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Modelling, Reductionism and the
Implications for Digital Twins

David J Wagg*

University of Sheffield, S1 3JD, UK
The Alan Turing Institute, London, NW1 2DB, UK

Abstract In this Chapter we will discuss modelling and reduction-
ism in science and engineering, and how this relates to the new idea
of digital twins. In particular, we focus on the historical context of
modelling and reductionism for dynamics and control of engineering
systems. Both active and passive control methods will be discussed,
including the novel ideas associated with the inerter. Based on a se-
lected review of the philosophy of modelling, we consider the role of
knowledge and complexity in model making. The related topics of
systems engineering, uncertainty analysis and artificial intelligence
are also briefly discussed in the context of digital twins. We will
argue that utility, trust and insight are the three key properties of
models that will ideally be extended to digital twins. We then con-
sider how digital twins will require the dynamic assembly of digital
objects in order to recreate emergent behaviours. In order to imple-
ment a digital twin, an operational platform is required. We briefly
present an aircraft example of a digital twin operational platform.
Lastly we consider digital twin knowledge models and ontologies,
and how this topic might help shape digital twins in the future.

1 Introduction

“To doubt everything, or, to believe everything, are two
equally convenient solutions; both dispense with the necessity
of reflection”

— Henri Poincaré (see Gray, 2012).
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Jason Shepherd, Mark Enzer, Rebecca Ward, Zack Xuereb Conti, Lawrence Bull, Tim
Rogers, Nikos Dervilis, Matthew Bonney, Xiaoxue Shen, Ziad Gauch, Matthew Tipuric,
Prajwal Devaraja, and Saeid Taghizadeh.



In this Chapter we will consider how reductionism and modelling have
been used in the science and engineering associated with nonlinear systems.
In particular, we will present an interpretation of this topic which looks
forward to the development of digital twins for dynamical systems. For the
purposes of our discussion we will consider that a digital twin is a virtual
representation of a physical system, called the physical twin that evolves
over time and is constructed from digitised information such as recorded
data and the output of computational models.

Henri Poincaré can be considered as the founding father of the discipline
of nonlinear systems. His initial work has lead to multiple fields of enquiry,
most obviously the field of dynamical systems theory, that is also sometimes
known by other names (e.g. during the 1970s and 80s it was known as
chaos theory) — see for example Guckenheimer and Holmes (1983); Moon
(1987); Glendinning (1994); Thompson and Stewart (2002); Strogatz (2019)
for detailed overviews. However, Poincaré was more than just a brilliant
mathematician, he was also a philosopher, and spent a considerable amount
of time debating and discussing philosophical topics with others — as de-
scribed in detail in the biography by Gray (2012). Therefore, we begin this
Chapter with a quotation by Poincaré that reminds us of the importance
of reflection, something that we will try to do in the discussion below. The
quote from Poincaré also points out that extremes (or limiting cases) of an
argument are often easy to adopt. The part in the middle, where most real-
world applications lie, is the more difficult part to deal with, but is essential
if we are to have relevance for physical applications.

1.1 Reductionism in Science and Engineering

The idea of reductionism in science and engineering is defined thus by
Heylighen et al. (2007):
“...to understand any complex phenomenon, you need to take
it apart, i.e. reduce it to its individual components. If these are
still complex, you need to take your analysis one step further,
and look at their components. If you continue this subdivision
long enough, you will end up with the smallest possible parts,
the atoms (in the original meaning of “indivisibles”), or what
we would now call “elementary particles”. Particles can be seen
as separate pieces of the same hard, permanent substance that
is called matter.”
— Heylighen et al. (2007).
The concept of division in classical mechanics is based on the division
of material, and so we say that the associated ontology is materialistic (e.g.
related to physical matter). Ontology, is the branch of philosophy which



examines the fundamental categories of things, and is becoming an impor-
tant concept for digital twins (to be discussed later). Historically, the idea
that some things, like the human mind, are non-physical extends back to
the ideas of Greek philosophers, and meta-physics has become the estab-
lished as the study of non-material phenomena. More specifically related to
the human mind, Descartes developed the idea of mind-body dualism (Hey-
lighen et al., 2007), which separates the physical matter of the brain from
the (apparently) non-material human mind.

This reductionist approach has become the predominate method for cre-
ating models in scientific and engineering practices over history, and has
been a highly successful approach. Reductionism has led to deterministic
and mechanistic reduced problems to be used as models for a wide-range of
applications, with a high degree of mathematical rigour. More than anyone
else, this philosophy has become associated with Newton:

“We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances. To
this purpose the philosophers say that Nature does nothing in
vain, and more is in vain when less will serve; for Nature is
pleased with simplicity and affects not the pomp of superfluous
causes.”

— Isaac Newton, Principia: The Mathematical Principles of
Natural Philosophy (Newton, 1686).

In this classic quote Newton espouses the idea of avoiding “superfluous
causes” and asserts that “Nature is pleased with simplicity” as an argument
for simplification (and parsimony, which we discuss later).

Classical mechanics can be broadly divided into the study of solids, lig-
uids and gases, with more advanced fields evolving to cover topics such as
thermodynamics and electromagnetism. The overall reductionist approach
is based on simplifying, when modelling apparently complicated physical
processes. This method works particularly well for ordered systems, such as
solid materials with lattice-like structures, or the dynamics of billiards (e.g.
point-mass systems). In these cases the behaviours can be encoded into a
set of deterministic “laws”. To quote Descartes:

“...reliable rules which are easy to apply, and such that if one
follows them exactly, one will never take what is false to be true
or fruitlessly expend one’s mental efforts, but will gradually and
constantly increase one’s knowledge till one arrives at a true un-
derstanding of everything within one’s capacity.” — Descartes:
Rules for the Direction of the Mind (reprinted; Descartes, 1985,
first published in 1701).



Descartes is saying that not only can systems be reduced, but they can be
explained by rules, and this is the underlying ethos of classical mechanics,
where models are both mechanistic and deterministic. Our modern inter-
pretation of determinism (in dynamical systems) has come to mean that
the state of something in the future can be determined entirely from it’s
current state — an interpretation generally attributed to Laplace (2012)
(first published in 1795).

The approach taken by classical mechanics didn’t fit in the same way to
disordered systems, such as a gas, consisting of molecules that act without
any apparent constraints. To deal with this apparent disorder, a new field
of study, called statistical mechanics, gradually developed, in which small
particles (such as molecules in a gas) are treated statistically with prob-
ability theory and related techniques. This statistical approach allowed
for average behaviours to be modelled, based on some basic assumptions
about the independence of each particle and the nominally identical nature
of the associated probability. Such simplifying assumptions allowed disor-
dered systems to be analysed within an essentially mechanistic modelling
framework as well. This was in large part due to the pioneering work of L.
Boltzmann, J. Clerk Maxwell & J. W. Gibbs, and a modern introduction
to the topic can be found, for example, in Pathria and Beale (2011).

Reductionism is very deeply embedded in much of science and engineer-
ing, for example the following techniques are all from a reductionist ethos:

1. Theory reductionism: One theory is reducible to another: e.g. Ke-

pler’s laws are reducible to Newtonian theories of mechanics.

N

Methodological reductionism: phenomena at one scale are determined
by their underlying methods and processes.

Axiomatic reduction: Mathematics.

Atomistic reduction: The study of sub-atomic particles in physics.
Geometric reductionism: The separation of the parts of a system.
Separation of physical phenomena: Fluid flow, structural mechanics,
thermodynamics etc.

o Gt W

However, it is also known that reductionist models, cannot represent the
entire physical behaviour of the physical system. The difference between
a reductionist model output and an observation is known as the error or
uncertainty related to the model (Smith, 2013). For example, when a de-
terministic model does not capture the observed behaviour of the physical
system, the model is considered to be “missing” some significant part of
the physics. This missing knowledge is called the model inadequacy of the
reduced model, (also called the episternic uncertainty).

Regardless of uncertainty, there are other fundamental limitations with
the reductionist approach. For example, in the 20th Century, new scien-



tific ideas began to undermine the predominance of reductionist thinking.
Specifically:

1. The Heisenberg uncertainty principle — a foundational concept in
quantum mechanics that is philosophically different to classical me-
chanics.

2. Godel incompleteness theorems — limits on the axiomatic reduction
of mathematics.

Life sciences is a field of study for which reductionist modelling has long
been recognised as not a good framework. This is particularly the case for
emergent behaviours, which occur in a wide variety of biological systems, and
have become particularly important when studying phenomena relating to
the human mind, such as cognition, and intelligence (we discuss in more
detail in Section 4).

Next we review the classic approach to mathematically modelling and
controlling nonlinear dynamical systems.

1.2 Dynamics & Control of Nonlinear Systems

The study and understanding of nonlinear systems has been very impor-
tant for the advancement of science and engineering. Phenomena exhibited
by nonlinear systems are exhibited in real-world physical applications, but
are not always possible to capture using linear (or linearised) modelling
techniques. In many applications, there is a requirement to control the be-
haviour of the system in addition to understanding its nonlinear behaviour.

The history of control engineering stretches back to pre-industrial times,
and an example of an early control system is shown schematically in Fig. 1.
The idea of control is to adjust, regulate, or otherwise obtain a desirable
response from a dynamic system as it evolves in time. For example, the
governor system shown in Fig. 1 works for rotating machinery. As the
central shaft rotates faster, the two masses move outwards which in turn
lifts the collar and lever at the bottom of the shaft. The lever is connected
to something that needs adjusting based on speed of rotation. For example,
in windmills used to grind corn into flour, the gap between the grinding
stones needed to be regulated to ensure the flour was evenly ground for all
rotating speed. The governor can be tuned to achieve this purpose, and has
a linkage which adjusts the gap between millstones to the desired distance.

As control technology developed, the vast majority of the associated con-
trol theory was developed for linear dynamical systems — see for example
Goodwin et al. (2000); Inman (2006) and references therein. As the inter-
est in nonlinear dynamical systems has grown, so has the interest in the
control of such systems — see Nijmeijer and van der Schaft (1990); Slotine
and Li (1991); Isidori (1995); Krsti¢ et al. (1995); Sastry (1999); Fradkov
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Figure 1. Schematic diagram showing an early governor system. These
devices were used in windmills in the pre-industrial age to regulate the gap
between millstones as the sails of the windmill rotated at different speeds.

et al. (1999); Wagg and Neild (2015). The classical approach to nonlinear

| plant Y
LY h(x)
control output
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Figure 2. Nonlinear control schematic diagram.

control systems is shown schematically in Fig. 2. Here, the plant is the
(dynamical) system to be controlled. The plant has a control input v and
an output y, which in general are both vectors. The plant output is used by
the controller to generate the next control input, and the system continues
to evolve in time, t.

It is typical to define a mathematical model of the system in Fig. 2 as

o

where z is the state vector, f(x) is the nonlinear function defining the plant
behaviour, g(z) is the nonlinear function defining the controller behaviour,



and h(z) is the nonlinear function defining the relationship between the
output and the states.

