed upon

relaxation systems can be used to greatly simplify their
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passivity analysis. The results of this paper are of a similar
spirit except the focus is on showing how some imposed
system structure can simplify optimal control problems.
Besides these theoretical motivations, the authors have
also encountered relaxation systems in several other ap-
plications, including in equivalent circuit models of bat-
teries and super-capacitors [7], externally positive systems
results of [6] and the search for Zames-Falb multipliers in
[16]. The breadth of these topics highlights the range of
applications where relaxation systems are encountered.
Contributions: The results of this paper concern the

problem of learning feedback policies for optimal control
problems involving relaxation systems. Three main contri-
butions are developed:

• A class of linear quadratic regulator problems for
relaxation systems is introduced whose solution can
be approximated by their step response (Theorem 2).

• A class of robust control problems for relaxation
are studied whose solution is defined by their step
response (Section III-A).

• Numerical simulations validate the results.

The overall theme of these results is to highlight how so-
lutions to certain control problems for relaxation systems
can be learned from a single easy-to-implement trajectory–
the system’s step response. More broadly, these results
highlight the potential of exploiting the structure of solu-
tions to control problems to improve the sample complex-
ity of reinforcement learning (RL) methods. For example,
Theorem 2 may be used to generate good initiliasations
of RL algorithms for solving certain LQR problem and
Section III-A provides a complete solution to the robust
control problem of Problem 2 using the step response.
The results of this paper can be considered to lie at

the intersection of model-based and data-driven control
(with these approaches compared in [8]), as they exploit
structural properties in the model dynamics to improve
the learning of optimal feedback policies from data. A key
reference for data-driven control is [4] which demonstrated
that Willems’ Fundamental lemma [18] could be used to
learn the input-output map of discrete-time linear systems
from a persistently exciting signal, and then numerical
optimisation problems could be solved on this learned
model, including for LQR problems. By contrast, the
presented results focus on continuous-time relaxation sys-
tems and the step response; we show that for this class
of problems, an optimal gain can be learned i) without
a persistently exciting signal (the step response is not
necessarily persistently exciting), ii) and without needing



to numerically solve an optimisation problem (Theorem
2 shows that the gain can be obtained directly from the
state-steady response). Although the proposed results are
more restrictive than [4] since they focus on relaxation
systems, they may contain some advantages. For example,
they do not require persistently exciting learning signals
(such signals can be challenging to implement on experi-
mental rigs, especially for systems with fast and/or slow
dynamics), and the optimal control can be solved without
computational hardware, as the feedback gain is simply
extracted from the step-response. Restricting the problem
class to relaxation systems may then bring advantages for
learning-to-control in the field.
Notation: A matrix A ∈ R

n×n is negative-definite if
A ≺ 0. Similarly, positive definite matrices are defined as
A ≻ 0. The identity matrix of dimension n is In. The set
of unitary matrices of dimension n is defined as U

n. The
eigenvalues of a matrix A are denoted λ(A) and its singular
values are denoted σ(A). The kth eigenvalue and singular
value are denoted λk(A) and σk(A), respectively.

A. Step response definition

Relaxation systems in the form of Definition 1 are stable
and passive, so properties such as their step response can
be defined. The following gives the definition of the step
response used in this work. The main point to note is that
the multi-input case with nu ≥ 2 involves a step in each
input component separately, rather than simultaneously.
Definition 2: The step response of the system (1) is de-

fined as the solution of (1) from x(0) = 0 with w(t) = 0∀t
and where uj(t) = 1, ∀t ≥ 0 and 0 otherwise, with uj(t)
corresponding to the jth component of the input signal.
The step response equilibrium matrix is defined as

X∗ = −A−1B. (3)

With this definition, the columns of X∗ ∈ R
n×nu corre-

spond to the step responses from each individual compo-
nent of u(t) ∈ R

nu . The equilibrium of the step response’s
output is Y ∗ = D − CA−1B.

II. Linear quadratic regulators for relaxation

systems

In this section, the following LQR problem is considered.
Problem 1 (LQR problem): Consider the linear time

invariant system dynamics of (1) with initial condition
x(0) ∈ R

n. Assume R ≻ 0 and Q ≻ 0 are given. Find
the optimal control policy u(t) = Kx(t) that minimises
the quadratic cost function

min
u

∫ ∞

0

x(t)⊤Qx(t) + u(t)⊤Ru(t) dt. (4)

The solution to the LQR optimal control problem is
well-known and defined by the positive-definite solution of
a matrix Riccati equation [1]. Whilst stating the solution
to the LQR solution in terms of the Riccati equation brings
many advantages (notably, it enables fast computation
using convex optimisation algorithms), its implicit natures

makes it difficult to interpret how the system dynamics
and problem statement characterises the optimal solution.
Since the aims of this paper are to exploit the system
structure to create more efficient ways to learn some opti-
mal control policies, this limitation motivates the following
formulation.

