
Discrete control algorithms for systems with big

dead time for control101 MATLAB toolbox

Ruth Bars, Gyula Max

Department of Automation and Applied
Informatics

Budapest University of Technology and

Economics

Budapest, Hungary

bars@aut.bme.hu,

maxgyula@freemail.hu

J. Anthony Rossiter

School of Electrical and Electronic
Engineering

University of Sheffield

Sheffield, UK

j.a.rossiter@sheffield.ac.uk

László Keviczky

Systems and Control Laboratory

Institute for Computer Science and

Control

Budapest, Hungary
keviczky@sztaki.hu

Abstract – The first course of control is under a critical

review. Both the teaching material covered and the teaching

methods require new considerations. Introducing interactivity

in the education process makes the learning more successful and

enjoyable. MATLAB provides an effective environment for

learning and applying different disciplines. Control101 is a new

MATLAB toolbox under development which provides tools for

interactive learning of control disciplines. This paper presents

the framework for teaching discrete control algorithms applied

for processes containing large dead times.

Keywords—control education, control101 MATLAB toolbox,

independent learning, discrete control algorithms, dead time.

I. INTRODUCTION

 In recent years the control community has been evaluating

and investigating the content and teaching methods of a first

control course [1], [2], [3], [4]. Some important aspects are,

for example, to focus on motivation and on discussing control

concepts using interesting case studies, visualization and

laboratories. These should emphasize the role of feedback

and analyse its behaviour. Control algorithms should be

designed both in the continuous and discrete environments,

where discrete control algorithms are applied in computer

control. The proposal is to use software to support

computation and illustration and provide interactivity in the

learning process. Interactivity makes the learning process

more effective and more enjoyable. The community also

would like to share learning and teaching resources to provide

high quality learning experiences to all students [5], [6], [7].

Furthermore, it was noted that MATLAB is widely used to

solve mathematical and technical problems, especially within

control education. A new toolbox, Control101 is under

development to support a first control course [8]-[11]. The

authors are not aware of similar resources with the same

objectives, although of course multiple resources exist with a

much narrower remit.

 This paper describes some new files developed for the

Control101 toolbox providing interactive teaching materials

to analyse discrete control algorithms used in sampled control

systems. Besides the most frequently used PID algorithms

(which have different forms), dead beat control, Smith

predictor control and Youla parameterisation are presented

[12], [13]. The behaviour of the algorithms is compared in the

case of large dead times.

 The paper is organised as follows. Section II gives some

background on the use of MATLAB. Section III. introduces

the Control101 toolbox.

Section IV discusses the basic architecture of control of

sampled systems used in computer control. Section V

describes several discrete control algorithms which can be

designed and evaluated by the elaborated mlx files in the

toolbox. Section VI compares the behaviour of the different

algorithms through an example of control of a third order

process with big dead time and demonstrates how the

different algorithms tolerate mismatch in dead time. This is

followed by the summary and the references.

II. THE USE OF MATLAB

 MATLAB is widely used in the control community, so

many students may already be familiar with its use. Of

particular relevance here, MATLAB provides a livescript

environment (mlx files) which combines both notes and code

within an integrated setting. A detailed explanation of a topic

can be given, followed by the code required to do the

associated computations and illustrations. When using the

toolbox, a personalized copy of the file is created

automatically so that students can analyse the behaviour

using their own modifications. Fig. 1. illustrates the livescript

environment. The explanation and the code appears in the left

hand column on the screen, while the results are shown in the

right hand column. Livescripts can be organised into sections,

so that users only need to run the code snippets within a single

section at a time.

Fig. 1. Illustration of the livescript environment

While m-files and mlx-files code are effective for handling
simple analysis and simulation of linear systems, there are
some aspects which can be better represented using block
diagrams, thus exploiting the SIMULINK environment.
Critically however, SIMULINK block diagrams can also be
activated and run from within the livescript file, thus masking
unnecessary detail and complexity from the user.

A further observation is that while livescripts fill a
function, they rely on the user understanding the associated
code and linking this to the engineering scenario. A more
intuitive environment would be more visual. Consequently,
virtual laboratories (or mlapp files) can also be developed to
provide an interactive environment which allows users to
analyse and try different disciplines and scenarios. The
interface allows the user to select buttons, sliders, drop down
menus and so forth and the results are presented in figures and
text as appropriate. Several examples are in the toolbox [9,10].