There are many hundreds of books and papers that analyse this problem
— see for example those mentioned above. Many different control design
methods have been used for nonlinear systems including optimal and adap-
tive control methodologies.

This classical approach typically relies on “complete knowledge” of the
functions f, g and h and assumed access to the states . This is often
not possible in practice. In addition to this, many other simplifications
are often assumed, e.g. that the dynamics are deterministic. If noise or
disturbance terms are included they are typically assumed to be stationary
random signals that are also IID and Markovian (e.g. no memory). When
designing a control system based on assumed physics-based models, then
often multiple of these types of assumptions are needed to make the system
modelling tractable.

It is an interesting point of note to compare classical nonlinear control
to the much more recent technique of reinforcement learning (Graesser and
Keng, 2019). The two concepts are shown schematically in Fig. 3. Here we

> plant
control output
& cost
controller |«
optimse to minimise cost
>{ environment
action state
& reward
agent =

optimse to maximise reward

Figure 3. Nonlinear control (top) compared to reinforcement learning (bot-
tom).



have introduced an optimal control version for the nonlinear control scheme
(top diagram in Fig. 3) and the objective is to minimise cost. Conversely, in
reinforcement learning, the actions are taken in an environment by an agent,
and the objective is to maximise the reward for actions at each iteration.

In fact, control and reinforcement learning are two different (opposing)

philosophical approaches to solve the same type of problem:

1. Nonlinear control is based on a physics-based (deterministic) approach:
The problem can be modelled in a deterministic way using physics
based models. All that is needed is to include all the relevant physics
in the model(s) and increase the model fidelity until the required be-
haviour is obtained.

2. Reinforcement learning is based on a data-driven (dataist) approach:
The problem can be solved by learning from large amounts of data
using machine learning and associated methods. By increasing the
amount of data covering all the relevant system behaviours, the re-
quired behaviour should be obtained.

Both these approaches have limitations and downsides. For example:

1. Physics-based (deterministic) approach: We need a lot of knowledge
of the physics in advance. Lack of knowledge of the physics, or gradual
changes over time, will compromise the reliability of this method.

2. Data-driven (dataist) approach: Even if enough data can be obtained,
explainability, interpretability and reproducibility are often a major a
problem. Fragility of learned models to a changing context is also a
problem.

Later we will want to combine these opposing philosophical approaches when
considering digital twins. This combination, will (ideally) maximise the
strengths of both approaches, and minimise the limitations.

Next we consider how reduction may occur in control systems.

1.3 Reduction for Control

Control is normally about adding to a dynamical system. E.g. addi-
tional actuators, dampers or other devices to change behaviour However,
reductions can happen in several ways for control system:

e Plant or controller model inadequacy, for example if there is a high
degree of uncertainty about the physics of the plant, the assumed
physics-based model may have a number of inadequacies.

e Transformations and truncations are often used, such as modal trans-

formation — if the system is linear — or nonlinear normal models
(or normal forms) see Chapter 2 of this book, when the systems is
nonlinear.



e Process simplification, where the processes involved in the control ac-
tions are simplified to make the modelling tractable.

However there are consequences of reduction for control. These include:

e Incomplete or partial observations, which often happens for exam-
ple when controlling flexible body structures, and the actuators and
sensors cannot be co-located. The resulting non-collocation leads to
partial observations and control actions.

e Control spillover, occurs for flexible body control systems, where un-
targeted models in the systems are excited by the control forces, and
similarly observations are corrupted by the same process.

e Stiffness coupling often occurs for flexible body control, where actua-
tors are attached to flexible structures leading to stiffness coupling.

e Actuator dynamics (delay particularly) can be a factor, and can have
particular implications for the system under control — we will discuss
a specific case later on that relates to a hybrid simulation system
example.

Next we will review a classical example relating to nonlinear control.

1.4 Example, the Planar, Vertical, Take-off and Landing (PV-
TOL) Aircraft

We now consider a well known example of nonlinear control systems
which is the planar, vertical, take-off and landing (PVTOL) aircraft, shown
schematically in Fig. 4. Although this application was developed in the
1970s for military aircraft, it still retains relevance for applications such as
the control of drones.

Here we follow the analysis in Sastry (1999) (see also references therein),
from which the (scaled and simplified) equations of motion for the PVTOL
aircraft are given by

&1 = —sin(0)uy + € cos(0)uq
&g = cos(@)ug + esin(@)ug — 1 (2)
0= u9

The states are x1, zo and 6 and the control inputs are u; and us. A scaled
gravity term is represented by —1.

One method for solving this type of control problem is to use input-
output linearisation. For this we need to find the Lie derivatives, which are
obtained by differentiating the output, y with respect to time. This gives

. Oh(x) 0z Oh(x).
T o ot 9z 3)




XZA

Figure 4. Nonlinear control example, the planar, vertical, take-off and
landing (PVTOL) aircraft — see Sastry (1999).

where x = [71, 22, 0]T. Substituting for i from Eq. (2) leads to

i = 29 (1) + gay) = 2Dy 4 2D gy,

which can be rewritten as
j = Lyh(x) + Lyh(a)u, (4)

where Lh(z) and Lyh(z) are the Lie derivatives of h(z) with respect to f(z)
and g(z).

To remove the system dynamics and replace them with a new control
signal, r(t), we choose a control input of the form

= O L@, L) £0, )

to give y = r(t) which is a linear relationship between the input r(¢) and
the output g.

If the condition Lgh(z) # 0 is true, the system is said to have relative
degree one and no more differentiation is required. However, if the output
does not appear directly in the expression Lgh(z) = 0, we need to take the
Lie derivative again. This will be the case in this example in the PVTOL
system, where ¢ is required as the outputs are in terms of accelerations. So

10



when L,h(z) = 0 differentiate Eq. (4) again to give

= %(th(x))g—f = (%giz(@f(x)—i— 81)37};(1’)9(@“ = L3h(z)+ LyLsh(z)u.

(6)
In this case, if LyL¢h(z) # 0, the system is said to have relative degree two,
and the control law is given by

u = m(r(t) — L?ch(l')), LyLsh(z) # 0. (7)

Now take the system output to be y = [x1,22]T because we want to
control the hover of the aircraft. Then using Eq. (6) we have

ij = L3h(z) + LgLyh(z)u  ~
[]=[ %] [ o] [n]

from which we can infer what L7h(z) and LyLsh(z) are, and substitute
them into Eq. (7) to obtain the control signal. Now

R o (st l I [ Ll A O

€ €

][ =) (2] (8] o

Substituting for the control signals, u; and ug into Eq. (2) gives

and so

1 =17
%2 =T2 (11)
0 = L(sin(0) + cos(8)r1 +sin(0)r)

Unfortunately this system has unstable zero dynamics, which makes this
method an impractical approach for the control. To see the effect of the zero
dynamics we substitute r; = ry = 0 in Eq. (11) which leaves

6= ésin(@) (12)

which represents the part of the system dynamics that are uncontrollable.
The dynamics of Eq. (12) is the same as dynamics that govern the undamped
pendulum (with a saddle at the origin rather than a centre). In this case

11



they correspond to the rolling and rocking motions of the aircraft, and
as this can occur regardless of the control inputs, this situation is highly
undesirable, and is therefore not a practical solution.

Many alternative methods of solution have been suggested that can
avoid this problem, such as linearising and decoupling the planar degrees-
of-freedom — for more details see the discussion in Sastry (1999). This
approach may seem somewhat unsatisfactory, but we recall the quote at
the beginning of the chapter from Poincaré about the need to deal with the
‘inconvenient’ realities of such problems.

Next we move on to consider how a different type of control mechanism
can be used to take actions in the real-world.

2 Passive Control of Reduced & Low-Order Systems

“While in 1934 a mechanical engineer was considered well-
educated without knowing anything about vibration, now such
knowledge is an important requirement”

— J. P. Den Hartog, 1956 (see Den Hartog, 1934).

Thus far we have discussed what is known as active control systems,
where actuators (or other mechanisms) are used to affect change in the plant
via the control signal u. Passive control systems are the opposite of this.
They do not use any actuators, instead the system of interest is redesigned
to reduce the unwanted vibrations (or other behaviour), typically by the
addition of a specific passive device(s) — where passive in this context
means not actively adding energy into the system.

2.1 The Tuned-Mass-Damper

The most important and well known passive control device is the tuned-
mass-damper (TMD) which was patented by Hermann Frahm (1909). The
TMD concept is shown in Fig.5 (a). Here the primary (or host) system is
the system we want to control that has parameters of mass M, stiffness k
and zero (or very small) damping. To apply a passive control affect a smaller
oscillator, called the tuned-mass-damper, is attached to the primary system
— as shown in Fig. 5 (a). This smaller oscillator has parameters mass mg,
damping ¢, and stiffness k.

In Fig. 5 (b) the response of the primary system both with and without
the TMD is shown. The primary system simulation has a small amount
of damping in this case, and the excitation across the frequency range is
sinusoidal.

12
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Figure 5. The tuned-mass-damper showing (a) a schematic diagram of the
primary system, M, k, with the absorber, mg, k., c,, attached. (b) A
simulation of the (damped) primary system without the absorber attached
(solid line), and tuned-mass-damper (dashed line) subjected to sinusoidal
excitation F'sin(2¢) where F' = IN. The frequency ratio is /w, where

wp =/ k/M.
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Following the work by Frahm, there where many refinements of the de-
sign process for the TMD. However, the basic design of the parameters for
the TMD can be obtained using the “fixed point” method of Brock (1946).
Using Brock’s method, the design parameters for the simulation shown in
Fig. 5 (b) were based on the following values k = 1000N/m, M = 100kg,
(and ¢ = 10kg/s i.e. damping “close to zero”) and m, = 8kg. Then the
mass ratio, u = mg /M, is calculated so that the TMD stiffness can be found
via

kp
(w2

and damping ratio from

3p

e

which enables the calculation of the required TMD device damping as ¢, =
2¢mqwp. The results of the TMD simulation are shown as the dashed line
in Fig. 5 (b).

2.2 Vibration Isolation

The TMD is an example of vibration absorption. The other main type of
passive vibration control is to design a vibration isolation system. Schematic
examples of these basic passive vibration control concepts are shown in
Fig. 6, where the excitation is from a base motion input (e.g. support
motion). A vibration absorber is shown schematically in Fig. 6 (a), whereas
two types of vibration isolator are shown in Figs. 6 (b) and (c).

Considering the vibration isolator system in Fig. 6 (b), the equation of
motion for the case when the spring is linear can be written as

mi+c(@ —7)+k(x—r)=0 (13)

where m is the mass in kg, k is stiffness in N/m and ¢ is the damping in
kg /s. This equation can be solved for the case when the excitation input, r
is sinusoidal motion of the form r = Rsin(wt) (full details can be found in
Chapter 3 of Wagg and Neild (2015)).

