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Matrix Coding Enabled Impact Mitigation against

Primary False Data Injection Attacks in
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and Ruilong Deng, Senior Member, IEEE

Abstract—The impact mitigation against false data injection
attacks (FDIAs) has become a prevailing topic in enhancing
the cyber resilience of microgrids. In particular, the primary
FDIA (PFDIA) injecting biases into the sensor channel of the
primary controller can fake the real physical states and result in
devastating control commands to the power conversion device.
Nevertheless, existing impact mitigation schemes cannot handle
the PFDIA due to the primary control’s strict real-time require-
ment. Therefore, this paper proposes a time- and cost-efficient
impact mitigation scheme against the PFDIA by alternately
encoding the transmitted measurement with an invertible coding
matrix. Specifically, when the PFDIA is detected by unknown
input observers (UIOs), two additional half-downsampled UIOs,
which only require simple multiplication, addition, and subtrac-
tion operations within each control cycle, will be triggered to
obtain the residuals under encoded and unencoded data. The
complete bias vector can be then reconstructed recursively from
these two residuals, and the bias will be removed from the
compromised data to eliminate the malicious attack impact.
Based on the theoretical analysis of reconstruction performance,
the coding matrix is optimised to minimise the system noises’
impact on reconstruction accuracy subject to the reconstruction
stability and the encoding’s hiddenness from the adversary.
Finally, extensive experimental studies are conducted to validate
the effectiveness, superiority, robustness, and lightweightness of
the proposed impact mitigation scheme.

Index Terms—Power system security, communication system
security, false data injection attack, attack mitigation, unknown
input observer, microgrid

I. INTRODUCTION

The Solarwind hack event disclosed in 2020 has been

verified to affect thousands of enterprises and government

agencies worldwide including the U.S. Department of Energy

[1], attracting significant attentions on the cybersecurity issue

of national critical infrastructure such as the power grid. The
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recently reported incidents against renewable energy com-

panies including Enercon [2] and Vestas [3] imply that the

massively penetrated distributed energy resources (DERs) are

becoming the adversary’s new targets under the rapid decar-

bonisation and digitalisation. Microgrids, which can manage

the DERs in a local distribution area autonomously, have

been widely implemented to integrate the massively penetrated

DERs. It is thus necessary to analyse the potential cyber threats

in microgrids and develop appropriate defense strategies to

counter against them.

Focusing on cyber threats in operational technology, special

attention is being paid to false data injection attacks (FDIAs)

targeting the hierarchical control framework of microgrids [4],

[5]. As shown in Fig. 1, the primary controller is responsible

for the regulation of local states, whose references can be ad-

justed by the secondary controller to achieve global objectives

such as load sharing [6]. Considering the cyber vulnerabilities

from TCP/IP communication [7], supply chain [1], and field

bus communication [8], five typical FDIAs against the primary

and secondary controllers are demonstrated. These FDIAs

can easily disrupt the control performance, induce voltage

instability, and trigger protective isolation, finally resulting

in cascading failure and power outage [9], [10]. Therefore,

numerous defense strategies, including protection, detection,

mitigation, and recovery, are needed to enhance the cyber

resilience of microgrid under FDIAs [11]. This paper mainly

focuses on the during-attack impact mitigation phase, which

is usually activated after detecting anomaly to stabilise the

system for the following-up recovery planning.

In full recognition of the vulnerabilities of standard TCP/IP

based communication protocols [7], which are widely utilised

in the information exchange between secondary controllers,

many impact mitigation schemes have been proposed against

the secondary FDIA (SFDIA) that tampers with commu-

nication data (①). Based on the realisation that the norm

of the total disagreement in a DER will deviate from the

norm of disagreements among neighbors during the SFDIA,

Abhinav et al. devised trust-based cooperative controllers to

mitigate the adverse impact on achieving consensus [12].

On perceiving that the received data is compromised, an

event-driven attack-resilient controller was designed to replace

it with the neighboring trustworthy signal to guarantee the

synchronisation under up to N − 1 attacked units [13]. By

adaptively decreasing the weight of the communication link

when it is subject to attacks, a resilience-enhanced secondary
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Fig. 1: This figure illustrates the five typical FDIAs against primary and
secondary controllers in microgrids.

controller was presented to reduce the harmful consequence

resulting from corrupted signals [14]. To address the instability

induced by attacks, Leng et al. provided an optimal design

framework for power electronic systems and extended the

modeling prophecies to decipher the sensitivity analysis with

respect to multi-valued cyber attacks [15]. In recognition of

the power line interconnections between DERs, Liu et al.

designed a detection-triggered recursive bias reconstruction

scheme through strategically deploying current sensors on

power lines [16].

Having equivalent severity with the corruption of commu-

nicated signal, the hijacking of controller has also been paid

particular attention, especially with the increasingly disclosed

supply chain vulnerabilities against critical infrastructure like

the Solarwind [1]. Numerous impact mitigation approaches

against the FDIAs on commands ②, ④, where ④ is one of the

primary FDIAs (PFDIA). In utilisation of the adaptive control

principle, resilient secondary cooperative controllers were de-

veloped to correct the actions of contaminated commands as-

suming that the secondary communication is attack-free [17]–

[20]. By adopting the high-order differentiator [21] and sliding

mode observer [22], Jiang et al. designed resilient secondary

control algorithms to compensate for the adverse impacts

induced by the SFDIAs against leader and follower nodes.

Integrating the design of primary and secondary controllers

into a framework, resilient cooperative control schemes with

Lyapunov-based stability analysis was proposed to counter

against the distorted secondary and primary control com-

mands [23], [24]. With the introduction of a secure hidden

layer enabled by advanced software-defined networking and

blockchain technologies, resilient secondary controllers based

on the virtual states that interact with the vulnerable com-

munication network were provided to mitigate the impacts of

both corrupted communication signals and distorted control

commands [25]–[27].

With the adoption of industrial internet-of-things technolo-

gies, applications that connect field devices to the cloud have

rapidly emerged, thereby exposing microgrid’s unencrypted

real-time sensor channels to potential FDIAs (③, ⑤) [28].

Utilising the DC-DC converter’s voltage and current states

as inputs, Habibi et al. trained an artificial neural network

(ANN) to predict the parallel converter’s point of common

coupling (PCC) voltage reading such that the disruptive control

action resulting from the SFDIA on PCC voltages (③) could be

corrected [29]. Besides the centralised implementation, a fully

decentralised ANN was then devised to recover the converter’s

legitimate output current by utilising only the local renewable

source’s current and voltage control error [30]. Considering

the non-linearity resulting from the unknown constant power

load (CPL), Cecilia et al. implemented a high-order sliding-

mode observer to estimate the system states and CPL, which

were then used for impact mitigation through reconstructing

the attack signal which was injected into the local current

measurement [31]. To address the aforementioned method’s

limitations in practical implementations including the high

sensitivity to model uncertainty and measurement noise as

well as the nonadjustable convergence rate, a novel observer

consisting of the interconnection of three subsystems was

designed to achieve reliable and rapid estimation of bias

injections [32].

This paper mainly concerns about the impact mitigation

method against the PFDIA on measurements (⑤). Although

massive effort has been devoted to designing impact mitigation

schemes against the SFDIA on communication links (①) and

the FDIAs on control commands (②, ④), they are not applica-

ble to handling the compromised primary measurements as the

data exchange rate through secondary communication network

(second level) cannot meet the strict real-time requirement of

primary control (millisecond level). Similarly, the trained ANN

networks utilizing local measurements [29], [30] might be also

difficult to make predictions in the time scale of milliseconds

to satisfy the primary controller’s requirement. The recently

proposed observer-based impact mitigation schemes [31], [32]

can reconstruct the bias injection in a reliable and rapid man-

ner, but the sound performance is built on a strong assumption

that the voltage measurement is free from malicious bias

injections. To sum up, a rapid and accurate impact mitigation

scheme that can counter against the PFDIA tampering with

voltage and current measurements simultaneously (⑤) is still

lacking.