In summary, a holistic learning environment may contain
both virtual laboratories and livescripts. The virtual
laboratories introduce the concepts and allow the users to learn
by trial and error, while the livescripts provide deeper
understanding and practice in analysis and design.

III. THE CONTROL101 MATLAB TOOLBOX

 A MATLAB toolbox [10] was proposed recently for a first

control course, where the priority is helping students focus on

core concepts and visualization, before getting into detailed

coding. A first draft of the toolbox was released at the IFAC

world congress in 2023. Since then new releases have added

more basic and also advanced topics. The toolbox can be

downloaded freely through Add-Ons option of MATLAB.

The code is open source available at

(https://github.com/jarossiter/control101, or

https://sites.google.com/sheffield.ac.uk/controleducation/ma

tlabresources).

The initial resources focused on a first control course and
discuss the basic ideas of control. Mainly linear control
systems are considered. The topics cover modelling of
systems, describing the system behaviour in the time, operator
and frequency domain, defining the quality specifications,
analysing the properties of the control structure realised by
negative feedback, stability considerations, controller design
in continuous and discrete (sampled) control systems, PID
controller design in the Laplace/z-operator and in the
frequency domain. The Control101 toolbox provides
livescript files and virtual laboratories to study these topics.

The purpose of this paper is to highlight some of the more
recent resources which have been added. These cover topics
which would more likely be covered in later or advanced
control courses and thus allow continuity for students who are
ready to move on from a first course and thus find relevant
resources in the same place. The focus of this paper is
specifically on sampled data systems.

IV. CONTROL OF SAMPLED SYSTEMS

 In practice it is common for the control system to be

realized by a process control computer equipped with real

time facilities. The block diagram of a sampled control

system is given in Fig. 2. The plant to be controlled is

continuous. Its model is characterized by its transfer function

G(s). The aim of the control system is to track a reference

signal (here r[k]) and to attenuate the effect of any

disturbances while meeting quality specifications (stability,

static accuracy, prescribed dynamic response, robustness,

etc.). The control is realized by negative feedback. The output

y(t) of the plant is sampled with an appropriate sampling time.

An A/D converter quantizes and digitalizes the signal and

forwards it to the computer. The computer creates the

reference signal at the sampling points, calculates the

difference between the reference signal and the measured

output signal, and a digital control algorithm, characterized

by the M(z) pulse transfer function, calculates the control

signal in the sampling points and forwards it to the input of

the plant via a D/A converter, which provides a physical

analogue signal. As the plant is continuous, a holding unit is

required which produces the input between the sampling

points. This is generally zero order hold (ZOH) unit, which

keeps the actual control signal until the next sampling point.

Fig. 2. Block diagram of a sampled control system

The pulse transfer function M(z) of the controller is to be

designed to meet the quality specifications (stability, static

accuracy, dynamic behaviour, robustness). Assume the plant

G(s) includes a large dead time (which frequently is transport

delay). Several discrete control algorithms are given and their

behaviour is compared using the related livescript files.

V. DISCRETE CONTROL ALGORITHMS

 This section introduces 4 different control design

approaches for discrete systems and the toolbox files that

have been developed to support student learning and

understanding of those approaches.

A. PID control with pole cancellation

 The most frequently used control algorithms are some

discretised forms of PID control, using proportional, integral

and derivative effects applied on the error signal. The pulse

transfer function of the controller is determined in pole-zero

form. One form of the controller is given as a product of PI

and PD effects. Its pulse transfer function is described as

���� = � �	
�� ���

�	� �	
�� ���

� (1)

and the control algorithm is executed by a difference

equation. For example, in the case of only a PI controller the

control signal is calculated by the following difference

equation, which recursively calculates the current control

signal from the actual and the previous error signal and the

previous value of the control signal.

���� = ����� − � exp �− �� ��
� � ��� − 1� + ��� − 1� (2)

 One possibility to design the parameters of the controller

is using a pole cancellation technique [12] based on

frequency domain considerations.

 Generally the biggest time constant of the plant model is

cancelled and an integrating effect is introduced instead, and

the second biggest time constant is also cancelled, being

substituted by a differentiating effect. The gain can be

calculated to ensure a phase margin of about 60° (obviously

some fine tuning is possible if needed). It has to be

emphasized that sampling and using a zero order hold

introduces an extra delay in the system whose value is about

half of the sampling time.

 A virtual laboratory mlapp file has been prepared to do

experiments with control of different plants and different PID

controllers. Fig. 3. illustrates a possible use of this file. The

related livescript file explains the controller design and

provides the code which can be fitted to the design task.