The response of the linear vibration isolator is measured using transmis-
sibility, which is the ratio of the response amplitude, X divided by the input
amplitude R such that

‘{‘ _ (1+4¢2(£)?)
R (1= (££)2)2 +4¢2(£)?

(14)
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Figure 6. Three types of passive control with base motion input, showing
(a) a vibration absorber, (b) a vibration isolator, and (c) a base isolation
system.

and phase lag is

2¢(ZL)?
¢arctan<(1_(£_i)2)+4c2(%)2>, (15)

where w,, = y/k/m is the natural frequency and ¢ = ¢/2muw,, is the damping
ratio. An example for a linear passive vibration isolator is shown in Fig. 7,
where (a) shows the transmissibility |X/R|, and (b) the phase shift, ¢. Also
shown in Fig. 7 is the affect of varying the viscous damping ration, (.

In the case where the isolator spring is nonlinear, then there are addi-
tional parameters that can be used to design the transmissibility response.
For example, one type of nonlinear passive vibration isolator uses a high
static, low dynamic stiffness function, and the equation of motion is given
by

mi + (@ —7) + k(x —r) + ka(z —7)> =0 (16)

where, in this case, a nonlinear cubic stiffness has been included in addition
to the linear stiffness.

The combination of a linear and a nonlinear stiffness can be used to
design a quasi-zero stiffness (solid line in Fig. 8 (a)) that is a combination
of linear and nonlinear stiffnesses (Shaw et al., 2013b). The transmissibility
response of a nonlinear vibration isolator with quasi-zero stiffness, compared
to a linear vibration isolator is shown in Fig. 8 (b) (Shaw et al., 2013a). It
can be seen for this example, that the affect of the nonlinear stiffness term
is to increase the isolation region.

15
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Figure 7. Steady state response of linear vibration isolator showing, (a)
displacement amplitude divided by input amplitude, and (b) phase shift of
response compared to input.

In addition to adding masses, or designing stiffness or damping param-
eters, in recent years another concept has come to light. This is the idea of
the inerter, and we discuss this next.

2.3 The Inerter

The inerter was a term defined by Malcolm Smith (Cambridge), to com-
plete the force-current analogy between mechanical and electrical networks
(Smith, 2002). In fact, inerter type devices had been in use for many pre-
vious decades, but just known by other names. For example the dynamic
antiresonant vibration isolator (or DAVI) was developed in the 1960s — see

16
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Figure 8. Nonlinear vibration isolator showing, (a) the quasi-zero stiffness
(solid line) that is a combination of linear and nonlinear stiffnesses, and (b)
transmissibility response (displacement amplitude divided by input ampli-
tude) for both linear an nonlinear passive vibration isolator examples.
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Figure 9. Schematic diagrams of the flywheel inerter showing (a) the case
where flywheel is directly connected, and (b) the flywheel operates on a
threaded rod, often referred to as a “ball-screw” system.

Wagg (2021) and references therein for more details.

One of the simplest ways to design an inerter device is to use a mechanical
flywheel. Two variations of this idea are shown in Fig. 9, where in (a) the fly-
wheel is directly connected, and in (b) the flywheel operates on a threaded
rod, often referred to as a “ball-screw” system. Inerters can be used to
reduce vibrations by using them to create devices that enable vibration iso-
lation and absorption. This is typically done assuming linear behaviour,
to design a series of inerter-based devices that mitigate vibrations. The
most well-known devices of this type are the tuned-viscous-mass-damper
(TVMD) (see Ikago et al. (2012)), the tuned-inerter-damper (TID) (pro-
posed by Lazar et al. (2014)), and the tuned-mass-damper-inerter (TMDI)
— see Marian and Giaralis (2014). These three inerter-based devices (e.g.
the TVMD, TID & TMDI) and multiple variants have been applied to a
wide range of applications and examples in engineering — see for example
Wagg (2021) and references therein.

An example of the characteristics of a tuned-inerter device is shown in
Fig. 10 where the tuned-inerter-damper applied to a 3-storey structure (dot-
dash line), is compared with the uncontrolled system (dashed line) and a
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Figure 10. Tuned-inerter device example, showing the response of a tuned-
inerter-damper applied to a 3-storey structure (dot-dash line), and com-
pared with the uncontrolled system (U/C, dashed line) and a tuned-mass-
damper (solid line).

tuned-mass-damper response (solid line). Note that the optimum position
for the TID is at the bottom of the structure, which is the opposite of the
TMD which is optimally positioned at the top of the structure.

The vibration mitigation affect of the TMD and TID are very similar for
the first (e.g. lowest frequency) resonance peak. However, it is important
to notice that the TID is a relative motion device, and so unlike the TMD
it affects all modes, and the response of second and third resonance peaks
are also reduced by the TID.

Inerters have also been applied to nonlinear vibration systems as well,
and an example is shown in Fig. 11. In this example a nonlinear quasi-zero-
spring is used in a vibration isolator design where mass, M, is to be isolated
from input y(¢), and the spring has a quasi-zero nonlinear restoring force
function, f(z), where z = x — y. The equation of motion for the resulting
nonlinear quasi-zero & inerter isolator shown in Fig. 11 (a) can be written
as

(m+b)2 +cz+ f(z) = —mi, (17)
where z is the relative displacement z = x—y. We can “design” the nonlinear
stiffness function to be an odd polynomial in z such that

f(z)=kiz+ ksz3 + k525, (18)
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Figure 11. Nonlinear inerter isolator example, showing (a) a schematic
diagram of a nonlinear inerter isolator, and (b) a comparison of linear- and
nonlinear-inerter isolators.
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So, assuming k; is fixed, we now have three parameters, k3, ks and b with
which to “tune” the desired behaviour.

Results from an example system are shown in Fig. 11 (b), where the
unisolated linear primary system with M = 7.2kg, linear spring k¥ = 80N/m,
¢ = 1.0Ns/m subject to a support displacement of y = 0.04 sin(2¢) m and
b = 0 (thick solid line) can be compared to the linear spring plus inerter case
with the same parameters except inertance b = 2.9kg so that u = b/M =
0.4 (dot-dash line). In addition, the quasi-zero plus inerter case with the
same parameters as the previous case except a nonlinear quasi-zero spring
function designed using the method in Shaw et al. (2013a) with ks, = 52N/m
& %, = 0.577 is used (thin solid line). Note that for this simulation curve the
thin dashed line represents the part of the solution branch that is unstable.
It is clear from Fig. 11 (b), that using both inerter and nonlinear stiffness
parameters, enables the antiresonance to be moved closer to the position of
the linear primary system’s original resonant peak.

Having considered the concepts of control and passive redesign to reduce
vibrations, we now return to the idea of modelling and reductionism for
digital twins.

3 Modelling, Reductionism and Complexity

“All models are wrong, some are useful,” — George Box
(Box, 1982).

“No one trusts a model except the man who wrote it; ev-
eryone trusts an observation except the man who made it,” —
Harlow Shapley.

The quotes from George Box and Harlow Shapley introduce some im-
portant ideas for modelling. The context for Box’s comment comes from
a discussion regarding the level of validation a model can have when com-
pared to the real world system (Vining, 2013). Box’s main point is that no
(statistical) model can ever be “correct” in the sense that there is a “per-
fect” match with the physical system. Box’s statement also introduces the
idea of usefulness (or utility) of a model, and that models can have a useful
purpose even though they can never be perfect.

Shapley introduces the idea of trust which is in practice linked to un-
certainty. Shapley’s quote also reveals two human biases; (i) the tendency
for humans to trust observations over a model, and (ii) the difference be-
tween model makers (and data collectors) and users. Why might this be
important? What is the “useful purpose” of a model?
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It will be argued here that a primary useful purpose of a model is to gain
(or enhance, extend, and/or clarify) knowledge. Furthermore, the state-
ments above are key to understanding the limitations of all theoretical and
computational models. In the authors opinion, these limitations are broadly
aligned to the idea of “model dependent realism” expressed by Hawking &
Mlodinow’s Grand Design (Hawking and Mlodinow, 2010).

Model dependent realism is based on the philosophy that absolutely
certainty is an unobtainable goal, and therefore the most important thing is
the usefulness of the model. In the context of digital twins, discussed later,
the usefulness will be particularly relevant in terms of explanatory capability.
More specifically, for both models and digital twins, we will contend that
the primary useful purpose is to gain (or enhance, extend, and/or clarify)
knowledge/insights that will ultimately lead to explanatory capability. We
also acknowledge (following Shapley) that unbiased and trustworthy models
(and digital twins) are crucial, alongside utility, in order to gain this new
knowledge and insight.

Therefore we claim that wutility, trust and insight are the three key
generic requirements (or properties) of models that we would like to ex-
tend to digital twins. How about other important characteristics like fi-
delity, parsimony, cost or optimality? For digital twins, we argue that these
characteristics will depend on the specific context of the model (or digital
twin). The context means the specific application, objectives and other de-
tails relating to the physical system under consideration. It is important to
emphasise that our ultimate aim is to create digital twins that are of course
not models (at least in the most direct interpretation — explanation given
later). Therefore, characteristics like fidelity, parsimony, cost or optimal-
ity will be considered to be context dependent, whereas utility, trust and
insight are generic.

That said, parsimony relates to simplification and therefore reduction-
ism, so we will consider that next. Firstly the parsimony principle states
that: a simpler model with fewer parameters is favoured over more complex
models with more parameters, provided the models fit the data similarly
well. This follows the advice of many prominent scientists, for example,
didn’t Einstein say

“Everything should be made as simple as possible, but no
simpler”?

In fact, it’s difficult to find the source of this quote, more likely he said:

“It can scarcely be denied that the supreme goal of all theory
is to make the irreducible basic elements as simple and as few
as possible without having to surrender the adequate represen-
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tation of a single datum of experience.” — Einstein lecture 1933
(Einstein, 1934).

For more complicated systems, and particularly living systems, cognitive
science and Al research, there is some evidence from that points to the
opposite conclusion. For example:

“Al researchers were beginning to suspect — reluctantly, for
it violated the scientific canon of parsimony—that intelligence
might very well be based on the ability to use large amounts
of diverse knowledge in different ways,” — Pamela McCorduck
2004 (McCorduck, 2004).

Therefore, if we want to try and recreate some of these more complex
and sophisticated physical phenomena, it is unlikely that reductionism will
be a sufficient tool to help us. Something further would be needed. We will
now take a more detailed look at the process of making models for scientific
and engineering applications.

