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On Estimation of Zero-Sequence Impedances of

Parallel Transmission Lines from Fault Data
Ahmad Salehi Dobakhshari, Sadegh Azizi, Senior Member, IEEE

Abstract—The problem of estimating zero-sequence parame-
ters of a parallel transmission line from fault data is considered.
This paper analytically demonstrates that the zero-sequence
impedances of a parallel transmission line are not, in general,
attainable using the synchronized measurements taken at the line
terminals following a ground fault on the line. To this end, Kirch-
hoff’s voltage law (KVL) and current law (KCL) are employed
to establish the system of equations that relate the measurements
to the zero-sequence impedances of the line. The paper also
highlights two rather theoretical exceptions to this generalization:
first, the scenario of bolted faults, and second, situations where
the fault resistance value is known beforehand (although this
assumption is not valid in practice). A lemma is introduced and
proved demonstrating that under specific conditions the zero-
sequence reactances of the line can be accurately estimated while
the zero-sequence resistances of the line remain unattainable.
Simulation results, under a variety of conditions such as time-
varying fault resistance and untransposed parallel lines, support
the theoretical findings that zero-sequence resistances cannot be
obtained from fault data while for short transposed lines or
untransposed lines without earth wire zero-sequence reactances
can be estimated quite accurately. Realistic measurement errors
undermine the reliability of estimates, further questioning the
attainability of zero-sequence parameters of parallel lines from
fault data.

Index Terms—Faults, parallel transmission line, sequence net-
works, zero-sequence mutual impedance.

NOMENCLATURE

A. Known/Measured Quantities

V +
l Positive-sequence voltage at line terminal l.

V +
r Positive-sequence voltage at line terminal r.

V −

l Negative-sequence voltage at line terminal l.

V −

r Negative-sequence voltage at line terminal r.

V 0
l Zero-sequence voltage at line terminal l.

V 0
r Zero-sequence voltage at line terminal r.

I+lr1 Positive-sequence fault current through the 1st

circuit of the line flowing from terminal l to r.

I+lr2 Positive-sequence fault current through the 2nd

circuit of the line flowing from terminal l to r.

I+rl1 Positive-sequence fault current through the 1st

circuit of the line flowing from terminal r to l.

I+rl2 Positive-sequence fault current through the 2nd

circuit of the line flowing from terminal r to l.

I−lr1 Negative-sequence fault current through the 1st

circuit of the line flowing from terminal l to r.

I−lr2 Negative-sequence fault current through the 2nd

circuit of the line flowing from terminal l to r.
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Sadegh Azizi is with the School of Electronic and Electrical Engineering,
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I−rl1 Negative-sequence fault current through the 1st

circuit of the line flowing from terminal r to l.

I−rl2 Negative-sequence fault current through the 2nd

circuit of the line flowing from terminal r to l.

I0lr1 Zero-sequence fault current through the 1st circuit

of the line flowing from terminal l to r.

I0lr2 Zero-sequence fault current through the 2nd circuit

of the line flowing from terminal l to r.

I0rl1 Zero-sequence fault current through the 1st circuit

of the line flowing from terminal r to l.

I0rl2 Zero-sequence fault current through the 2nd circuit

of the line flowing from terminal r to l.

Z+
l Positive-sequence impedance of the line.

Z−

l Negative-sequence impedance of the line.

B. Unknown Quantities

Vsl Thevenin voltage source at terminal l.

Vsr Thevenin voltage source at terminal r.

Z+
sl Positive-sequence Thevenin impedance at terminal

l.

Z+
sr Positive-sequence Thevenin impedance at terminal

r.

Z−

sl Negative-sequence Thevenin impedance at termi-

nal l.

Z−

sr Negative-sequence Thevenin impedance at termi-

nal r.

Z0
sl Zero-sequence Thevenin impedance at terminal l.

Z0
sr Zero-sequence Thevenin impedance at terminal r.

m Fault distance from terminal l in pu.

Rf Fault resistance.

If Fault current through Rf .

V 0
f Zero-sequence voltage at the fault point on the 1st

circuit of the line (faulted circuit).

Z0
l Zero-sequence self impedance of the line repre-

senting R0
l + jX0

l .

Z0
m Zero-sequence mutual impedance of the line rep-

resenting R0
m + jX0

m.

I. INTRODUCTION

TRANSMISSION line parameters have been traditionally

calculated by Carson’s equations, that use conductor

dimensions, tower geometry and an assumed value for ground

resistivity [1]. Zero-sequence parameters are in particular sen-

sitive to the ground resistivity, which in turn depends on soil

type, temperature, and moisture content in soils [2]. Accuracy

of the zero-sequence parameters of the line are crucial to the

protection of the line and fault location along it.

With the advent of measurement technologies in power

systems, estimating transmission line parameters by using
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measurements from line terminals has become attractive and

been scrutinized in several studies. One approach uses multi-

scan measurements in different normal operating conditions

from line terminals equipped with Phasor Measurement Units

(PMUs). The formulation used is either based on least-squares

estimation [3]–[15] , Kalman filter [16]–[21] or evolution-

ary algorithms [22]–[24]. Another approach uses fault data

recorded at line terminals by digital relays equipped with PMU

functionality [25]–[29]. The first approach yields positive-

sequence parameters of the line while the second approach

focuses on ground faults which involve zero-sequence param-

eters of the line.

