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A B S T R A C T

This paper describes a time-evolving digital twin and its application to a proof-of-concept

engineering dynamics example. In this work, the digital twin is constructed by combining

physics-based and data-based models of the physical twin, using a weighting technique. The

resulting model combination enables the temporal evolution of the digital twin to be optimised

based on the data recorded from the physical twin. This is achieved by creating digital twin

output functions that are optimally-weighted combinations of physics- and/or data-based model

components that can be updated over time to reflect the behaviour of the physical twin as

accurately as possible. The engineering dynamics example is a system consisting of two

cascading tanks driven by a pump. The data received by the digital twin is segmented so that

the process can be carried out over relatively short time-scales. The weightings are computed

based on error and robustness criteria. It is also shown how the error and robustness weights can

be used to make a combined weighting. The results show how the time-varying water level in

the tanks can be captured with the digital twin output functions, and a comparison is made with

three different weighting choice criteria.

1. Introduction

The digital twin concept has received significant attention from a wide range of researchers since it was first

developed in 2002 in the context of product-lifecycle management [6]. The potential advantages of the digital

twin have been widely recognised, and include; more affordable and efficient design, manufacturing, testing and

maintenance of systems; improved useful health monitoring and life predictions; remote monitoring of systems and

reduced unforeseen failures — see recent review papers [5, 7, 8, 12, 13, 14, 19, 26] and references therein. Such

advantages are well-suited to a wide variety of engineering applications. In addition, the development of data-related

technologies and modern computing power over recent years has further driven interest in the concept, particularly as

this helps make implementations increasingly less expensive and more feasible.

Arguably the principal component in a digital twin is a computational model of the physical system (called

the physical twin). In fact, it has been suggested that digital twins would typically be able to incorporate many

distinct models that are combined in a computational representation of the system. The models involved can be

physics- or data-based, or a mixture of the two, and the advantages of combining both model types are already

well-recognised — see for example [26] for an (academic) digital twin example. While physics-based models are

easily interpretable and able to extrapolate reliably to previously-unseen contexts (within some limitations), data-

based models allow for unconstrained input-output relationships and faster, less expensive modelling, but typically

cannot be used to extrapolate. Therefore, creating a digital twin that is able to combine both physics- and data-

based models should enable the user to gain the benefits offered by both model types. In fact, there exist multiple

discussions of digital twin interpretations which employ both model types throughout the literature — see for example

[5, 8, 9, 10, 12, 13, 14, 23, 24, 26, 30], to name just a few. The idea here is to show how the models could be combined

as time evolves.

There is already a large field of work on combining models, generally called ensemble modelling, and including

techniques such as model averaging, boosting, bagging, stacking etc. — see overviews by [2, 32], and references
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A time-evolving digital twin

therein. However, there are some important differences between what is shown here for a digital twin (as we define

it) and ensemble methods. Generally, ensemble methods are based on having access to the complete data set. In other

words the techniques are applied in a post-processing setting. This approach can be applied in a digital twin. However,

if data are being gathered continuously, there will need to be a clearly-defined rationale regarding when a data set is

sufficiently ‘complete’ so that the post-processing can be started (which will be specific to the context at hand). In

addition to post-processing methods, there are some methods that can be applied in real-time (or near real-time), and

some, such as those built on Kalman filters, can be used to deal with types of ensemble modelling in a near real-time

context — see for example [31]. However, filter techniques are usually considering based on sequential time steps —

although there is a wide literature of extension to these methods [4, 17] — particularly related to data assimilation and

forecasting, which we see as a related, but distinctly different set of methods from those being considered here.

The approach taken here is designed to operate on data segments as they are recorded (or received) by the digital

twin. The intention is to develop a method that fits between the (near) real-time (e.g. online) and post-processing

time-frames. The potential benefit is that it offers the user a relatively rapid insight into the behaviour of the system

over the short term, and which model combinations might be used with most confidence (depending on the specific

context at hand). To achieve this aim, a method for combining models based on model weightings is developed.

This approach has similarities with some existing ensemble methods, such as the mixture of experts approach [32].

However, as the digital twin is expected to operate in a time-evolving context, existing methods for choosing weights

for combining models cannot be easily applied. Instead, a weighting selection method is developed based on relating

the underlying dynamic and statistical models. The Physinet digital twin proposed by Sun & Shi [23] proposes an

approach of this type which combines two models, one physics-based and a neural network model, as a weighted

combination in order to make predictions of the physical twin.

In this paper we incorporate an approach which includes both aleatory and epistemic uncertainties. As a result,

our approach also has similarities to the methods used for model calibration and other uncertainty quantification

procedures — see for example [11, 21] and references therein. Application of the model calibration method to digital

twin applications (in related but different contexts to the current work) has been previously discussed by several

authors [25, 26, 27]. In particular, Ward et al. [27] developed a continuous-calibration approach for a digital twin,

and compared the use of a particle filtering methodology and a sequential implementation of the Bayesian calibration

approach introduced by Kennedy and O’Hagan [11], in calibrating a physics-based model with dynamic parameters.

Another important characteristic of a digital twin is a capability to model complex engineering (or other) systems.

In this paper, relatively simple, proof-of-concept example will be shown, but in a practical digital twin implementation

it would be quite typical that the physical twin would have some more significant complexity (although this is always

somewhat context dependent). For this reason, approximate Bayesian computation (ABC) is used for the physics-

based model in this work, on the premise that closed-form expressions are only rarely available in the context of

digital twins. As already mentioned, the context-specific nature of a digital twin makes each one highly bespoke, and

it is very likely that other choices of models, or weighting choice criteria will be more appropriate in those cases. As

a result, the overall approach developed here should translate to a new context, assuming that the underlying ethos is

maintained.

The details of the development of the digital twin output functions, beginning with the theoretical background,

is presented in Section 2. In Section 3 the digital twin is applied to an engineering example, which is two cascading

water tanks with water levels driven by a pump, where certain inputs produce overflow effects. Finally, the overall

performance of the presented new methods are discussed in Section 4, and Section 5 summarises the conclusions and

future work.

2. A theoretical model of a time-evolving digital twin

2.1. Digital twin output functions
To start with a finite set of N

z
quantities of interest (QoI) will be defined, that can be observed from the physical

twin, and these will form a vector z ∈ ℝ
Nz×1. In order to observe the time evolution of the digital twin, the ntℎ QoI,

z
(n)

i
∈ z, (for n = 1, 2, 3...N

z
) element of z is measured (e.g. sampled) at time step i from the physical twin, and

there is a corresponding discrete time series, ti ∈ [tstart, tend], with a fixed time-step of Δt. The digital twin will use

a specified combination of physics-based, data-based, and/or hybrid models to compute an approximation to the state

of the physical twin QoIs at a particular time instant, ti, and the output of of the digital twin will be given by

y = ���(,,  ,� , ti) (1)
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where y
(n)

i
∈ y is the ntℎ scalar output, and �

(n)

i
∈ ��� is the corresponding digital twin output function. Each digital

twin output function is assumed to be a function of one or more of the Np models Mp ∈ , where  is the model

library containing all physics-based, data-based and hybrid (e.g. grey-box) models. Data-based and grey-box models

are dependent on data sets that are contained in the library of data sets for the digital twin denoted . The time-based

parameters {tstart, tend ,Δt} are contained in the time-base library,  , and any hyper-parameters for the digital twin

(defined below) are contained in the vector � .