3.1 The Model Making Process

A flow diagram of a model making process is shown schematically in
Fig. 12. In this example, the first part of the model making process is
to make observations from a physical system. This obviously assumes that
there is already a physical systems in existence, which is often not the case in
engineering, e.g. when designing something not previously built. However,
for the purposes of this discussion, we assume that the physical system
is available for observation. These observations are then used to make a
model based on a set of assumptions, and the assumptions capture all the

model
physical system | observations _ making assumptions‘ model
process -
\
improvements
output
interpretation

Figure 12. Schematic diagram showing the typical method of making a
model of a physical system.
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reductions, simplifications, and other approximations made. The resulting
output(s) from the model are then interpreted, and typically this leads to
improvements being made to the model, before the process is repeated.

model making process

establish review
research existing
question knowledge
physical | observations run the
model

system

create create
conceptual computational
model model

improvements

output
interpretation

Figure 13. Schematic diagram showing the typical method of making a
model of a physical system for a computational model.

It will be important to our later discussion to consider the actual model
making process in more detail, and an example of this is shown in Fig. 13.
Although there are multiple different ways to approach the model making
process, the steps shown in Fig. 13 capture the most important parts of the
process.

First, there is a requirement to establish an overall research question
that the model is designed to answer. This will typically require expert
knowledge and understanding of the problem at hand in order to formulate
a meaningful question to answer. Next, or often as part of the same process,
a review of the existing knowledge would typically be carried out, which also
requires a high level of expertise and research skills. Existing knowledge
also includes a review of existing modelling assumptions that can be used
to inform the assumptions that are made for the current modelling process.

Typically in an engineering setting, the next step is to create a conceptual
model, as shown in Fig. 13, then assumptions will need to be made at this
point in order to define the precise form of the conceptual model. This
process of assumption and refinement will continue into the last stage of
developing the computational model, and it would be expected that further
assumptions, either explicit or implicit would be adopted at this stage.
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Note that this discussion of model making is not intended to be compre-
hensive in any way, and readers are referred to Oberkampf and Roy (2010)
for a comprehensive overview of modelling in the scientific and engineering
domains. That said, there are several important points that can be under-
stood from the (simplified) model-making process shown in Fig. 13 that will
be important for our later discussion on digital twins. In particular, the role
of knowledge and expertise in the process of creating the model and making
the associated assumptions.

This is particularly important when trying to address systems with sig-
nificant complexity, which is a topic we address next.

3.2 Complexity in Engineering Systems

“Engineering is the art of modelling materials we do not
wholly understand, into shapes we cannot precisely analyse, so
as to withstand forces we cannot properly assess, in such a way
that the public has no reason to suspect the extent of our igno-
rance”

— Dr. A. R. Dykes, from the British Institution of Structural
Engineers President’s Address,1978.

In engineering practice there are requirements to design, build, commis-
sion, operate, maintain, manage and decommission a wide range of different
engineering systems. The quotation from A. R. Dykes gives a sense of the
trade-offs necessary in the engineering process. It’s typical that multiple
complex and uncertain factors, e.g. the materials, geometries, forces and
public expectations, have to be combined in order to achieve an engineering
task. A list of some of the types of complex (and/or complicated) behaviours
that occur in engineering applications in Table 1.

Typically, most engineering applications have more than one type of com-
plexity contained within it from the list in Table 1. Furthermore, engineers
are often required to create something new, or deal with a socio-technical
system that is highly complex/uncertain and is changing over time. This is
in contrast to the scientific approach, where the focus is on understanding
and explaining the behaviour we observe (as in complexity science). In or-
der to address the challenges of complexity, systems engineering has become
an important methodology, and we discuss this next.

3.3 Systems, Uncertainty and Artificial Intelligence

Systems engineering has been developed alongside the related fields of
systems research and complexity throughout the later part of the 20th Cen-
tury (Schlager, 1956). The systems engineering approach has now developed
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Table 1. Some examples of complex (and/or complicated) behaviours that
occur in engineering applications.

Type Examples (non-exhaustive list)
Environmental

Temperature, pressure humidity & climatic effects;
physical location; geographical effects

Geometric Multiple compliments of varied shape & geometries;
joints and jointing between components;
mechanisms & interactions

Material The physical & chemical properties of matter;
combined & composite materials; wear, ageing &
damage

Behavioural Mechanistic behaviour of solids & fluids; vibrations

& time-dependent behaviours; emergent behaviour;
multi-physics; length-scales

Operational Control & feedback; updates & changes; faults &
failures; networks & connectivity; computational
hardware & software

Computational | deterministic vs non-deterministic; time & memory
requirements; processing resources; data size &
formats, Kolmogorov complexity

Processes Design; decisions & interventions; sequencing &
workflow; human behaviour; communications;
heuristics

Organisational | Structure & hierarchies; practices & organisation
culture; rewards & incentives

Social Attitudes; motivations; culture; education level;
religion; beliefs; gender etc.

into a well established methodology for dealing with complex engineering
projects (Walden et al., 2015; Hirshorn et al., 2017). The early develop-
ments were driven in large part by NASA and the space programme, and
space engineering continues to be an important application area for the fur-
ther development of the methods (Hirshorn et al., 2017). State-of-the-art
systems engineering is built largely on the concept of processes, to enable
the design, implementation and management of a specific engineering ap-
plication or project.

The systems engineering framework enables interlinked uncertainties and
complexities to be managed simultaneously, and for the technical processes
to be aligned with the decision, management and wider related business
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processes. Systems engineering also takes account of the lifecycle of a sys-
tem, in addition to requirements analysis and hierarchies of systems that
lead to systems-of-systems applications (Adams and Meyers, 2011).

When dealing with complex system, it is important to acknowledge un-
certainties involved in both physical observations and computer models. In
terms of classifying uncertainties, we follow Kennedy and O’Hagan (2001),
who define the following:

e Parameter uncertainties: computer models contain of parameters which
may be measurable (in which case there is parametric variability) but
in most cases are not fully known or accessible.

e Model discrepancy (or inadequacy): following the famous quote by
Box it is understood that there will always be mismatches between
the model output and the physical process.

e Residual variability: given the same set of inputs the process may
produce different outputs, due to stochastic processes (or in some
circumstances deterministic chaos).

e Parametric variability: outputs may vary because inputs cannot be
fully controlled or specified.

e Observational uncertainty: measuring any real world system will re-
sult in a level of measurement error or noise.

e Code uncertainty: uncertainty associated with the computer code.

The process of uncertainty quantification requires the measurement (or
estimation) of these different sources in order to quantify uncertainty for
predictions in a given context. It’s also possible to categorise uncertainties
into the classifications of aleatoric and epistemic, depending on the philo-
sophical approach.

The processes of quantifying uncertainties in models may be achieved via
a variety of approaches. However, a key distinguishing feature of a digital-
twin is that it evolves over time. This will mean that any uncertainty
quantification technique may need to operate in, or close to, real time —
a large constraint on many current technologies. A digital-twin could re-
quire an offline process of uncertainty quantification whilst also having some
component of online parameter estimation.

Artificial intelligence (AI) began with the development of formal logical
methods and the early attempts to create mechanical computation machines
— see for example Nilsson (2009); Russell and Norvig (2010); Haenlein and
Kaplan (2019); Marcus (2020) and references therein. Early developments
led by Alan Turing (Turing, 1950) were a starting point for the current
research field, and the name artificial intelligence came from a meeting at
Dartmouth in 1956 organised by John McCarthy.

The drive to create AI (e.g. Nilsson (2009)) has multiple different, inter-
linked approaches. Those include the desire to replicate human intelligence

27



and other biological examples, attempts to create intelligent machines, and
using Al to solve applied problems. The unifying theme (if there is one)
appears to be the use of intelligent agents (Russell and Norvig, 2010).

For example, deep reinforcement learning, where agents are used to solve
sequential decision-making problems, such as autonomous driving vehicles
(Kiran et al., 2021) is a current topic of interest that overlaps with digi-
tal twins concepts, and was mentioned above when we discussed nonlinear
control. Such methods can be used to address sequential decision-making
problems, which are also highly relevant to digital twins.

Another categorisation of different components of Al research is to dis-
tinguish between:

1. symbolic A, such as logical reasoning, knowledge models and expert
systems (Krishnamoorthy and Rajeev, 2018);

2. sub-symbolic AT (connectionism), which includes all types of machine
learning (ML) (Bishop, 2006);

3. neuro-symbolic AI, which is the fusion of the other two categories
(Dingli and Farrugia, 2023).

Broadly speaking, it could be said that symbolic Al was the earliest to
develop leading to applications such as expert systems (Krishnamoorthy
and Rajeev, 2018). This has more recently been eclipsed by sub-symbolic
which is not the dominant force in AI, particularly deep learning (LeCun
et al., 2015) and most recently large language models (Teubner et al., 2023).
Recently, some Al experts have been pointing out the limitations of sub-
symbolic AI, (Marcus, 2018), and promoted the idea of combining the two
approaches in the form of neuro-symbolic AIl. Note that this is a overly
simplistic summary, but readers who are interested can find more detail in
the associated references.

In summary, we can reflect on three trends from the 20th Century —
since the time of Poincaré. Firstly, following the development of quantum
mechanics, the philosophy of science underwent a major shift in perspective,
resulting in far less certainty of what can be “proven” objectively — scien-
tists had to reassess the Newtonian worldview. Secondly, the 20th Century
saw the development of computational power that has given birth to high-
powered software models that have surpassed all previous human capacities
to simulate the physical world. Lastly, the rise of data-driven techniques,
particularly machine learning, have provided far greater inferential capacity
without corresponding explanatory power. Thus, it would appear that one
of the legacies of the 20th Century has been to leave us with greater philo-
sophical uncertainty about models, but far greater capacity to compute and
infer from them!
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Figure 14. A simple chain of masses and springs, similar to that used by
Enrico Fermi and collaborators to model the interactions of molecules in a
crystal.

We now consider an example of an important computational develop-
ment from the 20th Century.

3.4 Example: The Fermi-Pasta-Ulam-Tsingou Paradox

In the early 1950s a group of researchers working at Los Alamos led
by Enrico Fermi decided to study the problem of molecular dynamics using
numerical computations. This was a new idea, that would take advantage of
the newly available Maniacl computer that had recently been commissioned
at Los Alamos. The idea was to use the computer to test the theories of
molecular physics developed via statistical mechanics.

For example, in statistical mechanics, it had already been well estab-
lished that molecules in a crystal lattice could be approximately represented
as oscillating masses with springs between them representing the molecular
interaction forces. If these forces were linear, then the theory applicable
for a multi-degree-of freedom linear (undamped, unforced) systems can be
applied. This states that energy put into a single (linear) vibration mode of
the systems will remain in that mode for all time. However, if the springs
were weakly nonlinear, the energy would gradually redistribute (or equipar-
tition) into all the modes as time increased.

Fermi with his co-workers, wanted to test this assumption using the
Maniacl computer. So they built a simulation that used an initial condition
of all vibration energy in the lowest (frequency) mode of vibration, and
included weakly nonlinear coupling from the springs. Initially they observed
what they expected, however, they also found that if the simulation was run
for long enough, the energy flowed back out of all the other modes into the
mode where it started.