The unknown input observer (UIO) is an effective tool

in estimating the system states in the presence of unknown

input terms such as model uncertainty, and its effectiveness

of detecting FDIAs has been fully illustrated [33]–[35]. The

generated UIO residual not only reflects the measurement’s

inconsistency with DER dynamics, but also incorporates the

information of injected biases, which may provide possible

solutions for the bias reconstruction. Nevertheless, each UIO’s

reconstruction capability is limited and cannot deal with the

case where multiple measurements are corrupted. The matrix

coding is a lightweight encryption technology that first en-

codes the transmitted data by multiplying it with an invertible

matrix and then decodes the received data by multiplying it

with the coding matrix’s inverse [36]. Besides ensuring the

privacy of transmitted data, the matrix coding can also enable

the detectability against stealthy FDIAs since the received

data is not corrupted in the way expected by the adversary

[37]. Inspired by the proactive perturbation capability of

matrix coding, the UIO’s limitation in bias reconstruction
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may be resolved by encoding the transmitted data alternately.

Specifically, after detecting the PFDIA through UIOs [33],

the transmitted measurement vector will be encoded with an

invertible coding matrix every two sampling periods. Then,

two half-downsampled UIOs, which are linear and only require

simple multiplication, addition, and subtraction operations

within each control cycle, will be triggered to calculate the

residuals under encoded and unencoded data. The complete

bias vector can be reconstructed recursively from the two inde-

pendent residuals and will be removed from the compromised

data to mitigate the adverse impact. The main contributions of

this paper are as follows:

• We propose a rapid and accurate bias reconstruction

and impact mitigation scheme against the PFDIA ⑤ by

alternately encoding the transmitted measurement vector

with an invertible matrix, which is computation-friendly

and does not require additional device.

• We theoretically analyse the reconstruction performance

and prove that, under continuous bias injections, the

steady-state reconstruction error will be bounded when

the coding matrix is appropriately chosen.

• We provide an optimal design scheme for the coding ma-

trix such that the system noise’s impact on reconstruction

accuracy are minimised subject to the reconstruction sta-

bility and the encoding’s hiddenness from the adversary.

• We conduct extensive experimental studies in cyber-

physical co-simulated and full-hardware microgrid

testbeds to validate the effectiveness, superiority, ro-

bustness, and lightweightness of the proposed impact

mitigation scheme.

II. SYSTEM MODEL OF CYBER-PHYSICAL MICROGRID

We consider an isolated DC microgrid consisting of N ≥ 2
DERs, where the DC-DC converter is commanded to supply

the local ZIP load through a resistor-inductor-capacitor (RLC)

filter as shown in Fig. 2. Let set A = {1, · · · , N} include the

DER nodes, then the cyber communication and physical elec-

trical networks can be represented by weighted bidirectional

graphs Gc = {A, Ec} and Gel = {A, Eel}, respectively. The

cyber edge set Ec consists of the communication links and

their edge weights are denoted by aij , ∀(i, j) ∈ Ec. Set N c
i

comprises the cyber neighbors of DER i. The physical edge

set Eel collects the power lines and the edge weight is the

corresponding line conductance, i.e., 1
Rij

, ∀(i, j) ∈ Eel. The

physical neighbors of DER i are denoted by set N el
i .

Since the microgrid is operated around the nominal refer-

ence PCC voltage Vref,i, the CPL PCPL,i can be linearised at

this nominal point as ICPL,i = −PCPL,i

V 2

ref,i

Vi + 2
PCPL,i

Vref,i
, where

the former term is a negative impedance related to the actual

PCC voltage Vi and the latter term is an equivalent constant

current. Afterwards, the original ZIP load can be represented

as an equivalent of constant impedance (ZLi) and current (ILi)

loads, i.e.,

1

ZLi
=

1

Zi
−

PCPL,i

V 2
ref,i

, (1)

ILi = ICCL,i + 2
PCPL,i

Vref,i
, (2)

where Zi and ICCL,i denote the original constant impedance
and current parts of the ZIP load, respectively. Based on the
linearised ZIP load (1)-(2), the dynamics of the RLC filter
inside DER i can be acquired based on the Kirchhoff voltage
and current laws and the quasi-stationary line approximation,
i.e., Lij ≈ 0, as



















dVi

dt
=

1

Cti

Iti+
∑

j∈Nel
i

1

CtiRij

(Vj − Vi)−
1

Cti

(ILi +
Vi

ZLi

)

dIti

dt
= −

1

Lti

Vi −
Rti

Lti

Iti +
1

Lti

Vti

, (3)

where Vti denotes the converter’s regulated voltage, Iti rep-

resents the output current from the DER such as renewable

sources, and Rti, Lti, and Cti are the RLC filter parameters.

Denote the system state by xi = [Vi, Iti]
T, the system

dynamics (3) can be rewritten as

ẋi(t) = Aiixi(t) + biui(t) +midi(t), (4)

where Aii, bi, and mi are the system matrix, control input vec-

tor, and unknown input vector, respectively, and are detailed in

Appendix A. The primary control input ui(t) = Vti(t) is the

voltage regulation command of the DC-DC converter and the

unknown input di(t) = ILi(t) +
∑

j∈N el
i
− 1

Rij
Vj(t) includes

the current load as well as the physical interconnections with

neighboring DERs.

In line with the digital signal driven microcontroller, the
continuous dynamical model (4) is discretized with sampling
time Tsamp and is augmented with fully measured system
states along with bounded process and measurement noises,
which is formulated as the regular state-space model:

{

xi(k + 1) = A
d
iixi(k) + b

d
i ui(k) +m

d
i di(k) + ωi(k)

yi(k + 1) = xi(k + 1) + ρi(k + 1)
, (5)

where system parameters Ad
ii, b

d
i , and md

i are derived from the

original parameters in (4) and their connections are detailed

in appendix A. The system states are fully measured as output

vector yi(k), and the bounded process and measurement

noises satisfy |ωi(k)| ≤ ω̄i and |ρi(k)| ≤ ρ̄i, respectively.

To accurately track the reference PCC voltage, the primary
control input ui(k) is calculated based on the following
Proportional-Integral tracking algorithm as

ui(k) =
(

g
P
i

)

T
y
p
i (k) + g

I
i

k
∑

l=0

(

Vref,i + αi(l)− κ
T
y
p
i (l)

)

, (6)

where gP
i and gIi are proportional and integral control gains,

respectively, y
p
i (k) is the local outputs available to the primary

controller that is equal to yi(k) in the normal case, and αi(k)
denotes the secondary control input that is computed by util-

ising the data transmitted over the secondary communication

network. Constant vector κ = [1, 0]T is to extract the PCC

voltage information for the derivation of accumulated voltage

tracking errors.

The secondary controller is implemented on top of the
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Fig. 2: In this figure, the left part depicts the cyber-physical architecture of microgrid, the middle part shows the detailed cyber-physical couplings and the
PFDIA surface, and the right part illustrates the work flow of the proposed bias reconstruction and impact mitigation method based on two half-downsampled
UIOs in the presence of alternate matrix coding.

primary controller to regulate the voltage tracking reference

utilising the incoming data from neighboring DERs to achieve

the microgrid’s overall objective such as current sharing [6].

Following the principle of distributed consensus control, the

secondary control input is computed as

αi(k) = ιT
k

∑

l=0

∑

j∈N c
i

acij(
ys
i,j(l)

Istj
−

y
p
i (l)

Isti
), (7)

where ys
i,j(k) denotes the output vector of DER j ∈ N c

i

transmitted over link (i, j) ∈ Ec, which is equal to y
p
j (k)

in the normal case, Istj > 0 and Isti > 0 are the rated

output currents corresponding to DERs j and i, respectively,

and constant vector ι = [0, 1]T is to extract the accumulated

current discrepancy among DERs.

