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Artificial intelligence is transforming the way we work
with information across disciplines and practical contexts. A
growing range of disciplines are now involved in studying,
developing and assessing the use of AI in practice, but
these disciplines often employ conflicting understandings
of what AI is and what is involved in its use. New,
interdisciplinary approaches are needed to bridge competing
conceptualizations of AI in practice and help shape the future
of AI use. I propose a novel conceptual framework called
AI Thinking, which models key decisions and considerations
involved in AI use across disciplinary perspectives. AI
Thinking addresses five practice-based competencies involved
in applying AI in context: motivating AI use, formulating AI
methods, assessing available tools and technologies, selecting
appropriate data and situating AI in the sociotechnical
contexts it is used in. A hypothetical case study is provided
to illustrate the application of AI Thinking in practice. This
article situates AI Thinking in broader cross-disciplinary
discourses of AI, including its connections to ongoing
discussions around AI literacy and AI-driven innovation. AI
Thinking can help to bridge between the work of diverse
disciplines, contexts and actors in the AI space, and shape AI
efforts in education, industrial development and policy.

1. Introduction
Artificial intelligence has been positioned as a key driver of
global change through a fourth industrial revolution, and AI
advances are actively transforming how we process, analyse
and learn from information [1–3]. The increasing relevance of
AI across disciplines and sectors has led to a wide variety
of views on the nature of this transformation, but it is most
often envisioned through a technological lens: self-contained
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AI technologies that change (or replace) the processes we use to work with information. However, the
technology-centric perspective that drives much of AI development and innovation fails to capture
important aspects of the complex, human contexts in which AI is used and is increasingly insufficient
to address the challenges of effectively and ethically using AI in real-world settings [4–6].

The ongoing changes in the AI landscape are not only affecting the scope and scale of AI use: they
are also reshaping what it looks like to work with AI technologies in practice. For most of its history,
AI has been a specialized, technical discipline, focused on methodological innovation and requiring
advanced training and significant computational resources to use effectively. As technologies have
matured, AI is in the midst of an expansion from expert technique to everyday toolkit, opening up
new opportunities for its use to ask novel questions and perform complex analyses without the need
for deep technical expertise or innovation [7,8]. This growth in the purposes for which AI is used
has outpaced the professional training and development of best practice required to ensure that AI
use is both effective and ethical. This has left significant knowledge gaps in the specific skills and
competencies involved in using AI in practice, especially in newer and more interdisciplinary contexts,
and the specific skills and competencies needed to work with AI as part of processing information.

Part and parcel of these knowledge gaps, and a key challenge created by the growth of AI applica-
tion and research, is the fact that different disciplines, fields, application contexts and stakeholders
have different conceptualizations of what AI is and what is involved in using it. Each discipline in
which AI is studied or used tends to define and operationalize AI in its own ways, with explicitly
interdisciplinary approaches to AI in practice being few and far between [9–11]. These different
conceptualizations of AI in disciplinary literature and applied contexts are rarely surfaced and often
in conflict with one another, functioning as competing epistemologies rather than complementary
viewpoints. As AI use becomes more urgently interdisciplinary, by virtue of the diversity of AI users
and the breadth of impact from AI applications, we need strategies to help partially reconcile these
different understandings of AI in practice and to work effectively across varied perspectives on AI to
develop shared practices for AI use.

In this article, I propose a novel framework, which I call AI Thinking, which holistically models key
decisions and considerations involved in bringing AI into practical use. AI Thinking is a conceptual,
competency-based model of the practices involved in applying AI in context, designed to help users
of AI systems ensure that their applications are both goal-driven and context-sensitive. To do this,
I approach AI as an information methodology, rather than an information technology, in the process
describing and affecting how we work with information as a whole. AI Thinking bridges disciplinary
perspectives, illustrating how the design and implementation of AI systems are inextricable from the
practical contexts they operate in and how the social systems surrounding AI are reshaped by the
process of computation. By providing practice-based connections between different disciplines and
practical contexts, AI Thinking encourages users to work with AI as an interconnected set of techni-
cal processes and social practices. By framing AI use in terms of the practices that connect specific
problems, technologies and contexts, AI Thinking highlights shared concerns and reference points that
help connect different definitions and practical understandings of AI. The AI Thinking framework thus
makes clearer links between academic disciplines and across diverse contexts of AI use and can help to
lower communication costs between different perspectives on what AI means and how to understand,
train people in and manage its use.

2. The value of a framework for AI in practice
The nature of working with AI, and the range of activities falling under the ‘AI’ umbrella, has been
changing dramatically. As the availability and ease of use of commercial AI technologies have transformed
perceptions of who can be an AI user, and potential value propositions and purposes for AI use have
expanded across professional contexts, shared reference points are needed to ground discussions of using
and managing AI and building best practice. The AI Thinking framework is intended to provide just such
shared reference points for the use of AI in practice, making it easier to join up different ways of thinking
about AI and the types of decisions and processes involved in its use.

2.1. Actors in AI ecosystems and users of AI Thinking

The question of who is seen as acting in the space of AI is highly contested, and the boundaries
between AI users, developers and those affecting AI use in practice are increasingly blurred [12–14].
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By focusing on the processes informing AI in practice, the AI Thinking framework avoids the need to
fix specific definitions and categories of AI actors, instead providing points of access, assessment and
intervention for anyone involved in a given process. AI Thinking thus adopts an ecosystem orientation
to AI [15] in which diverse actors interact with each other and the processes of AI use in multiple ways,
and the locus of action to shape the ecosystem is sited at these points of interaction.