This phenomena was completely surprising to the research team at the
time, and was not what they expected at all. It was called the Fermi-Pasta-
Ulam (FPU) paradox (Weissert, 1999; Berman and Izrailev, 2005; Dauxois,
2008), and gave rise to a large field of research, particularly for Hamiltonian
dynamical systems. Note that it has been more recently recognised that
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Mary Tsingou made significant contributions to the work, and so now it is
called the Fermi-Pasta-Ulam-Tsingou paradox.

This work was also one of the first pioneering activities in scientific com-
putation, or otherwise now known as numerical simulation. This powerful
methodology has transformed the way we perform science and engineering
computations right up to the present day.

4 Assembly, Emergence and Anti-Reductionism

“The axiomization and algebraization of mathematics after
more than 50 years has led to the illegibility of such a large
number of texts that the threat of complete loss of contact with
physics and the natural sciences has been realised,” — Vladimir
Arnold. (1988).

In order to create digital twins, we will need to be able to “assemble”

models together. There are several possible ways to do this, and we will
present one example of how this might be achieved in the next subsection.

4.1 Assembly of Models

(a) numerical controls physical

simulation experiment
measurements
b -

® T humerical transfer physical
simulation system experiment

© . [ | :
numerical controller physical
simulation experiment

1 measurements|

transfer system

Figure 15. Schematic diagram showing (a) the underlying concept of hy-
brid simulation, (b) the use of a transfer system, and (c) the two main
components in the transfer system.

One way to assemble models is to use a technique called hybrid sim-
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Figure 16. Assembly of models: Spring-mass-pendulum example: system
is shown (labeled as “complete system” on the left of the subfigure) which
is decomposed into the addition of two subsystems (labelled as “numerical”
and ”physical” on the right of the subfigure).

ulation!. Hybrid simulation is a technique where a physical experiment

and numerical simulation are combined using control & data acquisition
hardware, typically in real time — see for example Wallace et al. (2005a);
Carrion (2007); Carrion et al. (2009); Chen and Ricles (2009); Gao et al.
(2013); Tsokanas et al. (2021) and references therein. The concept is shown
schematically in Fig. 15.

In Fig. 15 (a) the idea of hybrid simulation is shown, where a physi-
cal experiment and a numerical simulation are combined in real-time using
control algorithms and measured observations. For most physical experi-
ments, a transfer system is required to achieve this as shown schematically
in Fig. 15 (b) and (c). It is important to notice that the objective in hybrid
simulation is to get the transfer system to act like an identity transformation
between the two systems being connected.

To consider a simple illustrative example of hybrid simulation, in Fig. 16
we show a mass-spring-damper-pendulum example originally developed in
Gonzalez-Buelga et al. (2005). The complete system (on the left of Fig. 16)
is the mass-spring-damper-pendulum system. The idea is that the nonlinear
part is “difficult” to model because it is nonlinear (in this example the pen-
dulum), and is therefore taken to be the physical experiment part, because
then all of the nonlinear physics will be captured (e.g. no assumptions are
taken to make a model of this part). It should be remembered that this is
a toy problem used to show the concept, in fact the pendulum is not that
difficult to model. The pendulum is labelled as “physical” in Fig. 16. The

! Also known by numerous other names such as hybrid testing, hardware-in-the-loop,
real-time dynamic substructuring, and pseudo-dynamic testing.
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remaining linear part is modelled numerically (labelled as “numerical” in
Fig. 16) and is assumed to be relatively “easy” to model, because it is linear.

During hybrid simulation, the numerical system output, y*, is used as
the setpoint in a control algorithm that controls the input to the physical
system so that g tracks y*. At the same time, the physical force, 3 , from the
experiment is measured and feedback to be applied in the next computation
of the numerical model. To remove the effects of latency in the control and
measurement hardware, a delay compensation scheme is typically used.

Measuring the synchronisation errors, |§ — y*|, shown in Fig. 17 (b), can
be used as a measure of the fidelity of the hybrid solution, (and ideally we
want |§ —y*| — 0 (Wallace et al., 2005a)). It is interesting to note that the
complete system output, y only “exists” during the hybrid simulation. In
other words, “reconstructed” outputs from the assembled system only exist
whilst the control algorithm is working to connect the two systems together
such that § — y* — y (and F — F* — F.). Without the control system
connection, the output of the two systems would not reconstruct the desired
outputs of the combined system (e.g. § # y* # y).

4.2 Emergent Behaviours

“What does this mean? That the essential reality of a system
is indescribable?...Or does it mean, as it seems to me, that we
must accept the idea that reality is only interaction?” — Carlo
Rovelli (2016).

In the previous section we showed an example of two systems being “as-
sembled” to reconstruct the dynamical behaviour of the combined system.
For such a simple example, the reconstructed dynamic behaviour that re-
sulted from the assembly process was also a well known type of behaviour. In
the example shown above (in Fig. 17) the interaction consisted of synchro-
nising variables from the two subsystems. This is a type of time dependent
emergent behaviour, generally a subset of evolutionary dynamics known as
synchronisation (Jensen, 2022).

As well as synchronisation, there are other types of emergent behaviour,
and multiple authors have described how different types might be cate-
gorised — see for example Ashby (1956); Holland (2007); Frei and Seru-
gendo (2012); Ferndndez et al. (2014); Holland (2018); Tadi¢ (2019); Jensen
(2022) and references therein. Broadly speaking, the types of emergent be-
haviours range from types of self-organisation, (Jensen, 2022), through to
evolutionary forms of emergence (Kauffman, 2000). The ability to simulate
emergent behaviours is a significant capability that is seen as a very de-
sirable functionality (Gershenson, 2013), including for digital twins. Here
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Figure 17. Assembly of models: Spring-mass-pendulum example: The
hybrid numerical-physical system is used to reconstruct a nonlinear
codimenson-2 bifurcation boundary. This behaviour is only exhibited by the
reconstructed output of the combined system, and the resulting behaviour
is shown in panel (a) where a complete simulation of the combined system
(solid line labelled as “num complete”) is shown in comparison to the hybrid
simulation data (stars, labelled as “hybrid data”). The control algorithm
is configured to ensure that g tracks y*, and that if they are synchronised
as closely as possible then the hybrid system will reconstruct the required
behaviour to some level of fidelity. The “synchronisation subspace” for the
test in subfigure (a) is shown in subfigure (b). For full details of these and
related results see Gonzalez-Buelga et al. (2005); Kyrychko et al. (2006);
Gonzalez-Buelga et al. (2007); Gawthrop et al. (2009).
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Figure 18. Schematic diagram showing (a) how the outputs from a digital
twin might be able to predict emergent behaviours proposed by Grieves and
Vickers (2017), and (b) the “Rumsfeld” matrix.

we are interested in how a digital twin might be expected to produce such
behaviours, especially for very complicated applications. In the example
in Fig. 16 we knew in advance what behaviour to expect, and could there-
fore validate the hybrid result quite easily (e.g. the validation between a
complete numerical computation and the hybrid system results is shown in
Fig. 17 (a)). However, what happens in cases where we cannot know what
to expect in advance?

Work by Grieves and Vickers (2017) studied how the outputs from a
digital twin might be used to predict emergent behaviours. Grieves & Vick-
ers proposed a categorisation of outcomes for the digital twin that is shown
in Fig. 18 (a), where there are four categories of outcome. Each category
depends on the digital twin prediction and whether the predicted behaviour
was desirable in a design context (meaning the intended design) or unde-
sirable (problematic and/or unwanted designs). This method is then used
iteratively to try and minimise the undesirable and unpredicted aspects as
much as possible.

Unfortunately, this approach also suffers from the problem of the need
to know in advance what to include in the digital twin to get a desired
outcome. Kauffman (2000) for example, has pointed out that this need to
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know things in advance is a particular problem in the field of emergent be-
haviour. In fact, problems relating to prior knowledge are well known in
other fields, for example in the domain of uncertainty and risk management
(e.g. Okashah and Goldwater (1994); Lanza (2000)). The “Rumsfeld” ma-
trix (made famous by Donald Rumsfeld in 2002 and an adaptation of the
Johari window) captures the key issue as shown in Fig. 18 (b).

The Rumsfeld matrix defines four categories based on what is known
(e.g. meaning what is known at this present time) and what could be
known (e.g. all possible knowledge, if there was a way to access it). Clearly,
if something is not known at the present moment, then it cannot be in-
cluded it in our digital twin, and therefore (using this type of framework)
the “unknown unknowns” category can never be accessed. Note that the
unknown unknowns category which is associated with so-called black swans
(Taleb, 2007; Aven, 2013). Knowing in advance is a practical necessity for
modelling, but will therefore exclude the more advanced behaviours such
as evolutionary forms of emergence — see for example Kauffman (2000);
Tononi et al. (2016) and references therein.

One way of trying to mitigate this limitation, could be including real-
time data, but the same constraints apply. If we have never experienced
an event before, it won’t be in any of our previously recorded data sets,
or associated data-based models. This principle would include the most
recent data-driven computations such as the Deepmind AlphaGo algorithm
(Silver et al., 2016; Chouard, 2016). In our interpretation, even new learned
behaviours of these types of simulations would fall into the unknown knowns
category.

Now, let us consider what can be reasonably expected from a digital twin
in terms of emergent behaviours. We propose that an important property
for a digital twin will be so-called object-property inheritance. E.g. if a
digital twin has a model as one of its components (e.g, the model is the
object), then the digital twin will directly inherit (at least) some of the
properties of that model. In other words, a digital twin is something more
than a model, but can be used to perform functions that have been previously
carried out using models.

Object-property inheritance can be interpreted as both related to indi-
vidual components (objects) in the digital twin, and relational combinations
of the components. The relational combinations of the components are
achieved using component-connector interactions, all of which we assume
are prescribed in advance.

As a result, if a digital twin consists of n objects it would have a number
(say d) of directly inherited properties which come from the n objects with-
out any interactions. In addition, there would have a combinatoric number
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(say r) of relational properties, including any emergent behaviours, which
are generated from the component-connector interactions (and where the
combinatoric metric is chosen based on the context of the digital twin).

An example for three components and three connectors is shown in
Fig. 19, where a simple graphical model is used to represent the component-
connector interactions. Directly inherited properties are shown to come
from the components, and relational properties come from the connectors.
Both direct and relational properties can be then used as digital twin out-
puts.

It should be emphasised that all the emergent (and non-emergent) be-
haviours in the digital twin outputs will fall into the categories of known
knowns, known unknowns, and unknown knowns, shown in Fig. 18 (b). The
unknown unknowns, shown in Fig. 18 (b) are not accessible to the digital
twin by definition.

As aresult, assuming that the known knowns category is already well un-
derstood, it is the known unknowns, and particularly the unknown knowns
categories where value can be obtained from using a digital twin.

4.3 Anti-Reductionism or Holism

“The whole is greater than the sum of the parts,” — Aristo-
tle.