A. Attack Model

As the integration of standard field-level communication

protocols such as RS485 and Modbus into grid-tied DER

systems and microgrids, their scalability and interoperability

have been greatly enhanced to enable the remote monitoring,

configuration, and maintenance services for the massive pen-

etration of renewable energy sources (RESs) as shown in sub-

figure (a) of Fig. 3. According to the user manuals of four

mainstream inverter manufacturers including HUAWEI [38],

SUNGROW [39], SOliS [40], and GROWATT [41], the smart

meter’s reading will be relayed to the inverter device installed

near RESs via a smart logger, where the data exchanged is

implemented through either RS485 or Modbus communication

protocols, to achieve rapid and efficient control functionalities.

The smart logger is also connected to the public internet via

a router or cellular tower so that the logged data can be

conveniently uploaded to the cloud server through advanced

internet-of-things technologies such as WiFi and 4G/5G. The

implemented architecture can provide the owner with numer-

(a) Communication architecture supported by mainstream inverter manufactur-
ers and practical attack surfaces according to recent attack accidents.

(b) Two attack paths by exploiting practical attack surfaces.

Fig. 3: This figure illustrates the communication architecture and protocols
supported by four mainstream inverter manufacturers including HUAWEI
[38], SUNGROW [39], SOliS [40], and GROWATT [41], two practical attack
surfaces disclosed by recent attack incidents, as well as two attack paths by
exploiting these practical attack surfaces.

ous services including remote monitoring and configuration,

and remote maintenance to conveniently operate and manage

geographically dispersed RESs.

However, the digitalisation of operation and management
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process also exposes these critical RESs to numerous cyber

threats. Following two practical attack surfaces disclosed by

related attack incidents, we present two attack paths as shown

in sub-figure (b) of Fig. 3 that may be exploited by the realistic

adversary to launch PFDIAs. The most recent incident in 2024

was reported to hijack 800 remote monitoring devices of solar

panels and successfully engage in bank account thefts [42]. It

was addressed by security experts that the adversary is likely

infiltrate into the RES control system through utilising the

hijacked device as a springboard, adversely affecting the grid

operation. In light of this critical attack surface, attack path

I is presented: The adversary would first gain unauthorised

access to the cloud server by hijacking remote monitoring

devices, followed by lateral movement to infiltrate the field-

level control network. By exploiting existing or zero-day cyber

flaws, the smart logger could be eventually compromised to

manipulate the data flow forwarded to the inverter/converter

device. The infamous SolarWinds hack event in 2020 [1] was

evidenced to affect thousands of enterprises and government

agencies worldwide such as the U.S Department of Energy

by inserting malicious code into the updated software, also

known as supply chain attacks. Based on this well-known

attack surface, attack path II is provided: The adversary would

first craft malicious firmware and then insert it into the update

repository after passing the integrity check for firmware [43].

Finally, the malicious firmware would be updated into the

smart logger such that biases could be injected into the meter

readings [44] after receiving remote hacker’s commands via

the preinstalled backdoor.

After justifying the possibility of launching PFDIAs within

realistic communication architecture by exploiting practical at-

tack surfaces, the subsequent will focus on illustrating PFDIA’s

mathematical model. In this paper, we consider the PFDIA that

constantly injects biases into the primary controller’s sensor

readings. Specifically, in DER i, the PFDIA is modelled as

PFDIA : y
p
i (k) = yi(k) + ϕ

py
i (k) (8)

where ϕ
py
i denotes the continuous bias vector designed by the

adversary to achieve malicious objectives [35]. The impact

mitigation scheme in this paper is designed for general attack

forms while not having other requirements besides the attack

vector’s continuity. Moreover, the adversary is assumed to have

no knowledge of the DER electrical parameters, controller

gains, and deployed mitigation strategies, under which it would

be hard for the adversary to design the stealthy PFDIA vector

that can bypass the UIO-based detector. It is noted here

that the exclusion of stealthy PFDIAs is to ensure that all

considered attacks are detectable by the UIO-based detector,

while it does not mean that the proposed bias reconstruction

scheme is applicable only to the random or naive PFDIAs.

By contrary, the stealthy PFDIA vector could be accurately

reconstructed once the attack alarm was successfully flagged

for it, which, however, requires to improve the detectability

of UIO-based detector against stealthy PFDIAs and could be

possibly achieved through utilising the idea of moving target

defense [34].

Moreover, although the PFDIA and measurement error have

very similar impacts when viewed from the primary controller,

they have essential differences in origination: 1) The measure-

ment error denotes the measured quantity’s deviation from its

unknown true value and consists of random and systematical

errors [45], where the former reflects unpredictable fluctua-

tions of measurement apparatus’s readings, and the latter is

usually predictable and may be caused by imperfect calibration

of measurement instruments. 2) The PFDIA (8) models the

process where the adversary injects biases into transmitted

measurements by compromising the smart logger. Their differ-

ences in origination make the corresponding countermeasures

entirely different. For example, the idea of reconstructing

bias injections through introducing matrix coding into the

data transmission may not be applicable to the elimination of

measurement errors as they already exist before transmitting

them to the controller. In this paper, we mainly focus on

the bias reconstruction scheme under PFDIAs, assuming that

the measurement instrument has been configured properly to

avoid systematical errors, and considering that the random

measurement error can be modelled as bounded noise [46].

The bias reconstruction scheme will be designed to possess

strong robustness against these bounded measurement noises

as seen in the subsequent theoretical analysis (Section IV-B)

and experimental validation (Section V-A) parts.

B. Unknown Input Observer based Attack Detection

The UIO has shown great potential in detecting FDIAs for
large-scale interconnected systems such as microgrids [34],
[35]. The essential idea is to use the discrepancy between
actual measurements and estimated states to check if the
trajectory of received data satisfies DER’s physical dynamics
(5). Specifically, the UIO

p
i that checks the integrity of local

sensor readings is characterised by

UIOp
i :

{

z
p
i (k + 1) = F

p
i z

p
i (k) + T

p
i b

d
i ui(k) + K̂

p
i y

p
i (k)

x̂
p
i (k + 1) = z

p
i (k + 1) +H

p
i y

p
i (k + 1)

, (9)

where z
p
i is UIO

p
i ’s internal state vector and x̂

p
i is the

estimated DER i’s state vector. The UIO matrix F
p
i is chosen

to be stable, i.e., the real parts of its eigenvalues should satisfy

|λre
l (Fi)| < 1, ∀l ∈ {1, 2}, to converge the state estimation

error and matrix T
p
i is designed satisfying T

p
i m

d
i = 0

2×1 to

eliminate the impact of unknown input di. The principles of

choosing UIO matrices are provided in appendix B. The detec-

tion residual is derived by comparing the estimated state vector

with the actual measurement vector as r
p
i (k) = y

p
i (k)−x̂

p
i (k).

In the normal operation, based on (5) and (9), the residual form

can be derived as

r
p
i (k) = (F p

i )
k
(

r
p
i (0)− T

p
i ρi(0)

)

+ T
p
i ρi(k)

k−1
∑

l=0

(

F
p
i

)k−1−l(
T

p
i ωi(l)− K̂

p
i ρi(l)

)

, (10)

where the initial residual vector r
p
i (0) = 0

2×1 can be acquired

after strategically choosing the initial UIO state vector as

z
p
i (0) = T

p
i y

p
i (0). Given the bounded system noises, the upper
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bound of |rpi | can therefore be calculated as

|rpi (k)| ≤r̄
p
i (k) =

(

ν
p
i (ς

p
i )

k + 1
)

|T p
i |ρ̄i

k−1
∑

l=0

ν
p
i (ς

p
i )

k−1−l
(

|T p
i |ω̄i + |K̂p

i |ρ̄i

)

, (11)

where positive scalars ν
p
i ≥ 1 and 0 < ς

p
i < 1 are chosen

such that ||(F p
i )

k|| ≤ ν
p
i (ς

p
i )

k. The derived detection threshold

in (11) can tolerate the fluctuations resulting from bounded

system noises, and thus effectively avoiding the generation of

false attack alarms for them.