The outputs of each of the p dynamic models, Mp, are represented (dropping the n superscripts) by

ŷi,p = �̂i,p(xi, ti;���p,up, Dp, p) for p = 1, 2, 3...Np (2)

where ŷi,p is the ptℎ scalar model output at time ti, and �̂i,p is the corresponding model output function. Each model

output is a function of the state vector x, the physical parameters vector ���p, the input/control signals vector up and

time, ti. In addition, any data sets required by the model are contained in Dp, and if model hyperparameters are needed,

they are contained in the vector  p. Although parameters and inputs can vary between models, in this work all models

are assumed to have the same state vector, x. Note that the index notation here relates to the itℎobservation of physical

twin process z, and so xi defines the itℎ iteration of the state vector {x ∶ xk ∈ x}i for k = 1, 2, 3....Nk where Nk is

the total number of states.

The QoI’s from the physical twin and the outputs of the digital twin are related via a statistical model [11, 21].

For the itℎobservation of the ntℎ QoI, zn
i
, of the physical twin, the statistical model for the digital twin (omitting the n

superscripts),will be defined as

zi = �i + ei = �i(,,  ,� , ti) + �i + ei, (3)

where the (unobservable) true process of the physical twin is �i, and ei is the observation (e.g. measurement) error.

The digital twin output function �i at the itℎobservation (computed using (1) and (2) as will be explained in the next

Section) is the best estimate of the QoI at time ti. The inadequacy (or deficiency) of �i is represented by �i. In some

interpretations �i and ei are combined into a single term — see for example [9] — and it is assumed here that �i + ei
captures the combined errors and uncertainties relating to the corresponding zi.

Equation (3) has been used extensively for Bayesian calibration applications following the work of [11] (see also

[27] and the references therein). In that context, [27], have adapted the Bayesian calibration idea to a digital twin

application, where the calibration occurs sequentially. Here, the statistical model (3) will be used in the context of a

time-evolving digital twin to compare the QoIs with the digital twin output functions whilst also accounting for the

most important errors and uncertainties present in the problem. Specifically these are:

A1. observation (e.g. measurement) error is represented by ei
A2. model form errors are assumed to be captured by �i
A3. parameter uncertainties can be included in the physical parameter vectors ���p
A4. numerical errors (sometimes treated as a separate term e.g. [27]) are assumed to be captured by �i

In this work we will use the magnitude of �i + ei to define the performance of each model, and then select

appropriate weightings (described in Section 2.2). Estimating the parameter uncertainties can be carried out using a

range of techniques, and the exact choices are typically specific to the context of the application being considered. For

this reason, we will delay the description of the methods used for modelling and estimating parameter uncertainties

until Section 3.

2.2. Performance measures and weighting functions
First note that equation (3) can be rearranged such that for the itℎobservation of the ntℎ QoI, zn

i
,

�i + ei = zi − �i (4)

where superscript n has been dropped. The intention here is to compare between the QoIs of the physical twin, and

the output functions of the digital twin. As the digital twin is time evolving, one approach is to make a comparison

for each time-step (e.g. tracking control, in a control engineering context). Adopting the definition proposed by [30],

a digital twin output function would then be an �-mirror (meaning an appropriate representation) of the physical twin,

as long as |�i + ei| < �, (via equation 4) where � is defined depending on the specific context of the application — see

[30], for more details.
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A second approach (also discussed by [30]) is to compare the behaviour over a larger number of time-steps. To do

this a set of N data points (which we call a data segment, ds), will be used to relate the recorded QoI of the physical

twin (e.g. the true process) to a digital twin output function, and therefore quantitatively compare the physical and

digital twins. As with the approach described by [27] we assume that that parameters remain constant over the data

segments, but may change over longer timescales.

In order to create a performance measure, equation (4) can be used to compute the root-mean-square error (RMSE)

for all observations in a data segment ds made up of N data points, for the ntℎ QoI using

RMSEs,n =

√√√√ 1

N

N∑
i=1

(�i + ei)
2 =

√√√√ 1

N

N∑
i=1

(zi − �i)
2 =

√
Cs,n (5)

which can be computed using the observations zi and the corresponding digital twin output function �i (because �i and

ei are not known), and where Cs,n is the total mean-square error for the digital twin output function in data segment

ds for the ntℎ QoI. Note that although RMSE can be used for the purposes of performance measures and choice of

weighting functions, it is more common in many applications (see for example [29]) to use a normalised version of

the mean-square error (e.g. Cs,n) given by

NMSEs,n =
100

N�z

N∑
i=1

(zi − �i)
2 = Ĉs,n (6)

where �z is the variance of the nth measured QoI.

The digital twin output functions defined in equation (1) can be comprised of more than one computational model

(and here it is assumed there is a combination of physics- and/or data-based model components with output functions

defined in equation (2)). To combine these multiple components into one digital twin output function, a series of

�s,p ∈ � weighting functions are introduced for each of the Np model output functions and the stℎ data segment ds.

Equation (3) can therefore be modified to show the combination of P physics- and D data-based models, for the �s,p
weightings (one for each of the P +D = Np models, and with p = 1, 2, 3..., Np) such that the combined model outputs

then produce one digital twin output function for the ntℎ QoI, as given in equation (1). This weighted combination of

model output functions has the form (omitting the n superscripts) of

zi = �s,1�̂i,1 + �s,2�̂i,2 + ... + �s,p�̂i,p + ... + �s,Np
�̂i,Np

+ �i + ei (7)

= �i(,,  ,� , ti) + �i + ei

where �̂i,p, are the model output functions given in (2) that are each predicting the same, e.g. the nth, output. The

additive relationship �i = �s,1�̂i,1+ ..+�s,Np
�̂i,Np

relates the model output functions to the digital twin output function,

and is assumed to hold for each of the n QoIs in N
z
. Note that in this work, it is assumed that the computation time

for each model is sufficiently fast so that the model outputs are available when required.

Notice that the formulation given in (7) allows several possibilities depending on how the weighting functions are

chosen. For example, models from the model library can be selected (or deselected) using the weights. If just a single

model is selected, then the model calibration methods described by [11, 27] could potentially be applied. If multiple

weightings are used (and a post-processing setting is available), then a range of ensemble types methods may also

become applicable, depending on the precise context being used [32].

In this work, we assume that the ptℎ model component at time step ti will have states xi, and a weight �s,p ∈ [0, 1]

such that
∑Np

p=1
�s,p = 1. Once the component weights are chosen for a data segment, ds, it is possible to define a

physics-to-data model fraction of the ntℎ digital twin output function, and stℎ data segment as,

Υs,n =

P∑
j=1

�
(P )

s,j
for j = 1, 2, ...P (8)

where �
(P )

s,j
are the weightings for just the physics models. Here Υs,n ∈ � is defined as the proportion of models that

are physics-based in the digital twin output function (other definitions could be used depending on the circumstances,

Edington et al.: Preprint submitted to Elsevier Page 4 of 19
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e.g. the proportion of data-based models is 1−Υs,n in this case, as we consider only physics- and data-based models).

