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Abstract

Compared to feature engineering, deep learning approaches for citation context analysis 
have yet fully leveraged the myriad of design options for modeling in-text citation, cita-
tion sentence, and citation context. In fact, no single modeling option universally excels on 
all citation function classes or annotation schemes, which implies the untapped potential 
for synergizing diverse modeling approaches to further elevate the performance of citation 
context analysis. Motivated by this insight, the current paper undertook a systematic explo-
ration of ensemble methods for citation context analysis. To achieve a better diverse set of 
base classifiers, I delved into three sources of classifier diversity, incorporated five diver-
sity measures, and introduced two novel diversity re-ranking methods. Then, I conducted a 
comprehensive examination of both voting and stacking approaches for constructing clas-
sifier ensembles. I also proposed a novel weighting method that considers each individual 
classifier’s performance, resulting in superior voting outcomes. While being simple, voting 
approaches faced significant challenges in determining the optimal number of base clas-
sifiers for combination. Several strategies have been proposed to address this limitation, 
including meta-classification on base classifiers and utilising deeper ensemble architec-
tures. The latter involved hierarchical voting on a filtered set of meta-classifiers and stacked 
meta-classification. All proposed methods demonstrate state-of-the-art results on, with the 
best performances achieving more than 5 and 4% improvements on the 11-class and 6-class 
schemes of citation function classification and by 3% on important citation screening. The 
promising empirical results validated the potential of the proposed ensembling approaches 
for citation context analysis.
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Introduction

Citation context analysis (Zhang et  al., 2013) is an important task in scientific text 
understanding. A citation context tells the reason for the citing authors to make a citation 
(citation function classification) and how important or relevant the cited paper is to the 
citing study (important citation screening). The two tasks are highly close to each other 
as important citations were defined based on citation functions. For example, the classical 
work by Valenzuela et  al. (2015) treated usage, extension and based-on citations as 
important citations while comparison and background citations as unimportant. Therefore, 
important citation screening can be seen as a simplified binary version of citation function 
classification. A plethora of studies have been made on machine learning algorithms for 
citation function classification (Teufel et al., 2006a; Aggarwal et al., 2010; Dong & Schäfer, 
2011; Jochim & Schütze, 2012; Abu-Jbara et al., 2013; Iorio et al., 2013; Li et al., 2013; 
Jha et al., 2017; Hernández-Alvarez et al., 2017; Meng et al., 2017; Jurgens et al., 2018; 
Ihsan et al., 2023) and important citation screening (Wan & Liu, 2014; Zhu et al., 2014; 
Valenzuela et al., 2015; Hassan et al., 2017; Pride & Knoth, 2017; Qayyum & Afzal, 2019; 
Nazir et  al., 2020;; Aljohani et  al., 2021; Qayyum et  al., 2021). Deep learning methods 
further pushed the states of the art (SOTA) significantly (Cohan et al., 2019; Beltagy et al., 
2019; Zhang et al., 2022; Jiang & Chen, 2023; Qi et al., 2023).

Despite the significant progress, several shortcomings remain unresolved in existing 
studies. Citations should be encoded in context. Citation context is a window of surround-
ing sentences. Example 1 on the next page shows such an extreme example. To avoid mis-
classifying the citation “[Miller et al.]” in sentence S-124, it is necessary to look backward 
to the meta-statement of comparison in S-119. Several recent studies have explored citation 
context modelling (Lauscher et al., 2022; Jiang & Chen, 2023; Zhang et al., 2022; Qi et al., 
2023). Being less discussed, most deep learning approaches generated a feature vector for 
the whole citation context or sentence (Bakhti et al., 2018; Lauscher et al., 2017; Munkh-
dalai et al., 2016; Su et al., 2019) rather than individual in-text citations, even for some that 
reported SOTA performances (Cohan et al., 2019; Beltagy et al., 2019; Zhang et al., 2022; 
Qi et al., 2023). This is problematic when applied to citation sentences with multiple in-
text citations of different functions, illustrated by Example 2 and 3 from the dataset of the 
current study. In-text citations should be modelled separately, apart from the context they 
occur.

Example 1: Meta-statement of comparison and contrast. This example comes from Teufel (2010, p. 434). It 
illustrates a case where citation context is necessary for correct citation function classification

Source: https:// aclan tholo gy. org/ P94- 1038
I will outline here the main parallels and differences between our method and previous work. In cooccur-

rence smoothing [Brown et al. 1993] (CoCoGM), as in our method, a baseline model is combined with 

a similarity-based model that refines some of its probability estimates. In Brown et al.’s work, given a 

baseline probability model P, which is taken to be the MLE, the confusion probability EQN between 

conditioning words EQN and EQN is defined as EQN and the probability that EQN is followed by the 

same context words as EQN. Then the bigram estimate derived by cooccurrence smoothing is given by 

EQN. In addition, the cooccurrence smoothing method sums over all words in the lexicon. [Miller et al.] 

(CoCoGM) suggest a similar method… They do…

Example 2: “Weak(ness)” and “Neut(ral)” citations appear in the same citation sentence. This example 
illustrates a case where multiple in-text citations may have different functions

Source: https:// aclan tholo gy. org/ W00- 1804
S-1. While Optimality Theory (OT) (Prince et al., 1993) [Weak] has been successful in explaining certain 

phonological phenomena such as conspiracies (Kisseberth, 1970) [Neut], it has been less successful for 

computation. (…more weaknesses…)

https://aclanthology.org/P94-1038
https://aclanthology.org/W00-1804
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Example 3: “PSim” (similarity) and “Neut” citations appear in the same citation sentence. Context sen-
tence S-2 is needed to infer the functions of the first two citations in the citation sentence S-1 (forming a 
citation segment and having the same function). This example illustrates another case of multiple in-text 
citations having different functions

Source: https:// aclan tholo gy. org/ J00- 1004
S-1. Formalisms for finite-state and context-free transduction have a long history (e.g., Lewis and Stearns, 

1968; Aho and Ullman, 1972) [PSim], and such formalisms have been applied to the machine translation 

problem, both in the finite-state case (e.g., Vilar et al., 1996) [Neut] and the context-free case (e.g., Wu, 

1997) [Neut]. S-2. In this paper I have added to this line of research by providing a method for automati-

cally constructing fully lexicalized statistical dependency transduction models from training examples

Indeed, Jiang and Chen (2023) have explored a large design space of in-text citation 
encoding, citation sentence encoding, and citation context encoding towards contextualised 
citation modelling. They observed that various strong models had their own advantages and 
disadvantages in recognising different citation functions. The abundant combinations of 
citation modeling options allow high promise to fuse the strong baselines into a more com-
petent ensemble model for citation context analysis. In machine learning literature, clas-
sifier ensemble (Zhou, 2014), or multiple classifier system (Kuncheva, 2014), has proven 
effective at improving predictive performance in many subject areas (Cao et al., 2020; Jah-
rer et al., 2010; Xiao et al., 2018), including a diverse range of natural language text clas-
sification tasks (Barrault et al., 2019; Lin et al., 2022; Malmasi & Dras, 2018; Rajani & 
Mooney, 2018; Rajani et al., 2015; Szidarovszky et al., 2010; Wang et al., 2020a, 2020b). 
The success of ensemble learning lies in the diversity among base classifiers (Brown et al., 
2005; Ruta & Gabrys, 2005; Sesmero et al., 2021), which is fortunately guaranteed by the 
wide spectrum of contextualised citation modelling approaches. Therefore, the focus of the 
current paper is to present a comprehensive study of ensembling approaches to citation 
context analysis.

The main contributions of the current paper are three-fold. To the best of my knowledge, 
it is the first comprehensive study and application of ensemble methods to the important 
task of citation context analysis. To build a large pool of base models for citation context 
analysis, 175 models were trained based on 35 different citation modelling architectures as 
in Jiang and Chen (2023), 5 models per architecture initialized with different randomiza-
tion. Then, a plethora of approaches to combining base classifiers (abbreviated to classifi-
ers hereafter when the context is clear) were systematically evaluated. Thanks to the abun-
dant diversity among classifiers, majority voting significantly improved citation context 
analysis performances on all the three annotation schemes that were adopted, and produced 
new states of the art. The success of ensembling is determined by classifier diversity. My 
second contribution is the proposal of two heuristic methods to obtain a good diverse set 
of classifiers. The first method was to re-rank the pair-wise diversity analysis results, which 
proved to be both effective and efficient in classifier selection and ensembling. The second 
method was to analyse and employ five famous pair-wise diversity measures to virtually 
expand the exploration space of classifier subsets, which further improved ensembling per-
formance. Finally, a novel reliability-enhanced confidence-based voting method was pro-
posed to break ties in majority voting more intelligently, which used classifiers’ posterior 
probability (i.e., confidence) and performance (i.e., reliability).

The remaining of the paper is organised as follows. Sect. “Related work” reviews the 
related work about machine learning approaches to citation context analysis, including 
citation function classification (Sect. “Citation function classification”) and important 
citation screening (Sect. “Important citation screening”), and the application of ensemble 
methods in the natural language processing domain (Sect. “Ensemble approaches”). Sect. 

https://aclanthology.org/J00-1004
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“Ensembling methodology for citation context analysis” briefly explains the methodo-
logical framework of ensembling that the current paper applied, including the ensembling 
framework (Sect. “Framework”), sources of classifier diversity (Sect. “Sources of diver-
sity”), voting approaches to combine classifiers by simple rules (Sect. “Majority voting”), 
stacking approaches to train meta-classifiers that learns to fuse classifiers (Sect. “Classifier 
stacking”), the lattermost also covering building deep ensembles on top of shallow ensem-
bles. After introducing the datasets in Sect. “Dataset”, I will detail the experiments of 
each ensemble method in Sect. “Results and discussions”, more precisely, base classifiers 
in Sect. “Base classifiers”, voting in Sect. “Majority voting”, stacking in Sect. “Classifier 
stacking”, and deep stacking in Sect. “Deep stacking”. Sect. “Discussions and remarks” 
presents a brief discussion of the proposed ensembling approaches to citation context anal-
ysis, including its pros and cons as well as potential future directions, before concluding 
the paper.