The majority of existing attempts in estimating transmission

line parameters are concerned with single-circuit transmission

lines. However, double-circuit or parallel transmission lines

are increasingly utilized due to the shared tower and right-

of-way requirement [30]. Measurement-based estimation of

the zero-sequence self and mutual impedances of a parallel

transmission line has been shown to be the most difficult

and only feasible in certain conditions. The usual routine

includes a single-phase voltage source applied to the line

when the line is out of service [31]. In [32], this approach

is followed by accurately modeling the transmission line.

Amongst the limited research works devoted to the estimation

of parameters from fault data, in [33], the zero-sequence self

and mutual impedances of a parallel transmission line are

obtained in a closed form under two conditions: 1) One of

the circuits is out of service and 2) The fault occurs beyond

the investigated parallel line. Similarly, in [34], a nonlinear-

estimation approach is presented for when the fault is not on

the line itself. This approach also requires fault data from

more than a single fault event. Reference [35] shows that even

when the fault is beyond the examined line, the zero-sequence

mutual impedance of the line cannot be obtained separately

from its zero-sequence self impedance, when both circuits are

in service.

Recently, in [36], it is attempted to find the zero-sequence

self and mutual impedances of a parallel transmission line

using synchronized fault data recorded by digital relays

at the line terminals. Despite previous literature, the pre-

sented method calculates the zero-sequence self and mutual

impedances when a fault occurs on one of the circuits of the

line. The advantage of the presented method is that the fault

data extracted from the protective relays are utilized. As will

be shown in this paper, however, there are some queries around

equations of [36], invalidating the possibility of obtaining self

and mutual zero-sequence impedances from fault data.

In this paper, different conditions under which the zero-

sequence parameters of a parallel transmission line can be

or cannot be obtained are scrutinized. The presented analysis

determines when and which zero-sequence parameters can

be obtained from fault data. The main contribution of the

paper is proving that, under realistic scenarios, complete and

accurate determination of zero-sequence parameters of parallel

lines remains infeasible. Nevertheless, the paper also explores

theoretical exceptions and discusses specific conditions under

which limited estimations might be possible. More specifically,

through comprehensive analysis of circuit equations, this paper

Relay Relay

Phase A

Phase B

Phase C

Phase A

Phase B

Phase C

Bus l Bus r

m (1-m)

Fig. 1. A single line-to-ground fault on a parallel transmission line.

• Demonstrates that determining the zero-sequence

impedance of parallel transmission lines solely from

synchronized terminal measurements is impossible.

• Exposes the inherent limitations (rank deficiency) of the

equations used in previous research work. This directly

contradicts claims that such parameters can be estimated

from fault data.

• Introduces and proves new lemmas, which demonstrate

the possibility of approximating the zero-sequence reac-

tance of short parallel lines under specific conditions. To

this end, the line must be either transposed (conductors

regularly switched positions) or untransposed without

an earth wire. However, realistic measurement errors

exacerbate the accuracy of these estimates.

• Emphasizes that estimating the zero-sequence resistance

of parallel lines from fault data is not viable.

The rest of this paper is organized as follows. In Sec-

tion II, single-line-to-ground faults on a parallel transmission

line are analyzed and corresponding formulas for estimating

zero-sequence impedances of the line are developed. The

general case as well as a special case where zero-sequence

parameters can be estimated are analytically derived. Section

III extends the presented analysis to double-line-to-ground

faults. In Section IV, the validity of a previously presented

algorithm is scrutinized. Section V proves that zero-sequence

reactances of the line can be accurately estimated. Simulation

results are presented in Section VI, followed by a summary

of conclusions drawn in Section VII.

II. SINGLE-LINE-TO-GROUND FAULTS ON PARALLEL

TRANSMISSION LINES

This section is aimed at estimating the zero-sequence self

and mutual impedances of a parallel line using the data taken

following a single-line-to-ground (SLG) fault on one of the

parallel circuits. Fig. 1 shows a SLG fault located at fraction

m from terminal l on the first circuit of a parallel transmission

line. Two protective relays located at terminals l and r record

synchrophasors of fault voltages and currents. This is the

standard practice in protective relaying where recorded data

may be used later for event analysis. It is assumed that the two

relays are equipped with the time synchronization technology.
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Fig. 2. Sequence network connection for a SLG fault.

A. Circuit Derivations

To simplify asymmetrical fault analysis, the sequence net-

works can be interconnected in a way as to satisfy the fault

type constraints and provide an integrated single-phase circuit

to solve. Fig. 2 presents the fault loop for the SLG fault in Fig.

1. The loop includes positive-, negative- and zero-sequence

networks connected in such a way to model post-fault voltages

and currents in symmetrical components. In addition to voltage

sources Vsl and Vsr, which model Thevenin voltage sources,

four dependent voltage sources are considered in the zero-

sequence network in order to represent the impact of zero-

sequence mutual impedance of the line. According to Fig. 2,

the following KVL equation can be written for the inner loop

of the zero-sequence network:

−mZ0
l I

0
lr1−mZ0

mI0lr2+(1−m)Z0
mI0rl2+(1−m)Z0

l I
0
rl1

−(1−m)Z0
l I

0
rl2−(1−m)Z0

mI0rl1+mZ0
mI0lr1+mZ0

l I
0
lr2=0

(1)

where Z0
l and Z0

m are zero-sequence self and mutual

impedances of the line. Equation (1) can be reordered as:

I0lr1(−mZ0
l +mZ0

m) + I0lr2(−mZ0
m +mZ0

l )

+I0rl1[(1−m)Z0
l − (1−m)Z0

m]

+I0rl2[(1−m)Z0
m − (1−m)Z0

l ] = 0

(2)

which can be further simplified as follows given that I0lr2+
I0rl2 = 0 based on Fig. 2.