Once either of the following conditions is satisfied, attack

alarms will be triggered by UIO
p
i for the incoming data

r
p
i,V (k) > r̄

p
i,V (k) or r

p
i,I(k) > r̄

p
i,I(k), (12)

where the residual elements are decomposed from r
p
i =

[rpi,V , r
p
i,I ]

T and r̄
p
i = [r̄pi,V , r̄

p
i,I ]

T. Concurrently, the attack

alarm ϱ
p
i = 1 will be flagged to indicate that the local

measurement output y
p
i are suffering from FDIAs.

III. MOTIVATING EXAMPLE AND PROBLEM FORMULATION

The residual vector r
p
i generated by UIO

p
i can accurately

and rapidly perceive the existence of naive PFDIAs [33].

Furthermore, its extensions for uncovering stealthy PFDIAs

through strategically perturbing the converter control gains

have been well demonstrated [34], [35]. After knowing the

occurrence and location of PFDIAs, the forthcoming step is to

adopt appropriate actions to mitigate and eliminate the attack

impact. A hidden and often ignored fact is that the derived

residual r
p
i not only reflects the inconsistency between the

received data and the underlying DER physical dynamics, but

also incorporates the information of bias injections, which may

provide benefit for the reconstruction of these biases. To avoid

confusions from the previous part, variable r
pa
i derived from

r
p
i is adopted to denote the residual vector under PFDIAs,

whose expression can be calculated from (5), (8), and (9) as

r
pa
i (k + 1) = F

p
i r

pa
i (k) + T

p
i ϕ

py
i (k + 1)+

− T
p
i A

d
iiϕ

py
i (k) + ξ

p
i (k + 1), (13)

where term ξ
p
i (k+1) = T

p
i ρi(k+1)−T

p
i A

d
iiρi(k)+T

p
i ωi(k)

denotes the system noise’s impact. After neglecting the noise

term, an intuitive bias reconstruction scheme can be derived

from (13) as

T
p
i ϕ

py
i (k + 1) = T

p
i A

d
iiϕ

py
i (k) + δ

pa
i,r(k + 1), (14)

where term δ
pa
i,r(k + 1) = r

pa
i (k + 1) − F

p
i r

pa
i (k) represents

the residual discrepancy from the previous time instant.

The key deficiency of the reconstruction scheme (14) is that

it is unable to obtain the complete bias vector ϕ
py
i as matrix T

p
i

is not full-column-rank according to (39), which means that

at most one bias entry in ϕ
py
i can be reconstructed from (14).

Therefore, it is necessary to capture another relation between

residuals and bias injections such that the complete bias vector

can be reconstructed.

The matrix coding scheme provides a convenient way to

capture the relation between residuals and bias injections in the

presence of data encoding. As shown in sub-figure (a) of Fig.

(a) Illustration of the principle of matrix coding.

(b) Two integration schemes of encoding and non-encoding data streams.

Fig. 4: This figure introduces the principle of matrix coding and two
integration schemes (parallel and sequential) of encoding and non-encoding
data streams.

4, in sensor i, the measurement vector y
p
i is first encoded, i.e.,

left multiplied by a coding matrix Mi, before being transmitted

out. After receiving the encoded data at primary controller i,

it is then decoded, i.e., left multiplied by the coding matrix’s

inverse M−1
i , to obtain the actual measurement vector in

normal cases. In the presence of PFDIAs, the encoded data

will be contaminated with bias ϕ
py
i , under which the decoded

data would be eventually calculated as y
p
i +M−1

i ϕ
py
i , where

M−1
i ϕ

py
i denotes the bias injection after decoding. Therefore,

the matrix coding scheme can be utilised to change the way

in which the injected bias would contaminate the transmitted

measurement vector. The resulting residual generated by UIO

could reflect the bias’s information after being left multiplied

by M−1
i . When integrated with (14), this may endow the

ability of reconstructing bias vector ϕ
py
i , provided the coding

matrix Mi is appropriately designed.

It also requires some considerations on the integration

scheme of the encoding and non-encoding data streams such

that the two mentioned relations between residuals and bias

injections can be successfully obtained for bias reconstruction.

The intuitive idea is to have the encoding and non-encoding

data streams in parallel as illustrated in sub-figure (b) of

Fig. 4, which can perfectly capture the two relations in the

original sampling rate and requires to establish only one extra

UIO. However, the parallel data streams have two practical

limitations: 1) The adversary can easily perceive the activation

of mitigation strategy after observing the increase of data

packet size, and may hesitate to inject bias into the added data

segment, which will directly fail the bias reconstruction. 2)

The extra data stream may increase the communication burden

between sensors and primary controllers, which may result

in severe communication latency and unacceptable control

performance degradation.

To address the above mentioned limitations, this paper

aims to integrate the encoding and non-encoding data streams

in a sequential manner as shown in sub-figure (b) of Fig.

4. In particular, encoding and non-encoding data will be

transmitted alternately with the original sampling rate such
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Fig. 5: This figure demonstrates the work flow of the matrix coding enabled impact mitigation scheme, where two half-downsampled UIO
pm
i↓ and UIO

p
i↓ are

established to reconstruct the complete bias vector and the newly generated residuals r
pm
i↓ and r

p
i↓ are utilised to form the holding conditions (31) and (32)

of attack alarm.

that the data stream can be kept unaltered to avoid unrealistic

adversary assumptions and unacceptable control performance

degradation. Two extra half-downsampled UIOs need to be

established to capture the relations between residuals and bias

injections, whose computation burden is negligible as only

simple operations are involved as validated in Section V-A.

Although the two half-downsampled UIOs synthesis the bias

information at two consecutive sampling steps, the captured

relations are still effective for bias reconstruction since the

bias injection is assumed to be continuous and its values at

two consecutive sampling steps in the scale of milliseconds can

be almost regarded as consistent. In the subsequent sections,

this paper will present the mathematical formulation and

theoretical analysis of the proposed matrix coding enabled

bias reconstruction scheme. The key issues needed to be

sorted out include 1) Establishment of the relations between

residuals and bias injections captured by half-downsampled

UIOs, 2) Theoretical performance analysis of the proposed

bias reconstruction scheme after integrating the two captured

relations, and 3) Optimal design of coding matrix to ensure the

stability of proposed bias reconstruction scheme and guarantee

the encoding scheme’s hiddenness from the adversary.

IV. MATRIX CODING ENABLED BIAS RECONSTRUCTION

AND IMPACT MITIGATION

This section first introduces the half-downsampled UIOs

under alternate matrix coding, then provides the bias recon-

struction and impact mitigation scheme, and finally optimally

design the coding matrix considering the reconstruction ac-

curacy and the encoding’s hiddenness from the adversary. As

shown in Fig. 5, after knowing the existence of PFDIA via

(12), the measurement vector will be encoded by invertible

matrix Mi every two sampling periods such that the bias in-

jections with and without encoding can be synthesised by half-

downsampled UIO
p
i↓ and UIO

pm
i↓ , respectively, which are then

utilised to reconstruct the complete bias vector. Before being

sent to UIO
p
i↓ and UIO

pm
i↓ , the encoded data will be decoded

by M−1
i to obtain the expected residuals for alarm holding and

bias reconstruction. In particular, the newly generated residuals

r
p
i↓, r

pm
i↓ will be incorporated into the holding conditions (31),

(32) of attack alarm to eliminate the adverse impacts on attack

detectability resulting from matrix coding.