Theorem 1: The LQR problem of Problem 1 is solved
by the feedback policy

u(t) = Kx(t) = −R−1B⊤Px(t) (5)

where P ≻ is defined by

P = (−AQ−1 + (AQ−1A⊤ +BR−1B⊤)1/2UQ−1/2)−1

(6)

and U ∈ U
n is the unique unitary matrix for which P ≻ 0.

Proof. From LQR theory, the optimal solution to Problem
1 subject to the controllable dynamics of (1) is obtained
from the unique positive-definite solution P ≻ 0 of the
following Riccati equation

A⊤P + PA− PBR−1B⊤P +Q = 0. (7)

As P ≻ 0, it is invertible and so it is possible to define
L = P−1 ≻ 0. Divide the Riccati equation of (7) on the
left and right by P to give

LA⊤ +AL−BR−1B⊤ + LQL = 0. (8)

Rewrite the above as

(LQ1/2 +AQ−1/2)(LQ1/2 +AQ−1/2)⊤

= AQ−1A⊤ +BR−1B⊤, (9)

which implies that (8) is solved by

L = −AQ−1 + (AQ−1A⊤ +BR−1B⊤)1/2UQ−1/2 (10)

for any unitary U ∈ U
n. The unique solution P ≻ 0 of

the Riccati equation must then be obtained by the U that
makes L ≻ 0. With this, the LQR gain of (5) is obtained.

■

Remark 2: Some special cases exist where (6) can be
used to characterise the unitary matrix U ∈ U

n and hence
also the matrix P ≻ 0. Notably, when Q = ρI and A ≺ 0
for some ρ > 0 then (6) implies that U = In.

Remark 3: As an aside, it it remarked that since U is a
unitary matrix, Theorem 1 gives an immediate bound for
the optimal solution of the LQR problem. To see this, use
L = P−1 and write

σk(LQ
1/2) ∈ σk(L)[minλ(Q)1/2,maxλ(Q)1/2],

= σn−k+1(P )−1[minλ(Q)1/2,maxλ(Q)1/2].

Let q = n−k+1 and note that LQ1/2 = −AQ−1/2+M1/2U
with M = AQ−1AT +BR−1BT . As P is positive definite,
the above implies

λq(P ) ∈
1

γq
[minλ(Q)1/2,maxλ(Q)1/2] (11)



where

γq = σn−q+1(−AQ−1/2 +M1/2U),

≤ σi(−AQ−1/2) + σj(M
1/2U),

= σi(AQ−1/2) + λj(M)1/2,

and i+ j = n− q + 2. Choosing i = j = 1 gives the lower
bound minλ(P ) ≥ minλ(Q)1/2/γn where

γn = maxλ(AQ−1AT )1/2 +maxλ(M)1/2.

Bounding P may be used to restrict the search-space
of RL methods involving reward functions– such as Q-
learning– and so, potentially, make those methods more
sample efficient for some problems.

A. Suboptimal LQR for relaxation systems from the step
response

If the dynamics of (1) are relaxation systems with A ≺ 0
(and these dynamics may be unknown), then Theorem 1
can be used to obtain suboptimal solutions to Problem (1)
using the step response equilibrium matrix X∗.

Theorem 2: Assume A ≺ 0, Q = In and
maxλ(X∗R−1X∗⊤) < 1. Consider the control policy

u(t) = −
R−1

2
X∗⊤x(t), (12)

where X∗ = −A−1B is the system’s step response equi-
librium. The optimality gap associated with this policy is
bounded by

Jstep − JLQR = x⊤
0 O(X∗R−1X∗⊤)x0, (13a)

≤ maxλ(X∗R−1X∗⊤)||x0||
2, (13b)

where JLQR is the cost of the optimal LQR policy and
Jstep is the cost obtained with (12). This bound implies
that the policy (12) approximates the optimal one when
X∗R−1X∗⊤ is sufficiently small.