(Z0
m−Z0

l )[mI0lr1+I0rl2−(1−m)I0rl1)] = 0 (3)

Table I presents typical parameters for two parallel lines,

implying that Z0
m ̸= Z0

l . Therefore, based on (3), fault location

TABLE I
TYPICAL VALUES FOR Z0

l
AND Z0

m [37].

Sequence Impedance 132KV Parallel Line 245KV Parallel Line

Z0
l (Ω) 1.18∠71◦ 0.95∠76◦

Z0
m(Ω) 0.63∠71◦ 0.52∠75◦

can be obtained as

m =
I0rl1 − I0rl2
I0lr1 + I0rl1

(4)

As shown, a measurement-based parameter-free formula is

obtained for calculating fault location m, which will be used

later in the derivations. It can be concluded that the KVL

equation for the inner loop of the zero-sequence network does

not give any information regarding Z0
l and Z0

m.

With reference to Fig. 2, another KVL equation can be

written for the outer loop of the zero-sequence network as

follows:

V 0
r − V 0

l +mZ0
l I

0
lr1 +mZ0

mI0lr2 − (1−m)Z0
l I

0
rl1

−(1−m)Z0
mI0rl2 = 0

(5)

which can be simplified as follows given that I0lr2+I0rl2 = 0.

V 0
r − V 0

l +mZ0
l (I

0
lr1 + I0rl1)− Z0

l I
0
rl1 − Z0

mI0rl2 = 0 (6)

By substituting m from (4) into (6) we have

V 0
r − V 0

l − (Z0
l + Z0

m)I0rl2 = 0 (7)

Therefore, the zero-sequence network equations yield:

Z0
l + Z0

m =
V 0
r − V 0

l

I0rl2
(8)

Another KVL equation involving the zero-sequence voltage at

fault point can be written according to Fig. 2 as follows:

mZ0
l I

0
lr1 +mZ0

mI0lr2 = V 0
l − V 0

f (9)

where V 0
f is the zero-sequence voltage at fault point. In a

matrix form, the two independent equations (8) and (9) that

involve Z0
l and Z0

m can be written as follows:




1 1

mI0lr1 mI0lr2








Z0
l

Z0
m



 =






V 0
r − V 0

l

I0rl2

V 0
l − V 0

f




 (10)

Even if the fault location m is known from field inspection or

output of the fault locator of the relay or (4) or other equations

in positive or negative sequence networks, Z0
l and Z0

m cannot

be obtained unless V 0
f is known; otherwise, (10) will be

a system of two linear equations in three unknowns which

cannot have a unique solution. Since having the knowledge of

V 0
f as input is not possible in practice, zero-sequence self and

mutual impedances of a parallel transmission line are generally

unattainable form fault data.

B. Special Case of Bolted Faults

There is a special case in which fault data can give zero-

sequence self and mutual impedances of a parallel transmis-

sion line. Consider a bolted ground fault for which Rf = 0 in
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Fig. 2. In this case, V 0
f in (10) can be obtained using positive

network impedance data. According to Fig. 2, the following

KVL can be written:

V 0
f + V −

f + V +
f = 3RfIf (11)

where V −

f and V +
f can be obtained from negative and positive

sequence networks, respectively, as follows:

V +
f = V +

l −mZ+
l I+lr1 (12)

V −

f = V −

l −mZ−

l I−lr1 (13)

Provided that Z−

l = Z+
l are already known, V −

f and V +
f can

be obtained from fault data. Now in the case of a bolted ground

fault, i.e. Rf = 0, V 0
f obtained from (11) can be substituted

in (10) as follows:




1 1

mI0lr1 mI0lr2








Z0
l

Z0
m



 =






V 0
r − V 0

l

I0rl2

V 0
l + V +

f + V −

f




 (14)

In this especial case, Z0
l and Z0

m can be directly obtained from

(14) as follows:

Z
0,Bolted
l =

(m− 1)V 0
l −mV 0

r − (V +
f + V −

f )

m(I0lr2 − I0lr1)
(15)

Z0,Bolted
m =

(1−
mI0lr1
I0lr2

)V 0
l +

mI0lr1
I0lr2

V 0
r + V +

f + V −

f

m(I0lr2 − I0lr1)
(16)

where V +
f and V −

f are given by (12) and (13), respectively. It

must be emphasized that if (15) and (16) are used in a general

case of non-zero fault resistance, the estimation results will be

in error.

III. DOUBLE-LINE-TO-GROUND FAULTS ON PARALLEL

TRANSMISSION LINES

The fault loop for a double-line-to-ground (DLG) fault on

a parallel transmission line is presented in Fig. 3. It can be

seen that (1) and (5) written for respectively the inner and

outer loops of the zero sequence network still holds for this

fault. Therefore, (8) is still valid for this fault. On the other

hand, (9) is also obtained for the zero-sequence network and

therefore also holds for this fault. The system of equations

(10) is therefore also valid. However, according to Fig. 3, (11)

should be replaced with the following equations:

V +
f − V 0

f = 3RfIf (17)

V +
f = V −

f (18)

By analyzing (10) in the same way as what we did at the end

of Section II-A, one can conclude that Z0
l and Z0

m cannot be

solved by (10) given that V 0
f is dependent on fault resistance

as can be seen in (17).