Holism is the opposite of reductionism, where the physical system is
not, reduced but instead treated as a whole. This concept is attributed to
Aristotle, and the quote above shows where this thinking originated.

For engineering systems, the holistic approach has been developed pri-
marily through the field of systems engineering with inputs from other sub-
jects, such as complexity science (Waldrop, 1993) and artificial intelligence
(Russell and Norvig, 2010). Systems engineering defines a hierarchy of sys-
tems staring with “closed” systems that can be modelled using deterministic
(Newtonian) mathematical models. Next is the possibility of closed systems-
of-systems, when many deterministic systems can interact with each other.
Beyond closed systems are “open” complex systems, such as biological or
social systems, where the complexity of the underlying processes cannot be
represented by closed, mechanistic models.

For complex interacting systems, emergent behaviours can be induced
by interactions between different parts of the overall system. Emergent be-
haviours have also been central to the topic of complexity theory, which (typ-
ically) uses coupled systems of dynamic models acting as “agents” to create
models of emergent behaviours — typically in a deterministic sense (Jensen,
2022), although a non-deterministic framework can also be adopted. Sys-
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Figure 19. Schematic diagram showing how the outputs from a digital twin
might be created using three components. In this case the Components 1 &
2 are connected by connector t1, and Components 2 & 3 are connected by
connector t3. All three components are connected together with connector
t2. Note that this is an arbitrarily chosen series of connections, there are
other configurations. The directly inherited properties come from each of
the three components and are grouped together. The relational properties,
such as any emergent behaviours, come from the connections, t1,t2 and ¢3,
and are also grouped together. Both the directly inherited and relational
properties can be used to form digital twin outputs. Note also that the
design and initialisation of the digital twins is omitted from this schematic
diagram.

tems engineering has already been discussed in the context of digital twins
— see for example Madni et al. (2019).

Engineers make extensive use of numerical simulation tools that are
element-based (or similar) that essentially break up complex geometries and
behaviours into an assemblage of simpler elements for which the behaviour
can be defined. These methodologies, such as the finite element method and
computational fluid dynamics, have evolved into sophisticated tools that are
widely used to simulate the behaviour of complex/complicated systems.

Although we tend not to think in these terms, the outputs from element-
based methods are emergent behaviours. Typically, field quantities such as
stress, displacement or temperature are approximated as a form of “self-
organisation” within the element-based method. Or in other words, the
overall field behaviour arises from local interactions between the elements.
A simple example is shown in Fig. 20.

The other domain where emergent behaviour is often used in an engineer-
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ing context is when agent-based models are used. Examples of agent-based
modelling include, passenger flow through transport hubs, such as railway
stations or airport terminals (Abar et al., 2017).

Digital twins are anti-reductionism by definition, and the quote from
Aristotle captures the key idea: some important phenomena cannot be cap-
tured by considering just the component parts. That said, there is a philo-
sophical question about whether assembling a series of interacting parts
will capture all the holistic behaviours — this is an open question which is
strongly context dependent.

4.4 Importance of Data: Bayesian Calibration Example

“The goal is to turn data into information and information
into insight”, former Hewlett-Packard CEQO, Carly Fiorina, 2004.

In recent years it has become much easier to record, store and accumulate
data — leading to the concept of so-called “big data” (Chen et al., 2014).
This has led to a huge growth in data-driven models, especially machine
learning methods and statistical inference (Bishop, 2006; Girolami, 2011).
Data-based models can be used for tasks such as regression, clustering,
calibration and classification. Data-driven models are typically “black-box”
models and cannot be used to extrapolate beyond the regime in which they
were trained.

Despite these limitations, there is huge value to be obtained from data-
based models, as the quote from Carly Fiorina indicates. Many of the
advancements in engineering in recent years are built of the increasing avail-
ability of data. Key to the understanding of data-based models are statis-
tical models, and in the next subsection we shown a short example of how
model calibration can be used to compensate for inadequacy (e.g. lack of

(a) (b) (c)

Figure 20. Finite element simulation of a bistable plate, showing the dis-
placement fields of (a) & (c) the stable states and (b) the unstable state.
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knowledge) in a physics based model.

4.5 Example: Model Calibration Due to Lack of Knowledge

The importance of data-based modelling is demonstrated here using
a simple numerical (toy) example of a mass, tension wire system, shown
schematically in Fig. 21, which was originally developed in Wagg et al.
(2020a). The objective is to create a model that can predict the natural fre-
quency of the system f (Hz), for a range of different tensions 7" in the wire.
To reflect the concept of model discrepancy it is assumed that the “true”
observed physical system has an off-centred mass where, L=1.1m, a=0.2m
and m = 5.1kg (Fig. 21 (a)). However, the model of the system does not
include the ability in incorporate an offset, instead modelling the system
with a centred mass, representing a level of missing physics (Fig. 21 (b)).

T l T T ‘ L T
- a | b — 2 | L2 —
| | [ | | |
(a) (b)

Figure 21. Mass, tensioned wire system schematic. Panel (a) the ‘true’
system; off-centred mass, tensioned wire, and (b) shows the model assum-
ing a centred mass, tensioned wire. Parameters assumed are L=1m and
a=0.2m.

o mab

As a result when observations are made the data generated is that of
fobs in Eq. (19). Whereas, when the model is used, the results obtained are
from finoder in Eq. (19). Even if the mass parameter is the same in both
cases, because of the differences in the expressions for f in Eq. (19). The
results are shown in Fig. 22 where a small amount of Gaussian noise has
been added to the observation, so that fops = fpnys+e with e ~ N(0, 0.012).

This raises the question of how to calibrate the model in order to align
the model results with the observed data. There are multiple ways to do
this — see for example discussions in Oberkampf and Roy (2010); Arendt
et al. (2012). One approach is to express the problem in the form of a
statistical model for the ith observation as

fobs,i (L) = fphys,i(T3) + €i = fmoder,i (T3, 0) + 8:;(T3) + e; (20)

Fongs = — (M)_ and  fruodel = % (%)_ (19)
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where 0 is a vector of the physical parameters (and/or hyperparameters,
depending on the specific methods being used (Arendt et al., 2012)) and
0; is a discrepancy function that can be used to compensate for differences
between the observations and the model.

There are a couple of “naive” approaches to solving this problem. First
we can ignore the discrepancy by setting §; = 0 and use the parameters
(or hyperparameter) to get fimoder = fobs- This often leads to non-physical
parameter values and other issues. Secondly we can ignore the effect of
the parameters (in some cases, like this toy example we know what they
are exactly) and use §; as a calibration function. For example, treating
the components of Eq. (20) as random variables and then by taking the
expected values over a suitably large range of observations we obtain

E[fobs,i(Ti)] = E[fmodel,i (7115 0) + 61' (Tl)] (21)

assuming Fle;] = 0, which is considered a reasonable assumption in many
cases. From this we can compute a discrepancy function §(7T) for all the T
values, and this is the result shown in Fig. 22.

Obviously, more realistic applications do not tend to lend themselves
to these types of simplistic approaches, and it is more typical that both
the parameters and the discrepancy needs to be used in order to calibrate
the models. In those cases a range of approaches are applicable including
Bayesian calibration (see for a Bayesian treatment of this example Wagg
et al. (2020a)) and Gaussian Processes Brynjarsdéttir and O’Hagan (2014);
Gardner et al. (2020), amongst other methods Oberkampf and Roy (2010);
Arendt et al. (2012).

5 Digital Twins

“It ought to be remembered that there is nothing more diffi-
cult to take in hand, more perilous to conduct, or more uncertain
in its success, than to take the lead in the introduction of a new
order of things” — Niccol Machiavelli, The Prince, 1532.

Digital twins have been promoted as a way to solve multiple problems.
For example, by increasing our ability to understand engineering and other
complex systems at previously unmatched levels of performance. As the
quote from Machiavelli reminds us, introducing something new is often a
difficult thing to do and there is a need to be cautiously pragmatic about
the new ideas related to digital twins.

The aspiration for digital twins is being set very high but digital twins
cannot somehow overcome the fundamental challenges and limitations re-
lated to modelling that we have discussed above. As a result, the concept
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Figure 22. Mass tension wire system example. Showing the model discrep-
ancy between the computer model and observed system when the incorrect
model is used.

of digital twins is open to a very wide range of interpretations and in some
cases it is being overhyped, causing frustration and scepticism at times.
Therefore, it is important to understand the philosophical context which
underpins the concept, something that has recently been proposed by Wagg
et al. (2024).

A question that is often asked is: What is the difference between a model
and a digital twin? There are several answers, but one that is often given is
to make the following distinctions between three concepts (see for example
Kritzinger et al. (2018) );

1. Digital model — no automatic link between virtual and physical parts

2. Digital shadow — virtual part automatically updates to match the
state of the physical part

3. Digital twin — two-way interaction between the virtual or physical
parts

Another way to answer the question relates to the idea of object-property
inheritance. For example, a digital twin can contain a model as one of its
components (e.g, the model is the object), and as a result the digital twin
will directly inherit (at least) some of the properties of that model. In other
words, a digital twin is something more than a model, but can be used to
perform functions that have been previously carried out using models. An
example of this type of inheritance was shown in Fig. 19.

41



5.1 Digital Twin Output Functions

We now briefly described the idea of creating digital twin output func-
tions that can be used as one way to mathematically represent a digital
twin (Edington et al., 2023).

The first task is to identify a finite set of N, quantities of interest (Qol),
that can be observed from the physical twin, and these will form a vector
z € RN=*1 The selection of Qols will depend on the specific application,
but would typically be measured physical quantities such as displacement,
velocity, force, strain, voltage or temperature.

In order to observe the time evolution of the digital twin, the n‘* Qol,
zi(n) € z, (for n = 1,2,3...N,) element of z is sampled at time step 4
from the physical twin, and there is a corresponding discrete time series,
t; € [tstart, tend], with a fixed time-step of At. The digital twin will use a
specified combination of physics-based, data-based, and/or hybrid models
to compute an approximation to the state of the physical twin Qols at a

particular time instant, ¢;, and the output of the digital twin will be given
by

Cu) ] [ MDD T X )
2 2
y =n(M,D,T,x,t:;)  or w | = n :
N, N. :
L yz( ) J L 771( )(M’DaTaXatl) h
(22)
where ygn) € y is the n*" scalar output, and nfn) € n is the corresponding

digital twin output function. Each digital twin output function is assumed
to be a function of one or more of the N, models M, € M, where M
is the model library containing all physics-based, data-based and hybrid
(e.g. grey-box) models. Data-based and grey-box models are dependent on
data sets that are contained in the library of data sets for the digital twin
denoted D. The time-based parameters {tstart,tend, At} are contained in
the time-base library, 7, and all the hyper-parameters for the digital twin
(defined below) are contained in the vector x.
The outputs of each of the p dynamic models, M,, are represented by

?ji,p = ﬁim(xi,ti;ep,up,Dp,'c/;p) fOI‘p = 1,2,3...Np (23)

where 7; p, is the pt" scalar model output at time t;, and Mi,p is the corre-
sponding model output function. Each model output is a function of the
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state vector x, the physical parameters vector @, the input/control signals
vector u, and time, ¢;. In addition, any datasets required by the model
are contained in D,, and if model hyperparameters are needed, they are
contained in the vector 1. Although parameters and inputs can vary be-
tween models, for simplicity here we assume that all models are assumed
to have the same state vector, x, although model specific state vectors can
be implemented if required. Note that the index notation here relates to
the i*"observation of physical twin Qol z, and so x; defines the i*" iteration
of the state vector {x : xy € x}; for k = 1,2,3....N where Nj is the total
number of states.