Related work

Citation function classification

Feature engineering approaches

The first machine learning approach might belong to the seminar work by Teufel et  al. 
(2006a). They developed a comprehensive set of features to capture the common cue 
phrases for expressing scientific concepts and to extract the syntactic information around 
these cue phrases or the main verbs of citation sentences. An Instance-Based k-nearest-
neighbor classifier (IBk) was employed to classify citation functions. To facilitate develop-
ing machine learning algorithms, for the first time, a comprehensive and operationalisable 
12-class annotation scheme was proposed along with a carefully annotated dataset (Teufel 
et al., 2006b). Most subsequent studies, especially in the computer science and engineering 
domain including the current one, inherit from Teufel with certain simplifications, so to 
some extent these annotation schemes are mappable to each other (Abu-Jbara et al., 2013; 
Dong & Schäfer, 2011; Hernández-Alvarez et  al., 2017; Jha et  al., 2017; Jurgens et  al., 
2018; Su et  al., 2019). One exception is Jochim and Schütze (2012), which categorised 
citations into quadchotomic dimensions of Moravcsik and Murugesan (1975): conceptual 
vs. operational, organic vs. perfunctory, evolutionary vs. juxtapositional, and confirmative 
vs. negational. Essentially, the organic-versus-perfunctory distinction can be seen as an 
alternative definition of the important citation screening task to be reviewed shortly (Sect. 
“Important citation screening”). Also, it is necessary to note that there are many more cita-
tion function typologies. For example, Bertin and Atanassova (2024) organised citation 
functions into five epistemological angles more broad semantic dimensions, including defi-
nition, appreciation (similar to the supporting relation in Teufel et al.’s typology), informa-
tion (a merge of Teufel et al.’s usage and extension relations), comparison (a merge of sim-
ilarity and comparison relations in Teufel et al.’s typology), and point of view. While this 
is not the focus of the current paper, interested readers can refer to good surveys about the 
typologies of citation function or motivation (Hernández-Alvarez & Gómez, 2016; Jiang & 
Chen, 2023; Kunnath et al., 2022; Lyu et al., 2021).

Teufel et  al.’s foundational work spurred much research to refine and enrich the fea-
ture set for citation context analysis (Abu-Jbara et al., 2013; Agarwal et al., 2010; Dong & 
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Schäfer, 2011; Hernández-Alvarez et al., 2017; Ihsan et al., 2023; Jha et al., 2017; Li et al., 
2013; Meng et al., 2017). In summary, features are syntactic and lexical patterns around 
manually identified informative cue-phrases for different classes. Indeed, Bertin and Atan-
assova’s initial study on a large-scale PLoS ONE dataset (2024) demonstrated that a con-
cise set of high-frequency cue words have strong ability to identify the semantic dimen-
sions of citing acts. Amongst all these studies, Jochim and Schütze (2012) also highlighted 
the importance of named entity features, such as names of dataset, software, algorithm and 
method, which might be indicators of a usage citation. The most state-of-the-art feature 
engineering approach came from Jurgens et al. (2018), who used a simplified annotation 
scheme of six classes, which was later used by the Citation Context Classification (3C) 
shared tasks (Kunnath et al., 2020). To improve classification performance, novel features 
were introduced, like citation context topics, linguistic patterns bootstrapped around cita-
tions, and PageRank rankings (Jurgens et al., 2018).

Deep learning approaches

More recently, deep learning techniques have been applied to citation function classifica-
tion. Initial works employed Convolutional Neural Networks (CNNs; Aljohani et al., 2023; 
Bakhti et al., 2018; Lauscher et al., 2017), Bidirectional Long-Short Term Memory (BiL-
STM; Munkhdalai et  al., 2016), or CNNs stacked over BiLSTM (Yousif et  al., 2019) to 
summarize citation sentence or citation context into a feature vector. To enhance contextual 
understanding, either pretrained word embeddings (Cohan et al., 2019; Roman et al., 2021) 
or contextualized language models (Beltagy et  al., 2019; Maheshwari et  al., 2021) were 
utilized. Witnessing the obvious class imbalance of citation function categories, Aljohani 
et  al. (2023) applied focal loss and class weights to improve classification performance, 
while Jiang and Chen (2023) tried to merge and re-annotate six datasets in the compu-
tational linguistics domain according to Teufel et  al.’s annotation scheme (Teufel et  al., 
2006b) to increase the sizes of the minority classes, such as “PSup” and “PBas”. There 
have been a few studies with a particular focus on signifying the importance of properly 
encoding citation context (Jiang & Chen, 2023; Lauscher et al., 2022; Zhang et al., 2022). 
For example, Lauscher et al. (2022) created a new dataset with manually annotated mini-
mal set of context sentences that are necessary for citation function classification. This was 
similar to Jiang and Chen (2023), but the particular merit of the former is that context sen-
tences are not limited to a citation’s neighbourhood; instead, they can appear anywhere in a 
paper. While both datasets leave much space for research in the identification of useful con-
text, or citation block according to Kaplan et al. (2016), Lauscher et al. (2022) used gold-
standard citation context for citation function classifiers to demonstrate the necessity of it 
while Jiang and Chen (2023) empirically encoded 2 and 3 context sentences before and 
after the citation sentence without performing citation block identification. As I pointed 
out in Sect. “Introduction”, most of these studies encoded the whole citation context or 
citation sentence, rather than individual in-text citations, except Jiang and Chen’s paper.

Multi‑task learning approaches

In parallel, there was also an obvious trend of multi-task learning to enhance citation func-
tion classification by jointly training and optimising both the primary task and comple-
mentary tasks that are semantically related. Su et al. (2019) used a CNN to encode citation 
context and used the same encodings for both citation function classification and citation 
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provenance recognition, a task to identify which part of the cited paper is related to a cita-
tion context (Ma et  al., 2018; Wan et  al., 2009), with the assumption that the two tasks 
are semantically close. Yousif et al. (2019) used BiLSTM to encode citation sentence and 
stacked another CNN layer to summarise the meaning of citation sentence. The encoded 
feature vector was used for both citation function and citation sentiment classification. 
Cohan et al. (2019) used a self-attention mechanism to summarise the BiLSTM encodings 
of citation context for citation function classification. The same encodings were also used 
for two auxiliary tasks, citation worthiness identification—the task to determine whether 
a specific context requires a citation to support its claim or enhance its credibility (Wan 
et  al., 2009; Bonab et  al., 2018; Wright & Augenstein, 2021) and functional role recog-
nition—the task to determine the rhetorical purposes of each section in a paper, such as 
introduction, methodology, datasets, results, discussions, conclusions, or other predefined 
categories (Luong et al., 2010; Ma et al., 2022). These subtasks usually have much larger 
data sources to improve the quality of representation learning. The same auxiliary tasks 
were also used in subsequent studies (Oesterling et al., 2021; Qi et al., 2023). Oesterling 
et al. (2021) extended Cohan et al.’s work by incorporating hand-crafted features like cue 
list and TF-IDF vectors. Qi et al. (2023) expanded the SciBERT embeddings of each work 
with manual features such as part-of-speech tag, syntactic pattern, sentiment score, and 
TF-IDF values. Qi et  al. decoupled the SciBERT encoders for the three tasks, with the 
main task further enhanced by a multi-head self-attention mechanism. In addition, all of 
them relied on one way of encoding in the wide spectrum of modelling options, e.g., self-
attention over contextualised word embeddings such as SciBERT, which made them inca-
pable of utilising the benefits of different modelling methods.

Important citation screening

A closely related but not central task is important citation screening—recognising 
meaningful citations that play a significant role to the citing paper, which was embarked 
by several studies (Valenzuela et al., 2015; Wan & Liu, 2014; Zhou, 2014) and flourished 
in subsequent research (Aljohani et  al., 2021; Hassan et  al., 2017; Pride & Knoth, 
2017; Qayyum & Afzal, 2019; Qayyum et  al., 2021; Wang et  al., 2020a, 2020b). This 
classification can be viewed as a simplified version of citation function classification, as 
citation importance is fundamentally linked to citation function. The distinction lies in the 
fact that citation function applies to each in-text citation, while citation importance has 
been evaluated per pair of citing and cited papers by most previous studies. Consequently, 
these studies mainly used paper-level metadata (Valenzuela et  al., 2015; Wan & Liu, 
2014) and basic full-text features such as cue phrases and textual similarities (Zhou, 2014; 
Hassan et al., 2017; Qayyum & Afzal, 2019; Ghosh et al., 2022). Deep learning approaches 
to this task encountered the same challenges as in citation function classification that 
were discussed in the Introduction section (Aljohani et al., 2021; Maheshwari et al., 2021; 
Yousif et  al., 2019). Recently, Aljohani et  al. (2023) reported much better performance 
on the task by use of focal loss to alleviate the issue of high degree of class imbalance. 
All existing paper handled the task of screening important citations at the paper level 
for each pair of citing and cited papers. On the contrary, the current paper handles the 
problem at the in-text citation level. In the literature, the “organic v.s. perfunctory” citation 
classification according to Jochim and Schütze (2012) was the only equivalent to the task 
definition in the current paper as far as I am aware of. Ensembles of deep learning methods 
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were proposed to identify important in-text citations, which could be easily amalgamated 
into important citation screening in the traditional sense.

