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Abstract – The first course of control is under a critical 

review. Both the teaching material covered and the teaching 

methods require new considerations. Introducing interactivity 

in the education process makes the learning more successful and 

enjoyable. MATLAB provides an effective environment for 

learning and applying different disciplines. Control101 is a new 

MATLAB toolbox under development which provides tools for 

interactive learning of control disciplines. This paper presents 

the framework for teaching discrete control algorithms applied 

for processes containing large dead times. 
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I. INTRODUCTION 

    In recent years the control community has been evaluating 

and investigating the content and teaching methods of a first 

control course [1], [2], [3], [4]. Some important aspects are, 

for example, to focus on motivation and on discussing control 

concepts using interesting case studies, visualization and 

laboratories. These should emphasize the role of feedback 

and analyse its behaviour. Control algorithms should be 

designed both in the continuous and discrete environments, 

where discrete control algorithms are applied in computer 

control. The proposal is to use software to support 

computation and illustration and provide interactivity in the 

learning process. Interactivity makes the learning process 

more effective and more enjoyable. The community also 

would like to share learning and teaching resources to provide 

high quality learning experiences to all students [5], [6], [7]. 

Furthermore, it was noted that MATLAB is widely used to 

solve mathematical and technical problems, especially within 

control education. A new toolbox, Control101 is under 

development to support a first control course [8]-[11]. The 

authors are not aware of similar resources with the same 

objectives, although of course multiple resources exist with a 

much narrower remit. 

    This paper describes some new files developed for the 

Control101 toolbox providing interactive teaching materials 

to analyse discrete control algorithms used in sampled control 

systems. Besides the most frequently used PID algorithms 

(which have different forms), dead beat control, Smith 

predictor control and Youla parameterisation are presented 

[12], [13]. The behaviour of the algorithms is compared in the 

case of large dead times. 

    The paper is organised as follows. Section II gives some 

background on the use of MATLAB. Section III. introduces 

the Control101 toolbox.  

Section IV discusses the basic architecture of control of 

sampled systems used in computer control. Section V 

describes several discrete control algorithms which can be 

designed and evaluated by the elaborated mlx files in the 

toolbox.  Section VI compares the behaviour of the different 

algorithms through an example of control of a third order 

process with big dead time and demonstrates how the 

different algorithms tolerate mismatch in dead time. This is 

followed by the summary and the references. 

II.  THE USE OF MATLAB

    MATLAB is widely used in the control community, so 

many students may already be familiar with its use. Of 

particular relevance here, MATLAB provides a livescript 

environment (mlx files) which combines both notes and code 

within an integrated setting. A detailed explanation of a topic 

can be given, followed by the code required to do the 

associated computations and illustrations. When using the 

toolbox, a personalized copy of the file is created 

automatically so that students can analyse the behaviour 

using their own modifications. Fig. 1. illustrates the livescript 

environment. The explanation and the code appears in the left 

hand column on the screen, while the results are shown in the 

right hand column. Livescripts can be organised into sections, 

so that users only need to run the code snippets within a single 

section at a time. 

Fig. 1. Illustration of the livescript environment 

While m-files and mlx-files code are effective for handling 
simple analysis and simulation of linear systems, there are 
some aspects which can be better represented using block 
diagrams, thus exploiting the SIMULINK environment. 
Critically however, SIMULINK block diagrams can also be 
activated and run from within the livescript file, thus masking 
unnecessary detail and complexity from the user.  



A further observation is that while livescripts fill a 
function, they rely on the user understanding the associated 
code and linking this to the engineering scenario. A more 
intuitive environment would be more visual. Consequently, 
virtual laboratories (or mlapp files) can also be developed to 
provide an interactive environment which allows users to 
analyse and try different disciplines and scenarios. The 
interface allows the user to select buttons, sliders, drop down 
menus and so forth and the results are presented in figures and 
text as appropriate. Several examples are in the toolbox [9,10]. 

In summary, a holistic learning environment may contain 
both virtual laboratories and livescripts. The virtual 
laboratories introduce the concepts and allow the users to learn 
by trial and error, while the livescripts provide deeper 
understanding and practice in analysis and design.  