 Fig. 3. Interface of the PID controller designer virtual laboratory

 For processes with a large dead time the settling time will

be high and the control process will be slow.

 The elaborated livescript file:

• shows how to calculate the pulse transfer functions

of different elements.

• visualises the step responses of the PI, PD and PID

controllers.

• gives examples for controller design for a process

with different controllers.

• shows also the design for systems with dead time.

The students can change the process and design their own

controllers. The code snippet below (Fig. 4.) illustrates how

the livescript supports student design, while emphasising the

core design decisions required. Figure 4 shows the step

responses in the sampling points with different controllers.
%Frequency function with the PIPD controller

[mag,phase]=bode(Lpipd,w);

Table=[mag(:),phase(:),w']

%evaluate the table:The phase angle is -120° at w=0.2674. The gain here

%is 0.0756.The cut-off frequency is located at this w value if is

Apid=1/0.0756

Mpipd=Apid*Mpipd; Lpipd=Apid*Lpipd;

%check the phase margin

margin(Lpipd)

%Plot the output signal

step(Lpipd/(1+Lpipd)),grid

Fig. 4. Code snippet of PIPD design and the obtained outputs

B. Dead beat control

 For discrete systems it can be prescribed that the output

should reach the step reference value within finite sampling

steps. So a faster settling process is expected. The pulse

transfer function of the plant is given as:

!��� = "���
#��� �	$ (3)

where B(z) and A(z) are the numerator and denominator

polynomials in the z variable and d is the discrete dead time,

% = &'�(% �)*
)

+ 1� (4)

where �$ is the continuous dead time and �� is the sampling

time. It is desired that the settling would be realised within d

steps.

 The pulse transfer function of the closed loop is then

prescribed as:

 ���� = �	$ (5)

and as for the closed loop the overall transfer function is:
+���,���

�-+���,��� = ���� (6)

the pulse transfer function of the controller is:

���� =)���
,�����)���� = #���

"�����	��*� (7)

The algorithm assumes a step reference signal here but can

be extended to other reference signals as well.

 If B(z) contains roots outside the unit circle (or in

undesirable regions of the circle), then these should not

appear in the denominator of the controller, as they would

cause intersampling oscillations. In this case let us separate

the numerator to the product of the cancellable .- and the

non-cancellable .	 factors, where the gain of .	 should be 1.
+���,���

�-+���,��� = ���� = .	��� �	$ (8)

Hence the pulse transfer function of the controller is:

���� = #���
"/�����	"���� ��*� (9)

 The elaborated livescript file supports the calculations of

the dead beat controller design. After the explanation of the

algorithm it shows some examples and calls also the

corresponding SIMULINK file to demonstrate the behaviour.

The students can try other examples as well in their own copy.

Fig. 5. shows a code snippet and the results of the design, the

control signal and the output signal obtained by calling the

SIMULINK model.

disp('Section 4.1: Design of a dead beat controller avoiding …

%Continuous and discrete models

s=zpk('s');

G=1/((1+4*s)*(1+10*s));

Ts=2; %sampling time

z=zpk('z',Ts);

disp('The pulse transfer function')

Gz=c2d(G,Ts);

Gz1=Gz*z^-6;

% define the controller

% Extract the zeros, the poles and gain of the pulse transfer function

[zer,p,k]=zpkdata(Gz,'v')

A=(z-p(1))*(z-p(2))/(z*z); % expressed in terms of the shift operator

Bminus=(z-zer)/(z*(1-zer)) % Scaled to give dcgain of unity

Bplus=k*(1-zer);

disp('The controller')

Mz=A/(Bplus*(1-Bminus*z^-7))

disp('Closed-loop transfer functions')

Gcuz=feedback(Mz,Gz1); % Closed-loop transfer function …

Gcyz=feedback(Gz1*Mz,1); % Closed-loop transfer function …

Fig. 5. Code snippet of dead beat design; the control signal and the output

signal

C. Smith predictor

 O.J. Smith [13] suggested a control algorithm which

behaves as if the dead time would have been located outside

of the feedback loop, as shown in Fig. 6, supposing a

continuous control system. The upper figure shows the

original control system, while the lower figure puts the dead

time outside of the feedback loop. So the controller �- is

designed for the dead time free process thus ensuring a faster

settling process. The design algorithm can be a PID

controller.