AI Thinking is, therefore, relevant to users of AI systems, informing the way they interact with
AI systems, choosing inputs and working with outputs; AI developers, shaping the ways in which
AI technologies are designed and implemented to work in different contexts; IT and team managers,
determining the platforms and organizational practices with which AI use is managed; policymakers
(in organizations and government), setting the standards against which AI use will be measured; and
data subjects, to illustrate how their data inform the use of AI and its impacts in practice. These
roles may often cross over with one another, and with other roles and processes around AI, such as
marketing and sales, where AI Thinking can inform clearer communication of how potential users can
approach, benefit from and manage risk in AI use.

The AI Thinking framework is not intended to comprehensively address all of the decisions and
considerations relevant to each of these roles nor is it envisioned that any one individual will necessa-
rily work with or have the opportunity to shape all of the components of the framework. Rather, by
providing a shared understanding and language of a set of key practices, decisions and considerations
shaping AI use in practice, AI Thinking enables bridging between the different foci of varying and
evolving AI roles and providing points of entry to anyone involved in—or simply seeking to under-
stand—the processes of AI in practice.

2.2. Using the AI Thinking framework

AI Thinking is a multi-purpose descriptive framework that provides a common framing and structure
for different aspects of AI use in practice. It is, therefore, relevant to a wide range of contexts surround-
ing the training and management of AI actors and the production and use of AI systems. In education,
AI Thinking can help guide the training of AI professionals, including developers, technical managers
and AI researchers in technical and social sciences. In industrial practice, AI Thinking provides a
structure for bringing together interdisciplinary AI teams, structuring and managing their collabora-
tive efforts, tailoring AI systems to specific contexts of use and evaluating the efficacy of those systems
in practice. In policy and civil society, AI Thinking helps to illustrate the diverse points of assessment
and intervention around AI technologies in practice, supporting more effective measurement of AI
impacts and more targeted policy interventions and development of best practice. For the wider public,
AI Thinking can help to demystify AI and illustrate the ways in which AI in practice is fundamentally
shaped by familiar concerns of people and process and not solely the purview of often-inaccessible
technological innovation. I do not claim that the AI Thinking framework comprehensively addresses
what is needed for each of these purposes; rather, it provides a shared and tangible starting point for
building common understanding across these different areas of practice, which can then be supple-
mented with more context-specific resources.

3. Bridging AI divides across disciplines and contexts
To illustrate the need for a more interdisciplinary conceptualization of how we work with AI in
practice, I first outline key differences in the broad range of conceptualizations of AI. The aim of the
AI Thinking model is to bridge between competing (and sometimes incompatible) perspectives and
approaches across disciplines, including computer science and engineering, science and technology
studies, critical data/AI studies and the broad landscape of AI applications. Negotiating the varying
conceptualizations adopted in these fields, and the different visions they present of what matters most
in studying and managing AI, is one of the most significant current challenges in responsibly applying
and managing AI in practice. The competency-based model of AI Thinking presented in this article
reflects on these varied understandings together with the growing body of evidence on AI practices in
diverse settings, including research and innovation, business, health and policy [16–22]. In the sections
below, I briefly outline major differences in AI understandings and the historical contexts from which
AI practices and the AI Thinking model have emerged.
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3.1. Operational terminology

The current environment of rapid change in AI technologies and applications is also one of the rapid
changes in language. The range of disciplinary perspectives addressed in this article makes it necessary
to establish an operational terminology with which to describe AI in practice and to set the scope of
what aspects of AI technologies and practice are in focus.

3.1.1. AI use

I focus, in this article, on the use of AI for information processing—e.g. transforming and analysing
data, learning from evidence and informing action—common across many applications in business,
research, policy, healthcare and other decision-making settings. The AI Thinking framework has
potential to inform more creative uses of AI, e.g. for content generation or creative practice, and may
prove helpful in exploring evolving practice in this area. This focus on information processing does
not exclude the use of generative AI, which has significant (and developing) applications for both
information processing and creative use (cf. [23,24]).

3.1.2. AI technologies

Artificial intelligence, as a family of technologies, remains notoriously difficult to define. The evolv-
ing scope of AI technologies—i.e. specific models, algorithms and technological products—includes
interactive systems such as generative AI, foundation models for adapting general-purpose knowledge
and more specialized AI systems (sometimes referred to as ‘narrow’ AI) targeting specific applications
through bespoke machine learning or expert systems [25,26]. The use of ‘AI’ in this article does not
distinguish between these types of AI technologies but focuses on common processes and ways of
thinking that inform all of these types of AI in practice.

3.1.3. AI systems

AI use is often discussed in terms of ‘AI systems’, but the nature and boundaries of these systems
have varied definitions. In many cases, for example in industrial practice [27] or international policy
contexts [26], AI systems are defined in terms of software and technical systems alone. In presenting
the framework of AI Thinking, I follow thinking in critical data studies by taking a wider view of
the contexts in which AI software and technologies are inextricably situated and recognizing the
essential role of non-technical stakeholders and perspectives in setting the shape and the purpose
of AI technologies [28]. Attending to the broader milieu in which AI operates calls for a systems
thinking approach [29] and reflects the inherently sociotechnical nature of AI [6]. Thus, from an AI
Thinking perspective, an ‘AI system’ includes not only the software and technologies through which AI
computation occurs but also the broader system of people, data and processes that motivate and make
use of AI computation.