III. THE CONTROL101 MATLAB TOOLBOX

    A MATLAB toolbox [10] was proposed recently for a first 

control course, where the priority is helping students focus on 

core concepts and visualization, before getting into detailed 

coding. A first draft of the toolbox was released at the IFAC 

world congress in 2023. Since then new releases have added 

more basic and also advanced topics. The toolbox can be 

downloaded freely through Add-Ons option of MATLAB. 

The code is open source available at  

(https://github.com/jarossiter/control101, or 

https://sites.google.com/sheffield.ac.uk/controleducation/ma

tlabresources).  

The initial resources focused on a first control course and 
discuss the basic ideas of control. Mainly linear control 
systems are considered. The topics cover modelling of 
systems, describing the system behaviour in the time, operator 
and frequency domain, defining the quality specifications, 
analysing the properties of the control structure realised by 
negative feedback, stability considerations, controller design 
in continuous and discrete (sampled) control systems,  PID 
controller design in the Laplace/z-operator and in the 
frequency domain. The Control101 toolbox provides 
livescript files and virtual laboratories to study these topics.  

The purpose of this paper is to highlight some of the more 
recent resources which have been added. These cover topics 
which would more likely be covered in later or advanced 
control courses and thus allow continuity for students who are 
ready to move on from a first course and thus find relevant 
resources in the same place. The focus of this paper is 
specifically on sampled data systems. 

IV. CONTROL OF SAMPLED SYSTEMS

     In practice it is common for the control system to be 

realized by a process control computer equipped with real 

time facilities. The block diagram of a sampled control 

system is given in Fig. 2. The plant to be controlled is 

continuous. Its model is characterized by its transfer function 

G(s). The aim of the control system is to track a reference 

signal (here r[k]) and to attenuate the effect of any 

disturbances while meeting quality specifications (stability, 

static accuracy, prescribed dynamic response, robustness, 

etc.). The control is realized by negative feedback. The output 

y(t) of the plant is sampled with an appropriate sampling time. 

An A/D converter quantizes and digitalizes the signal and 

forwards it to the computer. The computer creates the 

reference signal at the sampling points, calculates the 

difference between the reference signal and the measured 

output signal, and a digital control algorithm, characterized 

by the M(z) pulse transfer function, calculates the control 

signal in the sampling points and forwards it to the input of 

the plant via a D/A converter, which provides a physical 

analogue signal. As the plant is continuous, a holding unit is 

required which produces the input between the sampling 

points. This is generally zero order hold (ZOH) unit, which 

keeps the actual control signal until the next sampling point.  

Fig. 2. Block diagram of a sampled control system 

The pulse transfer function M(z) of the controller is to be 

designed to meet the quality specifications (stability, static 

accuracy, dynamic behaviour, robustness). Assume the plant 

G(s) includes a large dead time (which frequently is transport 

delay). Several discrete control algorithms are given and their 

behaviour is compared using the related livescript files. 

V. DISCRETE CONTROL ALGORITHMS

    This section introduces 4 different control design 

approaches for discrete systems and the toolbox files that 

have been developed to support student learning and 

understanding of those approaches. 

A. PID control with pole cancellation

    The most frequently used control algorithms are some 

discretised forms of PID control, using proportional, integral 

and derivative effects applied on the error signal. The pulse 

transfer function of the controller is determined in pole-zero 

form. One form of the controller is given as a product of PI 

and PD effects. Its pulse transfer function is described as     

���� = � �	
�� ���

�	�  �	
�� ���

�  (1) 

and the control algorithm is executed by a difference 

equation. For example, in the case of only a PI controller the 

control signal is calculated by the following difference 

equation, which recursively calculates the current control 

signal from the actual and the previous error signal and the 

previous value of the control signal. 

���� = ����� − � exp �− �� ��
� � ��� − 1� + ��� − 1�   (2)

    One possibility to design the parameters of the controller 

is using a pole cancellation technique [12] based on 

frequency domain considerations.  