Ensemble approaches

Ensemble approaches to natural language processing

Ensemble approaches have been successfully applied to a wide range of natural language 
processing problems, for example, word alignment for machine translation (Wu & Wang, 
2005), hedge identification (Szidarovsky et al., 2010), item recommendation (Jahrer et al., 
2010), semantic lexicon induction (Qadir & Riloff, 2012), information extraction (Rajani 
et al., 2015), natural language identification (Malmasi & Dras, 2018), text generation for 
abstractive summarization (Kobayashi, 2018), named entity normalization (Deng et  al., 
2019), neural machine translation (Wang et  al., 2020a, 2020b), medication mentioning 
identification in tweets (Dang et al., 2020), harmful news identification (Lin et al., 2022), 
etc. Notably, a lot of participants of the GermEval-2021 Shared Task on the Identifica-
tion of Toxic, Engaging, and Fact-Claiming Comments used classifier ensembles, e.g., 
Akomeah et al. (2021), Tran and Kruschwitz (2021), etc. In fact, one of the most important 
findings of the 2019 International Workshop on Machine Translation was that most state-
of-the-art systems were based on ensemble methods (Barrault et al., 2019). Ensemble or 
multiple classifier system (Kuncheva, 2014) has also been applied to scientific document 
analysis. In Ma et al. (2018), weighted voting over multiple classifiers was used to identify 
cited text span, an equivalent to citation provenance. Asadi et al. (2019) fused base clas-
sifiers for identifying argumentative zones (Teufel, 1999). Classifier ensembles were also 
applied in the SemEval-2018 Task 7 for identifying and classifying the semantic relations 
among named entities in scientific papers (Barik et al., 2018).

Most applications of ensemble methods in natural language processing were naïve, sim-
ply combing a limited number of classifiers. Some used homogeneous classifiers or model 
architectures. Deng et  al. (2019) combined several CNN-based architectures while Dang 
et al. (2020) and Lin et al. (2022) combined several BERT-based models. Others combined 
heterogeneous classifiers, like Jahrer et al. (2010), Rajani et al. (2015), Malmasi and Das 
(2018). There are several ways of generating homogeneous base classifiers, for example by 
using different input features (method used by the current paper), by using different model 
hyperparameters such as Random Forest (a combination of small decisions trees of differ-
ent sizes), by training models on bootstrapped datasets, i.e., boosting (Zhou et al., 2014) 
such as Wu and Wang (2005), and by adding randomness to the training process (widely 
used for training and aggregating various deep learning model using different random 
seeds, also used by the current paper). The current paper explored the vast design space of 
citation modelling options for citation context analysis. For each citation modelling option, 
five seeds were used for training. Therefore, both the first and last methods were adopted 
to generate a pool of homogeneous base classifiers in the current paper, while boosting 
was not used due to the prohibitively high cost of training a large number of deep learning 
models.

Techniques for building ensemble classifiers

There are in general two ways of ensembling base classifiers, by combining base classi-
fiers’ predictions using certain rules, often majority voting, or by developing a learnable 
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combiner, called meta-classifier, to segregate base classifiers’ predictions. While most 
ensembling papers in the natural language processing domain used very simple combi-
nation rules, such as majority voting (Wu & Wang, 2005; Qadir & Riloff, 2012; Rajani 
et al., 2015; Kobayashi, 2018; Deng et al., 2019; Dang et al., 2020) or as simple as an OR 
connective (Szidarovsky et  al., 2010), some studies trained a meta-classifier to combine 
base models’ predictions (Jahrer et al., 2010; Lin et al., 2022; Wang et al., 2020a, 2020b). 
Malsami and Dras (2018) was the most comprehensive study amongst the ensemble-based 
natural language processing studies I was aware of. They systematically studied a wide 
range of combination rules, different types of meta-classifiers, and stacked meta-classifiers 
(Sesmero et al., 2015), i.e., level-2 meta-classifiers trained on the outputs of level-1 ensem-
bles. The current paper also made a comprehensive exploration of both majority voting 
and meta-classifier approaches for ensembling. In addition to stacked meta-classifier, I also 
studied stacked voter (Sect. 3.5). Besides, I also proposed a novel voting method, detailed 
in Sect. “Classifier stacking”.

Note that, none of the reviewed papers studied the selection of proper base classifiers 
to ensemble because their base classifier pool sizes were small. In the current work, more 
than 180 base classifiers were trained. A brute-force combination of all the base classi-
fiers would fail to make meaningful improvements. Diversity analysis is an approach that 
has been recognised as one of the key factors for building a successful ensemble (Nam 
et al., 2021). Kuncheva and Whitaker (2003) and Brown et al. (2005) were good resources 
for classifier diversity, covering most famous diversity measures, except ratio of errors 
(Aksela, 2003). Interested readers can refer to Kuncheva (2014) and Zhou (2014) for a 
more comprehensive coverage of the diverse topics about building a classifier ensemble, 
while Sesmero et al. (2021) particularly focused on learning a stacked ensemble.

Ensembling methodology for citation context analysis

Framework

Figure  1 illustrates the framework of building citation context analysis ensemble. The 
ensembling pipeline starts with a set of T base classifiers, either for citation function 
classification or important citation screening. Sect. “Sources of diversity” explains the 
technical details of building them. Due to the large number of base classifiers, the next 
step is to select R “best” candidates to fuse in the follow-up stage. A naïve way is to 
select the top-R candidates according to their classification performance, but this is often 
suboptimal. It was widely believed more useful to select a diverse subset of classifiers 
which make different errors so that the large number of peers have a chance to rectify each 
other’s errors (Nam et  al., 2021; Sesmero et  al., 2021). This was done by the Diversity 
Analysis module based on five diversity measures widely used in the literature (Sect. 
“Diversity measure”). Mere diversity ranking may still lead to suboptimal results. On the 
one hand, it was important to include the few best-performing classifiers by observing a 
sharp performance drop of most classifiers from the top end. On the other hand, diversity 
ranking sometimes gave lower ranks to these top-performing classifiers and often tended to 
include many suboptimal classifiers (merely because their predictions were different even 
though maybe incorrect). Therefore, the Diversity Re-ranking component was introduced 
to rectify this suboptimal behaviour (Sect. “Diversity re-ranking”). After re-ranking, the 
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Fig. 1  The framework of ensembling for citation context analysis
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Classifier Selection stage retained R classifiers to fuse. Here the predictions made by the 
base classifiers were called level-1 predictions.

After selecting the top-R classifiers that achieved a better trade-off between diversity 
and accuracy, the Classifier Combination stage used the level-1 predictions to build ensem-
bles, either using majority voting methods (Sect. “Majority voting”) or through training a 
meta-classifier, i.e., classifier stacking (Sect. “Classifier stacking”). Note that the classi-
fiers in this paper were homogeneous classifiers because they were trained following the 
same deep learning architecture but with different feature extraction (i.e., citation mod-
eling) methods (Sect. “Citation modelling”). Both majority voting and meta-classifier 
could directly generate the final class label. In this case, I say a level-1 ensemble classifier 
was built. Predictions of level-1 ensembles could also be used for classifier combination. 
For example, in Fig. 1, results of majority voting could be used to vote again or to train a 
level-2 meta-classifier (the downward arrow). Similarly, results of meta-classifiers could 
also be used to build a level-2 voter (the upward arrow) or to train a level-2 meta-classifier. 
Results of all these options will be discussed in Sect. “Deep stacking”.

Sources of diversity

Citation modelling

The first source of classifier diversity comes from the pool of base classifiers for citation 
context analysis which are derived from the various citation modelling options. A large 
part of this subsection is inherited but significantly restructured from Jiang and Chen 
(2023) (see the “Citation function classification algorithms” section). The cross-discipli-
nary pretrained language model SciBERT (Beltagy et  al., 2019) was used for encoding 
citation contexts. The token sequence of each sentence was prepended by the sequence 
classification symbol “[CLS]” and separated by the sequence separator “[SEP]”. The cur-
rent study also tested a different setup without inserting the sequence separator.

Three factors were considered: the target citation string (converted to a pseudoword 
“CITSEG”),1 the enclosing citation sentence, and the surrounding citation context. (1) The 
in-text citation encoder generated the citation string representation, denoted by �, which 
is necessary for distinguishing between different citations in the same citation sentence, 
thus was always used in my experiments. (2) The citation sentence pooler aimed to pro-
duce the citation sentence representation, denoted by �, by pooling over all its tokens. This 
was inspired by the findings in Lauscher et al. (2022) that citation sentence alone is enough 
for correct citation function classification in more than 90% cases. (3) To handle cases 
requiring multi-sentence contexts, the citation context pooler was introduced to generate 
the citation context representation, denoted as � , from all the words and sentences within 
a context window. The final feature vector f was the concatenation of these three optional 
parts.

 A large design space existed for the base classifiers (summarised in Table  1). (i) 
Citation modelling in context? The citation string representation (citseg) was always 
used (O in Table 1) because it was found key to strong performance (Jiang & Chen, 2023). 

1 Following Jiang and Chen (2023), consecutive in-text citation strings were merged into a citation 
segment, represented by a pseudoword “CITSEG”. This is because all these in-text citations must have the 
same rhetorical role. Also see Sect. “Citation context dataset”.
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Table 1  Base classifiers of citation function classification and their performances