3.2. Differences in AI understandings across disciplines

The historical contexts of different fields and areas of AI application have naturally led to different
conceptualizations of the same ideas. These differences, which are not always immediately visible,
hinder the interdisciplinary dialogue and collaboration necessary to make AI use ethical, explainable
and effective in practice [7,30,31]. Differences especially in the language around AI and the scope
of who is involved in its application can also reflect deeper underlying differences in how AI is
conceptualized between disciplines and contexts, and what aspects of AI systems are considered most
important.

In my proposed AI Thinking framework, I aim to provide points of common reference and
comparison to work across different understandings of AI by joining up technical and social practices
involved in AI use. Here, I briefly outline three common ways of framing AI observed across differ-
ent disciplinary contexts: AI as a linear, cyclical and relational system. I show how an AI Thinking
approach can help to bridge their distinct perspectives on data, computation and the scope of AI
systems.

A linear understanding of AI, commonly encountered in computer science and engineering
disciplines, focuses on the process of computation: beginning with input data, performing a sequence
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of transformations and analyses and producing output for further use. On this framing, computation is
emphasized and data are pre-existing, material objects to be consumed, transformed and/or generated.
AI systems are typically considered through a technological lens, as separate concerns from the
production of data or use of AI outputs. This perspective is reflected in the directional flow diagrams
commonly used to illustrate AI model structures and data analysis in computing literature (cf. [32,33])
and some applications [34].

A cyclical understanding of AI, commonly seen in AI applications such as in healthcare or finance,
takes a more process-oriented view of AI use, including data collection, analysis, interpretation and
assessment, and action taken in response, which frequently produces new data for a subsequent cycle.
On this framing, computation is one piece of a larger process which forms the broader context for
AI systems as embedded technologies. Data are emphasized, as representative of the information
being moved, understood and acted upon in the overarching process. This perspective is reflected
in visualizations and discussion of AI systems in professional practice [35,36] and in the growing
literature on human–AI teaming [37,38].

A relational understanding of AI, more commonly encountered in social sciences and humanities
disciplines, focuses on the people, perspectives and purposes behind the use of AI in sociotechnical
contexts. A wide range of theoretical approaches are used to investigate AI from more relational
perspectives, including systems thinking [29] and assemblage theory [39], as well as more specific
models such as data journeys [40]. On this framing, computation is frequently a means rather than a
process, emphasizing what Amoore describes as ‘the capacity to generate an actionable output from
a set of attributes’ [41], and the data that describe these attributes are a dynamic and contested site
of practice. This perspective is frequently reflected in critical studies of AI and analyses of AI harms
[42,43]. The definition of AI systems adopted for this article most closely aligns with a relational
understanding of AI.

To create a cohesive model for AI use across disciplines, these differing understandings of AI must
be treated as what they are: equally necessary and informative for a full picture of AI Thinking. The
linear framing is essential for choosing between and working with specific AI technologies, which are
engineered to reflect a linear pathway from input to output. At the same time, the cyclical framing
is key to assessing data sources and their implications for stakeholders in the processes where AI is
brought to bear. And a relational perspective is required to understand the contextual motivators and
impacts of AI use, and how success and risk can be most meaningfully measured.

The AI Thinking framework reflects elements of each of these framings, helping to reveal intercon-
nections between them in practice and to find common ground within the interdisciplinary teams
necessary for AI research, application and regulation. AI Thinking thus helps to join up aspects of AI
systems: illustrating how the relational networks and data cultures affect the input data used for linear
computation, and interpret and use the output of that computation; and how the cyclical nature of
pre-existing processes helps to shape the linear process implemented in the design of an AI technology
for practical use. By understanding that these conceptualizations of AI are not in competition, but
rather reflect different and equally necessary parts of the same sociotechnical systems, AI Thinking can
help begin to create a cohesive model of AI use across disciplines.

3.3. Roots of AI Thinking: specialization and practice

As well as drawing on a variety of disciplinary conceptualizations of AI, the AI Thinking framework
explicitly builds on the practices of statistical thinking developed in the late nineteenth and early
twentieth centuries. Similar to the way statistical methodologies matured and gave rise to wider
statistical practices at the turn of the twentieth century, AI Thinking is rooted in the maturation of the
AI field and its expansion from a technical specialism into a broader methodology.

Early development and use of statistical methods were primarily a matter of mathematical research,
though often motivated by and entwined with the needs of states to understand changing popula-
tions [44]. As statistical methods matured, however, they began to have significant value for other
disciplines grappling with measuring and understanding complex phenomena, and by the mid
twentieth century statistical methodologies had grown far beyond the original bounds of statistics
as a specialized discipline and become essential to research and practice in psychology, medicine and
the natural sciences [45]. In the later twentieth and twenty-first centuries, statistical methods have
become increasingly essential to decision-making in business also [46]. While statistics has certainly
continued to develop as a rich discipline and its own specialism, fundamentals of statistical thinking—
considerations of sample size, recognition of random effects, uncertainty as part and parcel of research
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[47]—have become core competencies for contemporary research and practice across disciplines and a
wide variety of applied contexts [48].

AI methods are beginning to play a similar role, providing new tools for working with the increas-
ingly complex combinations of data and knowledge sources that characterize contemporary informa-
tion systems. AI techniques, particularly machine learning, are reshaping our ability to learn from
multiple information sources and combine data in complex ways. For example, in research spheres, the
rapid diffusion of AI methods across research practice, from combining exascale
imaging data [49] and protein folding [50] to supporting data analysis in clinical trials [51] and digital
humanities [52], is moving us towards a research ecosystem where using AI methods is necessary for
competitiveness in many areas of inquiry. Similar transformations are occurring in business, health-
care, policy and other areas of information processing [19,53–55]. Thus, while AI research as its own
specialism will also continue to mature, fundamentals of AI Thinking are needed to help inform why,
when and how to use AI methods effectively and to understand both their limitations and strengths.