The only exception is the case of Rf = 0, in which

case, V 0
f = V +

f = V −

f . Assuming that the positive-sequence

impedance is reliably known and provided that (12) also holds

for this fault according to Fig. 3, (10) will be uniquely solvable

in this case and Z0
l and Z0

m can be obtained from fault data.

+

-

+

-
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slV
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Fig. 3. Symmetrical component network for a double-line-to-ground fault
on a parallel transmission line

The assumption of Rf = 0, however, is impractical and

therefore (10) cannot give Z0
l and Z0

m. In summary, the only

difference compared to the case of SLG faults is that (11)

has to be replaced with (17) and (18) when DLG faults are

concerned.

IV. ASSESSMENT OF PREVIOUS ALGORITHMS

In Section II, the derivations for zero-sequence parameters

of a parallel transmission line were presented. Reference [36]

concerns zero-sequence parameter estimation for the the same

type of transmission lines. Therefore, in what follows, the

derivations of [36] are scrutinized and compared with those

presented earlier.

A. Single-Line-to-Ground Faults

In [36] (Section III, part C), three equations (13), (14) and

(15) are written based on KVL applied to Fig. 4, which is a

duplicate of Fig. 6 of [36]. However, the original circuit, and

thus the reproduced one in Fig. 4, are neither complete nor

reliable. The circuit must change to the zero-sequence circuit

of Fig. 2 (with four voltage sources) to account for all mutual

couplings of the two circuits.

Let us examine the process of finding the zero-sequence

parameters of a parallel line using fault data in [36]. Based on

Fig. 4, (13) in [36] is duplicated here as:

(1−m)Z+
l I+rl1 + 3RfIf − V 0

r + (1−m)Z0
l I

0
rl1

−V −

r + (1−m)Z−

l I−rl1 − V +
r = 0

(19)

which should have been written according to the zero-sequence

network shown in Fig. 2 as follows:

(1−m)Z+
l I+rl1 + 3RfIf − V 0

r + (1−m)Z0
l I

0
rl1

+(1−m)Z0
mI0rl2 − V −

r + (1−m)Z−

l I−rl1 − V +
r = 0

(20)
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Fig. 4. Zero-sequence network for a ground fault on a parallel line, as
presented in [29, Fig. 6].

The difference between correct KVL in (20) and (13) in [36]

is the induced voltage (1−m)Z0
mI0rl2. Likewise, based on Fig.

4, (14) in [36] is duplicated here as:

V 0
r − V 0

l +mZ0
l I

0
lr1 +mZ0

mI0lr2 − (1−m)Z0
l I

0
rl1 = 0 (21)

which should have been written according to the zero-sequence

network shown in Fig. 2 as follows:

V 0
r − V 0

l +mZ0
l I

0
lr1 +mZ0

mI0lr2 − (1−m)Z0
l I

0
rl1

−(1−m)Z0
mI0rl2 = 0

(22)

It can be seen that the induced voltage −(1 − m)Z0
mI0rl2 is

missing from (21). In [36] (Section III, part C) it is claimed

that “By solving equations (13), (14) and (15) for Z0
l , Z0

m

and Rf , line zero-sequence, mutual zero-sequence and fault

resistance are obtained.” This claim is questionable. Equations

(13) and (14) in [36] have already been duplicated here as (19)

and (21), respectively. Let us duplicate (15) in [36] as follows:

mZ+
l I+lr1 + 3RfIf − V 0

l +mZ0
l I

0
lr1 +mZ0

mI0lr2
−V −

l +mZ−

r I−lr1 − V +
l = 0

(23)

Now let us write (19), (21) and (23), i.e. (13), (14) and (15)

in [36], in a matrix form to solve for Z0
l , Z0

m and Rf .




3If (1−m)I0rl1 0
0 mI0lr1−(1−m)I0rl1 mI0lr2
3If mI0lr1 mI0lr2









Rf

Z0
l

Z0
m



=





y1
y2
y3



 (24)

where y1, y2 and y3 depend on measurements. It can be seen

from (24) that sum of the first two rows of the coefficient

matrix equals its third row. This means the equations are

linearly dependent and the rank of the coefficient matrix in

(24) cannot be greater than 2. It follows that Z0
l , Z0

m and Rf

cannot be uniquely obtained as claimed in [36].

B. Double-Line-to-Ground Faults

Using a similar analysis to the previous subsection, one

can show that (16) and (17) in [36] are also incorrect due

to missing induced voltages from the adjacent circuit. They

are duplicated as follows:

(1−m)Z−

l I−rl1+RfIf −(1−m)Z0
l I

0
rl1+V 0

r −V −

r = 0 (25)

V 0
r − V 0

l +mZ0
l I

0
lr1 +mZ0

mI0lr2 − (1−m)Z0
l I

0
rl1 = 0 (26)

which should also be modified according to Fig. 3, respec-

tively, as follows

(1−m)Z−

l I−rl1 + 3RfIf − (1−m)Z0
l I

0
rl1−

(1−m)Z0
mlI

0
rl2 + V 0

r − V −

r = 0
(27)

V 0
r − V 0

l +mZ0
l I

0
lr1 +mZ0

mI0lr2a

−(1−m)Z0
l I

0
rl1 − (1−m)Z0

mI0rl2 = 0
(28)

which show the induced voltage −(1−m)Z0
mI0rl2 is missing

from both (25) and (26). Equation (18) in [36] is duplicated

here as

mZ+
l I+lr1+RfIf−mZ0

mI0lr2−mZ0
l I

0
lr1+V 0

l −V +
l = 0 (29)

Now let us write (25), (26) and (29), i.e. (16), (17) and (18)

in [36], in a matrix form to solve for Z0
l , Z0

m and Rf .