Model citseg ctx_type Encoding methods 11-class 6-class 2-grade

cita_pooler ctx_pooler sent_pooler best avg std best avg std best avg std

seq-01 O Sequential max_pool CLS N/A 63.93 62.72 1.11 74.03 70.88 1.87 84.27 83.37 1.29

seq-02 O Sequential max_pool max_pool N/A 63.21 62.61 0.45 70.23 68.25 1.60 85.49 84.25 0.70

seq-03 O Sequential max_pool self_attnd N/A 64.26 62.82 1.04 70.99 68.86 1.71 86.16 85.37 0.86

seq-04 O Sequential self_attnd CLS N/A 63.12 62.07 1.00 69.96 68.22 1.58 84.74 84.13 0.53

seq-05 O Sequential self_attnd max_pool N/A 64.12 62.82 1.20 71.56 69.05 1.85 85.13 83.46 1.15

seq-06 O Sequential self_attnd self_attnd N/A 65.12 63.05 1.60 72.19 69.81 1.37 86.04 84.67 0.80

seq-07 O Sequential X CLS N/A 64.65 61.01 2.21 71.48 69.75 1.07 84.80 83.99 0.48

seq-08 O Sequential X max_pool N/A 66.16 63.53 1.55 70.98 69.90 1.21 85.88 84.21 1.04

seq-09 O Sequential X self_attnd N/A 63.92 62.80 0.89 71.91 69.66 1.47 86.20 84.77 0.79

seq-10 O Sequential max_pool X N/A 63.93 62.72 1.11 71.89 70.18 1.77 85.82 84.57 0.81

seq-11 O Sequential self_attnd X N/A 64.42 63.01 0.89 71.32 69.69 1.01 86.00 85.11 0.57

seq-12 O Sequential X X N/A 64.93 63.50 1.04 73.56 70.22 2.44 86.00 84.74 0.68

hie-01 O Hierarchical SEP max_pool SEP 62.78 61.76 0.89 69.39 68.42 1.25 84.00 83.81 0.15

hie-02 O Hierarchical SEP self_attnd SEP 61.42 61.42 0.96 71.08 69.87 1.51 84.90 83.57 0.76

hie-03 O Hierarchical max_pool max_pool SEP 63.30 63.30 1.12 71.71 69.60 1.36 84.00 83.81 0.15

hie-04 O Hierarchical max_pool self_attnd SEP 63.79 63.79 1.71 72.10 70.25 1.69 84.90 83.57 0.76

hie-05 O Hierarchical self_attnd max_pool SEP 63.69 63.69 2.21 70.09 67.83 1.74 84.42 83.41 1.17

hie-06 O Hierarchical self_attnd self_attnd SEP 63.79 63.79 1.71 72.10 70.25 1.69 84.90 83.57 0.76

hie-07 O Hierarchical max_pool max_pool max_pool 62.63 62.16 0.51 70.22 67.94 1.38 85.60 84.18 1.07

hie-08 O Hierarchical max_pool self_attnd max_pool 65.02 62.10 2.24 69.77 68.24 1.33 84.41 83.53 0.99

hie-09 O Hierarchical max_pool max_pool self_attnd 63.38 62.45 0.59 72.11 70.07 1.8 85.74 84.06 1.10

hie-10 O Hierarchical max_pool self_attnd self_attnd 63.31 62.44 0.89 71.40 70.02 1.03 85.49 84.17 1.18

hie-11 O Hierarchical self_attnd max_pool max_pool 64.46 62.17 1.99 72.38 69.33 3.07 85.82 84.45 1.31

hie-12 O Hierarchical self_attnd self_attnd max_pool 63.43 62.26 0.83 70.78 69.56 1.57 85.41 84.55 0.59

hie-13 O Hierarchical self_attnd max_pool self_attnd 64.99 63.56 1.15 71.49 69.52 1.66 85.93 84.80 0.70
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Table 1  (continued)

Model citseg ctx_type Encoding methods 11-class 6-class 2-grade

cita_pooler ctx_pooler sent_pooler best avg std best avg std best avg std

hie-14 O Hierarchical self_attnd self_attnd self_attnd 63.16 62.09 1.02 71.32 68.35 2.22 86.45 85.88 0.55

hie-15 O Hierarchical X max_pool SEP 61.17 59.98 1.14 73.24 70.19 2.41 84.49 83.69 0.53

hie-16 O Hierarchical X self_attnd SEP 63.22 62.25 0.89 71.56 70.40 1.18 85.24 84.14 1.00

hie-17 O Hierarchical X max_pool max_pool 64.56 64.16 0.39 70.90 70.04 0.94 86.65 84.41 1.37

hie-18 O Hierarchical X self_attnd max_pool 64.95 62.82 1.64 72.09 69.35 2.11 85.05 83.64 1.16

hie-19 O Hierarchical X max_pool self_attnd 62.62 61.61 1.18 71.89 70.48 1.04 85.11 83.98 0.96

hie-20 O Hierarchical X self_attnd self_attnd 63.15 62.39 0.60 70.72 69.75 1.1 86.46 84.15 1.66

hie-21 O Hierarchical SEP X N/A 63.48 61.27 1.39 72.81 70.96 1.32 85.37 84.10 1.13

hie-22 O Hierarchical max_pool X N/A 63.48 61.27 1.39 72.81 70.96 1.32 85.37 84.10 1.13

hie-23 O Hierarchical self_attnd X N/A 62.55 61.09 1.05 70.38 69.28 1.19 86.12 84.52 0.89

hie-24 O Hierarchical X X N/A 64.37 62.80 1.51 72.07 71.21 0.70 85.88 84.94 0.69

a https:// en. wikip edia. org/ wiki/ Linear_ discr imina nt_ analy sis# Pract ical_ use

Top three results on each annotation scheme are in bold underline, bold and underlined fonts respectively

https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Practical_use
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Thus, options included � = � (no context information is utilised), � = [�;�] (using citation 
sentence alone as contextual information), � = [�;�] (accounting for cases which require 
looking over the citation sentence to a larger surrounding context), or � = [�;�;�] (hoping 
to enjoy the benefits of both the previous two methods). (ii) Sequential or hierarchical 

context? I defined two types of citation context: a sequential context concatenates all 
sentences in the context window without the sequence separator, while a hierarchical 

context inserts the sequence separator after each sentence. Accordingly, sentence (e.g., for 
the citation sentence representation s) and context representation are pooled in different 
ways. (iii) Pooling sentence and context representations. In case of a sequential context, 
the sentence representation (sent_pooler and cita_pooler, the latter for citation 
sentence representation) was pooled from each sentence’s tokens, by max pooling (max_
pool) or self-attention (self_attend), and the context representation (ctx_pooler) had 
one more option, i.e., the sequence classification symbol (“[CLS]” in the current study). 
For hierarchical context, sequence separator (“[SEP]” in the current study) was the third 
option for sentence representation, but the context representation was instead pooled 
indirectly over sentence representations. 

Diversity measure

The second source of classifier diversity comes from the combination of subsets of classi-
fiers that are used to build ensembles. In ensemble learning, it is intuitively more plausible 
to choose the most “diverse” set of classifiers which make different prediction mistakes 
so that there is a higher chance to rectify single classifier’s prediction mistake by peers 
(Kuncheva & Whitaker, 2003). There are basically two categories of diversity measures: 
pairwise and non-pairwise. Non pairwise measures calculate the overall diversity averaged 
across a subset of classifiers. In this paper, I trained 180 citation context analysis classifiers 
(36 citation modelling options × 5 seeds per option). Because the total number of possible 
subsets of classifiers is exponentially large, i.e.,  2180, I refrained to choose pairwise diver-
sity measures for the sake of computational feasibility.

Following the notations used in Kuncheva and Whitaker (2003), let Ci and Ck (out of in 
total T classifiers) be a pair of classifiers working on a dataset of N samples. I defined four 
values based on the correctness of classifications to quantify pairwise diversity: (1) N

11

—the number of samples that are correctly classified by Ci and Ck; (2) N10—the number of 
samples that are correctly classified by Ci but misclassified by Ck; (3) N01—the number of 
samples that are misclassified by Ci but correctly classified by Ck; and (4) N00—the number 
of samples that are misclassified by both Ci and Ck. I have N = N

11
+ N

10
+ N

01
+ N

00 . 
The pairwise diversity measures experimented in this paper included correlation coefficient 

(DivCC), Q statistic (DivQ), double fault (DivDF), disagreement measure (DivDM), and ratio 

of errors (DivRO) (Aksela, 2003), which are defined in Eqs. (1–5). A note is deserved for 
ratio of errors, where N00

different
 is the number of samples that are misclassified by both clas-

sifiers but misclassified into different classes and N00

same
 is the number of samples that are 

misclassified by both classifiers in the same way. Ratio of errors reflects the most extreme 
and worst setting for ensembling because it means “several classifiers agree on an incorrect 
result” (Aksela, 2003). Also note that correlation coefficient, Q statistics and double fault 
are inversely proportional to diversity, so I deliberately add a negative sign in Eq. (1–3). 
Although my definitions of DivCC, DivQ, DivDF slightly differ from their original defini-
tions, they allow for sorting classifier diversity in a consistent way.
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Diversity re‑ranking

The base classifiers used in this paper were all deep learning methods and the number of 
classifiers was big, therefore I decided to select the top R “most diverse” subset of classi-
fiers (from T  candidate classifiers). Using diversity measures discussed in Sect. “Diversity 
measure”, I could greedily select R most diverse classifiers, while the diversity of one clas-
sifier was defined as the sum of all pairwise diversities between it and all other classi-
fiers in the candidate set. However, this method was flawed because candidate classifiers’ 
performances varied a lot. When looking only at classifier diversity but totally ignoring 
classifier performance, the selected subset often included many weak classifiers and, what 
was more severe, often missed the strongest ones. This was caused by the symmetry of 
pairwise diversity measures and the fact that diversity measures were defined by classifier 
errors (Brown et al., 2005). More specifically, the weakest classifiers that make the most 
mistakes might have made many unique classification errors, potentially resulting in higher 
diversity. This could be seen from the empirical results of majority voting on a subset of 
weak classifiers that the ensemble could sometimes rival but hardly beat the strongest clas-
sifier that was often missed by using diversity ranking alone (see the “¬RR” columns in 
Tables 2, 3, 4, with “¬RR” meaning without re-ranking).

Therefore, this paper proposed two simple but effective diversity re-ranking methods to 
avoid this inferior situation. I relied on two things: classifier performance (e.g., macro F1), 
and classifier diversity (e.g., either one of the five diversity measures). The first method 
was value-based re-ranking, which was simply sorting classifiers in descending order of 
the sum of normalised classifier diversity and normalised classifier performance. Here the 
calculation of normalised diversity depends on the sign of its value: If positive, the normal-
ised diversity of a classifier in the candidate set is the diversity of the classifier divided by 
the maximal diversity; otherwise, the normalised diversity is the maximal diversity divided 
by the diversity of the classifier. The second method was rank-based re-ranking, which first 
sort classifiers in descending orders of classifier performance and classifier diversity, and 
then re-sort the classifiers in ascending order of the sum of classifier performance rank and 
classifier diversity rank.