Hence Υs,n provides a measure of the composition of the resulting digital twin, from which we can infer several

properties. For example:

B1. The relative trust ascribed to each of the two model types (physics- and data-based) at the itℎ observation, or

in the stℎ data segment — which can also be considered as a measure of model error and/or robustness to

uncertainties, as will be discussed below

B2. Whether the digital twin could be used to extrapolate reliably to previously-unseen contexts (within some

limitations) — which would require a (relatively) high Υs,n value, so that the digital twin is primarily physics-

based

B3. Information about the relative levels of deficiency of different models — a factor that will typically be accounted

for when choosing the �s,p values, but not always quantitatively

2.3. Choosing the weighting functions
2.3.1. Error-based weightings

The weights will be chosen in order to deliver some of the three desirable properties, B1, B2 & B3 listed above.

Here we will focus on property B1, and firstly on choosing optimal weights to reduce the error between the ntℎ QoI, zi
and associated output function, �i. Due to the relationship in equation (4) this can also be considered to be the weights

that minimise the combined uncertainty �i + ei for each of the digital twin output functions.

To compute the error for each data segment of N points the ptℎ model output function will be compared directly

with the corresponding QoI, zi in the form of a root-mean-square discrepancy function equal to,

RMSEs,p =

√√√√ 1

N

N∑
i=1

(zi,p − �̂i,p)
2 =

√
Cs,p (9)

where Cs,p is the mean-square error of the output of model Mp for the data segment ds. Based on the output of

equation (9) there are multiple ways to choose weightings (for example by using some of the ensemble type methods

described in [32]). Here, we will adopt two approaches, to give an indication of some possible methods (the exact

choice of approach will be determined by the context of the application).

In order to demonstrate the concept, as applied to a time-evolving digital twin, the first approach taken here will

be to use a weighted average method — see for example [15, 32] — where each of the zi QoI’s is assumed to be

a random variable. Therefore, in terms of obtaining the weight values we wish to minimise the uncertainties in the

weighted sum of the model errors computed in equation (9)

Np∑
p=1

�s,p

√
Cs,p subject to the constraints that

Np∑
p=1

�s,p = 1 and �s,p ∈ [0, 1] (10)

In order to demonstrate the concept whilst also keeping the details relatively straightforward, in the examples presented

in the later part of this paper we will restrict ourselves to the combination of just two models. One will be physics-based

and the other data-based, such that P = 1, D = 1 and Np = 2. In this case, a simple way to compute the weighting

functions is to equalise the errors of the two models over the data segment [15]. This gives weighting values of

�1 =

√
Cs,2√

Cs,1 +
√
Cs,2

, �2 =

√
Cs,1√

Cs,1 +
√
Cs,2

(11)

so that we choose the weights based on

�s,p =

⎧⎪⎨⎪⎩

�p, if Cs,� < Cmin

0, if Cs,� > Cmin and Cs,p ≠ Cmin

1, if Cs,� > Cmin and Cs,p = Cmin

for p = 1, 2 and Cmin = min[Cs,1, Cs,2] (12)

Here Cs,� =
∑Np

p=1
�p
√
Cs,p (from equation (10)), and Cmin is the mean-square error of the single-most best-fitting

model, Mp, for data segment ds. With this weighting selection method, the optimal digital twin output is automatically
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chosen from either the combination of the two models or the better performing model, should one of them have a

smaller mean-square error than the combined digital twin output function itself. An example will be shown in Section

3.3.

2.3.2. Robustness-based weightings

The second criterion mentioned in B1 above is maximising robustness of the digital twin’s outputs to uncertainty.

Specifically, we are interested in uncertainties in the physical parameters in ���p, for the ptℎ model, as mentioned in point

A3 above. In order to consider this type of scenario, further assumptions are needed about the ptℎ model, Mp. Namely,

that the parameters are modelled using some form of uncertainty analysis, for example as probability distributions or

ranges of possible values. The model would also typically be expected to produce an output that can be treated as

a random variable. So, keeping the assumption made above, that z
(n)

i
is a random variable, we will assume that the

corresponding model output, ŷ
(n)

i,p
from equation (2) is also a random variable. Furthermore, for this work we assume

that all Mp models have these properties.

There are many approaches to estimating the level of uncertainty in a specific model. Here (as a demonstration of

the concept), a minimax decision-making approach is used to carryout this task for each of the Mp models. Minimax

is a non-probabilistic method of choosing one of multiple possible decisions, with the option selected being that

which minimises the maximum cost. In this work the models’ physical parameters, contained in ���p, are assumed to

be the only source of uncertainty. As minimax is a non-probabilistic theory, only ranges of possible parameter values

(and no probability distributions) are required. Within these ranges of possible parameter values for each model,

an optimisation process determines the largest cost of that model’s response. Here, the optimisation is carried out

using a self-adaptive differential evolution (SADE) genetic algorithm [22]. Having computed the models’ worst-case

responses, the component weights are then chosen to minimise the resulting digital twin output function’s NMSE. The

weight selected with this robustness criterion for model p is denoted �r
s,p

, where �r
s,p

∈ [0, 1] such that
∑Np

p=1
�r
s,p

= 1.

An example will be discussed in Section 3.4.

2.3.3. Combined error and robustness-based weightings

Computing weighting values based on different criteria leads to the possibility of combining the weights

themselves into an ensemble parameter. For example, to compute one combined weight, �c
s,p

, from the error-

and robustness-optimised weights, �e
s,p

and �r
s,p

, for each component p. This can simply done by taking a linear

combination:

�c
s,p

= ��e
s,p

+ (1 − �)�r
s,p

(13)

An appropriate method can then be selected by the user in order to choose the value of � depending on how they

need to prioritise each of the optimisation criteria. This may vary with the application and the level of risk deemed

acceptable, and prioritising robustness to uncertainty would potentially lower the accuracy of the digital twin’s output.

An example will be presented in Section 3.4.5.

Note that (depending on the exact context – discussed further in Section 3), all these weighting choices will

typically tend to favour data-based models, as they are built based on matching an input-output relationship. Choosing

weights based on properties B2, and B3 could potential change this effect, but will not be considered in detail here.

Having defined the performance measures and weighting functions, the temporal evolution of the digital twin can

be finalised. The digital twin should be able to continuously (typically periodically) update over time, in order to

reflect the time dependent changes occurring in the physical twin. In line with this aim, some or all of the physics-

based models may be sequentially updated to incorporate any new physical knowledge of the twinned system. Any

data-based models must also be re-trained, and the optimal model weights must be iteratively recalculated according to

data. The user would decide on a suitable iteration frequency for the application of the digital twin; higher-frequency

iterations would produce a faster-updated digital twin, but would be more computationally intensive. Next we consider

an example.