()M s () dsT
P s e

−

+

e(t) y(t)u(t)r(t)

-

()M s
+ ()P s

+

e(t) y(t)u(t)r(t)

-
dsT

e
−

Fig. 6. The idea of Smith predictor

 For the equivalence of the two control circuits the

following relationship can be given:

+ 0/
��*

�-+ 0/
��* = +/ 0/
�-+/ 0/

�	�)* (10)

Hence the controller M is expressed as:

 � = +/
�-+/ 0/��	
��*� (11)

 For continuous control it is difficult to realise the controller

as the dead time does appear in the controller algorithm. This

is not a problem in a discrete control system, where the pulse

transfer function of the controller is given as:

 ���� = +/���
�-+/���,/��� ��	��*� (12)

where !-��� is the pulse transfer function of the delay free

process and d is the discrete dead time, i.e. the ratio of the

dead time and the sampling time.
disp('EXAMPLE 3.1: Design of Smith predictor controller')

s=zpk('s'); G=1/(1+5*s) % Continuous Model without the delay

Ts=2.5; % sampling time

z=zpk('z',Ts);

% The pulse transfer function without the delay

Gz=c2d(G,Ts); %or alternatively Gz=c2d(G,Ts,'zoh'), discrete model

[zer,pol,kd]=zpkdata(Gz,'v');

disp('The pulse transfer function with the delay')

Gz1=Gz*z^-4 % Discrete model with the delay

disp('PI controller for the delay free process with pole cancellation')

Mplus=(z-pol)/(z-1); % PI structure

Lz=minreal(Mplus*Gz,0.001); w=logspace(-1,0,200); [mag,phase]=bode(Lz,w);

ki=margin(mag,phase-60,w);% choose gain of the controller for 60 deg PM

Mplus1=ki*Mplus

disp('The Smith controller')

M=Mplus1/(1+Mplus1*Gz*(1-z^-4)); M=minreal(M,0.001)

L=minreal(M*Gz1,0.001);

T=minreal(L/(1+L),0.001); U=minreal(M/(1+L),0.001);

 Fig. 7. Code snippet of Smith predictor design; the output signal and the
control signal

 The elaborated livescript file supports the calculations

of Smith predictor design. After the explanation of the

algorithm it shows some examples and calls also the

corresponding SIMULINK file to demonstrate the behaviour.

The students can try other examples as well in their own copy.

Fig. 7. shows a code snippet and the results of the design, the

output signal and the control signal.

D. Discrete Youla controller

 The relationship between the z transforms of the u control

signal and the r reference signal supposing no disturbances is

given by the following relationship with the pulse transfer

functions:

1���
2��� = +���

�-,���+��� (13)

The pulse transfer function Q is called Youla parameter. The

block diagram of the control system showing also the input

and output disturbances is given in Fig. 8.

Fig. 8. Block diagram representation of control with the Youla parameter

 The Q controller can be designed in open loop. The best

controller choice would be 3 = !	�. Then the system will

track the reference signal accurately. It should be mentioned

that generally this pulse transfer function is not realisable.

The open loop structure can not reject the effect of the inner

and output disturbances. Therefore it is enhanced with

internal model control (IMC) structure as shown in Fig. 9.

This structure can be redrawn to get a usual feedback

structure.

 To get realisable control system the pulse transfer function

is separated to the product of the invertible !- and the

noninvertible !	 factors, where the static gain of the

noninvertible factor should be 1.

 ! = !-!	�	$ (14)

Fig. 9. Control with Youla parameter enhanced with IMC

 In the open loop only the cancellable part of the model of

the plant is cancelled. The control structure can be enhanced

with the reference signal filter 45 and the disturbance signal

filter 46 according to Fig. 10. The static gain of the filters

should be 1. With the filters the dynamic of reference signal

tracking and of disturbance rejection will be different. The

filters influence the maximum value of the control signal.

With the filters the robustness properties of the control

system can be improved. The block diagram can be redrawn

as shown in Fig. 11. Now the Youla parameter is:

 3 = 46!-
	� (15)

Fig. 10. Control with Youla parameter using reference and disturbance filters

Fig. 11. Rearranged control structure with filters

 Summarising the design: The pulse transfer function of

the process is separated to invertible and noninvertible parts.