Proof. From Theorem 1 and following Remark 2, the
solution of the Riccati equation P = LLQR

−1 for this LQR
problem follows

LLQR = −A+ (AA⊤ +BR−1B⊤)1/2,

= −A−A(In +X∗R−1X∗⊤)1/2, (14)

which, by the matrix inversion lemma, gives

PLQR = −A−1 + ((I +X∗R−1X∗⊤)−1/2 + I)−1A−1.

Assuming maxλ(X∗R−1X∗⊤) < 1, one may use the
Laurent series coefficients of the function f(z) = ((1 +
z)−1/2 + 1)−1 about the origin to write the above as

PLQR = −A−1 + (I/2 + (X∗R−1X∗⊤)/8 + . . . )A−1

= −
1

2
A−1 + ((X∗R−1X∗⊤)/8 + . . . )A−1

= Pstep −O(X∗R−1X∗⊤) (15)

where Pstep = − 1
2A

−1. Therefore when X∗R−1X∗⊤ → 0,
the sub-optimal feedback policy choice of (12) approxi-

mates the optimal LQR control policy uLQR(t) as follows

uLQR(t) = −R−1B⊤Px(t) ≃ −
R−1

2
X∗⊤x(t).

The bound of (13) then follows from (15). ■

Remark 4: Since the control policy of (12) is defined
by the step response matrix X∗, it can be learned from
a single trajectory data point. As such, approximate solu-
tions in the sense of (13) for these control problems can be
efficiently learned. Note that to compute X∗, and hence
the feedback policy, it is not required to know the model
dynamics, just that A is negative-definite and that the sys-
tem is controllable. Whilst A ≺ 0 is restrictive, [17] showed
that it is satisfied by a broad class of physical systems,
including many mechanical and electrical systems.
Remark 5: To obtain the step response matrix X∗, only

nu experiments are needed. During the learning phase,
noise may corrupt the experiments, but the only relevant
part of these experiments is their steady state value which
is a single data point (information about the transients is
not required). Depending upon the type of noise, different
filters may have to be applied to the components of X∗

and the feedback policy u(t) if the measurements of x(t)
are noisy. Moreover, bias in the noise could also play
an important role in corrupting the measurement of X∗.
Again, data processing may have to be applied in this case.
Remark 6: Implementing data-driven control on con-

tinuous time problems, such as Problem 1, can introduce
several issues. For example, there are issues following from
the data being collected in discrete samples and derivatives
having to be approximated. By contrast, learning the
policy of (12) does not necessarily require discretising the
state signal x(t) in time– all that is required is the steady-
state signal X∗. This may bring benefits for scalability and
ease of implementation. Unlike existing data-driven con-
trol schemes such as those from [4] which optimise using
a model built from the data itself, the policy (12) does
not require numerically solving an optimisation problem.
Instead, all that is required for (12) is X∗. Decoupling
the learning from the state-dimension in this way may
allow the method to scale to large systems, as long as the
problem’s assumptions hold.

III. Robust control of relaxation systems

The previous section contained the main result of this
paper–an approximation of LQR control policies for re-
laxation systems in terms of their step responses. This
result exploited the explicit characterisation of the optimal
control problem’s solution from Theorem 1 to characterise
the solution of the LQR problem in terms of the system
matrices, a feature which was then used to get an ap-
proximation in terms of the step response. In the control
theory literature, similar results on explicit solutions for
optimal control problems have already been derived and
which elicit similar data-driven characterisations (as will
be seen in Section III-A). In particular, [13] presented an
explicit solution for the following robust control problem
which was also formulated for relaxation systems.



Problem 2: Let α > 0 and consider the LTI dynamics of
(1) with x(0) = 0. Minimise

sup
w∈W

∫ ∞

0

y(t)⊤y(t) + α2u(t)⊤u(t) dt, (16)

where the disturbance set W is defined as the space of
disturbance signals w with bounded L2 norm

W :=

{

w :

∫ ∞

0

w(t)⊤Ww(t) dt ≤ 1

}

, (17)

for some positive-definite matrix W ≻ 0.
The optimal solution to this robust control problem was

obtained in [13].
Theorem 3 ([13]): If the LTI system (1) is a relaxation

system (Definition 1) then K = α−1(D − CA−1B) solves
Problem 2.
Remark 7: Similar results to [13] on the robust control

of symmetric and relaxation systems can be found in [15],
[11],[9],[2], [12] and, more recently, in [19].