3. Example application: A cascaded tanks system

In this Section, a physical twin system that includes both nonlinearity and uncertainty is used to demonstrate

the how the concepts described above can be applied to an engineering application. Specifically the cascading tanks

Edington et al.: Preprint submitted to Elsevier Page 6 of 19
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system detailed in [18] is selected as an example for a time-evolving digital twin system. The cascading tank system

is comprised of two water tanks, a reservoir and a pump. A diagram of the system is shown in Fig 1. An input controls

Figure 1: Schematic diagram of the cascading tanks system, as described by [18].

the pumping of water from the reservoir into Tank 1, which then flows into Tank 2 below it, and finally back into the

reservoir. It is possible for the tanks to overflow under larger inputs, and Tank 1 may overflow into Tank 2, as well as

into the reservoir, which makes modelling the physics of the system particularly difficult. Fig 2 displays a plot of a

recorded input signal, u1, applied to the system. This input is assumed to be an arbitrary input that is not influenced

by the digital twin. In other scenarios, the input could be under the control of the digital twin. It can be noted from Fig

Figure 2: Recorded input, u1, applied to cascading tanks system. Data available from [18].

2 that tstart = 0, tend = 4096s and Δt = 4s for this example.
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3.1. Physics-based models

As a starting point we define two QoI’s which are the water levels of Tank 1 & 2. Therefore z
(1)

i
= water level Tank

1 and z
(2)

i
= water level Tank 2, such that z = [z

(1)

i
, z

(2)

i
]T and N

z
= 2. The system can be approximately modelled,

by neglecting the overflow effects, using a reduced order nonlinear set if ordinary differential equations that will be

defined as model M1 in the model library . The model is defined as [18]

M1 =

{
ẋ1(t) = −k1

√
x1(t) + k4u(t) +w1(t)

ẋ2(t) = k2
√
x1(t) − k3

√
x2(t) +w2(t)

and y2 = �̂
(2)

i,1
= x2(t) (14)

where x1(t) and x2(t) are the water levels of the upper and lower tanks respectively, u(t) = u1 is the system input,

���1 = [k1 k2 k3 k4]
T is the vector of the parameters and w1(t) and w2(t) are noise terms (and t is continuous time).

However when x2 > 10 Tank 1 will overflow into the reservoir. As a result, [28] developed a model that

incorporates a fifth parameter to represent overflow effects which can be denoted as

M2 =

{ ẋ1(t) = −k1
√
x1(t) + k4u(t) +w1(t)

ẋ2(t) =

{
k2
√
x1(t) − k3

√
x2(t) +w2(t) x1(t) ≤ 10

k2
√
x1(t) − k3

√
x2(t) + k5x(t) +w3(t) x1(t) > 10

and y2 = �̂
(2)

i,2
= x2(t) (15)

where k5 is the additional parameter and w3(t) an additional noise term, such that ���2 = [k1 k2 k3 k4 k5]
T for this

model. When the system exhibited overflow, this fifth term could take a significant value — otherwise, it could equal

zero so that the model would be equivalent to that described by equations (14).

Although M1 and M2 are relatively simple models, they incorporate both nonlinear effects, and terms to represent

the uncertainties inherent in the physics. As a result, an approximate Bayesian computation (ABC) algorithm is used

as a way to produce estimates for the physical parameters, ���1, in M1 (or ���2, in M2). Further details will be given in

the relevant subsections below.

3.2. Data-based model
For the data-based model (DBM), a nonlinear auto-regressive exogeneous (NARX) neural network (NN) model,

labelled M3, was used to model Tank 2’s water level as a function of lagged versions of the system input and response.

The M3 model is represented by

M3 = { x2(ti) = F (x2(ti−1), x2(ti−2), ..., x2(ti−nx); u1(ti), u1(ti−1), ..., u1(ti−nu)) and y2 = �̂
(2)

i,3
= x2(t) (16)

where x2(ti) and u1(ti) are the level of Tank 2 and input respectively at time step ti, nx is the maximum output time lag

and nu the maximum input time lag. The function F is nonlinear, and the NARX-NN is modelled by a neural network.

Further details on NARX models may be found in [3]. In this work, a 3-layer NN with 5 hidden nodes was used for

each segment’s NARX model. Within each segment, nx and nu were set to be equal – the number of maximum lags

was determined by initialising it to 1 and increasing by 1 as long as the error of the NARX-NN’s output was larger

than NMSE = 5.

A NARX model can make two types of prediction: one step ahead (OSA) — predictions are based on previous

measured data points — and model predicted output (MPO), where predictions are based on previous predicted data

points. In this work, the NARX-NN model uses MPO outputs to allow the digital twin to predict (theoretically)

indefinitely into the future instead of only one point ahead. It should be noted that unlike OSA, any error in MPO

predictions is propagated through all future time steps and so MPO is considered a stronger test of the NARX model.

For the digital twin, MPO predictions were used as the data-based model component’s response, as a significant

advantage of the digital twin technology is to forecast the physical twin’s future behaviour, which would need to be

several time steps ahead.

The neural network architecture chosen for M3 in all examples presented in this paper was a three-layer net with

ten hidden nodes. This architecture was chosen as a trade-off between the simplicity required to limit computational

expense and the complexity required to effectively model the systems. It would be costly to trial various networks for

every iteration of the digital twin framework, and choosing one architecture to generalise to all iterations was deemed

justifiable for the current purpose, and produced satisfactory results. However, it is possible to treat the number of

hidden nodes as a model hyper-parameter to be tuned, at a computational expense, where necessary.
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For simplicity, the number of maximum lags of both input and output for the NARX model were assumed to be

equal. The maximum lag was initially set to 1 and the resulting neural network was trained. If the normalised mean-

square error (NMSE) — the mean-square error divided by the variance of the training data — of the trained model’s

validation MPO response was greater than an acceptable threshold (equal to 1), the number of lags was increased by 1

and the model was retrained. This was repeated until the NMSE was smaller than the specified threshold to determine

the number of lags.

The data segments, ds were defined by splitting the tanks input, u1 and Tank 2 water level (e.g. QoI) time series, z
(2)

i

consisting of 1024 data points into eight equal-sized segments of 128 data points (that is, 64 alternating training and

validation points). Therefore the data library for this digital twin was {d1,d2, ....,d8} ∈  and {u1, u2, ...., u8} ∈ u

where each ds and us is a 128 × 1 array of data.

3.3. Error-based weightings 1 — weighted averages
In this scenario, the physics-based model is chosen to be M2 and the data-based model is M3, so the statistical

model for n = 2 is given by

z
(2)

i
= �s,2�̂

(2)

i,2
+ �s,3�̂

(2)

i,3
+ �i + ei = �

(2)

i
+ �i + ei (17)

where �i represents the unknown combined model inadequacies, and �
(2)

i
= �s,2�̂

(2)

i,2
+ �s,3�̂

(2)

i,3
is the combined digital

twin output function. Notice that the subscript, p for �p and �̂i,p relates to which model in the model library is being

used. For this example there are three models in the library, M1,M2,M3 ∈ . So another way to interpret equation

(17) is that the weightings are being used to select two out of the three available models, and therefore in this case

�s,1 = 0. Note also that P = 1, D = 1, and so Np = 2 in this example.