Like statistical thinking, AI Thinking is rooted in the professional practices and knowledge that are
the foundation of training for experts in the field. Statisticians learn how to assess sample size, measure
uncertainty, characterize populations and so forth, and these are key building blocks with which
deeper expert knowledge is built [47]. Similarly, AI experts learn fundamental skills such as problem
formulation (i.e. mapping a particular application to a known type of task with established methodolo-
gies), selecting and managing data, choosing models and algorithms, and interpreting the results of
AI computation. But at this point, practices diverge. Expert statisticians develop deep knowledge of
mechanics and principles and may innovate with new measures and rich characterizations of complex
phenomena; AI experts develop deep knowledge of mathematical and cognitive theory, and may
innovate complex new model structures and learning algorithms. But for most users of these method-
ologies, this depth of expertise is unnecessary: the key knowledge is operational, knowing how to
develop an appropriate process to ensure reliable evidence or synthesize information. This operational
knowledge can then be combined with a deep understanding of the context in which the methods
are applied, whether in specialized research, policy, decision-making or other kinds of information
processing. This bifurcation into technical expertise on the one hand and operational methodology on the
other has come to characterize the dual—though actively contested—nature of statistics in practice [56]
and is a productive framing for approaching the emerging dual nature of AI.

It is important to note that AI Thinking is not the next evolution of statistical thinking nor does
it supplant statistical thinking. Indeed, as most contemporary AI relies on statistical methodologies,
statistical competence is essential to AI competence and helps AI users to cast a critical eye on the
uncertainty inherent in using AI methods. AI Thinking and statistical thinking thus sit alongside one
another as fundamental competencies shared across areas of working with information.

4. AI Thinking: an interdisciplinary, competency-based framework for AI
use in practice

AI Thinking is a conceptual, competency-based model of the practices, decisions and considerations
involved in applying AI systems in context. AI Thinking is process-oriented and practice-based;
competency models thus offer a natural fit for defining what AI Thinking looks like, and a practical
foundation for teaching AI Thinking as a foundational information skill across disciplines and contexts
[57]. I outline below five core competencies of AI Thinking, representing key skills for working with
AI methods as a practical information processing tool. As AI systems are typically a team effort, it is
not necessary that any one person master all five of these competencies; rather, they offer a way for
identifying and seeking out the skills needed in an AI team. These competencies present a starting
point for further expansion into a systematic AI Thinking framework, akin to the statistical thinking
model of Wild & Pfannkuch [47], and drawing on early development of professional competency
frameworks for AI [53,58].

The AI Thinking framework, illustrated in figure 1, comprises five major elements of working
with AI methods in practice: (i) initial alignment of AI use with process-oriented needs, (ii) the
formulation of AI approaches to respond to those needs, (iii) assessing and selecting potential AI
tools and technologies, to implement the chosen formulation, (iv) assessing and selecting data sources
to inform the chosen tools and technologies; and (v) ensuring the full lifecycle of AI system design,
implementation and management is rooted in the context of use. Figure 2 summarizes key elements of
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each of these five competencies and illustrates their interrelationships within a linearized process of AI
system design.

4.1. Process: motivating AI use by specific needs

Definitions of AI have changed as technologies have evolved, but AI research and innovation have
been consistently characterized by a focus on doing specific tasks, even as AI technologies themselves
have become more general-purpose [26]. However, adopting AI methods in practice is often motivated
by a pressure to be innovation-led and stay ahead of the technology curve rather than as a response
to specific needs for information processing that AI methods can help address [59]. The greatest
practical benefits from AI have historically been achieved when its use is motivated by specific needs
in the service of broader goals: e.g. development of AlphaFold for identifying candidate protein
structures from a vast possibility space [50]; now-ubiquitous speech recognition technologies initially
developed for supporting call centres [60]; and automated analysis of medical imaging to support
cancer diagnosis [61]. In each case, a particular part of the process was identified for AI intervention,
and AI use was guided by an understanding of that process.

Adopting a process-oriented motivation for AI use, and ensuring that AI applications are goal-
driven rather than innovation-led, is the first key competency of AI Thinking. Taking a process-orien-
ted approach to AI involves three distinct elements:

— AI use is goal-driven: developing a new AI technology or bringing an existing technology to bear
is motivated by a desire to make use of information in service of a specific goal.

— AI use has a defined scope within the process of achieving that goal, typically in terms of specific
steps or distinct operations needed. There may be multiple distinct scopes for AI use within a
process, which may be approached individually or jointly.

� ! 
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reliability

���
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"#$%&''
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Figure 1. Five key competencies of AI Thinking. These competencies are arranged in a circle to show that they are interrelated and
used in parallel rather than separate concerns addressed in sequence.
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— AI systems are designed to respond to specific opportunities arising within each scope for use, in
terms of specific information availability and information needs at each step. Not all steps of a
process will present appropriate opportunities for AI use.

This process-based approach does not preclude opportunities for innovation and discovery from using
AI in a more ‘end-to-end’ fashion to complete multiple steps or the entire process at once (discussed
further below), but approaching AI use from this foundation in process clarifies opportunities and
scope for intervention, provides multiple points for innovation as well as risk mitigation and ensures
that AI use is guided directly by desired goals. This approach of breaking down goals into distinct
steps for AI intervention is particularly valuable when information processes need to demonstrably
adhere to community norms and standards, as in research practice or business processes, or even by
statutory or regulatory requirements.