If −(1−m)I0rl1 0
0 mI0lr1−(1−m)I0rl1 mI0lr2
If −mI0lr1 −mI0lr2









Rf

Z0
l

Z0
m



=





z1
z2
z3



 (30)

where where z1, z2 and z3 depend on measurements. It can be

seen from (30) that sum of the last two rows of the coefficient

matrix equals the first row in this matrix. Therefore, similar to

the analysis presented above, Z0
l , Z0

m and Rf cannot be solved

by (16), (17) and (18) in [36], where fault data recorded during

a DLG fault is used.

Even if the complete zero-sequence circuit of Fig. 3 is used,

(27), (28) and (29) will be written as




3If −(1−m)I0rl1 −(1−m)I0rl2
0 mI0lr1−(1−m)I0rl1 mI0lr2−(1−m)I0rl2

3If −mI0lr1 −mI0lr2









Rf

Z0
l

Z0
m



=





z1
z2
z3



(31)

where, similar to (30), the sum of the last two rows of the

coefficient matrix equals its first row and hence Z0
l , Z0

m and

Rf cannot be uniquely obtained either. Equation (31) clearly

shows that even if all induced voltages from the two circuits

are considered, zero-sequence impedances cannot be obtained

using the three KVL equations used in [36].

V. ESTIMATION OF X0
l AND X0

m FOR THE GENERAL CASE

OF NON-BOLTED FAULTS

Previously, it was shown in Section II that Z0
l and Z0

m

cannot be directly obtained unless fault resistance is zero. In

what follows, it will be shown that infinitely many sets of

zero sequence parameters can lead to the same measurement

set when different fault resistance values are considered. First

consider that Z
0,Bolted
l and Z0,Bolted

m are the same as those

given in (15) and (16), respectively. These are the estimates

of zero-sequence impedances with the assumption that Rf=0.

Now let us consider the same set of measurements for a

general case with non-zero fault resistance Rf . With reference

to (10), the zero-sequence impedances of the parallel line

under this new condition are given by




Z0
l

Z0
m



=
1

m(I0lr2−I0lr1)




mI0lr2 −1

−mI0lr1 1










V 0
r −V 0

l

I0rl2

V 0
l −V 0

f




 (32)

Substituting (11) into (32) and using (14) leads to:



Z0
l

Z0
m



=




Z

0,Bolted
l

Z0,Bolted
m



+
1

m(I0lr2 − I0lr1)




3RfIf

−3RfIf



 (33)
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where If = I0rl1+ I0lr1 depends on measurements. Since there

are infinitely many feasible values for Rf , different sets of Z0
l

and Z0
m can be estimated with the same set of measurements.

This clearly rejects the claim that zero-sequence parameters

of the line can be obtained from fault data.

In what follows, it will be shown that the imaginary parts

of Z0
l and Z0

m , i.e. X0
l and X0

m, can be directly estimated

using (10) for the general case of non-zero fault resistance.

We proceed using the following lemma, which holds for

any ground fault on a parallel transmission line, based on Fig.

2.

Lemma 1: Imag{
−3RfIf

m(I0lr2− I0lr1)
} = 0.

Proof : See Appendix A.

The difference between Z
0,Bolted
l and Z0

l , as well as Z0
m

and Z0,Bolted
m , is

−3Rf If
m(I0

lr2
−I0

lr1
)

according to (33). On the other

hand, the imaginary part of this term is zero according to

Lemma 1. Therefore, X0
l and X0

m can be estimated without

the knowledge of the value of Rf by assuming that Rf is

zero. It is worth noting that the real part of
−3Rf If

m(I0

lr2
−I0

lr1
)

is not

zero. Therefore, in the general case of non-zero Rf , self and

mutual resistance of the zero-sequence network, i.e. R0
l and

R0
m, cannot be obtained by (10).

VI. EVALUATION STUDIES

A parallel transmission line, whose actual data are tabulated

in Table II, is used for evaluation studies. The aim is to

estimate zero-sequence impedances using the data collected

following a fault on either of the parallel circuits of this

line. Table II also presents the parameters of the equivalent

networks at the line terminals. The same line parameters as

those studied in [36] are adopted for the sake of comparison.

Although the studied line is a short line, the distributed

parameter model of the line is simulated in the DIgSILENT

Power Factory environment in order for the results to be as

accurate as possible. RMS simulations are adopted for case

studies, except where transients have to be considered, in

which case EMT simulations are carried out. To save space,

only results for SLG faults on phase A are presented.