The physics-based model, M2, contains uncertainties, and therefore the parameters were estimated using ABC. A

difficulty in estimating the model parameters is that only the second tank’s water level was measured and could be used

to ascertain a sampled model’s dynamic behaviour. To deal with this, M2 was simulated with the physical parameters,

���2, sampled from an estimated range. Each parameter sample was used to estimate the water levels, comparing the

simulated and measured second tank level in determining the model mean-square error.

There were two data sets provided with the benchmark system, recorded over different time periods. It was

assumed that one data set was available to the user before applying the digital twin (training) and the second was

recorded as the digital twin was applied (testing). It is the second data set that the digital twin would aim to mirror.

This choice regarding the separation of the data sets into training and testing is essentially an arbitary choice based

on the requirement to have a distinction for the methods being used here. Other choices may be more appropriate for

other cases. Recall from Section 2.3.1 that each model will be compared with the data recorded from the physical twin

(the training and testing data in this case). Therefore, an initial ABC simulation was implemented on the first data set,

using normal prior distributions, in order to inform the prior distributions used for the digital twin ABC simulations

on the second data set.

To infer the model parameters, an ABC algorithm with an accept-reject mechanism is employed. Given the

observations ds, from the sth data segment, the basic principle consists in iterating the following steps until one

gets No particles:

• Step. 1 Generate a candidate value for the parameter vector ���∗ ∼ ���(���) from the prior.

• Step. 2 Generate a data set y∗
s
∼ Mp(���

∗) using the output from the pth model.

• Step. 3 Accept ���∗ if �(ds, ys) ≤ "t.

• Step. 4 If rejected, go to Step. 1.

where �(⋅) is a distance function, measuring closeness of simulated and observed data, and "t is a threshold parameter.

The prior distributions that were chosen for the five parameters of the physics-based model component were:

���(�
(1)

2
) ∼  [0.05, 0.01]

���(�
(2)

2
) ∼  [0.055, 0.01]

���(�
(3)

2
) ∼  [0.05, 0.01]
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Table 1

Parameter values of the physics-basedmodel component over all segments.

Segment s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

�
(1)

2
0.0588 0.0600 0.0548 0.0557 0.0564 0.0549 0.0565 0.0559

�
(2)

2
0.0543 0.0537 0.0514 0.0495 0.0497 0.0500 0.0515 0.0510

�
(3)

2
0.0516 0.0585 0.0547 0.0555 0.0561 0.0555 0.0550 0.0547

�
(4)

2
0.0503 0.0503 0.0504 0.0500 0.0494 0.0494 0.0499 0.0509

�
(5)

2
0.0001 0.0017 -0.0002 -0.0001 -0.0004 -0.0002 0.0014 0.0005

Table 2

Evolution of the overflow parameter, �
(5)

2
, in the physics-basedmodel component over all segments.

Segment, s 1 2 3 4 5 6 7 8

�
(5)

P
−4.1 × 10−5 0.0017 -0.0004 -0.0002 0.0003 -0.0003 0.0015 0.0007

Table 3

Evolution of original and updated physics-to-data model fractions in the digital twin over time.

Segment, s 1 2 3 4 5 6 7 8

Υs,n with weights from equation (11) 0.1046 0.0870 0.2425 0.1579 0.0572 0.1561 0.1862 0.2150

Υs,n with weights using equation (12) 0.0983 0.0 0.0 0.0 0.0 0.0 0.0 0.0

���(�
(4)

2
) ∼  [0.055, 0.01]

���(�
(5)

2
) ∼  [0, 0.005]

which were chosen to reflect relatively-weak prior knowledge. The distance function, �(⋅), used was the mean-square

error of the model’s estimated second tank water level compared to the measured water level; the tolerance used was

"t = 1 and 1000 particles were accepted. Normal posterior distributions were fitted to all parameters of the accepted

particles.

For the data-based model, M3, a three-layer NARX neural network with 10 hidden units, was formed using lagged

versions of the second tank’s water level and u(t) as inputs to the neural network, and the second tank’s level as the

output (e.g. equation 16). The training data were normalised to span the range of [0,1] to avoid saturation of the

network. Again, the number of maximum lags of the input and output were assumed to be equal for simplicity, and

were initially set to 1. This lag number was increased by 1 if the normalised mean-square error of the MPO of the

resulting trained network was larger than an acceptable threshold, and the new network was retrained. For the hidden

nodes a greedy trial-and-error search was used to find the optimal output. The NARX models’ MPO predictions were

used as the responses of the data-based model component.

Then M2 and M3 were re-trained over each of the 8 data segments ds, and their responses were weighted to

produce the corresponding digital twin response based on the weighted average formulas given in equations (11) and

(12). This process ensured that the models, and digital twin response, were continually updated to reflect the system’s

current state. The parameters of the physics-based model component, M2, are shown in Table 1 for each of the eight

segments and Table 2 shows the evolution of the �
(5)

2
(overflow) parameter over time.

It is interesting to compare the overflow parameter values to the input signal throughout the segments. The fifth

parameter was used in the model to allow for improved modelling of the overflow effects, which would occur under

larger inputs where more water was pumped into the tanks. The input value reached its largest peaks in Segments 2

and 7, and this was when overflow was likely to occur. Over these segments, the overflow parameter was given the

greatest values.

In fact, the overflow effects can be clearly seen in the water level of the second tank, which is shown in Fig

3 in comparison with the levels estimated by the two model components and the digital twin response. Overflow

does occur in the second segment, as well as on the cusp of the seventh and eighth segments, and is marked by two

flattened peaks in the measured response. Although the physics-based model’s computed response (M2) is generally a

close resemblance to the validation tank level, the NARX data-based model (M3) is clearly a much better fit with the
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i,2

i
(2)

zi
(2)

QoI

DBM

PBM

DT

(V
)

Figure 3: Comparison of the second tank water levels, x2, computed using the physics-based model (PBM)M2 (shown by �̂i,2)

& data-based model (DBM)M3 (shown by �̂i,3) and digital twin output function for n = 2 (denoted �
(2)

i
and DT) compared with

the measured water level QoI z
(2)

i
. Note that following [18] the units of x2 are in volts (V) from themeasurement.

Table 4

Mean-square error of the validation second tank water level computed using the physics-based model (PBM) & data-based

model (DBM) components and digital twin combination.

Segment 1 2 3 4 5 6 7 8

MSE PBM 0.4787 0.9445 0.0420 0.1146 0.0776 0.2117 0.1906 0.1465

MSE DBM 0.0057 0.0075 0.0063 0.0016 0.0007 0.0071 0.0104 0.0103

MSE DT 0.0054 0.0075 0.0063 0.0016 0.0007 0.0071 0.0104 0.0103

QoI. This is particularly the case over the first two segments. The initial conditions of the system were unknown and

affected the physics-based model’s predictions over the first segment, and although the overflow parameter improved

the modelling of the first overflow occurrence, there was clearly some shortfall in the model’s capability.

It is unsurprising, given how much better the NARX model’s match with the data were, that the model fractions

were consistently less than 0.5 (and the updated model fraction equal to zero in all but one segment). Table 3 shows

the physics-to-data model fractions used in the digital twin combination, both as originally calculated in equation (11)

and as updated in equation (12). As a result, the digital twin most often assigned all weight to the data-based model’s

response in order to optimally match the tank level data.