A. Half-Downsampled UIOs under Alternate Matrix Coding

Once the attack alarm is flagged at k
p
i , two half-

downsampled UIO
p
i↓ and UIO

pm
i↓ with reduced sampling rate

1
2Tsamp

will be established. They have the same UIO param-

eters, but need to be run alternately to synthesise the original
and decoded bias injections into residuals. The forms of UIO

p
i↓

and UIO
pm
i,↓ for l ∈ {0, 1, 2, · · · } are written as

UIOp
i↓ :

{

z
p
i↓(k + 1) = F

p
i↓z

p
i↓(k) + T

p
i↓b

d
i↓ui(k) + K̂

p
i↓y

p
i (k)

x̂
p
i↓(k + 1) = z

p
i↓(k + 1) +H

p
i↓y

p
i (k + 1), k = k

p
i + 2l

(15)

and

UIOpm
i↓ :

{

z
pm
i↓ (k + 1) = F

p
i↓z

pm
i↓ (k) + T

p
i↓b

d
i↓ui(k) + K̂

p
i↓y

pm
i (k)

x̂
pm
i↓ (k + 1) = z

pm
i↓ (k + 1) +H

p
i↓y

pm
i (k + 1), k = k

p
i + 2l + 1

,

(16)

where the system parameters Ad
ii↓,m

d
i↓, b

d
i↓ and UIO parame-

ters F
p
i↓, T

p
i↓, K̂

p
i↓, H

p
i↓ are obtained according to (37) and (38)-

(42), respectively, with sampling step 2Tsamp. The time axis

k of (15) and (16) is in line with sampling step Tsamp for

convenience of the subsequent analysis of bias reconstruction,

and the alternate working mechanism of these two UIOs is

reflected in the expanded terms of k.

Under the PFDIA (8), the decoded data would be y
pm
i =

yi + M−1
i ϕ

py
i . For UIO

p
i↓, the residual vector under PFDIA

r
p
i↓ = y

p
i − x̂

p
i↓ can be derived as

r
p
i↓(k + 2) = F

p
i↓r

p
i↓(k) + T

p
i↓ϕ

py
i (k + 2)+ (17)

− T
p
i↓A

d
ii↓ϕ

py
i (k) + ξ

p
i↓(k + 2), k = k

p
i + 2l,

where ξ
p
i↓(k + 2) = T

p
i↓ρi(k + 2)− T

p
i↓A

d
ii↓ρi(k) + T

p
i↓ωi(k)

is the system noise related term. For UIO
pm
i↓ , the bias vector

that affects the residual will be left multiplied by matrix M−1
i ,

under which the residual vector r
pm
i↓ = y

pm
i − x̂

pm
i↓ satisfies

r
pm
i↓ (k + 2) = F

p
i↓r

pm
i↓ (k) + T

p
i↓M

−1
i ϕ

py
i (k + 2)+ (18)

− T
p
i↓A

d
ii↓M

−1
i ϕ

py
i (k) + ξ

p
i↓(k + 2), k = k

p
i + 2l + 1.

B. Bias Reconstruction and Impact Mitigation

The equations (17) and (18) capture the relations between
residuals and bias injections at even and odd sampling steps,
respectively. To derive the explicit bias reconstruction scheme,
the system noise term ϵ

p
i↓ is ignored first, with its impact on the

reconstruction accuracy being then investigated in Proposition
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1. Therefore, equations (17) and (18) can be written together
at k = k

p
i + 2l as

{

T
p

i↓φ
py
i (k + 2) = T

p

i↓A
d
ii↓φ

py
i (k) + δ

p

i↓,r(k + 2)

T
p

i↓M
−1

i φ
py
i (k + 3) = T

p

i↓A
d
ii↓M

−1

i φ
py
i (k + 1) + δ

pm

i↓,r(k + 3)
,

(19)

where δ
p
i↓,r(k+2) = r

p
i↓(k+2)−F

p
i↓r

p
i↓(k) and δ

pm
i↓,r(k+3) =

r
pm
i↓ (k + 3) − F

p
i↓r

pm
i↓ (k + 1). Since the injected bias ϕ

py
i is

assumed to be continuous, the bias injections at sampling steps

k and k+ 1 can be regarded as almost the same when Tsamp

is in the scale of milliseconds. To proceed with the subsequent

analysis, we define the half-downsampled bias vector as

ϕ
py
i↓ (k) ≡ ϕ

py
i (k) ≈ ϕ

py
i (k + 1), k = k

p
i + 2l, (20)

which indicates that the bias injections within each half-

downsampled step are considered to be the same. Substituting

(20) into (19), the relations between residuals and bias injec-

tions that enable the proposed bias reconstruction scheme can

be obtained as

T pm
i↓ ϕ

py
i↓ (k + 2) = T pm

Ai↓ϕ
py
i↓ (k) + ∆pm

i↓,r(k + 3), (21)

where T pm
i↓ = [T p

i↓;T
p
i↓M

−1
i ], T pm

Ai↓ = [T p
i↓A

d
ii↓;T

p
i↓A

d
ii↓M

−1
i ],

and ∆pm
i↓,r(k + 3) = [δpi↓,r(k + 2); δpmi↓,r(k + 3)]. The bias

reconstruction scheme can be thus derived from (21) as

φ
py,re

i↓ (k + 2) = T
pm

i↓,inv

(

T
pm

Ai↓φ
py,re

i↓ (k) + ∆pm

i↓,r(k + 3)
)

, (22)

where ϕ
py,re
i↓ denotes the reconstruction of ϕ

py
i↓ , and T pm

i↓,inv =
(

(T pm
i↓ )TT pm

i↓

)−1
(T pm

i↓ )T. The scheme (22) reconstructs the

bias vector every two sampling steps at k, and, at the middle

step k + 1, the reconstructed biases are kept the same as the

last reconstructed ones according to (20), i.e.,
{

ϕ
py,re
i (k) = ϕ

py,re
i↓ (k)

ϕ
py,re
i (k + 1) = ϕ

py,re
i↓ (k)

, k = k
p
i + 2l. (23)

The reconstructed bias vector will be removed from the
compromised sensor readings to eliminate the PFDIA’s impact
on primary and secondary controllers, which is formulated as

y
p,ct
i (k) =

{

y
p
i (k)− φ

py,re
i (k), k = k

p
i + 2l,

y
p
i (k)−M

−1

i φ
py,re
i (k), k = k

p
i + 2l + 1,

, (24)

where y
p,ct
i denotes the corrected local measurement vec-

tor. The performance of the bias reconstruction scheme (22)

can be affected by the initial reconstruction error φ
py,re
i =

ϕ
py
i − ϕ

py,re
i and system noises. Theoretical analysis of the

reconstruction accuracy under these disturbances is provided

as follows.

Proposition 1: Under continuous bias vector ϕ
py
i , small

enough sampling step Tsamp such that (20) holds with neg-
ligible approximation errors, and apparent residual alteration
|rpi↓ − r

pm
i↓ | resulting from matrix coding, the reconstruction

error will be bounded by

∣

∣ϕ
py,re
i (∞)

∣

∣ ≤ ϕ̄
py,re
i =

∞
∑

n=0

∣

∣T
pm

i↓,invT
pm

Ai↓

∣

∣

n∣
∣T

pm

i↓,inv

∣

∣Ξ̄p

i↓ (25)

regardless of the initial reconstruction errors if matrix

T pm
i↓,invT

pm
Ai↓ is Schur stable, i.e.,

∣

∣Re
(

λ(T pm
i↓,invT

pm
Ai↓)

)∣

∣ < 1, (26)

where Ξ̄p
i↓ is the noise term’s bound satisfying |Ξp

i↓(k)| ≤

Ξ̄p
i↓ = [ξ̄pi↓; ξ̄

p
i↓], |ξ̄pi↓(k)| ≤ ξ̄

p
i↓ = |T p

i↓|ρ̄i + |T p
i↓A

d
ii↓|ρ̄i +

|T p
i↓|ω̄i(k), and function λ(·) returns the eigenvalues of the

input square matrix.