A. Solution in terms of the step response

Even though Theorem 3 gives an explicit solution to the
robust control problem of Problem 2, it is stated in terms
of the system’s A, B, C andD matrices. Implementing this
optimal control policy using the theorem therefore requires
knowledge about the matrices of the system model, which
is not possible using the data-driven approach.
However, it is observed that the optimal solution of

Theorem 3 is simply the equilibrium of the system out-
put’s step response, and so can be learned from a single
trajectory data point. Specifically, the optimal policy of
Theorem 3 is simply K = α−1Y ∗ following Definition 2.
The optimal feedback gain can then be obtained by simply
applying the step input, waiting for the system’s transients
to decay and then using the settled output values within
the feedback gain. In practice, the steady-signal signal Y ∗

may have to be filtered or de-biased when implementing
this strategy, but this will depend upon the particular
application being considered. The above analysis implies
that when the system dynamics are relaxation systems,
robust control problems in the form of Problem 2 can also
be learned from the steady-state of the step response.

IV. Numerical example

Example 1

To demonstrate the validity of the approximation of
Theorem 2, consider the problem of controlling the dif-
fusion equation

∂v(r, t)

∂t
=

∂2v(r, t)

∂r2
, (18)

subject to v(0, t) = 0, v(1, t) = βu(t),

defined on the spatial domain r ∈ [0, 1] and with β > 0
being a scaling term which scales the magnitude of the step
response. The spatio-temporal variable that is diffusing
is denoted as v(r, t) : [0, 1] × [0,∞) → L[0,1]×[0,∞). The
control actuation u(t) is applied at the boundary at r = 1.
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(a) LQR with β = 10−3.
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(b) LQR with β = 100.
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(c) (12) with β = 10−3.
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(d) (12) with β = 100.

Figure 1: Comparison between the optimal LQR controller
and that obtained from the step-response in Theorem 2.

To control this system, the spatial domain r is discre-
tised into n + 2 equally spaced grid points (with spacing
∆ = 1/(n+1)). These grid points are located at r ∈ R

n+2

with rj = (j − 1)∆ for j = 1, . . . , n + 2. The value
of the variable v(r, t) on these grid points is defined as
vj(t) ∈ R

n+2 = v(rj , t) for j = 1, . . . , n + 2. With this
discretisation, the diffusion operator is approximated by
the central difference

∂2v(r, t)

∂r2
≈

vk+1(t)− 2vk(t) + vk−1(t)

∆2
, (19)

for k = 1, . . . , n, v0 = 0, vn+1 = u(t). The discretised
version of the diffusion equation (18) then has the form
of (1) with state x(t) ∈ R

n = v2:n+1(t), state transition
matrix A ≺ 0 defined by

A =
1

∆2













−2 1

1 −2
. . .

. . . 1
1 −2













(20)

and with B = [0, . . . , 0, β/∆2]⊤.

Figure 1 evaluates the performance of feedback policies
to control this system, with a comparison between the
optimal LQR gains (denoted KLQR) obtained by solving
the Riccati equation and that obtained by the approxi-
mation of Theorem 2. For the simulations of this figure,
the parameters n = 5, ∆ = 1, w(t) ∼ N (0, 10−5β2) and
Q = In, R = 1 were used. Figures 1a & 1c compare the two
controllers with β = 10−3 where the step response is small
in magnitude whereas 1b & 1d compare the controllers for
the larger step response with β = 100. The simulations are
separated into two distinct stages–each 50 seconds long. In
the first stage, the step input of Definition 2 is applied and
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Figure 2: Cost comparison between the optimal LQR
policy and Theorem 2 as a function of β for Example 1.

the gains of (12) are then learned from the data. In the
second stage, the feedback control action is applied.
The results of Figure 1 agree with the conclusions of

Theorem 2; for the considered LQR problems involv-
ing relaxation systems, the optimal LQR gain can be
approximated well by the learned policy (5) when the
step response is small. This can be seen by comparing
the responses of Figures 1a & 1c and Figures 1b & 1d.
When the step response is small in magnitude, as in when
β = 10−3, then the two responses appear identical, as seen
in Figures 1a & 1c. When the step response is bigger, as in
when β = 100, then the approximation of (5) deteriorates,
as seen in the difference between the responses of Figures
1b & 1d. This difference is especially noticeable in the
response of the state x5 at 50s.