A. Bolted Ground Faults

Table III presents the output of the proposed method as well

as the algorithm in [36]. As expected, the algorithm of [36]

fails to give meaningful results due to the rank-deficiency of

the equations employed as discussed in Section IV. In contrast,

the proposed method estimates the zero-sequence parameters

of the line by (15) and (16). The reason for the estimation error

is the neglect of the shunt capacitive currents of the line during

the fault event. Estimation of self and mutual zero-sequence

capacitance of the line is not covered by the paper since

these have limited application in protection engineering. More

importantly, with the same set of measurements, addition of

more unknowns will not positively impact the rank deficiency

of the developed system of equations in [36]. This is still in

line with the key message of the paper that zero-sequence

parameters of a parallel line cannot be estimated from data of

a fault on either circuit of the line. Nevertheless, if the zero-

sequence capacitance data of the line is reliably available, it

TABLE II

PARALLEL TRANSMISSION LINE DATA [36]

Length 50 (km)

Positive-sequence Impedance (Z+

l
) 0.0186+j0.3766 (Ω/km)

Positive-sequence Susceptance (B+) 4.3879 (µS/km)

Zero-sequence Self Impedance (Z0
l

) 0.3618+j1.2278 (Ω/km)

Zero-sequence Mutual Impedance (Z0
m) 0.1206+j0.4092 (Ω/km)

Zero-sequence Susceptance (B0) 2.8977 (µS/km)

Positive-sequence Impedance of 0.76+j35.93 (Ω)

Network at Terminal l(Z+

sl
)

Positive-sequence Impedance of 1.58+j42.49 (Ω)

Network at Terminal r(Z+
sr)

Zero-sequence Impedance of 3.28+j39.98 (Ω)

Network at Terminal l(Z0
sl

)

Zero-sequence Impedance of 6.91+j62.56 (Ω)

Network at Terminal r(Z0
sr)

Thevenin Voltage at Terminal l(Vsl) 1∠10◦

Thevenin Voltage at Terminal r(Vsr) 1∠0◦

TABLE III
ESTIMATION ERRORS FOR ZERO-SEQUENCE PARAMETER ESTIMATION

FROM BOLTED SLG FAULT DATA

Par. true value (Ω) Actual m (pu) Proposed Method [36]

R0
l

18.09
0.1 17.99 −2.2×1014

0.5 17.77 −5×1014

0.9 16.36 −1.2×1014

X0
l

61.39
0.1 61.14 1.3×1015

0.5 60.72 −9.4×1012

0.9 57.89 −1×1015

R0
m 6.03

0.1 5.26 2.1×1015

0.5 8.99 5.5×1015

0.9 8.41 4×1015

X0
m 20.46

0.1 18.90 −1.7×1016

0.5 26.87 9×1013

0.9 25.28 3.5×1016

can readily be taken into account in the derivation to increase

the accuracy of estimated zero-sequence impedances, provided

that fault resistance is zero.

Fig. 5 presents the estimated zero-sequence parameters for

short and line longs. The true value of each parameter is drawn

as a dashed line with the same color as that designated to the

estimated parameter. As expected, with the increase in the

line length, the estimation error increases significantly, while

for very short lines the estimation results are quite accurate.

This observation confirms that the shunt capacitive currents

ignored in the developed formulation play an important role

for the accuracy of the estimates if long lines are concerned.

As mentioned, Z0
l and Z0

m cannot be uniquely obtained for the

general case of non-bolted ground faults, regardless of whether

or not the zero-sequence self and mutual capacitance of the

line are accurately known.

B. Non-Bolted Faults with Unknown Fault Resistance Values

In order to demonstrate the non-uniqueness of the estimates

when the fault resistance value is unknown, a fault at the

middle of the line is simulated as an example.

Fig. 6 presents the locus of estimated Z0
l and Z0

m parameters

with the same measurements when the fault resistance varies
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Fig. 5. Estimation of zero-sequence parameters for different line lengths
using bolted fault data.

TABLE IV
SENSITIVITY OF ZERO-SEQUENCE PARAMETER ESTIMATION TO FAULT

RESISTANCE

Rf (Ω) 0 10 20 30 40

R0
l
(Ω) 17.766 137.77 257.78 377.79 497.79

X0
l
(Ω) 60.725 60.738 60.752 60.765 60.779

R0
m(Ω) 8.9961 -111.01 -231.02 -351.03 -471.03

X0
m(Ω) 26.874 26.861 26.847 26.834 26.82

from zero at equal intervals. In practice, the fault resistance

value is unknown, and therefore, zero-sequence parameters of

the line cannot be estimated from fault data recorded by relays

at line terminals. However, as a result of Lemma 1 and (33),

the zero-sequence self and mutual reactances can be estimated

accurately when Rf is assumed to be zero .

The same procedure is followed when a fault occurs at 10%
of the line length. Similar results are obtained as shown in

Fig. 7. The difference is that the maximum fault resistance

that leads to a positive value for R0
l is less than the previous

case. This can be justified by Lemma 2.

Lemma 2: R
0,Bolted
l −R0

l =
3Rf

m(1−m)
.

Proof : See Appendix B.

It is evident from Lemma 2 that, for the same set of

measurements, Rf can change in a wider range for m=0.5

than for m=0.1 before R0
l becomes negative.

C. Non-Bolted Faults with Known Fault Resistance Values

From (10) and (11) one can see that if Rf is known, Z0
l and

Z0
m can be uniquely estimated. Fig. 8 presents the estimation

results for a fault at the midpoint of the line when actual

fault resistance is 10 Ω. It can be seen that for Rf = 10Ω
the estimation results very much resemble those in Table III.

However, when fault resistance is not known precisely, the

estimation results for R0
l and R0

m may be far from the true

value and even become negative. This sensitivity of R0
l and

R0
m to small changes of the assumed fault resistance was

already observed in Figs. 6 and 7. Similarly, the estimated

values for X0
l and X0

m remain the same for different Rf

values assumed according to Section V. Table IV shows that

X0
l and X0

m are estimated quite accurately even for large fault

resistance values while the estimation error is pronounced for

R0
l and R0

m as the fault resistance value increases. These two

observations are in agreement with Lemma 1 and Lemma 2,

respectively.