    Generally the biggest time constant of the plant model is 

cancelled and an integrating effect is introduced instead, and 

the second biggest time constant is also cancelled, being 

substituted by a differentiating effect. The gain can be 

calculated to ensure a phase margin of about 60° (obviously 

some fine tuning is possible if needed). It has to be 

emphasized that sampling and using a zero order hold 

introduces an extra delay in the system whose value is about 

half of the sampling time. 



    A virtual laboratory mlapp file has been prepared to do 

experiments with control of different plants and different PID 

controllers. Fig. 3. illustrates a possible use of this file. The 

related livescript file explains the controller design and 

provides the code which can be fitted to the design task. 

 Fig. 3. Interface of the PID controller designer virtual laboratory  

    For processes with a large dead time the settling time will 

be high and the control process will be slow. 

 The elaborated livescript file: 

• shows how to calculate the pulse transfer functions

of different elements.

• visualises the step responses of the PI, PD and PID

controllers.

• gives examples for controller design for a process

with different controllers.

• shows also the design for systems with dead time.

The students can change the process and design their own

controllers. The code snippet below (Fig. 4.) illustrates how 

the livescript supports student design, while emphasising the 

core design decisions required. Figure 4 shows the step 

responses in the sampling points with different controllers.  
%Frequency function with the PIPD controller 

[mag,phase]=bode(Lpipd,w); 

Table=[mag(:),phase(:),w'] 

%evaluate the table:The phase angle is -120° at w=0.2674. The gain here 

%is 0.0756.The cut-off frequency is located at this w value if is 

Apid=1/0.0756 

Mpipd=Apid*Mpipd; Lpipd=Apid*Lpipd; 

%check the phase margin 

margin(Lpipd) 

%Plot the output signal 

step(Lpipd/(1+Lpipd)),grid 

Fig. 4. Code snippet of PIPD design and the obtained outputs 

B. Dead beat control

    For discrete systems it can be prescribed that the output 

should reach the step reference value within finite sampling 

steps. So a faster settling process is expected. The pulse 

transfer function of the plant is given as: 

!��� = "���
#��� �	$  (3) 

where B(z) and A(z) are the numerator and denominator 

polynomials in the z variable and d is the discrete dead time, 

% = &'�(% �)*
)

+ 1�  (4) 

where �$ is the continuous dead time and �� is the sampling

time. It is desired that the settling would be realised within d 

steps. 

    The pulse transfer function of the closed loop is then 

prescribed as:   

 ���� = �	$  (5) 

and as for the closed loop the overall transfer function is: 
+���,���

�-+���,��� = ����  (6) 

the pulse transfer function of the controller is: 

���� = )���
,�����	)���� = #���

"�����	��*�  (7) 

The algorithm assumes a step reference signal here but can 

be extended to other reference signals as well. 

    If B(z) contains roots outside the unit circle (or in 

undesirable regions of the circle), then these should not 

appear in the denominator of the controller, as they would 

cause intersampling oscillations. In this case let us separate 

the numerator to the product of the cancellable .- and the

non-cancellable .	 factors, where the gain of .	 should be 1.
+���,���

�-+���,��� = ���� = .	��� �	$  (8) 

Hence the pulse transfer function of the controller is: 

���� = #���
"/�����	"���� ��*�  (9) 

    The elaborated livescript file supports the calculations of 

the dead beat controller design. After the explanation of the 

algorithm it shows some examples and calls also the 

corresponding SIMULINK file to demonstrate the behaviour. 

The students can try other examples as well in their own copy. 