Table 4 shows the mean-square error of the validation water levels of the second tank computed by each model

component and the digital twin over time. The shortfall of the physics-based model component in modelling the

overflow is evident in the mean-square error of its estimations in segments of larger inputs. In the second segment,

which sees the largest input, the mean-square error is greatest, as seen in Table 4. On the other hand, where the input

is smallest, the middle segments contain the best physics-based model estimations. While the data-based model (and

digital twin) do appear to be affected by the tank overflow, the effects are much less noticeable and these models

consistently offer significantly improved accuracy.

In the case of this choice of models and weighting functions, the physics-based model (M2), although a good fit to

the data, was poor in comparison with the data-based model (M3). As a result, the model fraction was updated to zero

over all but the second time segment, most often giving the physics-based model no weight in its contribution to the
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digital twin. The resulting digital twin response was accurate and was easily able to reflect any changes in the tank’s

water level because of overflow effects when they occurred. An alternative weighting scenario is considered next.

3.4. Error-based weightings 2 — self-adaptive differential evolution
In this Section an ABC algorithm coupled with an efficient sampling technique called ABC-nested sampling

(ABC-NS) is used to make inference. In the ABC-NS algorithm, the first iteration is similar to the ABC rejection-

sampler. For the subsequent iteration, the tolerance threshold is defined based on the discrepancy values ranked in

descending order as the (�0N)th value where �0 is equal to 0.8. The dropped particles represent 80 per cent from

the total number of particles. After that, we normalise the weights of the remaining particles and a weight of zero

is assigned to the dropped particles. From the remaining particles, a number of (�0N) are randomly selected and

propagated to the next population (�0 is equal to 0.1). In this way, the algorithm can visit any part of the parameter

space to ensure a good exploration. The remaining particles are then enclosed in an ellipsoid in which the mass center

and the covariance matrix are estimated based only on the remaining particles. The aim of the elliptical bound is to

restrict the parameter space around the most interesting part of the parameter space which improves the acceptance

ratio and efficiency through the iterations. The volume of the generated ellipsoid could be enlarged by a factor f0 to

ensure that the particles on the borders will be inside. In this work f0 is set to 1. Finally, the population is replenished

by re-sampling particles inside the ellipsoid following the scheme in [20]. In the subsequent steps, the threshold is

updated adaptively in the same way and samples selection are subjected to more stringent threshold. Through the

populations and as "t → 0, a larger number of particles are selected and the samples for the parameters better reflect

the real posterior distribution. A detailed discussion concerning the effects of these settings can be found in [1].

The physics-based model is chosen to be M1 (equation 14), and in order to estimate ���1, the approximate Bayesian

computation (ABC) nested sampling (NS) technique was used. As before the ABC method works as a proxy for

the likelihood function by sampling a set of parameters and simulating data, using the resulting model. The selected

physics-based model (PBM), M1, is deliberately chosen because it does not include the physics governing the overflow

effects. This will be treated as additional model inadequacy, and will enable us to contrast the results with those, where

M2 was used above. As a result, the statistical model for n = 2 is now given by

z
(2)

i
= �s,1�̂

(2)

i,1
+ �s,3�̂

(2)

i,3
+ �i + ei = �

(2)

i
+ �i + ei (18)

where �i represents the unknown combined model inadequacies, and �
(2)

i
= �s,1�̂

(2)

i,1
+ �s,3�̂

(2)

i,3
is the combined digital

twin output function. Other parameters are as previously defined.

The ABC-NS method [1] improves on the computational efficiency of other ABC algorithms by increasing the

acceptance rate of proposed parameter values. The prior distributions chosen for the 4 parameters in ���1 were informed

by first running ABC-NS on the second data set (for prior knowledge) using the uniform distribution  [0, 0.1] for

each parameter. The minimum and maximum values of the resulting final population determined the following prior

distributions for M1:

���(�(1)) ∼  [0.0389, 0.0893]

���(�(2)) ∼  [0.0321, 0.0675]

���(�(3)) ∼  [0.0271, 0.0465]

���(�(4)) ∼  [0.0188, 0.0919].

The hyperparameters chosen for the ABC-NS (and used within all data segments) were enlargement factor f0 = 1.0,

dropped particle proportion �0 = 0.8, surviving particle proportion �0 = 0.1, initial tolerance threshold �tol3 = 100,

population size N = 1000 and convergence accuracy 0.1. All the hyperparameters are included in  3 for model M3.

Upon convergence of the tolerance threshold, the mean of the resulting posterior distribution for each parameter was

taken as its value in M1. The data-based model (DBM) was the same as previously, and is denoted M3 as before.

The responses of the PBM (M1) and DBM (M3) over the 8 data segments are compared to the QoI data in Fig 4.

It is clear the DBM output (shown by �̂i,3) is consistently a better fit than the PBM (shown by �̂i,1) when compared to

the QoI (z
(2)

i
), particularly at higher water levels. The selected PBM, M1, does not include the physics governing the

overflow effects, which occur in data segments 2 and 7. When compared with the previous results shown in Figure 3,

where these effects were included in the PBM there does not appear to be significant differences. This may not be the

case for other parameter values, particularly if the overflow effects lasted a longer time.
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Figure 4:Water level, x2, computed usingM1 (shown by �̂i,1) andM3 (shown by �̂i,3) compared to the QoI water level, z
(2)

i
over

the 8 data segments.

Table 5

The error-based physics-to-data model fraction over the 8 segments

Segment, s 1 2 3 4 5 6 7 8

Υe
s,n

0.304 0.093 0.095 0.090 0.432 0.034 0.012 0.000

In Section 2.3, both error- and robustness-based optimisation criteria were described. Here the minimisation of

NMSE is considered first; the optimal PBM and DBM error-based weights, �e
s,1

and �e
s,2

respectively, are defined as

those which produce the combination of PBM and DBM outputs with minimum NMSE. To determine these error-

based weights, a self-adaptive differential evolution (SADE) genetic algorithm was used [16, 22]. SADE optimises by

proposing potential solutions, comparing them to an initial population of randomly-sampled values and keeping only

the best ones [22].

The SADE algorithm used the following parameters: 3 runs, 20 maximum generations, population size 200,

crossover ratio 0.5, scaling factor 1.5 and initial ranges [0, 1], and as before all these hyperparameters are stored in � .

The error-based physics-to-data model fraction, Υe
s,n

, for each of the 8 segments is shown in Table 5 (note that because

there are just two combined models �e
s,1

= Υe
s,n

and �e
2
= 1−Υe

s,n
). The values of the error-based model fraction reflect

the fact that the DBM’s estimation of the water level is often significantly more accurate (where a small portion of

the total weight is assigned to the PBM). In fact within segment 8 the model fraction takes a value of 0, indicating the

PBM’s response cannot improve the DBM’s in any way. On the other hand, the model fraction approaches closest to

0.5 (where the components’ weights would be equal) in segments 1 and 5, where the DBM(PBM) is poorer (better)

than in other segments.