(1)
DivCC ∶ �

i,k = −
N11N00

− N01N10

√

(

N11 + N10
)(

N01 + N00
)(

N11 + N01
)(

N10 + N00
)

(2)DivQ ∶ Qi,k = −
N11N00

− N01N10

N11N00 + N01N10

(3)DivDF ∶ DF
i,k = −

N00

N11 + N10 + N01 + N00

(4)DivDM ∶ Dis
i,k =

N10
+ N01

N11 + N10 + N01 + N00

(5)DicRO ∶ REi,k =

N00

different

N00
same
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Table 2  Performances of majority voting-based ensembles for 11-class citation function classification

T 50 40 30

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

HARD – UNWEIGHT DivCC 70.24//R = 44 70.42//R = 40 70.23//R = 29 70.17//R = 29 70.57//R = 36 70.20//R = 25 69.72//R = 30 70.37//R = 27 69.72//R = 30

DivDF 69.75//R = 50 70.05//R = 31 69.96//R = 25 69.83//R = 17 70.09//R = 37 69.90//R = 20 69.83//R = 29 69.92//R = 24 70.08//R = 10

DivQ 69.94//R = 45 70.35//R = 24 70.23//R = 29 70.43//R = 38 70.50//R = 31 70.31//R = 30 70.27//R = 25 70.37//R = 27 70.02//R = 27

DivRE 69.96//R = 47 70.06//R = 27 69.92//R = 48 70.14//R = 39 70.45//R = 35 70.23//R = 18 69.72//R = 30 70.53//R = 26 69.72//R = 30

DivDM 69.98//R = 38 70.39//R = 22 70.64//R = 38 70.43//R = 19 70.37//R = 17 70.70//R = 29 69.72//R = 30 70.37//R = 28 69.77//R = 27

AVG 69.97 70.25 70.20 70.20 70.40 70.27 69.85 70.31 69.86

HARD – WEIGHTED DivCC 70.21//R = 44 70.49//R = 23 70.33//R = 29 70.42//R = 28 70.69//R = 31 70.45//R = 17 69.99//R = 30 70.48//R = 27 69.82//R = 30

DivDF 69.79//R = 17 70.22//R = 31 70.26//R = 24 69.92//R = 11 70.39//R = 11 70.01//R = 20 70.13//R = 9 70.37//R = 20 70.19//R = 12

DivQ 70.05//R = 45 70.49//R = 23 70.40//R = 42 70.74//R = 33 70.69//R = 31 70.78//R = 22 70.18//R = 25 70.65//R = 25 70.28//R = 24

DivRE 69.89//R = 32 70.09//R = 40 70.05//R = 36 70.19//R = 18 70.52//R = 36 70.29//R = 38 69.95//R = 30 70.40//R = 25 69.82//R = 30

DivDM 70.11//R = 38 70.49//R = 23 70.58//R = 39 70.38//R = 19 70.39//R = 20 70.58//R = 29 69.66//R = 30 70.69//R = 31 69.87//R = 23

AVG 70.01 70.36 70.32 70.33 70.54 70.42 69.98 70.52 70.00

SOFT – MEAN DivCC 69.73//R = 42 70.66//R = 23 70.07//R = 34 69.92//R = 15 70.55//R = 17 70.04//R = 24 69.90//R = 29 69.76//R = 28 69.90//R = 29

DivDF 69.67//R = 15 69.99//R = 22 69.90//R = 24 69.50//R = 37 69.74//R = 17 69.73//R = 14 69.76//R = 26 70.02//R = 24 70.28//R = 8

DivQ 69.63//R = 24 70.66//R = 23 70.38//R = 28 69.92//R = 15 70.27//R = 16 70.10//R = 16 69.90//R = 29 70.03//R = 21 69.92//R = 21

DivRE 69.50//R = 6 70.11//R = 27 70.06//R = 21 69.98//R = 19 70.36//R = 17 69.98//R = 19 69.90//R = 29 69.66//R = 25 69.90//R = 29

DivDM 69.63//R = 24 70.66//R = 23 69.95//R = 20 69.92//R = 15 70.27//R = 16 69.98//R = 24 69.90//R = 29 70.48//R = 27 69.90//R = 29

AVG 69.63 70.42 70.07 69.85 70.24 69.97 69.87 69.99 69.98

SOFT – RELIABILITY DivCC 70.17//R = 44 70.54//R = 22 70.33//R = 29 70.42//R = 28 70.19//R = 17 70.11//R = 24 69.48//R = 28 70.26//R = 28 69.59//R = 26

DivDF 69.95//R = 17 69.87//R = 29 69.89//R = 10 69.86//R = 17 70.12//R = 32 69.89//R = 15 69.83//R = 29 70.06//R = 15 70.06//R = 15

DivQ 69.82//R = 45 70.42//R = 24 70.33//R = 29 70.42//R = 28 70.41//R = 31 70.25//R = 15 70.19//R = 25 70.50//R = 25 70.03//R = 27

DivRE 69.85//R = 47 70.11//R = 34 69.84//R = 25 70.12//R = 28 70.43//R = 37 70.12//R = 28 69.31//R = 30 70.46//R = 26 69.68//R = 28

DivDM 69.93//R = 43 70.54//R = 32 70.30//R = 39 70.34//R = 38 70.26//R = 30 70.46//R = 24 69.31//R = 30 70.38//R = 25 69.79//R = 27

AVG 69.94 70.30 70.14 70.23 70.28 70.17 69.62 70.33 69.83
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Table 2  (continued)

T 20 10

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

HARD – UNWEIGHT DivCC 69.49//R = 20 69.80//R = 19 69.49//R = 20 69.35//R = 8 69.01//R = 5 69.35//R = 8

DivDF 70.13//R = 12 70.64//R = 14 70.44//R = 13 69.83//R = 5 69.46//R = 6 69.83//R = 5

DivQ 69.49//R = 20 69.80//R = 19 69.53//R = 12 69.35//R = 8 69.01//R = 5 69.30//R = 9

DivRE 69.57//R = 14 69.80//R = 19 70.10//R = 16 69.35//R = 8 69.01//R = 5 69.35//R = 8

DivDM 69.49//R = 20 69.80//R = 19 69.69//R = 9 69.35//R = 8 69.01//R = 5 69.35//R = 8

AVG 69.63 69.97 69.85 69.45 69.10 69.44

HARD – WEIGHTED DivCC 69.52//R = 20 69.97//K-20 69.97//R = 20 69.53//R = 9 69.28//R = 8 69.91//R = 8

DivDF 70.33//R = 16 70.72//R = 14 70.67//R = 10 71.28//R = 5 70.37//R = 5 69.56//R = 5

DivQ 69.40//R = 20 69.97//K-20 69.97//R = 20 69.59//R = 9 69.28//R = 8 69.83//R = 9

DivRE 69.98//R = 16 70.19//R = 18 69.97//R = 20 69.53//R = 9 69.28//R = 8 69.91//R = 8

DivDM 69.65//R = 18 69.97//K-20 70.01//R = 10 69.64//R = 9 69.28//R = 8 69.91//R = 8

AVG 69.78 70.16 70.12 69.91 69.50 69.82

SOFT – MEAN DivCC 70.00//R = 12 70.15//R = 14 69.91//R = 13 69.75//R = 5 69.67//R = 10 69.75//R = 5

DivDF 70.65//R = 12 70.13//R = 14 70.76//R = 10 69.70//R = 5 69.67//R = 10 69.70//R = 5

DivQ 69.67//R = 14 69.69//R = 12 69.91//R = 17 69.75//R = 5 69.67//R = 10 69.67//R = 10

DivRE 70.00//R = 12 70.15//R = 14 69.91//R = 13 69.72//R = 8 69.67//R = 10 69.72//R = 8

DivDM 69.51//R = 15 69.69//R = 14 69.78//R = 13 69.75//R = 5 69.67//R = 10 69.75//R = 5

AVG 69.97 69.96 70.05 69.73 69.67 69.72

SOFT – RELIABILITY DivCC 69.80//R = 9 69.83//R = 12 69.58//R = 11 69.46//R = 10 69.46//R = 10 69.46//R = 10

DivDF 70.41//R = 12 70.55//R = 14 70.43//R = 14 69.77//R = 5 69.46//R = 10 69.77//R = 5

DivQ 69.48//R = 20 69.83//R = 12 69.83//R = 12 69.46//R = 10 69.46//R = 10 69.46//R = 10

DivRE 69.80//R = 9 69.91//R = 13 69.81//R = 16 69.46//R = 10 69.46//R = 10 69.46//R = 10

DivDM 69.48//R = 20 69.70//R = 19 70.04//R = 9 69.46//R = 10 69.46//R = 10 69.46//R = 10

AVG 69.79 69.96 69.94 69.52 69.46 69.52

T is the total number of candidate base classifier. R is best ensemble size, i.e., the number of selected base classifiers that reported the best performance
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Table 3  Performances of majority voting-based ensembles for 6-class citation function classification (T: Base classifier pool size; R: Best ensemble size)