Fig. 5. shows a code snippet and the results of the design, the 

control signal and the output signal obtained by calling the 

SIMULINK model. 

disp('Section 4.1: Design of a dead beat controller avoiding … 

%Continuous and discrete models 

s=zpk('s'); 

G=1/((1+4*s)*(1+10*s)); 

Ts=2;  %sampling time 

z=zpk('z',Ts); 

disp('The pulse transfer function') 

Gz=c2d(G,Ts); 

Gz1=Gz*z^-6; 

% define the controller 

% Extract the zeros, the poles and gain of the pulse transfer function 

[zer,p,k]=zpkdata(Gz,'v') 

A=(z-p(1))*(z-p(2))/(z*z); % expressed in terms of the shift operator 

Bminus=(z-zer)/(z*(1-zer))  % Scaled to give dcgain of unity 

Bplus=k*(1-zer); 

disp('The controller') 

Mz=A/(Bplus*(1-Bminus*z^-7)) 

disp('Closed-loop transfer functions') 

Gcuz=feedback(Mz,Gz1);  % Closed-loop transfer function … 

Gcyz=feedback(Gz1*Mz,1);  % Closed-loop transfer function … 

Fig. 5. Code snippet of dead beat design; the control signal and the output 

signal  



C.    Smith predictor  

    O.J. Smith [13] suggested a control algorithm which 

behaves as if the dead time would have been located outside 

of the feedback loop, as shown in Fig. 6, supposing a 

continuous control system. The upper figure shows the 

original control system, while the lower figure puts the dead 

time outside of the feedback loop. So the controller �-  is 

designed for the dead time free process thus ensuring a faster 

settling process. The design algorithm can be a PID 

controller. 
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Fig. 6. The idea of Smith predictor 

    For the equivalence of the two control circuits the 

following relationship can be given: 

                    
+ 0/ 
��*

�-+ 0/ 
��* = +/ 0/
�-+/ 0/

�	�)*                              (10) 

Hence the controller M is expressed as: 

      � = +/
�-+/ 0/��	
��*�                                     (11)  

    For continuous control it is difficult to realise the controller 

as the dead time does appear in the controller algorithm. This 

is not a problem in a discrete control system, where the pulse 

transfer function of the controller is given as: 

                      ���� = +/���
�-+/���,/��� ��	��*�                           (12) 

where !-��� is the pulse transfer function of the delay free 

process and d is the discrete dead time, i.e. the ratio of the 

dead time and the sampling time. 
disp('EXAMPLE 3.1: Design of Smith predictor controller') 

s=zpk('s'); G=1/(1+5*s)       % Continuous Model without the delay 

Ts=2.5;                       % sampling time 

z=zpk('z',Ts); 

% The pulse transfer function without the delay 

Gz=c2d(G,Ts);   %or alternatively Gz=c2d(G,Ts,'zoh'), discrete model 

[zer,pol,kd]=zpkdata(Gz,'v'); 

disp('The pulse transfer function with the delay') 

Gz1=Gz*z^-4                   % Discrete model with the delay 

disp('PI controller for the delay free process with pole cancellation')  

Mplus=(z-pol)/(z-1);          % PI structure  

Lz=minreal(Mplus*Gz,0.001); w=logspace(-1,0,200); [mag,phase]=bode(Lz,w); 

ki=margin(mag,phase-60,w);% choose gain of the controller for 60 deg PM 

Mplus1=ki*Mplus 

disp('The Smith controller') 

M=Mplus1/(1+Mplus1*Gz*(1-z^-4)); M=minreal(M,0.001) 

L=minreal(M*Gz1,0.001); 

T=minreal(L/(1+L),0.001); U=minreal(M/(1+L),0.001); 

           
 Fig. 7. Code snippet of Smith predictor design; the output signal and the 
control signal  

        The elaborated livescript file supports the calculations 

of Smith predictor design. After the explanation of the 

algorithm it shows some examples and calls also the 

corresponding SIMULINK file to demonstrate the behaviour. 

The students can try other examples as well in their own copy. 

Fig. 7. shows a code snippet and the results of the design, the 

output signal and the control signal. 

D.    Discrete Youla controller  

    The relationship between the z transforms of the u control 

signal and the r reference signal supposing no disturbances is 

given by the following relationship with the pulse transfer 

functions: 

                       
1���
2��� = +���

�-,���+���                                        (13) 

The pulse transfer function Q is called Youla parameter. The 

block diagram of the control system showing also the input 

and output disturbances is given in Fig. 8. 