3.4.1. Robustness-based weightings

The second optimisation criteria considered is the maximisation of robustness. The definition used here means that

the optimal robustness-based weights, �r
s,1

and �r
s,2

, are those which produce the combination of worst-case PBM &

DBM outputs with minimum NMSE. While the models have point-value parameters, there is some uncertainty in their

values (the ABC-NS resulted in distributions for each parameter – only the mean was selected – and repeatedly training

the NN does not produce identical parameters each time). Parameter uncertainty then translates into uncertainty in the

models’ outputs, so there will be a worst-case prediction for each.
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Table 6

The PBM parameters and worst-case parameters

Segment, s 1 2 3 4 5 6 7 8

Parameter Value

k1 0.0866 0.0880 0.0736 0.0511 0.0404 0.0474 0.0680 0.0611

k2 0.0652 0.0655 0.0534 0.0389 0.0332 0.0365 0.0492 0.0447

k3 0.0310 0.0296 0.0312 0.0434 0.0281 0.0419 0.0444 0.0456

k4 0.0356 0.0319 0.0382 0.0472 0.0270 0.0449 0.0536 0.0557

Worst-Case Value

k1 0.0885 0.0889 0.0868 0.0398 0.0427 0.0406 0.0478 0.0432

k2 0.0668 0.0635 0.0417 0.0435 0.0337 0.0426 0.0661 0.0529

k3 0.0317 0.0278 0.0329 0.0417 0.0311 0.0377 0.0454 0.0455

k4 0.0321 0.0298 0.0220 0.0680 0.0249 0.0595 0.0812 0.0846

Table 7

NMSE of the PBM and the worst-case prediction over the 8 segments.

Segment, s 1 2 3 4 5 6 7 8

Model NMSE 7.82 15.55 8.09 13.71 4.69 15.17 5.26 13.89

Worst-Case NMSE 1951 1306 1640 36833 2638 13712 4446 15601

3.4.2. PBM Worst-case prediction

As mini-max is a non-probabilistic approach to decision-making, no distributions are required for the model

parameters. Instead, the minimum and maximum values in the last population returned by ABC-NS were used

to inform a range of possible values for each parameter. Determining the worst-case PBM prediction, given these

parameter ranges, requires an optimisation of its own. SADE was used again for this purpose, but with 30 maximum

generations and population size 200. The parameters of the PBM and the values which produced the worst-case

response are shown in Table 6. By re-calibrating the PBM with each new segment, the parameters are allowed to

vary to give the best water level prediction with up-to-date data. Parameters k1 and k2 ∈ ���1 appear to increase over

segments with higher water levels. As may be expected, the parameters which produced the worst-case prediction

were often equal to the limits of the uncertainty ranges. Table 7 shows how the NMSE of the worst-case prediction

compares to that of the PBM with the assumed parameters. The segments within which the PBM was least robust to

parameter uncertainty were 4, followed by 8 and then 6.

3.4.3. DBM worst-case prediction

The ranges of the possible NARX-NN parameters were determined by splitting the training data into 10 subsets

and retraining the NN with each one. The minimum and maximum values of each parameter were taken as the limits

of the range. As with the PBM, a SADE algorithm was used to find the worst-case MPO prediction of the NARX-NN

within these parameter ranges. It also used 30 maximum generations, but this time with a population of 50 to limit

computational expense. The parameters (weights and biases) of the NARX-NN, [a1, a2, ...a11] ∈ ���3, and the values

which produced the worst-case response are shown in Table 8. As with other “black-box" DBMs, it is not possible to

give any physical meaning to these parameters and they vary significantly between segments. However, the important

consideration is the variation in the parameters between subsets of training data which gave relatively small ranges for

each parameter, from which the worst-case values were chosen.

Table 9 shows how the NMSE of the worst-case prediction compares to that of the DBM with the assumed parameters.

Even the worst-case NMSE values were significantly less than those of the PBM’s worst predictions, showing that the

DBM is more robust to parameter uncertainty. However, comparing proportionally, the worst-to-model NMSE of both

PBM & DBM were similar in multiple segments.

3.4.4. Robustness-based prediction

The minimax approach taken in this work aims to combine the two models’ worst-case predictions into the digital

twin output function with minimum error. This simply follows the error-based optimisation procedure, but using the
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Table 8

The DBM parameters and worst-case parameters

Segment, s 1 2 3 4 5 6 7 8

Parameter Value

a1 -0.2086 -0.3977 -0.3060 0.5497 0.0953 0.1718 0.2209 0.1011

a2 -0.1154 0.4338 0.3844 0.0885 0.8856 -0.1983 1.1987 0.3567

a3 0.0657 -0.2261 0.0772 0.6923 -0.1395 0.3903 1.8377 0.6611

a4 -0.9713 2.5406 -0.6108 0.5527 1.1915 0.5994 -0.0138 -0.4433

a5 -0.9046 0.1463 0.1951 0.4369 0.0435 0.2332 -1.0055 0.1905

a6 0.8578 1.6947 2.4329 -0.4513 -1.9932 0.2880 0.6671 -2.7985

a7 -1.7625 -1.3642 2.1076 -1.3020 1.6718 1.6360 0.5860 0.4874

a8 -0.2040 0.1477 0.9896 0.2482 -0.6022 0.6423 0.0683 -0.2581

a9 -0.1609 0.3495 -0.0649 0.0832 0.2591 -0.8912 -3.5373 -0.9390

a10 3.3003 -1.5058 3.1085 1.4767 1.2856 -0.2625 2.3672 -3.6492

a11 0.7308 0.0362 -0.4395 -0.2118 -1.0231 0.3185 0.1567 0.0049

Worst-Case Value

a1 -0.2319 -0.3978 -0.3775 0.5497 0.0953 0.1671 0.2386 0.0936

a2 -0.0990 0.4324 0.3637 0.0928 0.8856 -0.1996 1.1987 0.3727

a3 0.0825 -0.2256 0.0414 0.6848 -0.1395 0.3866 1.8378 0.6784

a4 -0.9497 2.5416 -0.5576 0.5527 1.1915 0.5977 -0.0138 -0.4175

a5 -0.9063 0.1460 0.1782 0.4421 0.0435 0.2361 -1.0056 0.1839

a6 0.8607 1.6946 2.5530 -0.4543 -1.9932 0.2913 0.6846 -2.7990

a7 -1.7619 -1.3642 2.1106 -1.3020 1.6718 1.6384 0.6451 0.4960

a8 -0.2071 0.1477 0.9946 0.2482 -0.6022 0.6439 0.0692 -0.2506

a9 -0.1399 0.3492 -0.0194 0.0850 0.2591 -0.8927 -3.5383 -0.9290

a10 3.3059 -1.5058 3.1081 1.4766 1.2856 -0.2616 2.3164 -3.6523

a11 0.7248 0.0361 -0.4575 -0.2173 -1.0231 0.3239 0.1839 0.0017

Table 9

NMSE of the DBM and the worst-case prediction over the 8 segments.