Depending on the specific details of the application, there could be just
one set of IV, model output functions that are used to build all N, digi-
tal twin output functions, or there could be one set of NN, model output
functions for each of the digital twin output functions. Furthermore, it is
possible for models in the model library to be coupled together to simulate
interactions, and capture emergent behaviours. In this case, we would ex-
pect the model outputs of the model combinations to be used in the digital
twin output functions. In the case of model combinations, we would nor-
mally expect the number of model outputs to be less than N,. Likewise, if
there is a model selection process, where models are tested for suitability,
and then the best chosen, then the number of model outputs will be less
than Np,. As a result, the set model output functions can be written in
vector form (using Eq. (23)) as

[ gin ] [ i1 (X, 13301, 01, Dy, ) 1
Ui,2 i,2(Xi, i3 02,02, D)y, 1P5)
o= 1 — . : 2
y Yi,p ni,p(xi7ti;opaupaDpa¢p) ( )
L %N, | L 7i.n, (X, ti30n,, un,, D, ) |

5.2 The Statistical Model

When data is available, the Qol’s from the physical twin and the outputs
of the digital twin are related via a statistical model (Kennedy and O’Hagan,
2001; Smith, 2013; Arendt et al., 2012). In fact, we chose a statistical model
that allows for calibration of the digital twin output functions, as will be
explained below. Note also that in this formulation we exclude interactions
between models. Instead models are augmented together, or selected, using
a weighted sum process.

For the i'"observation of the n'" Qol, 27, of the physical twin, the statis-
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tical model for the digital twin (omitting the n superscripts), can be defined
as

Z’L:§z+ez:nz(MaD7T5X7tz)+5z+617 (25)

where the (unobservable) true process of the physical twin is ¢;, and e; is the
observation (e.g. measurement) error (note the similarity with Eq. (20)).
The digital twin output function 7; at the i**observation computed using
(22) and (23) is the best estimate of the Qol at time ¢;. The inadequacy
(or deficiency) of 7, is represented by §;. It should be noted that there is
an implicit assumption in (25) that the digital twin inadequacy is separa-
ble in an additive way, and it is recognised that there may be other more
appropriate ways of representing this relationship depending on the specific
application. In some interpretations §; and e; are combined into a single
term (e.g. Kapteyn et al. (2020)) or additional error terms are included
(e.g. Ward et al. (2020)).

When z; data is available, the statistical model (25) can be used in the
context of a time-evolving digital twin to relate (compare) the Qols from the
physical twin with the digital twin output functions whilst also accounting
for the most important errors and uncertainties present in the problem.
Specifically these errors and uncertainties are:

e observation (e.g. measurement) error is represented by e;

e model form error (e.g epistemic uncertainties in the models) are as-

sumed to be captured by §;

e parameter uncertainties can be included in the physical parameter

vectors 6,
e numerical errors (sometimes treated as a separate term e.g. Ward
et al. (2020)) are assumed to be captured by d;

As the (; quantities cannot be known directly we will omit them from
the subsequent analysis, and then Eq. (25) can be written in a vector form
as

201 [ M Toxet) T [ 60 T [ e ]
7? 1 (M. D, T, x.t:) ;" ef?
. _ . + : — : 26
2" " (M, D, T, x. ;) 5" o |
=M1 D™ Toxet) | Le™ 1 Lel™ |
or
z; = 10;,(M,D,T,x,t;) +8; +e (27)
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where §; is the model inadequacy (or deficiency) vector and e; observation
(e.g. measurement) error vector.

The digital twin output functions defined in Eq. (22) can be comprised
of more than one computational model (and here it is assumed there is a
combination of physics- and/or data-based model components with output
functions defined in Eq. (23)). To combine these multiple components into
one digital twin output function, a series of p,, € x weighting functions
are introduced for each of the IV, model output functions and the st data
segment ds. Eq. (25) can therefore be modified to show the combination
of P physics- and D data-based models, for the p,, weightings (one for
each of the P 4+ D = N, models, and with p = 1,2,3..., Np) such that the
combined model outputs then produce one digital twin output function for
the n'* Qol, as given in Eq. (22). This weighted combination of model
output functions has the form (omitting the n superscripts) of

2i = psafin + Ps2Mi2 + oo+ Psplip + - + ps,N,MiN, + 0 +e; (28)
= ni(MaD7Ta X7ti) + 61' + €4

where 7); ,, are the model output functions given in (23). The additive
relationship n; = ps,17i,1 + ..+ ps,n, 7i,n, relates the model output functions
to the digital twin output function, and is assumed to hold for each of the
N, Qols.

Notice that the formulation given in (28) allows several possibilities de-
pending on how the weighting functions are chosen. For example, models
from the model library can be selected (or deselected) using the weights. If
just a single model is selected, then the model calibration methods described
by Kennedy and O’Hagan (2001); Ward et al. (2020) could potentially be
applied. If multiple weightings are used (and a post-processing setting is
available), then a range of ensemble types methods may also become ap-
plicable, depending on the precise context being used (Zhou, 2019). The
overall scenario is shown schematically in Fig. 23.

5.3 Example: Cascading Tanks System

We now consider an example of a cascading water tanks system, as shown
in Fig. 24 — see Edington et al. (2023) for full details. The tank system
works as follows. A control input, u;, controls the pumping of water from
the reservoir into Tank 1. Then water from Tank 1 flows into Tank 2 below
it, and finally back into the reservoir. Note that it is possible for the tanks
to overflow under larger inputs.

There some physics based models that can be applied to the tanks sys-
tem. For example, we take physics-based model 1 to be the following ordi-
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Figure 23. Schematic diagram of the digital twin output function concept,
where models can be ensembled or selected to create the output.
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Figure 24. Schematic diagram of the cascading tanks system, as described
by Schoukens et al. (2016).

nary differential equation model:
My = { il(f) = —Iﬁ\/ml(f) + k:4u(t) + wl(t) (29)
IL'Q(t) :k2y/$1(t)7k3\/1'2(t)+w2(t)
(2

Here, the model output is yo = 771',1) = x2(t), z1(t) and x4 (t) are the water
levels of the upper and lower tanks, u(t) = u; is the system input, 6; =
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[k1 k2 k3 k)T and wi (t) and wo(t) are (optional) noise terms.

A slightly more sophisticated physics-based model (we call it model 2)
includes an overflow model so that when x5 > 10, Tank 1 will overflow into
the reservoir, and the model becomes:

1'1(15) = 7]431\/:61(15) +k4u(t) +’w1(t)

M2:{ i (t) :{ kQ\/ml(t)—k/’3\/$2(t)+’w2(t) $1(t)§10
2 kQ\/wl(t) —k/’3\/$2(t) —|—k35u(t) +w3(t) .Tl(t) > 10
(30)
As before, the model output is taken to be y» = 771(22) = 22(t). In this model
ks is an additional parameter and w3(t) an additional noise term. Therefore
02 = [k1 ka2 k3 k4 ks)” for this model in this case. To account for uncertainty
in the physics model parameters, an approximate Bayesian computation

(ABC) algorithm with an accept-reject mechanism was employed.
In addition to this, a third model (M3) based on data was used. This was
a nonlinear autoregressive exogenous model (NARX) neural network model
which is a nonlinear autoregressive model which has exogenous inputs. In

this case the NARX model is given as

M3 = {1‘2(151) = F(.Z'Q(tz — 1),$2(ti — 2),

,$2(ti — nm);ul(ti),ul(ti — 1), ...,ul(tz- — nu)) (31)

In this case the model output is ya = ﬁ1(23) = xo(t), x2(t;) is the level of Tank

2, uy(t;) is the input and n, is the maximum output time lag and n, the
maximum input time lag. A 3-layer NN with 5 hidden nodes was used for
each segment’s NARX model — see Edington et al. (2023) for full details.

Consider when the physics-based model is chosen to be M, and the
data-based model is M3, so the statistical model for n = 2 is;

A2 = et b puadB k=P 4 Gre (3

where §; represents the unknown combined model inadequacies, and 77(2) =

K3
ps,gﬁ%) + ps,3ﬁ§23? is the combined digital twin output function.

Notice that the subscript, p for p, and 7, relates to which model in
the model library is being used. For this example there are three models in
the library, My, Mo, M3 € M. So another way to interpret the ensemble is
that the weightings are being used to select two out of the three available
models, and therefore in this case p;; = 0. Note also that P =1, D =1,
and so N, = 2 in this example.

The error-based weightings were chosen based on normalised mean-squared
error (NMSE). For the s'" data segment we chose to minimise the error
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(combined uncertainties) in the weighted sum

Np
Z PspV Csp (33)
p=1

subject to the constraints that

NP
Zp&p =1 and p,, €[0,1] (34)

p=1

A sample result for the cascading tank digital twin system is shown in
Fig. 25.

N
IS

x
-

— ;7 Qol

— 7, PBM

'7,-13 DBM
-- 3 DT

-
N

N
o

-

Water Level x2 (V)
o]

()

A

7\

2

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s) 4

Figure 25. Comparison of the second tank water levels, x5, computed using
the physics-based model (PBM) M, (shown by 7;2) & data-based model
(DBM) Ms (shown by #;3) and digital twin output function for n = 2
(denoted 771(2) and DT) compared with the measured water level Qol zi(2).
Note that following Schoukens et al. (2016) the units of 25 are in volts (V)
from the measurement technique used in gathering the data. See Edington
et al. (2023) for full details.

5.4 Digital Twin Operational Platforms

“Ready access to versatile and powerful software enables the
engineer to do more and think less,”
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— Mete A. Sozen, 2002 Distinguished Lecture at the EERI An-
nual Meeting.

Digital twins are typically realised via a software and hardware opera-
tional platform (Bonney et al., 2022). Sozen’s observation about software
enabling engineers to “do more and think less” is relevant not just from
the point of view of over-reliance on software, but (although it couldn’t be
known back in 2002) the comment is also relevant to new developments in
AT (e.g. large language models, see Teubner et al. (2023)) which offer the
possibility of a non-human AT doing the thinking for us via so-called " cog-
nitive surrogates” (Leslie, 2021). One of the aspirations for future digital
twins is that they could include these types of advanced Al functionalities.