Beginning from a foundation in process, AI use in practice is then informed by the next AI Thinking
competency, describing and formulating the specific problem that AI use is intended to help solve.

4.2. Formulation: describing the problem to solve with AI

AI is a discipline of problem-solving, and identifying how best to describe the problems to be solved
has been a core component of AI development and use from its earliest days [62]. Problem formula-
tion involves creating formal descriptions of AI problems (typically what type of output should be
produced from some type of input) and is an essential step in bridging from the complexity of
real-world problems to the well-defined domain of mathematical models in AI systems. AI problem
formulations have evolved from stricter mathematical design under planning paradigms of AI [63,64]
to more operational definitions of tasks to perform and ways to conceptualize AI computation in
current machine learning paradigms [65], but the core step of formalizing the operation of an AI
system remains essential for AI development and evaluation.
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Figure 2. The competencies of the AI Thinking model. Each competency is aligned with one or more portions of a linearized
Illustration of the process of using AI.
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These shared definitions are powerful tools, making it possible to re-use and repurpose a common
base of AI models and methods. For example, approaching a new, complex text labelling problem
as a named entity recognition problem (in which text segments describing real-world referents are
identified) enables repurposing a wide existing base of technical methods for a new purpose [66].
However, as a variety of recent critical analyses have illustrated [67–69], problem formulation is
highly epistemically loaded, involving normative decisions about what matters in the operation of an
AI system and what that system can meaningfully say about its inputs and the world. Negotiating
the tension between the benefits of shared problem formulations and the epistemic positions they
represent is thus an essential part of AI use in practical contexts.

The second key competency of AI Thinking is thus understanding and negotiating the process
of problem formulation for AI systems in practice. This comprises three main elements:

— The AI task the system is to perform, such as image classification, text generation or speech
recognition. This defines the templates by which the system should operate, and opens up
opportunities for using some methods and models while closing the door on others.

— The output the system will produce: will it be one categorical label? Multiple numeric scores? A
sequence of text? This affects how the AI system can inform its users, and what it is capable of
saying about its inputs.

— If using a machine learning approach, the training signal from which the system will learn. This
includes both what will be used to signal the desired or undesired outcome of AI processing, and
the measures used to penalize errors and fit the AI model to the observed data.

Any practical information processing need where there is appropriate scope for AI intervention is
likely to be open to multiple alternative problem formulations and may in fact consist of multiple
related sub-problems. This space of possible formulations and decomposition of sub-problems is
illustrated by a wide range of examples of practical AI applications: Cheng et al. decompose
planning-based models for business decision-making into multiple related decision processes for
greater clarity and optimization [70]; Newman-Griffis & Fosler-Lussier compare AI paradigms for
categorizing functional status information [71] and Isagah & Ben Dhaou describe several diverse
examples of AI problem formulations in government [72].

Once a process-oriented goal for AI use has been transformed into specific problem formulations,
the third AI Thinking competency addresses using the affordances offered by different AI tools and
technologies to select appropriate methodologies.

4.3. Tools and technologies: assessing AI affordances

As AI technologies advance at a rapid pace, keeping track of the changing landscape can seem
unmanageable, and AI users often feel like new skills must be constantly relearned with each new
advance [73]. Comparing and contrasting available technologies for a given use of AI, and adapting
and responding to new technological advancements, are thus key skills for working with AI in practice
and building sustainable AI systems that can weather the storms of technological change.

The third key competency of AI Thinking is to conceptualize AI tools and technologies in terms
of the technological affordances they present, and how these affordances align with the intended use
of AI. Technology affordances [74] extend psychological affordance theory to describe the perceived
possibilities that a given technology offers to potential users, and the strengths and weaknesses
it presents for different possible uses. While any specific technology may be repurposed, hacked
or extended to do a wide variety of things beyond its original intended purpose, affordances are
a powerful way of characterizing likely and easily perceptible opportunities a technology offers,
which form a core functionality for practice. Focusing on affordances, and how they align to specific
information processing needs, thus provides a clear, process-oriented strategy for comparing available
AI technologies and for assessing new technologies—and the risk and reward in their adoption—when
they emerge [75].

Each AI tool and technology is engineered with a particular task in mind, and each offers specific
perceptible affordances for information processing. These affordances are dynamic, as new uses are
discovered and reshaped, and may go far beyond the original motivating task; for example, the growth
of prompt-based learning in generative AI [35] or the shift in use of AlexNet [33] and other benchmark
computer vision models from image classification to broader representation of image features for
many purposes [76]. Assessing the affordances of AI technologies involves four key components:
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— The purpose and AI paradigm for which a given technology was designed, including its connec-
tions to specific problem formulations as well as identifying where overlapping or complemen-
tary task definitions provide opportunities (and limitations) for interoperability and reuse.

— AI technologies have variable complexity and data requirements that affect their viability and
effectiveness for different applications. As a general rule, more complex AI models have greater
capacity to capture complex patterns and relationships but also require larger volumes of data
to work effectively. Task complexity and data availability vary widely across contexts and are
essential for selecting appropriate technologies.

— AI technologies must also be assessed in terms of their computational requirements, i.e. the
hardware required to execute model calculations efficiently. While the shift to cloud computing
has reduced the need to manage on-premise hardware, financial cost and environmental impact
of different AI technology options are directly driven by computing requirements.