Segment, s 1 2 3 4 5 6 7 8

Model NMSE 2.51 0.63 1.28 0.74 3.58 0.17 0.121 0.48

Worst-Case NMSE 318 209 404 22.1 3.58 0.27 541 0.45

Table 10

The robustness-based physics-to-data model fraction over the 8 segments

Segment, s 1 2 3 4 5 6 7 8

Υr
s,n

0.000 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000

worst-case predictions in place of the model outputs. Fig 5 shows the worst-case predictions of the PBM and DBM

compared to the validation water level. A quick inspection of these predictions demonstrates that their combination

should be heavily weighted towards the DBM in order to minimise error, particularly over the final segments. The

same weight-optimising SADE parameters as in Section 3.3 were used to find the combination of these two worst-

case responses with minimum NMSE. The robustness-based physics-to-data model fraction, Υr
s,n

, for each of the

8 segments is shown in Table 10 (note that here �r
s,1

= Υr
s,n

and �r
s,2

= 1 − Υr
s,n

). Unsurprisingly, the DBM is

heavily weighted in the optimal combination; only in segment 4 does the PBM’s weight take a non-zero value. These

robustness-based model fractions suggest that if robustness of the digital twin is highly important to the user, the

component weights should strongly favour the DBM.

3.4.5. Digital twin weighted predictions

Having computed the responses of the individual PBM and DBM, and weightings for both error and robustness

choices, a combined error plus robustness weighting can then be produced. This combination would aim to a balance

of minimisation of the NMSE whilst maximising the robustness of the resulting combination. As described in Section
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Table 11

The overall physics-to-data model fraction over the 8 segments

Segment, s 1 2 3 4 5 6 7 8

Υ 0.152 0.046 0.047 0.054 0.216 0.017 0.005 0.000

2.3 the overall weights of the two components’ responses are determined as a linear combination of the error- and

robustness-based weights. To demonstrate the concept, the value of � selected was 0.5, equally balancing NMSE and

robustness equally. Based on this choice, the overall physics-to-data model fraction, Υs,n, for each of the 8 segments

is shown in Table 11 (where �s,1 = Υs,n and �s,2 = 1 − Υs,n). Although the digital twin was already weighted in

favour of the DBM over all 8 segments following the error-based optimisation, the robustness-based optimisation

has further reduced the physics-to-data model fraction (essentially halving it in all segments with a robustness-based

model fraction of 0). Segments 1 and 5 remain those with most influence from the PBM, and segment 8 still takes

only the DBM response as the digital twin prediction.

Finally, Fig 6 shows the error- & robustness-based and overall weighted digital twin combinations compared to

the QoI which is used as validation data. Note that these are all combinations of the model responses, not the worst-

case predictions which were only used to determine the robustness-based model weights. The three combinations

are all similar, but most difference occurs in the first two segments. The robustness-based weights give a slightly

worse estimation of the QoI data than the NMSE-based (as would be expected). However, any error in the models’

parameters would affect the estimated water level less. If the small level of error in the robustness-based combination

is satisfactory for the user, it might be preferable to choose it over the more accurate error-based combination for this

reason. With � = 0.5, the overall digital twin combination is an even compromise between robustness and accuracy.

4. Discussion

The aim of this work was to produce digital twin outputs as a weighted combination of the responses of multiple

model components. To enable the digital twin to evolve over time alongside its physical twin, the digital twin output

functions are recalibrated for each segment of data recorded. This recalibration was based on computing weightings

that were used in model combinations. Both error and robustness were considered as weighting criteria (property B1

from Section 2.2). The weighting choices made here were primarily made to demonstrate the concept, and in practice

choices would need to be made relevant to the application being considered. Once the criteria for choosing weightings
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‘QoI’) over the 8 data segments.

were defined, predictions were then made based on weights computed using error- and robustness-based criteria, or

some combination of both. In the example application in this paper, the decision to prioritise one optimisation criterion

over the other makes little difference to the result, but this would not necessarily always be the case. Choosing � for the

combined weighting would require a specific criteria to be defined by the user, based on the context of the application

being considered.

The weighting design in this paper focused on property B1 (from Section 2.2) which is based on minimising

error, as defined in Section 2.2. We did not consider properties B2 (predictive capability) or B3 (relative levels of

deficiency) and because of this, the resulting weights tended to consistently (and often strongly) favour the DBM over

the PBM. As a result, the physics-to-data model fractions that led to the best digital twin combinations to satisfy B1

were small (meaning that the DBM dominates). In terms of matching an output, DBMs have an advantage in that

they are unconstrained by physics-based equations and aim only to learn the best input/output relationship. However,

it is important to note that in this application the digital twin is only attempting to mirror the physical twin in its

current state to ensure it is a good representation (interpolation), and not to make predictions about the system’s future

behaviour (extrapolation). While DBMs are typically unreliable outside the context in which they were trained, the

physical constraints of PBMs mean they are generally much better at extrapolating to previously-unseen conditions.

Therefore, when considering predictions of a system’s hypothetical behaviour (i.e. property B2), the weighting choices

would need to include criteria that reflect this aim.

Weighting choices for properties B2 and B3 is something we intend to consider in future work. In addition,

probabilistic methods will be explored for dealing with the models’ uncertainties, as an alternative to the minimax

approach demonstrated in the current work. As ABC produces probability distributions for the PBM parameters, it

would be sensible to incorporate Bayesian uncertainty analysis into the methodology, and probabilistic DBMs would

be required in order to achieve this. Using this approach, the uncertainty of the digital twin output functions could be

better quantified.
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5. Conclusion

This paper presented a time-evolving digital twin concept, and applied it to an engineering dynamics example.

The digital twin was developed by combining multiple physics-based and data-based computational models to

create digital twin output functions. The model combination was optimised by weighting the responses of each

model component based on minimisation of the NMSE and maximisation of the robustness to parameter uncertainty

compared to the measured data. To ensure the digital twin can mirror a changing physical twin, the model components

and weights are repeatedly re-calibrated using sequential segments of data measured from the physical twin. A

physics-to-data model fraction was defined as a measure of the ratio of physics-based and data-based models for

each digital twin output.

The method was applied to a cascaded tanks system to estimate the water level in one of the tanks over

time. Approximate Bayesian computation was used to estimate the parameters of two physics-based models of the

system, and a NARX neural network was trained as the data-based model. Examples were shown where weighted

combinations of two (out of the three possible) models were selected based on their NMSE. The choice of weighting

criteria meant that the data-based model was favoured over all data segments compared to the physics-based models. A

similar trend was observed when the weights were chosen based on a robustness criteria, and the result showed that the

data-based model was consistently strongly favoured. A final example demonstrated how the error- and robustness-

based model weights could be combined, such that the resulting digital twin prediction of the tank’s water level

included criteria based on both accuracy and robustness to uncertainty.

Although the physics-based models were often assigned little (or zero) weight in the digital twin output function

(the data-based model components were usually much more accurate), they would be important for extrapolating

predictions in new contexts. Future work will focus on applying the digital twin to make such extrapolating predictions,

as opposed to simply mirroring the physical system’s current response, by adjusting the calculation of the physics-to-

data model fraction, and therefore the weighting choice procedure.
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