Proof: Considering the system noise related term Ξp
i↓(k+3) =

[ξpi↓(k+2); ξpi↓(k+3)], the reconstruction dynamics (22) can

be rewritten as

ϕ
py
i↓ (k + 2) = T pm

i↓,inv

(

T pm
Ai↓ϕ

py
i↓ (k) + ∆pm

i↓,r(k + 3)+

+ Ξp
i↓(k + 3)

)

. (27)

Defining the downsampled reconstruction error as φ
py,re
i↓ =

ϕ
py
i↓ − ϕ

py,re
i↓ , and, without loss of generality, assuming that

the initial reconstructed bias vector is ϕ
py,re
i↓ (kpi ) = 0

2×1, then
by making the difference between equations (22) and (27), the
dynamics of the reconstruction error can be obtained as

ϕ
py,re

i↓ (k + 2) = T
pm

i↓,invT
pm

Ai↓ϕ
py,re

i↓ (k) + T
pm

i↓,invΞ
p

i↓(k + 3). (28)

Through direct calculation from (28), the expression of φ
py,re
i↓

can be derived as

φ
py,re
i↓ (k) =

(

T pm
i↓,invT

pm
Ai↓

)(k−kp
i
)/2

φ
py
i (kpi ) +

(k−kp
i
)/2−1

∑

n=0
(

T pm
i↓,invT

pm
Ai↓

)n
T pm
i↓,invΞ

p
i↓(k

p
i + 2n+ 3), k = k

p
i + 2l. (29)

According to (26), we have
(

T pm
i↓,invT

pm
Ai↓

)∞
→ 0

2×2, under

which the steady-state value of ϕ
py,re
i↓ will satisfy

|φpy,re
i↓ (∞)| =

∣

∣

∞
∑

n=0

(

T pm
i↓,invT

pm
Ai↓

)n
T pm
i↓,invΞ

p
i↓(k

p
i + 2n+ 3)

∣

∣

≤
∞
∑

n=0

∣

∣T pm
i↓,invT

pm
Ai↓

∣

∣

n∣
∣T pm

i↓,invΞ̄
p
i↓

∣

∣ = φ̄
py,re
i (30)

Since the bias vector ϕ
py
i is continuous and the sampling

step Tsamp is small enough, the bias alteration between

two consecutive sampling steps would be negligible, i.e.,

φ
py,re
i↓ ≈ φ

py,re
i . Therefore, the result (25) holds and the proof

is completed. ■

According to Proposition 1, the reconstruction error in

steady state will be bounded by the threshold determined by

system noises’ bounds once matrix T pm
i↓,invT

pm
Ai↓ is designed to

be Schur stable. The impact of initial reconstruction error on

the steady-state reconstruction error can be entirely eliminated

since the impact will decay exponentially with time in the

presence of Schur stable T pm
i↓,invT

pm
Ai↓ . The condition (26) can

be easily satisfied through choosing Mi such that Ad
ii↓M

−1
i =

M−1
i Ad

ii↓, where T pm
i↓ T pm

Ai↓ = Ad
ii↓ would be Schur stable

naturally. The larger residual alteration |rpi↓ − r
pm
i↓ | resulting

from matrix coding makes the two sub-equations in (19) more

divergent, such that the bias’s information can be reflected

more comprehensively. Besides the reconstruction stability and

residual alteration, the design of coding matrix also needs

to consider the encoding’s hiddenness from the adversary

and minimise the system noise’s impact on reconstruction
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accuracy, which will be elaborated in the next subsection.
Nevertheless, as the adoption of matrix coding, the de-

tectability of UIO
p
i may also be affected as half of the received

data is affected by original bias injections ϕ
py
i while the other

data is tampered with decoded bias injections (Mi)
−1ϕ

py
i .

From the perspective of UIO
p
i , the received data is discontinu-

ous, under which the alarm signal ϱ
p
i may not be hold via (12).

To avoid the adverse impact resulting from the adopted matrix
coding, after establishing UIO

p
i↓ and UIO

pm
i↓ , the generated

residuals r
p
i↓, r

pm
i↓ will also be utilised to hold the alarm signal

besides the bias reconstruction (22). Specifically, the detection
bounds corresponding to r

p
i↓ and r

pm
i↓ can be calculated

similarly to (11) and are denoted by r̄
p
i↓ and r̄

pm
i↓ , respectively.

At k = k
p
i + 2l, in addition to condition (12), the subsequent

newly incorporated conditions (31) or (32)

r
pm

i↓,V (k − 1) > r̄
pm

i↓,V (k − 1) or r
pm

i↓,I(k − 1) > r̄
pm

i↓,I(k − 1) (31)

r
p

i↓,V (k − 2) > r̄
p

i↓,V (k − 2) or r
p

i↓,I(k − 2) > r̄
p

i↓,I(k − 2) (32)

will also set ϱ
p
i as 1, where r

pm
i↓ = [rpmi↓,V ; r

pm
i↓,I ], r̄

pm
i↓ =

[r̄pmi↓,V ; r̄
pm
i↓,I ] and r

p
i↓ = [rpi↓,V ; r

p
i↓,I ], r̄

p
i↓ = [r̄pi↓,V ; r̄

p
i↓,I ].

C. Optimisation Problem for Coding Matrix

As mentioned in the previous subsection, the stability con-

dition (22) can be easily satisfied by letting Ad
ii↓M

−1
i =

M−1
i Ad

ii↓. However, this intuitively designed coding matrix

can make it quickly recognisable by the adversary as the

transmitted encoded data may deviate a lot from the normal

physical states, such as encoding the current measurement

as negative. Therefore, it is necessary to make the encoded

data indistinguishable from the real physical states. Moreover,

the reconstructed bias’s fluctuations resulting from system

noises and residual alterations caused by matrix coding should

also be carefully investigated. Considering the reconstruction

stability, encoding’s hiddenness from the adversary, system

noise’s impact, and residual alteration resulting from matrix

coding, the design of coding matrix Mi is formulated as a

constrained optimisation problem as follows:

minMi
∥ |T pm

i↓,inv|Ξ̄
p
i↓ ∥2 −α

pm
i↓ Γpm

i↓ (33)

s.t. (26),

|(Mi − I2)xref
i | ≤ σix

ref
i , (34)

−
(

det(Mi)
)2

≤ −µi, (35)

where the first term in objective function (33) is obtained

from (25) to minimise the impact of system noises on the

reconstruction accuracy, the second term in (33) consisting of

Γpm
i↓ =∥ T

p
i↓

(

I2 − (Mi)
−1

)

∥2 + ∥ T
p
i↓A

d
ii↓

(

I2 − (Mi)
−1

)

∥2
aims to maximise the residual alteration caused by matrix

coding, and α
pm
i↓ > 0 is the weight parameter. The inequality

constraints (34) make the encoded data close to the nominal

physical state x
ref
i = [Vref,i, Iavg,ti] with the deviation rate

σi smaller than 0.1, such that the adopted matrix coding can be

hidden from the adversary. Here, Iavg,ti denotes the average

output current observed from DER i’s historical load profile.

The inequality constraint (35) guarantees the invertibility of

coding matrix Mi by ensuring its determinant det(Mi) to be

positive via µi > 0.

Due to the existence of matrix inverse and eigenvalue

calculation in T pm
i↓,inv and (26), respectively, the formulated

optimisation problem (33) is essentially nonlinear and non-

convex. The relaxation of the original problem (33) to a

linear and convex one whose optimum can be fast obtained

by existing solvers would require additional effort and is

out of the scope of this paper. In this paper, we utilise the

fconmin function from Matlab and equip it with interior-point

algorithm to find the local minimum around an appropriately

chosen initial point. The local minimum may not be as good

as the global minimum, but can still perform much better

than the intuitively chosen coding matrix through satisfying

Ad
ii↓M

−1
i = M−1

i Ad
ii↓.

V. EXPERIMENTAL VALIDATIONS

In this section, extensive experimental studies are conducted

in cyber-physical co-simulation platform and full-hardware

microgrid testbeds. The experimental results validate the

proposed matrix coding enabled impact mitigation scheme’s

effectiveness, its superiority compared with existing methods,

its robustness to daily events, parameter uncertainties, as well

as nonlinear CPLs, and its lightweight computation burden.