T 50 40 30

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

HARD – UNWEIGHT DivCC 75.94
//R = 11

76.93//R = 18 76.52//R = 10 75.85//R = 9 75.98
//R = 23

75.65//R = 10 75.86//R = 20 76.04//R = 9 75.79//R = 23

DivDF 76.41
//R = 17

76.45//R = 30 76.54//R = 31 75.53//R = 11 76.66

//R = 19

76.15//R = 16 75.62//R = 28 75.62//R = 28 75.67//R = 25

DivQ 75.94
//R = 11

76.62//R = 17 76.25//R = 17 75.81//R = 7 75.98
//R = 23

76.14//R = 23 76.07//R = 19 75.78//R = 15 75.74//R = 24

DivRE 76.12
//R = 22

76.44//R = 16 76.30//R = 26 75.81//R = 7 75.98
//R = 23

75.81//R = 7 75.86//R = 20 76.10//R = 28 75.67//R = 24

DivDM 76.14
//R = 22

76.81//R = 16 76.11//R = 18 75.75//R = 9 75.90
//R = 23

75.88//R = 22 76.19//R = 20 76.04//R = 9 75.74//R = 26

AVG 76.11 76.65 76.34 75.75 76.10 75.93 75.92 75.92 75.72

HARD – WEIGHTED DivCC 76.24
//R = 23

76.89//R = 18 76.83//R = 10 75.88//R = 9 75.91//R = 24 75.67//R = 18 76.02//R = 21 76.07//R = 9 75.76//R = 24

DivDF 76.57
//R = 11

76.41//R = 30 76.43//R = 31 75.79//R = 17 76.67//R = 19 75.72//R = 16 76.13//R = 22 75.54//R = 10 75.77//R = 25

DivQ 76.09
//R = 11

76.94//R = 16 76.21//R = 17 75.80//R = 13 75.81//R = 23 76.05//R = 23 75.96//R = 25 76.00//R = 26 75.85//R = 26

DivRE 76.55
//R = 14

76.59//R = 16 76.53//R = 15 75.73//R = 10 75.88//R = 23 75.79//R = 20 75.93//R = 21 76.38//R = 28 75.76//R = 24

DivDM 76.34
//R = 22

76.88//R = 17 76.47//R = 18 75.97//R = 9 75.91//R = 24 75.97//R = 22 76.47//R = 17 76.50//R = 12 75.89//R = 24

AVG 76.36 76.74 76.49 75.83 76.04 75.84 76.10 76.10 75.81

SOFT – MEAN DivCC 75.61//R = 33 75.82//R = 18 76.15//R = 10 76.09//R = 23 76.66//R = 15 75.47//R = 17 76.07//R = 20 76.11//R = 12 75.48//R = 21

DivDF 76.43//R = 25 75.66//R = 16 76.54//R = 16 75.88//R = 17 76.43//R = 18 76.66//R = 16 75.94//R = 12 76.48//R = 17 76.26//R = 15

DivQ 75.66//R = 24 75.83//R = 18 75.82//R = 7 75.65//R = 22 76.10//R = 17 75.88//R = 23 76.01//R = 19 75.82//R = 15 76.20//R = 14

DivRE 75.70//R = 16 75.62//R = 15 75.79//R = 10 76.09//R = 23 76.55//R = 16 75.87//R = 24 76.07//R = 20 76.11//R = 12 75.85//R = 28

DivDM 75.62//R = 7 76.03//R = 14 75.41//R = 20 75.54//R = 11 76.56//R = 16 75.82//R = 21 76.01//R = 19 75.82//R = 15 75.61//R = 13

AVG 75.80 75.79 75.94 75.85 76.46 75.94 76.02 76.24 75.88
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Table 3  (continued)

T 50 40 30

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

SOFT – RELIABILITY DivCC 76.06//R = 22 77.05//R = 18 76.13//R = 18 75.89//R = 7 75.96//R = 22 75.95//R = 17 75.80//R = 25 76.13//R = 9 75.73//R = 29

DivDF 76.49//R = 25 76.41//R = 30 76.61//R = 31 75.46//R = 17 76.59//R = 19 76.60//R = 16 75.78//R = 22 75.75//R = 10 75.71//R = 25

DivQ 76.09//R = 11 76.88//R = 16 76.30//R = 18 75.89//R = 7 75.60//R = 23 76.19//R = 23 76.20//R = 19 75.84//R = 15 76.26//R = 14

DivRE 76.06//R = 22 76.43//R = 16 76.48//R = 20 75.89//R = 7 75.96//R = 22 75.89//R = 7 75.72//R = 20 75.88//R = 12 75.64//R = 28

DivDM 76.27//R = 22 76.82//R = 16 76.13//R = 18 75.82//R = 13 76.15//R = 13 75.91//R = 22 76.20//R = 19 76.13//R = 9 75.73//R = 29

AVG 76.19 76.72 76.33 75.79 76.05 76.11 75.94 75.95 75.81

T 20 10

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

HARD – UNWEIGHT DivCC 76.33//R = 5 76.24//R = 17 76.16//R = 8 75.71//R = 9 75.65//R = 10 75.65//R = 10

DivDF 76.31//R = 13 76.01//R = 18 75.07//R = 14 75.71//R = 9 75.65//R = 10 75.65//R = 10

DivQ 76.33//R = 5 76.24//R = 17 76.37//R = 7 75.71//R = 9 75.65//R = 10 75.65//R = 10

DivRE 76.33//R = 5 76.24//R = 17 76.09//R = 8 75.71//R = 9 75.65//R = 10 75.65//R = 10

DivDM 76.33//R = 5 76.16//R = 8 75.94//R = 5 75.71//R = 9 75.65//R = 10 75.65//R = 10

AVG 76.33 76.18 75.93 75.71 75.65 75.65

HARD – WEIGHTED DivCC 76.05//R = 5 76.22//R = 6 76.26//R = 7 75.92//R = 10 75.92//R = 10 75.92//R = 10

DivDF 76.60//R = 5 76.23//R = 7 75.72//R = 13 75.92//R = 10 75.92//R = 10 75.92//R = 10

DivQ 76.05//R = 5 76.22//R = 6 76.22//R = 6 75.92//R = 10 75.92//R = 10 75.92//R = 10

DivRE 76.12//R = 14 76.22//R = 6 76.04//R = 8 75.92//R = 10 75.92//R = 10 75.92//R = 10

DivDM 76.26//R = 13 75.99//R = 8 76.26//R = 7 75.92//R = 10 75.92//R = 10 75.92//R = 10

AVG 76.22 76.18 76.10 75.92 75.92 75.92
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Table 3  (continued)

T 20 10

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

SOFT – MEAN DivCC 75.99//R = 5 75.48//R = 6 75.72//R = 8 75.72//R = 5 74.93//R = 10 74.93//R = 10

DivDF 75.63//R = 13 75.74//R = 9 75.49//R = 5 75.79//R = 5 74.93//R = 10 74.93//R = 10

DivQ 75.99//R = 5 75.73//R = 13 75.72//R = 8 75.72//R = 5 74.93//R = 10 75.07//R = 7

DivRE 75.99//R = 5 75.48//R = 6 75.34//R = 19 75.72//R = 5 74.93//R = 10 74.93//R = 10

DivDM 75.99//R = 5 75.73//R = 13 75.34//R = 19 75.72//R = 5 75.07//R = 7 75.07//R = 7

AVG 75.92 75.63 75.52 75.73 74.96 74.99

SOFT – RELIABILITY DivCC 75.84//R = 19 76.35//R = 17 75.88//R = 8 76.35//R = 9 75.70//R = 7 75.70//R = 7

DivDF 75.74//R = 13 75.91//R = 17 75.65//R = 13 76.35//R = 9 75.70//R = 7 75.70//R = 7

DivQ 76.02//R = 14 76.35//R = 17 76.20//R = 6 76.35//R = 9 75.70//R = 7 75.70//R = 7

DivRE 76.44//R = 8 76.35//R = 17 76.44//R = 8 76.35//R = 9 75.70//R = 7 75.70//R = 7

DivDM 75.84//R = 17 76.20//R = 6 75.84//R = 17 76.35//R = 9 75.70//R = 7 75.70//R = 7

AVG 75.98 76.23 76.00 76.35 75.70 75.70
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Table 4  Performances of majority voting-based ensembles for 2-grade important citation screening (T: Base classifier pool size; R: Best ensemble size)

T 50 40 30

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

HARD – UNWEIGHT DivCC 89.06//R = 19 89.38//R = 11 89.06//R = 19 89.18//R = 17 89.22//R = 17 89.18//R = 17 89.63//R = 15 89.43//R = 11 89.63//R = 15

DivDF 88.65//R = 23 89.22//R = 13 88.74//R = 19 88.79//R = 22 88.97//R = 9 88.86//R = 21 89.02//R = 19 89.22//R = 11 89.03//R = 18

DivQ 89.26//R = 23 89.38//R = 11 89.63//R = 11 89.18//R = 17 89.18//R = 9 89.22//R = 13 89.63//R = 15 89.06//R = 27 88.90//R = 19

DivRE 88.79//R = 22 89.38//R = 9 88.88//R = 20 88.65//R = 23 89.22//R = 17 89.18//R = 17 89.63//R = 15 89.22//R = 11 89.63//R = 15

DivDM 89.26//R = 21 89.55//R = 9 89.15//R = 22 88.77//R = 19 89.18//R = 9 88.86//R = 17 89.63//R = 15 89.02//R = 15 89.26//R = 17

AVG 89.00 89.38 89.09 88.91 89.15 89.06 89.51 89.19 89.29

HARD – WEIGHTED DivCC 89.06//R = 18 89.43//R = 10 89.06//R = 19 89.18//R = 17 89.22//R = 17 89.38//R = 18 89.63//R = 15 89.43//R = 11 89.63//R = 15

DivDF 88.86//R = 20 89.43//R = 28 89.02//R = 28 89.10//R = 14 89.26//R = 24 89.10//R = 20 89.10//R = 12 89.22//R = 11 89.22//R = 18

DivQ 89.26//R = 23 89.38//R = 11 89.63//R = 11 89.18//R = 17 89.18//R = 9 89.22//R = 13 89.63//R = 15 89.26//R = 26 89.06//R = 22

DivRE 88.86//R = 27 89.38//R = 9 88.90//R = 20 88.90//R = 20 89.38//R = 18 89.18//R = 17 89.63//R = 15 89.26//R = 26 89.63//R = 15

DivDM 89.26//R = 21 89.55//R = 9 89.38//R = 22 88.90//R = 20 89.18//R = 9 89.71//R = 12 89.63//R = 15 89.22//R = 26 89.26//R = 16

AVG 89.06 89.43 89.20 89.05 89.24 89.32 89.52 89.28 89.36

SOFT – MEAN DivCC 88.58//R = 16 89.38//R = 11 88.74//R = 17 88.77//R = 17 89.18//R = 9 88.77//R = 17 89.63//R = 15 89.26//R = 11 89.63//R = 15

DivDF 88.49//R = 23 89.31//R = 10 88.74//R = 22 88.62//R = 16 88.86//R = 8 88.94//R = 14 89.06//R = 19 89.06//R = 11 88.90//R = 18