 
Fig. 8.  Block diagram representation of control with the Youla parameter 

    The Q controller can be designed in open loop. The best 

controller choice would be 3 = !	�. Then the system will 

track the reference signal accurately. It should be mentioned 

that generally this pulse transfer function is not realisable. 

The open loop structure can not reject the effect of the inner 

and output disturbances. Therefore it is enhanced with 

internal model control (IMC) structure as shown in Fig. 9. 

This structure can be redrawn to get a usual feedback 

structure. 

    To get realisable control system the pulse transfer function 

is separated to the product of the invertible !-  and the 

noninvertible !	  factors, where the static gain of the 

noninvertible factor should be 1. 

                                ! = !-!	�	$                               (14) 

 
Fig. 9. Control with Youla parameter enhanced with IMC 

    In the open loop only the cancellable part of the model of 

the plant is cancelled. The control structure can be enhanced 

with the reference signal filter 45 and the disturbance signal 

filter 46 according to Fig. 10. The static gain of the filters 

should be 1.  With the filters the dynamic of reference signal 

tracking and of disturbance rejection will be different. The 

filters influence the maximum value of the control signal. 

With the filters the robustness properties of the control 

system can be improved. The block diagram can be redrawn 

as shown in Fig. 11. Now the Youla parameter is: 

                                       3 = 46!-
	�                                (15) 



 
Fig. 10. Control with Youla parameter using reference and disturbance filters 

 
Fig. 11. Rearranged control structure with filters 

       Summarising the design: The pulse transfer function of 

the process is separated to invertible and noninvertible parts. 

The filters are chosen. The Q parameter is calculated ensuring 

good reference signal tracking in open loop. The control 

system is realised in IMC structure or the controller is 

transformed to the usual feedback form. 

s=zpk('s'); disp('The process') 

Gp=1/((1+5*s)*(1+10*s)); 

G1=Gp*exp(-30*s) 

% Step response of the process 

to=0:0.1:150;yo = step(G1,to); 

Ts=1;  % The sampling time 

% The pulse transfer function of the process') 

z=zpk('z',Ts);Gd=c2d(Gp,Ts);Gdd=Gd*z^-30; 

Gdm=(1+0.9048*z^-1)/1.9048; 

Gdp=minreal(Gd/Gdm,0.000001); 

disp('The filters') 

Rn=1/(1+s)^2;Rr=1/(1+s)^2; 

Rrd=c2d(Rr,Ts);Rnd=c2d(Rn,Ts); 

%Youla design 

Q=Rnd/Gdp;Q1=minreal(Q,0.001); 

%Closed-loop transfer functions and simulation 

T=(Rrd/Rnd)*Q1*Gdd;U=(Rrd/Rnd)*Q1; 

t=0:Ts:150;y=step(T,t); 

plot(t,y,to,yo),grid 

title('The output signal');u=step(U,t); 

stairs(t,u),grid 

title('The control signal') 

        

        
Fig. 12. Code snippet of Youla parameterisation design; the output signal 
and the control signal  

     

   The elaborated livescript file supports the calculations of 

the Youla controller design. After the explanation of the 

algorithm it shows some examples and calls also the 

corresponding SIMULINK file to demonstrate the behaviour. 

The students can try other examples as well in their own copy.    

Fig. 12 shows a code snippet and the results of the design,  

the output signal and the control signal. 

VI. DISCRETE CONTROL ALGORITHMS IN CASE OF 

BIG DEAD TIME 

    In this section the proposed toolbox files are used to 

undertake the control designs described in the previous 

section and compare the results. Specifically, the behaviours 

of the control algorithms are compared in case of a third order 

lag element with big dead time. The effect of mismatch in the 

dead time is also shown. After running the four algorithms 

the outputs of the control system are stored and compared 

visualising them in one figure. In this example the transfer 

function of the plant is:  

                        !�7� = 8 
��9

��-:����-;����-�<�� 

The sampling time is  �� = 2 . Design a controller with the 

above discussed algorithms. Compare the step responses and 

the control signals. 