The filters are chosen. The Q parameter is calculated ensuring

good reference signal tracking in open loop. The control

system is realised in IMC structure or the controller is

transformed to the usual feedback form.

s=zpk('s'); disp('The process')

Gp=1/((1+5*s)*(1+10*s));

G1=Gp*exp(-30*s)

% Step response of the process

to=0:0.1:150;yo = step(G1,to);

Ts=1; % The sampling time

% The pulse transfer function of the process')

z=zpk('z',Ts);Gd=c2d(Gp,Ts);Gdd=Gd*z^-30;

Gdm=(1+0.9048*z^-1)/1.9048;

Gdp=minreal(Gd/Gdm,0.000001);

disp('The filters')

Rn=1/(1+s)^2;Rr=1/(1+s)^2;

Rrd=c2d(Rr,Ts);Rnd=c2d(Rn,Ts);

%Youla design

Q=Rnd/Gdp;Q1=minreal(Q,0.001);

%Closed-loop transfer functions and simulation

T=(Rrd/Rnd)*Q1*Gdd;U=(Rrd/Rnd)*Q1;

t=0:Ts:150;y=step(T,t);

plot(t,y,to,yo),grid

title('The output signal');u=step(U,t);

stairs(t,u),grid

title('The control signal')

Fig. 12. Code snippet of Youla parameterisation design; the output signal
and the control signal

 The elaborated livescript file supports the calculations of

the Youla controller design. After the explanation of the

algorithm it shows some examples and calls also the

corresponding SIMULINK file to demonstrate the behaviour.

The students can try other examples as well in their own copy.

Fig. 12 shows a code snippet and the results of the design,

the output signal and the control signal.

VI. DISCRETE CONTROL ALGORITHMS IN CASE OF

BIG DEAD TIME

 In this section the proposed toolbox files are used to

undertake the control designs described in the previous

section and compare the results. Specifically, the behaviours

of the control algorithms are compared in case of a third order

lag element with big dead time. The effect of mismatch in the

dead time is also shown. After running the four algorithms

the outputs of the control system are stored and compared

visualising them in one figure. In this example the transfer

function of the plant is:

 !�7� = 8
��9

��-:����-;����-�<��

The sampling time is �� = 2 . Design a controller with the

above discussed algorithms. Compare the step responses and

the control signals.

 The pulse transfer function of the plant is:

 !$��� = <.<<?;�<:��-<.8<;����-8.?@:�
��	<.?<?A���	<.B�;A���	<	;<;A� �	�<

 The PID controller designed for 60° phase margin is

 �0CD��� = 0.394�� − 0.8187��� − 0.7165�
��� − 1�

 The pulse transfer function of the dead beat controller is:

�D"��� = �1 − 0.8187�	���1 − 0.7165�	���1 − 0.6065�	��
0.0404�1 − 0.21294�1 + 0.2061�	���1 + 2.894�	���	���

 In Smith predictor design the PID controller designed for

the delay free process is:

�-��� = 1.894�� − 0.8087��� − 0.7165�
��� − 1�

and the Smith predictor is calculated by equation (12).

 In Youla design let the filters be 3 serially connected

discrete first order lag elements. The transfer function of the

reference filter is 1/(1+2s) and the discrete filter is

45��� = <.8A8;
��	<.M;B@�N ; the transfer of the disturbance filter is

1/(1+3s) and the discrete filter is 46��� = <.��A8
��	<.A�M:�N.

The pulse transfer function is separated to

!-��� = 0.040436
�� − 0.8187��� − 0.7165��� − 0.6065�

and !	��� = 0.21294�� + 0.2061��� + 2.894�

The Youla parameter is obtained as

3 = 46���
!-

= 2.8491�� − 0.8187��� − 0.7165��� − 0.6065�
�� − 0.5134�M

Fig. 13. shows the output signals of the different algorithms.

It is seen that the dead beat, the Smith and the Youla

algorithms result much faster behaviour than the PID control.

The maximum value of the control signal in the dead beat,

Smith and Youla control is much higher than the maximum

value of the control signal in PID control. The higher control

values result the faster settling process. Fig. 14. demonstrates

the effect of mismatch in the dead time in case of PID control,

when the controller is designed for dead time of 20 sec, while

in reality its value is 16 or 24 sec. It is seen that the PID

control algorithm is quite robust tolerating this mismatch in

the dead time. Fig. 15. demonstrates the effect of mismatch

in case of dead beat control. Here instead of 20 sec the dead

time is 18 or 22 sec. Dead beat control is not robust, it is very

sensitive to the accurate knowledge of the dead time. Fig. 16.

shows that Smith predictor control tolerates better the

mismatch. Fig.17. shows the effect of mismatch in case of the

Youla controller. With appropriately chosen filters the

behaviour can be improved.