DivQ 89.31//R = 20 89.38//R = 11 89.34//R = 9 88.77//R = 17 89.18//R = 9 88.81//R = 6 89.63//R = 15 89.06//R = 27 88.78//R = 9

DivRE 88.58//R = 16 89.38//R = 11 88.74//R = 17 88.65//R = 18 89.18//R = 9 88.77//R = 17 89.63//R = 15 89.06//R = 27 89.63//R = 15

DivDM 89.31//R = 20 89.34//R = 9 89.31//R = 20 88.44//R = 19 89.18//R = 9 88.65//R = 17 89.63//R = 15 89.10//R = 24 89.26//R = 17

AVG 88.85 89.36 88.97 88.65 89.12 88.79 89.52 89.11 89.24

SOFT – RELIABILITY DivCC 89.06//R = 19 89.38//R = 11 89.06//R = 19 89.18//R = 17 89.22//R = 17 89.18//R = 17 89.63//R = 15 89.22//R = 11 89.26//R = 17

DivDF 88.65//R = 23 89.59//R = 9 88.74//R = 19 88.65//R = 23 88.97//R = 9 88.94//R = 14 89.06//R = 19 89.02//R = 15 89.02//R = 17

DivQ 89.26//R = 23 89.38//R = 11 89.63//R = 11 89.18//R = 17 89.18//R = 9 89.22//R = 13 89.63//R = 15 89.22//R = 11 88.90//R = 19

DivRE 88.74//R = 23 89.38//R = 11 88.86//R = 27 88.65//R = 17 89.22//R = 17 89.18//R = 17 89.63//R = 15 89.22//R = 11 89.63//R = 15

DivDM 89.26//R = 21 89.55//R = 9 89.10//R = 20 88.77//R = 19 89.18//R = 9 88.86//R = 17 89.63//R = 15 89.02//R = 15 89.26//R = 17

AVG 88.99 89.46 89.08 88.89 89.15 89.08 89.52 89.14 89.21
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Table 4  (continued)

T 20 10

Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val

HARD – UNWEIGHT DivCC 89.18//R = 17 88.99//R = 20 89.34//R = 17 88.93//R = 9 88.90//R = 9 88.93//R = 9

DivDF 89.18//R = 17 88.99//R = 20 89.18//R = 17 88.78//R = 10 88.90//R = 7 88.78//R = 10

DivQ 89.18//R = 17 88.99//R = 20 88.99//R = 20 88.93//R = 9 88.90//R = 9 88.93//R = 9

DivRE 89.18//R = 17 88.99//R = 20 89.18//R = 17 88.93//R = 9 88.90//R = 9 88.93//R = 9

DivDM 89.34//R = 17 88.99//R = 20 89.34//R = 17 88.93//R = 9 88.90//R = 9 88.93//R = 9

AVG 89.21 88.99 89.21 88.90 88.90 88.90

HARD – WEIGHTED DivCC 89.18//R = 17 89.14//R = 20 89.34//R = 17 89.06//R = 10 89.02//R = 8 89.02//R = 8

DivDF 89.18//R = 17 89.14//R = 20 89.34//R = 18 89.14//R = 10 89.02//R = 6 88.61//R = 10

DivQ 89.18//R = 14 89.14//R = 20 89.14//R = 20 89.31//R = 8 89.02//R = 8 89.02//R = 8

DivRE 89.38//R = 14 89.14//R = 20 89.34//R = 18 89.38//R = 10 89.02//R = 8 89.02//R = 8

DivDM 89.34//R = 17 89.14//R = 20 89.34//R = 17 89.06//R = 10 88.90//R = 9 89.02//R = 8

AVG 89.25 89.14 89.30 89.19 89.00 88.94

SOFT – MEAN DivCC 89.02//R = 18 88.65//R = 18 89.34//R = 17 88.61//R = 7 88.70//R = 9 88.61//R = 7

DivDF 89.02//R = 18 88.65//R = 18 89.02//R = 18 88.72//R = 7 88.86//R = 7 88.61//R = 7

DivQ 89.02//R = 18 88.77//R = 13 88.65//R = 18 88.61//R = 7 88.70//R = 9 88.56//R9

DivRE 89.02//R = 18 88.81//R = 12 89.02//R = 19 88.61//R = 7 88.70//R = 9 88.61//R = 7

DivDM 89.34//R = 17 88.81//R = 12 89.34//R = 17 88.56//R = 9 88.70//R = 6 88.56//R9

AVG 89.08 88.74 89.07 88.62 88.73 88.59

SOFT – RELIABILITY DivCC 89.18//R = 17 88.77//R = 19 89.34//R = 17 88.93//R = 9 88.90//R = 9 88.93//R = 9

DivDF 89.18//R = 17 88.77//R = 19 89.18//R = 17 88.72//R = 7 88.90//R = 7 88.56//R = 7

DivQ 89.18//R = 17 88.93//R = 12 88.77//R = 19 88.93//R = 9 88.90//R = 9 88.93//R = 9

DivRE 89.18//R = 17 88.81//R = 12 89.18//R = 17 88.93//R = 9 88.90//R = 9 88.93//R = 9

DivDM 89.34//R = 17 88.81//R = 12 89.34//R = 17 88.93//R = 9 88.90//R = 9 88.93//R = 9

AVG 89.21 88.82 89.16 88.89 88.90 88.86



 Scientometrics

Figure  2 shows a real example using double fault (DF), where T = 20,R = 10 , i.e., 
selecting 10 most diverse classifiers from a pool of 20 candidates. Rank_DF (resp. Rank_
F1) is the rank of classifier based on DF (resp. Macro F1) in descending order. Norm_
DF and Norm_F1 are the normalised DF and normalised F1 respectively. To perform 
value-based and rank-based re-ranking, two weights are calculated: Weight_V = Norm_
DF + Norm_F1, and Weight_R = Rank_DF + Rank_F1. Finally, ReRank_V and ReRank_R 
are the value-based and rank-based re-ranking results in descending order of Weight_V and 
Weight_R respectively. Ties are broken using classifier performance, e.g., F1. A notable 
case in Fig. 2 is shown in bold underlined. C16 has the highest classification performance, 
beating other candidates by a large margin. However, its diversity rank is very low. 
Fortunately, both re-ranking methods bring it to the top-10 list, which is preferred! 
Another notable case is in bold italic. C2 has very low rank in term of F1; its performance 
is poor. As I assumed earlier, such weak classifiers might be undesirably “diverse” only 
because they make too many errors, some of which may be unique. Fortunately, the rank-
based re-ranking method is able to rule it out of the top-10 list, which may improve the 
performance of ensemble that is built on top of 10 selected classifiers.

Majority voting

The first ensembling approach was majority voting. Formally speaking, out of T candidate 
classifiers, a subset of R most diverse classifiers were selected based on diversity meas-
ure (Sect. “Diversity measure”) and diversity re-ranking (Sect. “Diversity re-ranking”). 
Both hard majority voting and soft majority voting (Zhou, 2014) were evaluated. For 
Hard majority voting, the most basic one was unweighted hard voting (HARD VOTE—
UNWEIGHTED in future sections and tables), which simply counts the number of votes 
each class label received from base classifiers and chose the class label that won the most 
votes, and randomly selects a label when a tie happens. Due to this randomness, I decided 
to report the average performance over 10 random runs in the Results and Discussions 
section (Sect. “Results and discussions”). Intuitively, I felt it reasonable to have more 
trust in the stronger classifiers, so the weighted hard voting approach (HARD VOTE—
WEIGHTED) used classifier performance to weight each vote, and the score for each label 
is the sum of the weighted votes. In HARD VOTE—WEIGHTED, ties are avoided most of 
the time, so there was little need for averaging over 10 random runs.

When it comes to soft majority voting, classifier confidence on each instance, i.e., the 
posterior probability of a classifier, was used for fusing decisions. A lot of choices existed 
in past literature (Malmasi & Dras, 2018), for example, Mean Probability Rule, Median 
Probability Rule, Product Rule, Highest Confidence, Corda Count, etc. Malmasi and 
Dras reported strong performances of the mean probability and median probability rules 
compared to hard majority vote. In the experiments, I saw similar performances of both 
methods, so I opted for Mean Probability Rule (SOFT VOTE—MEAN) as it was the best 
performing voting method in Malmasi and Dras (2018). See Fig. 3 for the illustration of 
this fusing method. Meanwhile, I proposed a new soft weighting method called Reliability-

Enhanced Soft Voting (SOFT VOTE—RELABILITY). Each classifier provided three types 
of information for decision fusion: vote (label predicted by classifier), confidence (posterior 
probability of predicted label), and reliability (performance of classifier, e.g., Macro F1 in 
this paper). Then, a soft vote is calculated by confidence × reliability. Then fusion decision 
was made by total number of votes and total number of soft votes, using the latter to break 
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Fig. 2  An example of re-ranking 20 candidate classifiers which are originally sorted in double fault (DF)
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ties. This approach was proved to be an extremely effective and consistently robust voting 
method in the experiments.