    The pulse transfer function of the plant is:  

                !$��� = <.<<?;�<:��-<.8<;����-8.?@:�
��	<.?<?A���	<.B�;A���	<	;<;A�  �	�< 

     The PID controller designed for 60° phase margin is 

                  �0CD��� = 0.394�� − 0.8187��� − 0.7165�
��� − 1�  

    The pulse transfer function of the dead beat controller is: 

�D"��� = �1 − 0.8187�	���1 − 0.7165�	���1 − 0.6065�	��
0.0404�1 − 0.21294�1 + 0.2061�	���1 + 2.894�	���	��� 

    In Smith predictor design the PID controller designed for 

the delay free process is: 

�-��� = 1.894�� − 0.8087��� − 0.7165�
��� − 1�  

and the Smith predictor is calculated by equation (12). 

    In Youla design let the filters be 3 serially connected 

discrete first order lag elements. The transfer function of the 

reference filter is 1/(1+2s) and the discrete filter is 

45��� = <.8A8;
��	<.M;B@�N  ; the transfer of the disturbance filter is 

1/(1+3s) and the discrete filter is  46��� = <.��A8
��	<.A�M:�N. 

The pulse transfer function is separated to 

!-��� = 0.040436
�� − 0.8187��� − 0.7165��� − 0.6065� 

and !	��� = 0.21294�� + 0.2061��� + 2.894� 

The Youla parameter is obtained as 

3 = 46���
!-

= 2.8491�� − 0.8187��� − 0.7165��� − 0.6065�
�� − 0.5134�M  

Fig. 13. shows the output signals of the different algorithms. 

It is seen that the dead beat, the Smith and the Youla 

algorithms result much faster behaviour than the PID control.  

The maximum value of the control signal in the dead beat, 

Smith and Youla control is much higher than the maximum 

value of the control signal in PID control. The higher control 

values result the faster settling process.  Fig. 14. demonstrates 

the effect of mismatch in the dead time in case of PID control, 

when the controller is designed for dead time of 20 sec, while 

in reality its value is 16 or 24 sec. It is seen that the PID 

control algorithm is quite robust tolerating this mismatch in 

the dead time. Fig. 15. demonstrates the effect of mismatch 

in case of dead beat control. Here instead of 20 sec the dead 

time is 18 or 22 sec. Dead beat control is not robust, it is very 

sensitive to the accurate knowledge of the dead time. Fig. 16. 

shows that Smith predictor control tolerates better the 

mismatch. Fig.17. shows the effect of mismatch in case of the 

Youla controller. With appropriately chosen filters the 

behaviour can be improved. 



    The fundamental observation in this section is that 

proposed livescript files have supported a number of 

systematic designs in an easy to use fashion and facilitated 

the generation of appropriate evaluations and plots. 

Fig. 13. Output signals of the different algorithms 

Fig. 14. Effect of mismatch in the dead time in case of PID control 

Fig. 15. Effect of mismatch in the dead time in case of dead beat control 

Fig. 16. Effect of mismatch in the dead time in case of Smith predictor 

Fig. 17. Effect of mismatch in the dead time in case of Youla controller 

VII. CONCLUSION

    The first course of control is under critical review 

regarding both the teaching material and methods. MATLAB 

is widely used in control courses. A new control toolbox, 

Control101 is under development; this uses livescripts with 

appropriate code and virtual laboratories to explain the theory 

while running examples and visualisation. Students can use 

these files interactively to investigate the effect of simple 

modifications and to support systematic design.  

    This paper has summarised a number of recent 

contributions to the toolbox with a focus on discrete control 

algorithms. Livescript files have been developed for 

interactive learning of discrete PID control, dead beat control, 

Smith predictor control and Youla parameterization are 

presented here. The paper has highlighted concisely the 

associated algorithms and the associated files the students can 

use to analyse and compare the behaviour of the algorithms 

even in case of big dead time considering also plant/model 

mismatch. These tools can make the learning process both 

interactive and enjoyable. It is expected that the students will 

benefit from using these interactive tools in learning basic 

control theory.  
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