A. Cyber-Phyiscal Co-Simulation Experimental Studies

The co-simulated 6-DER microgrid testbed is established

utilising the OPAL-RT real-time digital simulator OP5600,

three Raspberry Pis, and the Keysight EXata network simula-

tor as shown in Fig. 6. The power circuit, primary controllers,

and secondary controllers are simulated in OP5600, and the

Raspberry Pis are run in real time with the simulated microgrid

through TCP Modbus based data exchange channels, where

the register read/write interval is set as 1ms. Among the

three Raspberry Pis, one Raspberry Pi is configured as data

aggregator to read data from OP5600, and the aggregated data

will be distributed to the other two Raspberry Pis, which

are embedded with the detection and mitigation algorithms

of DERs 1 and 2, through the mapped UDP data flows in

EXata network simulator. After processing the received data,

these two Raspberry Pis will write the corrected data back to

OP5600 as the inputs of primary and secondary controllers.

Under such configuration, based on the advanced cyber library

provided by EXata, realistic data modification events can be

launched against the transmitted data packets within EXata.

The electrical parameters of DER are set the same as those in

[35], the nominal reference PCC voltages are Vref,i = 40V,

and the CPLs are PCPL,i = 40W, ∀i ∈ A. The bound that

tolerates measurement noise is set as ρ̄i = [0.01, 0.01]T.
The time of activating secondary controllers and UIO-based

detectors is at t = 2s and t = 4s, respectively. The subsequent

part will validate the proposed mitigation scheme’s effective-

ness, its superiority compared with existing methods, and its

robustness under various disturbances.

1) Effectiveness against Continuous and Discontinuous PF-

DIA Bias Injections: This part validates the effectiveness of

proposed mitigation scheme against PFDIAs, where the data

modification events with continuous and discontinuous bias

injections against the data flows of DERs 1 and 2, respectively,

are launched in EXata at t = 6s. The results of detection,
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(a) Experimental setup

(b) Connection architecture

(c) Realistic data modification event

Fig. 6: This figure shows the cyber-physical co-simulation microgrid testbed
as well as the introduced realistic data modification events: 1) Power system
simulation consists of the power circuits and controllers of a 6-DER microgrid
in the OPAL-RT real-time digital simulator OP5600, 2) Communication sim-
ulation includes the communication links of primary control in the Keysight
EXata network simulator, 3) UIO-based detection and matrix coding enabled
impact mitigation schemes are deployed in two Raspberry Pis, and the third
Raspberry Pi runs as a data aggregator to map data flows into the EXata
network simulator, and 4) Cyber-physical interface with the data exchange
between Raspberry Pis and OP5600 being implemented via TCP Modbus,
while the data interaction between EXata and Raspberry Pis is implemented
through UDP.

reconstruction, encoding’s hiddenness, and mitigation effec-

tiveness are showcased in sub-figures (a)-(d) of Fig. 7 and

Fig. 8. In particular, as shown in sub-figure (a), the normally

sampled residual r
p
i , i ∈ {1, 2} will immediately increase

above the detection threshold r̄
p
i when the PFDIAs are intro-

TABLE I: Steady-state voltage and current bias reconstruction errors in the
comparative studies with existing literature [16], [31], [32]

Error

Type
(a) PFDIA against (b) PFDIA against both

only current voltage and current

[31], [32] [16] Prop. [31], [32] [16] Prop.
∣

∣ϕ
py,re

1,V
(∞)

∣

∣ 0 < 0.2 < 0.4 > 5 > 2 < 0.4
∣

∣ϕ
py,re

1,I
(∞)

∣

∣ < 0.4 < 0.4 < 0.1 > 5 > 10 < 0.1

duced, timely triggering the PFDIA alarm. At the same time,

the two half-downsampled UIOs will be activated to generate

residuals r
p
i↓, r

pm
i↓ for bias reconstruction and update them

every 2ms. The reconstruction performance under continuous

and discontinuous PFDIA injections has slight difference as

demonstrated in sub-figure (b). For the continuous bias case

in DER 1, the reconstructed biases can quickly track the real

biases after non-trivial initial reconstruction errors, where the

steady-state reconstruction errors will be eventually bounded

by predefined values as stated in Proposition 1. When the bias

injections are discontinuous in DER 2, there would emerge

non-negligible initial reconstruction errors every time when the

biases have step changes. Despite these reconstruction errors,

the reconstruction errors can still converge exponentially to

zero under moderate changing rate of discontinuous biases

(1s in this case). By optimising the coding matrix through

(33), the hiddenness of adopted data encoding technology

can be effectively preserved from the adversary as validated

in sub-figure (c). From the perspective of adversary, the

transmitted voltage and current data will approximately have

±5V and ±5A variations, respectively, after adopting the

encoding scheme, which are indistinguishable from the attack

impacts and thus barely raise the alert of adversary. When the

mitigation action (24) is enabled at t = 8s, the transmitted

encoded data will become more stable, further decreasing

the possibility of leaking defense-side’s information to the

adversary and increasing the difficulty of making effective

follow-up adversarial movements. In sub-figure (d), the results

indicate that the enabled mitigation action (24) can effectively

eliminate the attack impacts on system states and rapidly

reestablish load sharing in the 6-DER microgrid.

2) Comparative Studies with Existing Bias Reconstruction

Methods: This part validates the proposed method’s superi-

ority compared with existing methods from [16], [31], [32]

in the bias reconstruction accuracy, where two PFDIA cases

tampering only current measurement and both voltage and

current measurements are considered. Although the method

from [16] is designed to reconstruct the SFDIA bias, its idea

of deploying current sensors on power lines can be seamlessly

extended to the PFDIA case. Specifically, the measured power

line currents serving as new inputs will alter the (1, 1)th
element of system matrix Aii, under which another UIO can be

established to capture a new relation between bias injections

and residuals. After combining it with (14), the complete bias

vector is able to be reconstructed. According to Fig. 9, when

the voltage measurement is free from attack, the method from

[31], [32] can accurately reconstruct the bias injected into

current measurement by employing adaptive observers, where

the resulted steady-state current bias reconstruction error is

smaller than 0.4A as presented in TABLE I. However, if both
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Fig. 7: This figure shows the proposed method’s effectiveness against continuous and discontinuous PFDIA bias injections: where the results of detection and
reconstruction are presented in sub-figures (a) and (b), respectively.

Fig. 8: This figure is the continuation of Fig. 7, jointly validating the proposed
method’s effectiveness against PFDIAs, where the results of encoding’s
hiddenness and mitigation effectiveness are presented in sub-figures (c) and
(d), respectively.

voltage and current measurements are compromised, the adap-

tive observer based method is not able to reconstruct either of

bias injections as it relies heavily on the attack-free voltage

information to estimate the legitimate current measurement.

Although the method from [16] can successfully reconstruct

the voltage and current biases, the reconstruction errors are not

able to converge to zero in steady state under the two PFDIA

cases. Moreover, the growth of initial reconstruction error will

increase the steady-state reconstruction error correspondingly.

It is revealed that the non-zero steady-state reconstruction error

is caused by an unstable eigenvalue on unit circle, making

the reconstruction scheme extremely sensitive to disturbances

such as initial errors and system noises. Hence, the strategy

of deploying additional current sensors on power lines is

unsuitable for the reconstruction of PFDIA bias injection.

Compared with these existing methods as illustrated in Fig. 10,

the proposed bias reconstruction scheme can always achieve

< 0.4V and < 0.1A steady-state voltage and current bias

reconstruction errors under the two PFDIA cases, successfully

filling the research gap of impact mitigation scheme that is able

to effectively counter against the PFDIA compromising both

voltage and current measurements.

3) Robustness to Daily Events, Parameter Uncertainties,

and Nonlinear Constant Power Load: As shown in Fig.