 The fundamental observation in this section is that

proposed livescript files have supported a number of

systematic designs in an easy to use fashion and facilitated

the generation of appropriate evaluations and plots.

Fig. 13. Output signals of the different algorithms

Fig. 14. Effect of mismatch in the dead time in case of PID control

Fig. 15. Effect of mismatch in the dead time in case of dead beat control

Fig. 16. Effect of mismatch in the dead time in case of Smith predictor

Fig. 17. Effect of mismatch in the dead time in case of Youla controller

VII. CONCLUSION

 The first course of control is under critical review

regarding both the teaching material and methods. MATLAB

is widely used in control courses. A new control toolbox,

Control101 is under development; this uses livescripts with

appropriate code and virtual laboratories to explain the theory

while running examples and visualisation. Students can use

these files interactively to investigate the effect of simple

modifications and to support systematic design.

 This paper has summarised a number of recent

contributions to the toolbox with a focus on discrete control

algorithms. Livescript files have been developed for

interactive learning of discrete PID control, dead beat control,

Smith predictor control and Youla parameterization are

presented here. The paper has highlighted concisely the

associated algorithms and the associated files the students can

use to analyse and compare the behaviour of the algorithms

even in case of big dead time considering also plant/model

mismatch. These tools can make the learning process both

interactive and enjoyable. It is expected that the students will

benefit from using these interactive tools in learning basic

control theory.

REFERENCES

[1] Rossiter, J.A., Serbezov, A., Visioli, A., Zakova, K. and Huba, M., A
survey of international views on a first course in systems and control
for engineering undergraduates, IFAC Journal of Systems and
Control, Vol. 13, Article 100092, 15 pages, 2020.
https://doi.org/10.1016/j.ifacsc.2020.100092

[2] Rossiter, J.A., B. Pasik-Duncan, S. Dormido, L. Vlacic, B. Jones, and
R. Murray, 2018, Good Practice in Control Education, European
Journal of Engineering Education,
http://dx.doi.org/10.1080/03043797.2018.1428530 .

[3] Rossiter,J.A., Christos G. Cassandras, João Hespanha, Sebastian
Dormido , Luis de la Torre, Gireeja Ranade , Antonio Visioli, John
Hedengren, Richard M. Murray, Panos Antsaklis, Francoise Lamnabhi-
Lagarrigue, Thomas Parisini, 2023, Control education for societal-
scale challenges: A community roadmap, Annual Reviews in
Control, 55 (2023), pp. 1-17.

[4] Murray, R.M., Waydo, S., Cremean, L. and Mabuchi, H., 2004, A new
approach to teaching feedback, IEEE Control Systems Magazine, 24,
38-42

[5] Guzman, J.L., Costa-Castello, R., Berenguel, M. and Dormido, S.,
2023, Automatic control with interactive tools, Springer.
https://doi.org/10.1007/978-3-031- 09920-5

[6] Douglas, B., 2022, Resourcium, https://resourcium.org/

[7] Serbezov, A., Zakova, K., Visioli, A., Rossiter, J.A., Douglas, B. and
Hedengren, J., 2022, Open access resources to support the first course
in feedback, dynamics and control, IFAC Symposium on Advances in
Control Education.

[8] Rossiter, J.A., 2021, Modelling, dynamics and control website,
http://controleducation.group.shef.ac.uk/mainindex.html

[9] Rossiter, J.A., 2022, MATLAB apps to support the learning and
understanding of simple system dynamics, IFAC Symposium on
Advances in Control Education (ACE,2022)

[10] Rossiter, J.A., 2024, A novel MATLAB toolbox for Control101
courses, European Journal of Control, 2024.
https://doi.org/10.1016/j.ejcon.2024.101041

[11] Rossiter, J.A., Visioli, A., Dormido, S. and Bars, R., 2024, A
MATLAB virtual laboratory to support learning of auto-tuning PID
approaches, 4th IFAC Conference on Advances in Proportional-
Integral-Derivative Control.

[12] Keviczky, L., R. Bars, J. Hetthéssy and Cs. Bányász, 2019, Control
Engineering and Control Engineering: MATLAB Exercises, Springer.

[13] Smith, O.J. 1957, Closer Control of Loops with Dead Time, Chemical
Engineering Progress, 53. pp. 217-219.