Example 2

To demonstrate the results can be applied in practice,
consider the problem of designing a Kalman filter to esti-
mate the temperature distribution within large cylindrical
lithium-ion batteries using only thermocouple measure-
ments on the cell’s surface. As batteries get increasingly
employed in technologies where safety is critical, notably
electric aircraft, there is a growing need to develop tem-
perature estimators to detect short circuit faults and avoid
thermal runaway events. To address this problem, it is
noted that even though Theorem 2 solves a LQR problem,
under the assumption that the battery thermal dynamics
are linear, the separation principle implies that they can
also be used to approximate Kalman filter gains.
For the battery model, we follow the approach of [3]

and discretise the cylindrical cell into surface, middle
and core components. The cell’s A and B matrix for
the state-estimation problem with surface temperature
measurements are then

A = M−1





− 1
rc2m

1
rc2m

0
1

rc2m
− 1

rc2m
− 1

rm2s

1
rm2s

0 1
rm2s

− 1
rs2a

− 1
rm2s



 (21)

where M = Cp diag(mcore,mmid,msurf ) and B =
[0, . . . , 0, 1]⊤. Here, Cp = 1100 J kg−1K−1 is the specific
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(a) Battery surface tempera-
ture during fast charging.
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(b) Error between Kalman fil-
ter and Theorem 2.

Figure 3: Comparison between Kalman filter and Theorem
2 for Example 2. In (b), TKalman is the temperature
estimate from the Kalman filter and TThm.2 is that based
upon the gain (12) of Theorem 2.

heat capacity of battery core, msurf is the mass of the
cell surface, msurf is that of the middle, and msurf is
that of the core. It will be assumed that that cell is
discretised evenly, with mcore = mmid = msurf = 0.0346
kg. rc2m = 3.18 KW−1 is the thermal resistance between
the cell core and mid, rm2s = 1.61 KW−1 is that between
the cell mid and surface and rs2a = 1 K W−1 is that
between the cell surface and the surrounding air. These
parameters were obtained from [3]. The cost function of
the Kalman filtering problem is given by (4) but with
Q = 10−3I3 (a state-transformation translates this cost
into that of Theorem 2) being the covariance matrix for
the state noise and R = 1 being that for the sensor noise.

Figure 3 compares the results of Theorem 2 with the
optimal Kalman filter gain under the condition of the cell
being fast-charged with an Ohmic heating rate of I2Rser

where I = 4.5 A is an applied 1C charging current and
Rser = 0.0246Ω is the cell’s series resistance. To learn the
gain of (12), the battery could be heated using external
heaters, as in [5], and a thermal imaging camera (such as
that developed in [10]) could then be applied to measure
the equilibrium thermal state of the cell defining the gain
of (12). The figure shows that during the fast charge, the
thermocouple data is corrupted by noise but this noise is
effectively filtered out by both the Kalman filter and the
gain of Theorem 2. Figure 3b shows that the error between
the two state estimators is small, providing support for the
practical application of Theorem 2.

For this battery temperature estimation problem, the
value of the developed approach is that state-estimator
gains can be obtained quickly from a single experiment,
e.g. by heating the battery using an external heat source
and then measuring the equilibrium temperature distribu-
tion using a thermal camera to obtain the gain. This single-
experiment gain-synthesis approach could accelerate the
time needed to design battery management systems, as the
estimator gains could be obtained without parameterising
a model. Instead, with the proposed approach, the gains
may be computed from the formation cycling experimental
data. By posing the gain synthesis problem in the language
of battery experimentalists, new avenues to implement and



tune BMS algorithms may emerge.

Conclusions

The problem of learning feedback policies for a class of
optimal control problems based upon relaxation systems
was considered. A class of output-feedback robust control
problems was shown to be solved by the policy whose
feedback gain is simply the equilibrium of the relaxation
system’s step response. A class of LQR problem was also
shown to be approximated by a policy defined by the step
response’s equilibrium. These two results highlight how
feedback policies for these optimal control problems can
be learned directly from a single easy-to-implement data
point, being the step response. The potential of exploiting
properties of the system dynamics and known solutions
to optimal control problems to create more data efficient
learning-to-control methods tailored for specific systems is
highlighted by these results.
In terms of future work, one problem would be to

develop conditions to check from data if a system is a
relaxation system or not. The results of this paper demon-
strate that if the system can be identified as a relaxation
system, then the problem of learning the solutions to
optimal control problems can be efficiently addressed. This
line of work may follow the results on learning passivity
properties of linear systems, as considered in [14], as
relaxation systems and passive systems have close links
[17]. Moreover, we see benefits in exploiting the structure
observed in Theorem 1 for the general solution of the LQR
problem based upon unitary matrices, especially in the
context of vision-based control for robotics.
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