In fact, most digital twin software developments up until now have been
driven by proprietary software vendors, (Minerva et al., 2020; Somers et al.,
2022) resulting primarily in closed-source products. However, there are
some open source initiatives as well, as discussed in Bonney et al. (2022),
although these are less mature. Hardware aspects are also being discussed,
including IoT integration — see for example Platenius-Mohr et al. (2020).
Digital twins are composed from many things, but one of the most important
is that they are deployment platforms for AI methods. For example, there
has been a significant amount of machine learning and data-based modelling
in digital twins, and a great deal of interest in ontologies and knowledge
models, which we will discuss in Section 5.6.

5.5 Digital Twin Case Study

As a case study of how digital twins are being realised, we consider the
example of an aircraft asset management digital twin shown in Fig. 26. In
this example, the physical twin is a decommissioned former RAF Hawk
T1A aircraft. The purpose of the digital twin was to demonstrate how a
ground vibration test (GVT) might be automated and integrated into an
asset-management digital twin for the Hawk. The aspiration for the future
is that the data would be gathered using non-contact sensors, such as laser
vibrometers, as the aircraft enters of leaves the hangar. However, as the
aircraft has no engine, and the non-contact sensors were not available to us,
accelerometers were attached to the aircraft surface to gather data during
the tests, and full details of the data collection method is given in Haywood-
Alexander et al. (2024).

A ground vibration test (GVT) is a well established process for aerospace
engineering. It gives engineering information about the dynamic behaviour
of the aircraft which can be used to (amongst other things) (i) understand
how the aircraft might perform in-flight, and, (ii) assess the health state
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Figure 26. Example of a digital twin for a Hawk T1A aircraft showing
a schematic representation of the digital twin operational platform. The
physical twin in this example is the (decommissioned) former RAF Hawk
T1A aircraft (top box). The objective of the digital twin was to demonstrate
how a ground vibration test (GVT) might be automated and integrated
into an asset-management digital twin for the Hawk. Discussion of the
process for data collection is given in Haywood-Alexander et al. (2024). In
a digital twin context, the data collection would ideally be automated, or
semi-automated using non-contact sensors. The data collected from the
physical twin is processed by the GVT digital twin (middle right box), and
then stored in a data-sharing platform (lower right box). The data sharing
platform in this case was provided by a commercial partner IOTICS. The
data sharing platform enabled geographically remote partners to access and
share data. The User Interface (UI) was provided via a web application
(middle left), and enabled users to interact with the digital twin (bottom
left). UQ & P refers to Uncertainty quantification and propagation analysis.
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of the aircraft over a period of time. The GVT is a natural candidate
for digital twinning, as it already involves the combination of physics-based
models and data. In this case, the physics-based models were finite elements
and modal models, and the data sets were acceleration measurements.

The process for combining the data- and physics-based models is shown
in the centre-right box of Fig. 26. The data collected from the physical
twin is processed by the GVT digital twin, and then used to both validate
and update the physics-based models. After processing the data is stored
in a data-sharing platform, shown as the lower box in Fig. 26. In this
work, the data sharing platform in this case was provided by a commercial
partner IOTICS. The data sharing platform enabled two geographically
remote partners to access and share data including processing data remotely
and uploading results back to the data sharing platform.

The User Interface (UI) was provided via a web application, and enabled
users to interact with the digital twin, using an approach described in detail
in Bonney et al. (2022), and is shown on the left-hand side of Fig. 26. The
operational platform shown in Fig. 26 can be considered as three “layers”
— Fig. 27. In this formulation, the foundation layer is the IoT layer, where
physical twins and other devices are connected to the network using bespoke
hardware. This also includes local DAQ and control hardware, sensors and
actuators. The interface layer provides access to users via a web server that
coordinates and schedules the required tasks within the workflow. This layer
uses the network to connect the user to the data provided by the IoT layer
and cloud-based services. The services provided in the cloud computing
layer would typically include data storage, high-power-computing (HPC),
and any other remote computing facilities required as part of utilising the
digital twin.

Future digital-twins are expected to contain a vast amount of informa-
tion, much of which will be processed through visualisation techniques to
be displayed in Uls. In addition, it is anticipated that augmented/virtual
reality UIs (or augmented/virtual inspection see e.g. Moreu et al. (2017))
will become possible. Ultimately, the aspiration is that these type of opera-
tional platforms for digital twins will provide a reliable connection between
the virtual and physical domains.

5.6 Digital Twin Knowledge Models and Ontologies

In order to support functions such as decision support, and scenario plan-
ning, digital twins need to store and represent knowledge about the physical
twin, and depending on the context, the users, business processes, and mul-
tiple other possible related activities. The requirement for a knowledge
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Figure 27. Overall ‘layer structure’ for a digital twin operational platform.
Note the wireless communication with the aircraft is conceptual only. In
the testing so-far (see Haywood-Alexander et al. (2024)) the aircraft has not
flown and the communications with sensors is via wired connections.

management within a digital twin has been considered by many previous
authors, and is sometimes referred to as an information management system
or framework (West, 2011; Hetherington and West, 2020).

One particular area that has received considerable attention for devel-
oping an information management system is ontologies, and in particular
the use of knowledge graphs (Hogan et al., 2021). Knowledge graphs are a
graphical way of representing ontologies. The idea of an ontology, and their
representation as a knowledge graph, is based in philosophical models for
categorisations of knowledge. Knowledge graphs have recently been devel-
oped as a tool for computer science applications, such as web searching and
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customer profiling (Hogan et al., 2021).

In the context of a digital twin, knowledge graphs can be used to repre-
sent the semantic relations between data, information and other knowledge
within the digital twin. The knowledge graph is made up of a series of en-
tities (nodes) and relationships (edges) that form connections between the
entities. Once an initial knowledge graph has been “seeded” (e.g. started)
then additional entities and relationships can be added as the digital twin
evolves in time. This leads to a dynamic knowledge graph, that can be used
to create a digital thread (Kraft, 2015; West and Blackburn, 2017; Singh
and Willcox, 2018). Within a digital twin, knowledge graphs can be used
to provide many functions, including;:

e Structured representation of domain knowledge and information

e Semantic context for user interaction

e Information retrieval & queries

e Visualisation of complex inter-relationships between the digital ob-

jects in the digital twin

e Support for decision-making

e Improved interoperability

e Incorporation of large language models (LLM) and other AT tools

An example schematic layout for a digital twin including an information
management system is depicted in Fig. 28. The lower part of Fig. 28, shows
(schematically) the relationship between data acquired from the physical
twin, and then a data segmented process. The idea of data segmenting
was introduced in the example shown in Section 5.3. In the case shown in
Fig. 28 data segmentation is combined with the GVT digital twin example
introduced in Fig. 26. Note that this is for schematic illustration only, and
there will typically be other processes in the digital twin that are not shown.

In Fig. 28, data from the physical twin is recorded using local sensors
and data acquisition hardware (sometimes called “edge” hardware). There
is also the facility to carry out local (e.g. “edge”) data processing and local
control.

In the scenario shown in Fig. 28, data is received, segmented and pro-
cessed continually, data points are labelled ¢ = 1,2, 3... whereas data seg-
ments are j = 1,2,3..... The segments build up a continuous catalogue (or
library) of data and meta data that is stored in the information manage-
ment system (IMS). Within each segment, the data is used to validate and
(if needed) update the physics-based models.

The information management system acts as a repository for all the data
and information associated with the digital twin. A knowledge graph is built
based on all the information in the IMS. Once established, the knowledge
graph is dynamically updated as each new piece of information is received.
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Figure 28. An example schematic layout for a digital twin including an
information management system (IMS). Here the user interface (top) pro-
vides a means by which the users can interact with the IMS. The IMS acts
as a repository for all the data and information associated with the digital
twin. The knowledge graph is dynamically updated as each new piece of
information is received. In the scenario shown in the figure, data is received,
segmented and processed continually. Users are able to interact with the
IMS and also give inputs to manage the processing of data, and control
of the physical twin. This figure is for schematic illustration only, not all
processes are shown.
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Users are able to interact with the IMS and also give inputs to manage
the processing of data, and control of the physical twin via the user interface
as was shown previously, for example in Fig. 26.

6 Conclusions

In this Chapter we have discussed reductionism in science and engineering,
particularly in the context of dynamics and control of engineering systems.
In particular, we showed an example of control for the nonlinear planar-
vertical-take-off-and-landing system. The discussion on control continued
with a detailed account of passive control methods. In particular, the idea of
adding passive devices (redesign) to reduce resonances was discussed. Two
important passive control devices were discussed. The first was the tuned-
mass-damper, and the second was the inerter. The inerter is a very new
innovation, and we briefly described the development of linear & nonlinear
devices for vibration isolation and absorption applications.

Next we carried out a selected review of the philosophy of modelling. As
part of the review, the role of knowledge in model making was discussed.
We also considered how complexity manifests itself in engineering systems.
Related topics of systems engineering, uncertainty analysis and artificial
intelligence were also briefly discussed in the context of digital twins. We
argued that utility, trust and insight are the three key properties of models
that would ideally be extended to digital twins.

Digital twins will rely on the assembly of digital objects. To illustrate
this idea, an example of the assembly of models, using a hybrid testing
methodology was explained. This is an important technique, that can be
used to try and recreate emergent behaviours. Here we also included a
discussion on what can be expected in a holistic digital twin. We also
discussed the importance of data and showed a Bayesian calibration example
to illustrate this point.

The concept of holistic, data-driven applications naturally leads to dig-
ital twins. In this Chapter we have focused on dynamics applications, and
so we showed examples of how this could work — for example by using
digital twin output functions to ensemble multiple model outputs together
whilst also modelling uncertainties. In order to implement a digital twin, an
operational platform is required. We discussed the software and hardware
realisations of digital twins, and showed an example of how they could be
used as an operational platform. Lastly we discussed digital twin knowledge
models and ontologies, and how this might help shape digital twins in the
future.

In terms of future directions for research in this area, there are several
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topics that could be pursued including;:

1.

2.

Methods for dynamic assembly: How to couple together multiple,
often heterogeneous digital objects

Taking actions using control: Can be done using a physics-based ap-
proach (nonlinear control) or a data-based ethos (reinforcement learn-
ing) or perhaps some combination of both?

The role of knowledge in developing digital twins: Ontologies, knowl-
edge graphs and large language models for enhanced functionality of
the digital twin

Holistic systems methods with more integration of AI methods, such
as the use of intelligent agents

Emergent behaviour: This is key to more complex behaviours like
self-organisation, synchronisation etc.

Uncertainty and trust in digital twins: Managing expectations of what
could be possible from interactions, and also validating digital twin
outputs to build user confidence

Philosophical principles for digital twins, that enable new mathemat-
ical methods to be developed

Digital twin output functions: Ensemble modelling can be used to
combine multiple components — can this be extended to interaction?
A neuro-symbolic functionality that balances learning and reasoning
within the digital twin to support decision making and greater au-
tomation
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