Fig. 6. Estimated self and mutual zero-sequence impedances of the line with
varying fault resistance value but the same fault data (m=0.5 pu).

Fig. 7. Estimated self and mutual zero-sequence impedances of the line with
varying fault resistance value but the same fault data (m=0.1 pu.)

Fig. 8. Estimated self and mutual zero-sequence impedances of the line with
different Rf values assumed (True Rf = 10 Ω).

D. Impact of Nonlinear Fault Resistance

Thus far, fault resistance has been assumed to be constant.

Although the fault resistance often remains constant over the

course of fault [38], [39], there are few cases in which fault

resistance changes, for example during arcing faults. A nonlin-

ear fault resistance is used in order to examine the estimation

results. Electromagnetic transient (EMT) simulations involving

the time-varying fault resistance are carried out. Fig. 9 shows

the voltage of the faulted phase at terminal l. It can be observed

that the magnitude of post-fault voltage slightly reduces over

time due to the change in fault resistance. Fig. 10 presents

the estimation results for X0
l and X0

m previously shown not

to be influenced by the fault resistance. It can be seen that

after the initial transients in fault measurements, the estimated

parameters tend to their respective actual values.

Due to the rank deficiency of equations in [36] as well

as non-zero fault resistance, neither the formulation of [36]
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Fig. 9. Terminal voltage of the faulted phase following a fault with time-
varying fault resistance.

nor that of this paper is able to find zero-sequence resistance

values. Therefore, as expected, the zero-sequence parameters

of the line are not entirely attainable from fault data in this

case.

E. Zero-Sequence Parameter Estimation for Untransposed

Parallel Lines

Fig. 11 presents a typical double-circuit tower used in the

extra high voltage transmission network. Transmission lines

that are shorter than a threshold, e.g. 40 km [31], are often

operated without transposition. Two cases of presence and

absence of the earth wire are discussed in the following.

1) Untransposed Lines without Earth Wire: The line in this

case includes 6 phase wires while the ground as the path for

zero-sequence fault current is assumed to have a resistivity of

100 Ω.m. The actual values of zero-sequence self and mutual

impedances are obtained from the output result of the software

by setting the ground voltage equal to zero and obtaining the

symmetrical impedance matrix of the line [1], [40]. For an

SLG fault with Rf = 10 Ω, it can be seen from Table V that

only the proposed method is able to estimate the zero-sequence

reactances of the line quite accurately.

2) Untransposed Lines with Earth Wire: This case is sim-

ilar to the previous case, except for an earth wire at the top

of the tower in Fig. 11. This significantly affects the zero-

sequence parameters of the line since there is a new path for

the zero-sequence current to flow through the earth wire. This

can be seen by comparing the actual parameters of the line in

Table V with those in Table VI, which also includes parameter

estimation results. In this case the estimated X0
l and X0

m are

much less accurate compared to those listed in Table V.

A detailed analysis in Appendix C demonstrates that the

impact of earth wire is crucial to the circuit equations since

the mutual impedances between zero, positive and negative

sequence components are not negligible in contrast to the

case of transposed lines. This also emphasizes that in the

case of untransposed parallel transmission lines, no zero-

sequence parameter of the line can be estimated from fault

data, accurately.

Fig. 10. Estimated zero-sequence reactances of the line following a fault
with time-varying fault resistance.

Fig. 11. A typical tower for untransposed parallel transmission lines (All
dimensions are in meters.) [41]

TABLE V
PARAMETER ESTIMATION FOR THE PARALLEL UNTRANSPOSED LINE IN

FIG. 11 WITHOUT EARTH WIRE

Par.
Actual Value

(Ω/km)
Estimated by

Proposed Method
Estimated by [36]

R0
l

0.189 6.19 2.1×1012

X0
l

1.312 1.306 9.2×1011

R0
m 0.139 -5.86 −2.7×1013

X0
m 0.808 0.858 −1.2×1013

TABLE VI
PARAMETER ESTIMATION FOR A PARALLEL UNTRANSPOSED LINE IN FIG.

11 WITH AN EARTH WIRE

Par.
Actual Value

(Ω/km)
Estimated by

Proposed Method
Estimated by [36]

R0
l

0.126 6.125 5.1×1012

X0
l

0.976 0.872 4.7×1011

R0
m 0.076 -5.907 −6.8×1013

X0
m 0.472 0.604 −6.2×1013
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Fig. 12. Estimation of zero-sequence self reactance of parallel lines under
measurement error.

F. Impact of Measurement Error

Thus far, perfect measurements have been considered in

order to investigate the possibility of parameter estimation.

Here, we present a more realistic situation where measurement

errors introduced mainly by instrument transformers [42] are

present. It is expected that the estimation results are aggravated

when measurement errors are considered.

To examine the impact of instrument transformers, current

transformers (CT) and voltage transformers (VT) are consid-

ered to have Gaussian errors so that the maximum CT or

VT error does not exceed that of the respective accuracy

class with a confidence interval of 99.7% [43]. The accuracy

classes for CTs and VTs are assumed to be 5P and 3P,

respectively [44], [45]. Thus, the measurement error for each

of the magnitude and phase angle is modeled as a Gaussian

random variables with zero mean and a standard deviation

equal to one third of the associated maximum error [12]. To

capture the stochastic nature of the estimation error, 1000

Monte Carlo simulation cases [46] are run for estimating

zero-sequence reactances of the transposed line of Table II

and untransposed line of Fig. 11, separately. The estimation

results for the self and mutual zero-sequence reactances are

reflected in Figs. 12 and 13, respectively. It can be seen that

under realistic conditions estimation results are unreliable even

for X0
l and X0

m parameters, which earlier were shown to be

estimated quite accurately under perfect measurements. Other

phenomena such as CT saturation are not considered, although

they may aggravate the estimation results.