11, when DERs 2 and 5 are plugged into the microgrid at

t = 6s, the UIO parameters will be updated accordingly

and the detection residuals can still be bounded by corre-

sponding thresholds. Moreover, the activation of current load

variation within [8, 10]s will not cause significant fluctuations

on the detection residuals. Therefore, the detection residual

generated by UIO-based detector has negligible sensitivity to

these daily events and will not flag false attack alarms for

them. When there exist different levels of uncertainties on

the electrical parameters including Rti, Lti, Cti, the detection,

reconstruction, and mitigation performance are illustrated in

Fig. 12. The existence of parameter uncertainties will increase

the detection residual in the normal case and thus may result

in false alarms as illustrated in the 30% uncertainty case.

Moreover, the inaccurate parameters can induce non-zero

steady-state bias reconstruction errors, but the corresponding

sensitivities are limited as the 30% uncertainty will only cause

< 0.6V and < 0.2A steady-state errors. In such case, the ac-
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Fig. 9: This figure illustrates the bias reconstruction performance of existing methods from [16], [31], [32], where two PFDIA cases tampering with only
current measurement and both voltage and current measurements are demonstrated in sub-figures (a) and (b), respectively.

Fig. 10: This figure is the continuation of Fig. 9, illustrating the improved
bias reconstruction accuracy of the proposed matrix coding enabled method
compared with [16], [31], [32], where the same PFDIA cases tampering with
only current measurement and both voltage and current measurements are
demonstrated in sub-figures (a) and (b), respectively.

tivated mitigation action (24) can still reestablish load sharing

in the microgrid after stimulating some negligible transient

fluctuations on the system states. Finally, the reconstruction

and mitigation performance under different nonlinear CPLs

are validated in Fig. 13. The results indicate that the bias

reconstruction accuracy will not be affected by the existence of

nonlinear CPLs, verifying the effectiveness of the linearisation

scheme (1), (2) in handling the non-linearity resulting from

CPLs.

Fig. 11: This figure shows the UIO-based detector’s performance when
plugging-in of DERs and load variation are introduced at t = 6s and within
t ∈ [8, 10]s, respectively.

4) Lightweight Computation Burden: The runtime of pro-

posed matrix coding enabled impact mitigation method in two

Raspberry Pis equipped with 8GB RAM are demonstrated in

Fig. 14. It is clear that the runtime will have a significant

increment after activating the UIO-based detector at t = 4s,

and further increase appears on the runtime when the in-

troduced PFDIAs trigger the bias reconstruction scheme at

approximately t = 6s. Due to the computational efficiency

of the proposed method, the average runtime in the two

Raspberry Pis are 0.0042ms and 0.0044ms with the maximal

runtime being 0.0797ms and 0.0866ms, respectively, which are

significantly lower than the data exchange interval 1ms among

OP5600, Raspberry Pis, and EXata. Therefore, the proposed

method is lightweight enough to be integrated into the primary

control loop that has strict real-time requirement, verifying its

applicability to realistic industrial scenarios.

B. Full-Hardware Experimental Studies

This subsection validates the effectiveness of the proposed

matrix coding enabled impact mitigation in a full-hardware
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Fig. 12: This figure demonstrates the detection, reconstruction, and mitigation
performance under 0 and 30% electrical parameter uncertainties.

microgrid testbed, whose overview and component description

are shown in Fig. 15. In particular, the full-hardware testbed

has two real-time digital controllers, i.e., RTU-BOX 2041,

which are developed based on TI microcontrollers for the

rapid prototype control system and are equipped with rich

analog/digital input/out ports. The RTU-BOX 204 is directly

compatible with the SIMULINK programming environment,

where an integrated development environment, named as Rtu-

nit Studio, is provided to compile and download SIMULINK

model into the controller as well as collect real-time operating

states from the controller. Moreover, four building block half

bridge modules2 are inserted into two racks to function as

DC-DC converters, which have active over-voltage and over-

current protection mechanisms to guarantee the operator’s

safety. The circuit within each DER consisting of a DC-DC

converter, a DC supply, a ZIP load, and a LC filter is illustrated

in Fig. 2, and the 4 DERs are connected through power lines

to form a meshed network, where the electrical parameters are

explained in [35]. The PCC reference voltages of DERs are

set to be equal to 48V, and the equivalent resistive and current

loads are configured as 30Ω and 2A, 4A, 6A, 8A, respectively.

The detection and mitigation algorithms are embedded into

controllers via SIMULINK models, and the execution rate is

set as 1ms. In the operation stage, the UIOs are activated at

1https://www.rtunit.com/Home/proDetail?productId=6
2https://www.rtunit.com/Home/proDetail?productId=15

Fig. 13: This figure showcases the reconstruction and mitigation performance
under 0W and 80W nonlinear CPLs.

Fig. 14: This figure demonstrates the runtime of the proposed matrix coding
enabled mitigation scheme in two Raspberry Pis equipped with 8GB RAM.

t = 2.5s, and the PFDIA against DER 1’s measurements is

launched at t = 5s, whose bias injections include continuous

sine and discontinuous triangle signals.

According to the results shown in Fig. 16, the proposed

method can accurately track both continuous and discontinu-

ous bias injections and is able to achieve < 0.4V and < 0.05A

steady-state voltage and current bias reconstruction errors.

After enabling the mitigation action (24) at t = 7s, the ad-

versely affected system states can rapidly converge to normal

ranges such that load sharing is eventually reestablished in

the microgrid. Moreover, the fluctuations of encoded data are

within normal ranges, i.e., < 2V for voltage and < 0.5A

for current in steady state, which are able to preserve the

hiddenness of adopted data encoding technology from the

adversary. Thus, the proposed method is verified to be effective

in the fully hardware-configured 4-DER microgrid, further

proving its practical value in potential industrial scenarios.
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Fig. 15: This figure shows the overview of the 4-DER full-hardware microgrid testbed at Zhejiang University, where the circuit within each DER consists
of a DC-DC converter, a DC supply, a ZIP load, and a LC filter. Each controller outputs two asynchronous PWM signals for two converters, and the data
exchange between controllers is implemented via CAN bus.

Fig. 16: This figure validates the effectiveness of proposed matrix coding
enabled mitigation scheme against PFDIAs in the full-hardware microgrid
testbed.

VI. CONCLUSION

This paper proposed a time-efficient and cost-efficient im-

pact mitigation scheme against the PFDIA in cyber-physical

microgrids by alternately encoding the transmitted measure-

ment data. Two half-downsampled UIOs were triggered after

detecting anomaly to calculate the residuals under encoded and

unencoded data, from which the complete bias vector could be

rapidly and accurately reconstructed. Theoretical performance

analysis was conducted to endow the optimised coding matrix

with minimised impact of system noises on reconstruction

accuracy, as well as guaranteed reconstruction stability and

encoding’s hiddenness. The reconstructed bias was eventu-

ally removed from the compromised data to achieve impact

mitigation. Finally, through extensive experimental studies

carried out in cyber-physical co-simulated and full-hardware

microgrid testbeds, the effectiveness, superiority, robustness,

and lightweightness of the proposed scheme were clearly

validated and demonstrated. Future works include investigating

effective countermeasures against gross measurement errors

and the denial-of-service attack that blocks data transmission

channels.
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APPENDIX

A. DER System Parameters

Aii =





− 1

ZLiCti
−

∑

j∈Nel
i

1

CtiRij

1

Cti

− 1

Lti
−Rti

Lti



 , bi =

[

0
1

Lti

]

mi =

[

− 1

Cti

0

]

(36)
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ii = eAiiTsamp , Y d

ii = (Aii)
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d
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15

B. Unknown Input Observer Matrices

T
p
i = I2 −H

p
i (38)

T
p
i m

d
i = 0

2×1 (39)

K̂
p
i = K

p
i1 +K

p
i2 (40)
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p
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p
i A

d
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p
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K
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p
i H
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