— Each technology, and each task formulation underpinning it, presents strengths and limitations for
performing different tasks. These may be characterized by the initial research and development
of new models, emerge from later, evolving uses of those models, or be considered as adapta-
tions to an underlying framework.

Rather than assuming that newer or higher-performing technologies are necessarily better, assessing
the affordances of AI technologies along these dimensions provides a balanced way to select the
appropriate tool or technology for a given application. For example, in detecting and modelling rare
diseases, a simpler model may be preferable to data-hungry deep learning [77], while the reverse is
true for cancer detection and prognosis, where complex relationships between hundreds of variables
are needed and rich multi-modal data are available to learn from [78]. A large language model (LLM)
may be an appropriate choice for processing common financial reports [79], while more bespoke
analysis may be a better fit for analysing individual forms or detailed patterns of language use [80]. As
new technologies emerge, the same process of assessing their affordances can provide a clear pathway
to determining whether they should be adopted over current approaches and identifying what new
problems they may be fit to tackle.

With a process in mind and an understanding of the affordances on offer from different AI tools
and technologies to support that process, the next key competency of AI Thinking is identifying the
appropriate data sources to guide AI implementation for the desired goal.

4.4. Data: informing AI use with appropriate information

Data are often said to be the foundation of AI systems [20]. What is less often noted is that data
are also a choice, both in the process of their production and in their use in AI. The idea of ‘raw
data’, unprocessed and therefore neutral, lingers in technical discourses [27], but extensive scholarship
has shown how the production of data reflects multiple choices about what counts, what to collect
and what to record about a given subject [81–83]. There are also practical concerns of the compatibil-
ity of different data sources and datasets with the available tools and technologies, reflected in the
well-established central role of choosing appropriate training data in machine learning research [84].
In a process-oriented AI Thinking approach, the fourth key competency is thus to assess which of
the available data fields, sets and sources are most appropriate to inform the desired goals and the
processes in which AI is to be used.

Assessing data sources is thus a matter of both epistemology and practicality, with each having
significant power to affect bias and fairness of data and the ethical practices they reflect and act on
[81]. Different data choices will embed different distinctions and perspectives on the task at hand
and will work differently with available tools and technologies. While there are as many ways to
assess data as there are data points, practice-based assessment of data begins with three key criteria of
representativeness, informativeness and reliability:

— Representativeness has many (and contested) meanings [85] but can be broadly considered in
terms of data’s ability to reflect the full diversity of the people or situations they are meant to
convey information about.

— Informativeness can be distinguished from representativeness, in terms of how well data are
aligned with the desired goal for AI and how clearly they evince useful learning or patterns for
that goal [86].
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— Reliability includes noisiness as well as the likelihood of data being collected consistently and
accurately in practice [87,88].

Each of these criteria may be balanced differently for different situations and goals. For example,
foundation models are built on the principle of an extraordinary volume of data being sufficiently
informative and representative to capture diverse general patterns despite lower reliability; in scientific
analysis, data reliability may be paramount; in exploring alternative decisions a smaller set of diverse
and informative data may be more valuable than data representing population norms. In addition,
practical AI applications may involve multiple entry points for data with distinct balances between
these criteria: e.g. a diagnostic model in healthcare that begins with a foundation model and is
progressively fine-tuned with smaller datasets which may be less representative of human diversity
but are more informative for the diagnostic goal.

When exploring AI tools and technologies as options for intervening in a specific process, it is
thus essential to assess the appropriateness and fit of different data sources for the task at hand. The
final key competency of AI Thinking ties these three elements of process, tools and data for using AI
together in the specific contexts where AI is used in practice.

4.5. Context: shaping AI use, benefits and risks in situated practice

Using AI is, at its heart, about making use of computation to help us learn something, produce
something or do something in the world. As we have seen, the processes in which we bring AI to
bear, the tools and technologies we choose to use and the data sources we draw from each carry
with them pieces of a broader picture in which AI use is only one element moving between different
goals, actors and perspectives. When this broader picture is ignored, or left as a separate concern
from the technical design and use of AI systems, those systems inevitably miss the mark [89] and
may create substantive harm [90]. Recognizing the contexts in which AI use is always situated, and
understanding the implications of those contexts for AI’s effectiveness, benefits and risks is thus the
fifth key competency of AI Thinking.

There are, of course, many contextual aspects that bear on AI use, and analysing the sociotechnical
assemblages of AI in practice is the subject of a growing research literature (cf. [91–93]). Throughout
the design, implementation and management of bringing AI methodologies into practice, a strong
foundation for assessing AI contexts begins with:

— The stakeholders for the proposed use of AI. This includes those who set the initial goal for AI use
to support, as well as those who produce the data used by AI systems and make use in turn of
the outputs those systems produce.

— The rationales these different stakeholders have for using the AI system and what it is meant
to accomplish. For example, a senior leader may look to AI use for efficiency gains, while a
researcher or business analyst looks to the same system to produce a specific insight from the
complex data they work with.

— The risks posed by different points of failure or undesired behaviour in the AI system, with
respect to these rationales. For example, an LLM hallucination or a spurious relationship from a
machine learning model will have different impacts on an AI user, who may be concerned with
accuracy in a specific instance than on someone affected by an AI-informed decision process, for
whom recourse and minimizing harm are paramount.

— The measures of success for stakeholders in the AI system. Task-based performance metrics assess
how well an AI technology performs its stated role but may not capture the impact of that
technology on someone using it as one piece among many, for example in a decision-making
process.