VII. CONCLUSION

This paper investigates the possibility of the estimation of

zero-sequence parameters of a parallel transmission line from

fault data. It shows that the zero-sequence self and mutual

impedances of a parallel transmission line cannot, in general,

be obtained from recorded data of a short-circuit fault on either

circuit of the line. Specifically, for transposed parallel lines,

• Z0
l and Z0

m cannot be estimated from synchronized mea-

surements at line terminals. The only exception is the case

where the fault resistance value is known beforehand,

which is impossible in practice.

-1 -0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

Fig. 13. Estimation of zero-sequence mutual reactance of parallel lines under
measurement error.

• X0
l and X0

m are estimated accurately for short lines

regardless of the fault resistance value.

For short untransposed parallel lines,

• X0
l and X0

m are approximated accurately if the line has

no earth wire.

• In presence of the earth wire, X0
l and X0

m are estimated

with much less accuracy compared to the case where the

line has no earth wire.

For both transposed and untransposed parallel lines, it is

proved that despite claims made in the literature, it is impos-

sible to estimate zero-sequence parameters of the line due to

the rank deficiency of the equations employed. Besides, the

reliability of zero-sequence reactance estimation deteriorates

if realistic measurement errors are taken into account. The

theoretical findings of the paper are supported by extensive

simulations under various fault conditions.

APPENDIX A

PROOF OF LEMMA 1

From (4) and given that fault distance m is real-valued, one

can write:

Imag{
I0rl1 − I0rl2
I0lr1 + I0rl1

} = 0

= Imag{
I0rl1 + I0lr1 − I0lr1 − I0rl2

I0lr1 + I0rl1
}

= Imag{
If − I0lr1 + I0lr2

If
}

= Imag{1 +
I0lr2 − I0lr1

If
}

= Imag{
I0lr2 − I0lr1

If
}

= Imag{
If

I0lr2 − I0lr1
}

= Imag{
−3RfIf

m(I0lr2 − I0lr1
)}

(A.1)

where the third line is written based on the zero-sequence

network shown in Fig. 2 and the last line is based on the fact

that both Rf and m are real-valued.
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APPENDIX B

PROOF OF LEMMA 2

By taking the real part of the first equation in (33) it follows

that

Re{Z0
l } = Re{Z0,Bolted

l }+Re{
3RfIf

m(I0lr2 − I0lr1)
} (B.1)

where the second term in the right hand side has no imaginary

part according to Lemma 1. Therefore, (B.1) can be rewritten

as

R0
l = R

0,Bolted
l +

3RfIf

m(I0lr2 − I0lr1)
(B.2)

On the other hand, from (4) it follows that

1

1−m
=

I0lr1 + I0rl1
I0lr1 + I0rl2

(B.3)

Substituting If = I0lr1 + I0rl1 and I0rl2 = −I0lr2 based on Fig.

2 into (B.3) yields

1

1−m
=

If

I0lr1 − I0lr2
(B.4)

Substituting (B.4) into (B.2) yields Lemma 2.

APPENDIX C

INFLUENCE OF EARTH WIRE ON UNTRANSPOSED

PARALLEL LINE PARAMETERS

Tables V and VI present different accuracy levels for zero-

sequence reactance estimation, suggesting the crucial impact

of earth wire on untransposed line parameters. From the output

results of the software simulator, the following reactance

matrices are calculated for the untransposed line in Fig. 11

for cases of without and with earth wire, respectively.

XNEW=

C
ir

cu
it

II
C

ir
cu

it
I













Circuit I(0,1,2)
︷ ︸︸ ︷

1.31 -0.006 -0.007

0.41 0.014

0.41

Circuit II(0,1,2)
︷ ︸︸ ︷

0.808 -0.002 -0.002

0.004 -0.014 -0.007

0.005 -0.007 -0.014

1.31 -0.007 -0.007

0.41 0.013

0.41













(C.1)

XEW=











0.98 -0.028 -0.029 0.47 0.015 0.016
0.41 0.013 -0.017 -0.012 -0.007

0.41 -0.017 -0.006 -0.012
0.98 0.01 0.011

0.41 0.013
0.41











(C.2)

Comparing (C.1) and (C.2), one can see that although the

positive-sequence self reactances remain intact after introduc-

ing the earth wire, zero-sequence self and mutual reactances

and to a lesser extent mutual inductances in all sequences

between the two circuits change. The reason is that in the

presence of the earth wire, part of the zero-sequence current

flows through the earth wire, which happens to be closer to

the phase wires compared to the ground. Of particular interest

is the first row of (C.2) where the mutual inductances between

the zero sequence of Circuit I and the positive and negative

sequences of Circuit I as well as Circuit II are more than

corresponding entries of (C.1). This implies that mutual in-

ductances between the zero-sequence circuit and the positive-

and negative- sequence circuits neglected in transposed lines

undermine the equations utilized to estimate the zero-sequence

impedances. This justifies less accuracy of the estimates of X0
l

and X0
m in Table VI compared to those in Table V. On the

other hand, from (C.1) it is evident that the assumption of

decoupling of sequences is valid with a good approximation

when there is no earth wire. This explains the accurate results

for X0
l and X0

m in Table V.
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