These components of AI context may seem distant from the process of developing and implementing
AI tools and technologies, but they are essential to connecting that process to the people and processes
in which AI will actually be used. AI Thinking, as a model for bringing AI methodologies into practice,
thus aims to connect the dots between technology, the people who use it and the purposes it is meant
to serve.
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5. Case study of applying AI Thinking in practice
To illustrate the role of the AI Thinking framework in practice, I outline a hypothetical case study
of using AI for processing information about health and well-being, an area of practice where the
rich tradition of medical ethics highlights gaps in current approaches to AI ethics [94]. The case
study examines the use of AI methods as part of prioritization of patients for organ transplants, and
illustrates how AI application might unfold with and without AI Thinking.

5.1. Scenario

Prioritizing potential recipients for organ donation, and ensuring successful transplantation, are highly
time-sensitive and information-intensive processes. The use of rich data sources and AI systems to
help tackle these challenges has been growing, and we will take as our first illustration of putting AI
Thinking into practice a recent paper using machine learning-based simulations of transplant outcomes
to inform decision-making [95]. We will imagine an extension of this methodology, implemented for
prioritizing potential transplant recipients in a large health system serving a demographically diverse,
primarily rural population. We will consider the practices of the health informaticians building the AI
system, the healthcare professionals using it to inform transplants, the patients receiving transplants
and the health system administrators assessing service outcomes and quality.

5.2. Without AI Thinking

Health informaticians design the AI system to tackle the motivating need directly and rank poten-
tial recipients by outputting a single score based on an overall simulation of post-transplant health
outcomes. The score is calculated based on the simulated outcome of the transplant, which is based in
turn on a combination of demographic and health data, including records of past healthcare encoun-
ters. The AI technology is implemented using a single central deep neural network, which is trained
based on a large volume of data sourced from the implementing health system as well as reference
data from a large urban system elsewhere in the country. This is done to provide the greatest amount
of data to learn from, in order to improve the model’s robustness and sensitivity to variation. The
model’s performance is measured by its fidelity to past transplantation decisions.

Most healthcare professionals take the output score of the AI system and combine it with other key
information, such as specific relevant laboratory results, distance to the patient, and size of the organ
relative to the patient, to decide who to call for transplant. Some professionals mistrust the AI system
and manually review health data to make recommendations, frequently arriving at different priority
scores than the AI technology. Health system administrators measure success of the process using
common service metrics such as 30 day mortality and rehospitalization rate. A periodic audit after a
year of using the AI system reveals that patients from urban areas are recommended for transplants
at a higher rate than patients from rural areas, and that racial disparities in health outcomes are more
pronounced for rural patients. These differences are consistent across professionals who use the AI
system, and less pronounced for some who avoid it while being more pronounced for others. Patients
and families are left with limited information about why they were not selected for transplant or why
outcomes were worse than expected, with minimal transparency into the decision process or recourse
to contest it.

5.3. With AI Thinking

Re-examining the situation with the AI Thinking framework helps to bridge gaps between understand-
ings and practices in this scenario and to reduce the racial and geographic disparities observed in
health outcomes.

5.3.1. Process

Prioritizing transplant recipients is the overall goal, but this is implemented in professional practice
by combining a number of standard key variables with an overall understanding of a patient’s health
status [96]. Through discussion between the health informaticians and healthcare professionals, the AI
technology is instead designed to target the more specific scope of assigning a transplant score to the
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patient’s health status specifically. The other variables used in the ranking process are clearly defined
by clinically motivated rules, and not considered targets for AI intervention.

5.3.2. Formulation

The need for transparency and accountability for health system administrators, and for insight
to support clinical discretion for healthcare professionals, means that rather than a single atomic
score the task is formulated as simulating multiple component health outcomes, represented as
clinically motivated categories or continuous scores. These component outcomes are then transparently
combined to an overall score by an adjustable formula. This system is trained based on the final
ranking, which combines the AI-produced health score with the other, rule-based variables used by the
clinicians, to model its use in practice.

5.3.3. Tools and technologies

Rather than a single, large deep neural network, which imposes significant data and computation
requirements for the health system, the component health outcome models are implemented using a
mixture of support vector machines, random forests and smaller, targeted neural network models, with
significantly lower technical requirements and greater opportunity for accountability and explainabil-
ity in the modelling process.

5.3.4. Data

A review of the available data, motivated by healthcare professionals’ observations, shows that a
significant fraction of rural patients accessing the health system do so only through visits to the
emergency department [97], and that structural racial bias emerging from the system’s historical
context has produced unequal delivery of services to some racial groups. To reduce the structural
bias embedded into the AI system, the interdisciplinary team works together to avoid methods that
assume data are race neutral [98] and minimize reliance on data that are systematically missing for
rural patients.

5.3.5. Context

Input from all stakeholders—informaticians, healthcare professionals, health system administrators
and patients—is incorporated throughout the application of all other competencies. System perform-
ance and outcomes are measured by monitoring mortality and rehospitalization rates for transplant
patients and explicitly measuring population disparities. The additional transparency created in the
system by a process-oriented approach enables more proactive and constructive dialogue with patients
and families who are affected by the system decisions.

5.4. Summary

In this hypothetical scenario, the AI Thinking framework provides tangible opportunities to bring
together the interdisciplinary perspectives and experiences in the AI team in question. The decisions
and considerations represented in the AI Thinking model clearly identify points of reflection and
intervention to bridge disciplinary divides and help to capture risks of inequitable outcomes from the
system that were missed when not joining up stakeholders and disciplines. While this example might
well play out differently in practice, it helps to illustrate the role of AI Thinking in working across
disciplinary differences to bring AI into more thoughtful interdisciplinary use in practice.

6. AI Thinking in the broader AI discourse
Ongoing rapid transformations in AI have led to many different ways of framing important questions:
what AI can (and should) do and why, who should use AI and how, and what is required to achieve
real benefits with AI while managing its risks. This section situates AI Thinking within this broader
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discourse, with respect to three major reference points: AI literacy, end-to-end approaches to AI
technologies, and ‘AI-driven’ innovation.

6.1. AI literacy and AI Thinking

The need for broader AI literacy is well recognized, and strategies for developing AI literacy in
students, professionals and the public are rapidly evolving [99–101]. AI Thinking, as a model for
framing AI use in practice, complements current AI literacy efforts in two ways. AI literacy discussions
focus primarily on formal education, whether in schools or higher education [102–104]; AI Thinking
provides a model to guide training and self-learning in professional and practice-based settings. AI
literacy also focuses primarily on understanding how AI works and what its implications are, either
from others’ use or from one’s own use of AI tools produced by others [101,105]; AI Thinking describes
the competencies required to use AI methodologies as one piece among many in the context of
broader evidence-based practice. AI Thinking may be considered as an element of AI literacy, at
least for practice-based audiences, but its focus on AI practice and its methodological, context-based
perspective is important to distinguish from more general-purpose AI literacy efforts.

6.2. A process model versus ‘end-to-end’ innovation

As 15 years of deep learning advances have made more complex tasks more achievable for machine
learning, the movement towards ‘end-to-end’ AI approaches has continued to pick up steam. End-to-
end AI treats a sequence of related tasks, each of which may be simple or difficult on its own, as
a single, highly complex problem, such as in drug discovery [106], speech recognition [107] or even
autonomous driving [108]; this allows (it is argued) for greater innovation and discovery of unantici-
pated relationships and approaches to solving difficult problems. AI Thinking, as a process-oriented
approach involving decomposing goals into multiple specific points for AI intervention, seems at first
to run counter to the end-to-end model. However, a process-based orientation does not necessitate a
process-based intervention: with appropriate AI tools and technologies and supporting data sources
available, an end-to-end approach may well be supported under the AI Thinking model. What AI
Thinking provides is a clearer framework for identifying whether an end-to-end or a step-by-step
approach is most appropriate to the specific goal, tools, data and context at hand. Process-based AI
Thinking can also help to identify clearer points for evaluation, control and risk mitigation in complex
AI systems, helping to tackle some of the longstanding problems in end-to-end approaches [109].

6.3. AI Thinking or AI doing? Being AI-informed rather than AI-driven

The idea of ‘AI-driven’ innovation has gained common currency in recent years, in diverse settings
including policy [110], science [111] and business [55]. While the meaning of the term varies in practice,
an ‘AI-driven’ framing creates a persistent narrative of innovation and discovery being led directly
by the use of AI technologies, as opposed to AI supporting the process as one tool among many. The
framing of ‘AI Thinking’, rather than a more action-oriented ‘AI doing’, emphasizes the role of AI as a
support tool and reflects the purpose of the model to describe the design considerations and decisions
made in setting up the use of AI, before that informed use then leads to specific action. AI Thinking
is thus more oriented towards AI-informed design and use, in which AI functions as part of a larger
sociotechnical system [112].

7. Conclusion
AI methodologies are transforming the way we work with information. A wide range of disciplines
study, use and develop AI and its transformations, but the different perspectives on AI and its use
adopted by these disciplines are often in conflict. New approaches are needed to effectively combine
the practical insights and analytic methods offered by different disciplines, and to build more holistic
interdisciplinary practices informing AI applications in context.

In this article, I have proposed a novel conceptual framework called AI Thinking, which models
key decisions and considerations to help bridge disciplinary perspectives on AI in practice. Just as
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statistical thinking transformed our use and understanding of growing information in the nineteenth
and twentieth centuries [113], so AI Thinking can help transform information processing in the
twenty-first century. I have presented a competency-based model of AI Thinking, representing the
key practices involved in applying AI in context. These five competencies—orienting AI use in process,
formulating AI implementations, assessing the affordances of AI tools and technologies, selecting
appropriate data sources and situating AI use in context—provide a starting point for rethinking AI
skills and training to facilitate more interdisciplinary application of AI, as well as bridging disciplinary
perspectives on how AI systems can be better designed, assessed and managed. The AI Thinking
framework has relevance to a wide variety of actors in the AI space whose actions inform or are
affected by the use of AI in practice, including users, developers, managers and people whose data
are the subject of AI analysis. The framework provides a shared reference point to build common
understanding and language among these diverse actors and to inform efforts in AI education,
deployment and management, analysis and policy.

As AI Thinking is brought more systematically into practice, and AI use continues to become
more interdisciplinary in nature, the initial competencies presented here will be further tested and
expanded. Wider empirical study of AI practices and needs will be essential to further develop the
AI Thinking model and to keep it aligned with evolving AI practice. As the AI discourse continues
to grow and change, the relationships between AI Thinking, AI literacy and other key framings in AI
innovation and practice outlined here will further develop, enabling new connections and comparisons
to inform richer conceptualizations of AI in practice. Strengthening dialogue and collaboration on AI
practices across disciplines is vital to achieving practical benefits from AI use while reducing and
managing its risks. By bridging conceptual and disciplinary divides in AI research and practice, the AI
Thinking framework aims to help shape a more purpose-driven, effective and manageable future of AI
in practice.
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