Classifier stacking

Different meta-classifiers were selected in the literature for classifier stacking, such as Gra-
dient Boosted Decision Tree (GDBT) and Neural Networks (NN) (Jahrer et al., 2010), Deep 
Neural Networks (Xiao et  al., 2018), Logistic Regression (Shahri et  al., 2020), Support 
Vector Machine (SVM) (Akomeah et al., 2021). Malmasi and Dras (2018) presented the 
most comprehensive comparison among nine meta-classifiers, including Logistic Regres-
sion (LogReg), Ridge Regression (Ridge), Linear SVM, RBF-Kernel SVM, LogReg, 
k-Nearest Neighbour (k-NN), Linear Discriminant Analysis (LDA), Quadratic Discrimi-
nant Analysis (QDA), Perceptron and Decision Tree (DT). These experimental results cor-
roborated with Malmasi and Dras in that DT, Perceptron and QDA were not competitive. 
Contrastively, LogReg (with L1-regularisation or L2-regularization, the latter of which is 
similar to Ridge) and Linear SVM did not rival SVMs with kernels in my experiments. In 
addition, the experimental results of Random Forest (RF) and different variants of it were 
also not as convincing as Jahrer et al. showed, despite of extremely time-consuming hyper-
parameter tuning. Therefore, I decided to choose and report on k-NN, SVM (with poly-
nomial and RBF kernels, abbreviated as SVM-Poly and SVM-RBF respectively), LDA, 
Categorical Naive Bayes (CatNB), and Bernoulli Naïve Bayes (BerNB). Different from 
most of the literature, I used both the predicated labels and posterior probabilities of base 
classifiers as inputs to meta-classifiers. Both SVM-Poly and SVM-RBF accepted posterior 
probabilities as input, while k-NN, CatNB and BerNB accepted class label as input. I did 
not choose Gaussian Naïve Bayes because I believed the posterior probability distribution 
of classifier predictions is not Gaussian. Out initial experimental results also confirmed this 
assumption through its inconspicuous performance, which were omitted to save space.

Note that meta-classifier needs data for training another classifier, which will then be 
applied to the test data. Different from voting methods which directly worked on the test 
data, I used two ways to evaluate meta-classifier performance. The first way was to only 

Fig. 3  Soft voting by mean probability rule, adapted from Malmasi and Dras (2018)
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use test data, but this meant no particular held-out data for meta-classifier training. In this 
case, I adopted fivefold cross validation, a machine learning approach to training more 
robust classifier and reporting more robust performance on datasets of limited size. The 
second way was to use the original validation data which were used to fine-tune the deep 
learning base classifiers. Ideally, there should be a held-out dataset just for meta-classifier 
training (Zhou, 2014), a portion of which should be reserved for meta-classifier hyperpa-
rameter tuning, as in Jahrer et al. (2010). However, this was impossible in the case of this 
paper. Therefore, I decided to enlarge the validation data with misclassified samples in the 
training set. I found that (1) the training instances were classified by all base classifiers 
with an extremely high accuracy, and (2) these classifiers proved to be able to generalize to 
the validation and test data as there was no catastrophic performance drop from validation 
to test. So, I expanded validation data with the training instances that were mis-classified 
by at least two base classifiers, and then used fivefold cross-validation to tune meta-classi-
fier performance. Details will be given in the Dataset section (Sect. “Meta-classifier data”) 
and Results and Discussion section (Sect. “Results and discussions”).

Dataset

Citation context dataset

I used the citation context dataset proposed in Jiang and Chen (2023). This dataset was cre-
ated by re-annotating citation instances from six datasets in the computational linguistics 
(CL) domain. The six datasets were proposed by previous studies about citation function 
classification (Abu-Jbara et  al., 2013; Dong & Schäfer, 2011; Hernández-Alvarez et  al., 
2017; Jurgens et al., 2018; Su et al., 2019; Teufel et al., 2006a). The dataset contains 3356 
citation contexts, 4784 in-text citations and 3854 citation targets with annotations. Note 
that, in this dataset, consecutive citation strings in each citation sentence were merged 
into a citation segment, represented by a pseudoword “CITSEG”. Each citation segment 
is a citation target and annotations were made to each citation segment. For example, in 
the exemplar citation sentence “SHRDLU (Winogard, 1973) was intended to address this 
problem.” The in-text citation target “Winogard, 1973” was replaced by the pseudoword 
“CITSEG”. So, the citation sentence was tokenized into [“SHRDLU”, “(”, “CITSEG”, 
“)”, “was”, “intended”, “to”, “address”, “this”, “problem”, “.”]. For experiments, the data-
set was randomly split into a training split (60%), a validation split (15%) and a test split 
(25%), making sure that each split had the same class distribution (Jiang & Chen, 2023). 
This paper used exactly the same data splits.

The dataset was originally annotated using a classical 12-class annotation scheme 
(Teufel et  al., 2006a) plus a common function “Future (work)”. The annotation scheme 
was then mapped to a more coarse-grained and widely used 6-class scheme (Jurgens et al., 
2018). “CoCoXY” means comparison and contrast between two cited papers. “Weak” 
means weakness of the cited paper. “CoCoGM” (resp. “CoCoR0”) means objective 
comparison and contrast about research goal and method (resp. empirical results), while 
“CoCo-” means the cited paper is inferior to the citing paper, i.e., a negative comparison. 
“PSim” means similarity between citing and cited papers. “PSup” means the citing and 
cited papers support each other theoretically, either technically or empirically. “PMot” 
means the citing paper is motivated by the cited paper. “PUse” means the citing paper 
uses some intellectual assets proposed by the cited paper. “PModi” means technical 
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modification of the cited paper while “PBas” means ideational basis on the cited paper. 
Finally, “Neut” means anything else unable to be classified into other categories, or 
“neutral” citations, or often “background” citations. The authors of the dataset mapped 
the original annotations to a slightly simplified 11-class scheme, in which the “CoCo-” 
class was spread into “CoCoGM” (goal and method comparison) and “CoCoRes” (result 
comparison) because the former mixes comparisons about both methods and results, and 
the “Basis” class merged “PBas” and “PModi” because these classes were still too small. 
Citation functions could also be mapped to citation importance, for which mapping from 
citation function to citation importance by Valenzuela et  al. (2015) was used. Citation 
importance is binary, either important or unimportant. This means only usage citations 
(“PUse”), modification or extension citations (“PModi”), and based-on citations (“PBas”) 
are deemed as important citations (in total 917, 23.79%). Accordingly, there are 2937 
unimportant citations (76.21%).

Meta‑classifier data

The data splitting was done on citation segments. There were in total 2497 training 
instances, 582 validation instances and 775 test instances. The number of validation 
instances were comparatively small. So, I decided to expand the validation set with training 
samples that were misclassified by at least TWO base classifiers. Considering “Support”, 
“Weakness”, “Basis”, “Similar” were the more difficult classes for most classifiers, more 
instances of these classes were added to enrich the validation set. They were treated as 
more confusing cases, and I hoped that improvement on these samples would boost meta-
classifier performance. In total, there were 2112 training samples combined with the vali-
dation set for training the meta-classifier.

Results and discussions

Base classifiers

The performances of the base classifiers on citation function classification were obtained 
from Jiang and Chen (2023). In addition, citation importance classifiers were trained using 
the same settings as in Jiang and Chen’s paper. Five random runs were done using the same 
seeds and the best macro F1, average macro F1 and the standard deviation were reported. 
SciBERT was used for encoding citation context and was fine-tuned, including the special 
token CITSEG introduced by the current study. The context window size was fixed to [− 2, 
+ 3], i.e., two left and three right context sentences, including the central citation sentence. 
Indeed, Lauscher et al.’s annotations demonstrated that it is very rare to go beyond a cita-
tion context of six sentences to find the useful context sentences for determining citation 
functions. The citation context classifier was a Multiple-Layer Perceptron (MLP) with one 
hidden layer. All experiments were run on one GeForce RTX 3080 GPU whose CUDA 
version was 11.6.

Table  1, which is adapted from Table  5 in Jiang and Chen (2023), shows the 
performances of all 36 model architectures on citation function classification (with the 
11-class and 6-class citation function schemes) and important citation screening (with the 
2-grade citation importance scheme). The best classifiers achieved 66.16% best F1 (across 
five runs) and 63.5% average F1 (across five runs) on the 11-class scheme. The 66.16% best 
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Table 5  Summary of hyperparameters of meta-classifiers

Meta-classifier Hyperparameters Explanations Range

k-NN weight Method of weighting nearest neighbours according to their distances to 
the central instance

[“uniform”, “distance”]

CatNB � The additive value used for smoothing the Naïve Bayes estimates with 
respect to each category

[0.0001, 0.0002, …, 0.001, 0.002, …, 0.01, 0.02, …, 0.1, 0.2, 
1.0, 1.1, …, 6.0]

BerNB � Same as above Same as above

LDA λ The regularisation factor for the shrinkage estimator of covariance 
matrices in situations where the number of training samples is small 
compared to the number of  featuresa:

Σ = (1 − �)Σ + �I

[0.00, 0.05, …, 0.90, 0.95, 1.00]

SVM-RBF C

�

Regularisation coefficient which controls the trade-off between errors 
on training data and margin maximization

The kernel distance coefficient in �(x, x�) = exp
�
−�‖x − x�‖2

�
[0.5, 0.6, …, 1.0, 1.1, 1.2, …, 2, 3, …, 10]
[0.002, 0.004, …, 0.01, 0.02, 0.04, …, 0.10, 0.12, 0.14, …, 0.20]

SVM-Poly C

�

d

Regularisation coefficient which controls the trade-off between errors 
on training data and margin maximization

The kernel distance coefficient in �(x, x�) = (�⟨x, x�⟩ + r)
d , where r was 

defaulted to 0
The degree of polynomial

Same as above
Same as above
[2, 3, 4]
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F1 was considered strong due to the cognitive complexity of this citation function scheme. 
The top-3 models (indeed model architectures) in term of best (macro) F1 were shown in 
bold underlined, bold and underlined fonts respectively in the table (same for other tables 
in this paper). Note that, with the 11-class scheme, there was a significant performance 
drop from 66.16% (top-1) to 65.12% (top-2). Less extreme but still significant performance 
drops also happened in the top-performing models on the 6-class scheme, from 74.03% 
(top-1) to 73.25% (top-3), and further to 72.81% (hie-21), then suddenly to 72.11% (hie-
09). After that the model performance curve, if sorted in descending order, started to 
be flatter. This signifies the necessity of including the best performing model(s) into the 
ensemble. In addition, that the performance differences between the weakest classifiers 
were often minor, implying a higher chance of low classifier diversity among them, so it 
might be wiser to avoid building ensembles mainly based on weak classifiers.

Majority voting

Experimental setup

Due to the large number of base classifiers ( T� = 150 ), most of which significantly under-
performed the few top ones, I decided to first select a set of T  classifiers in descend-
ing order of classifier performance as the pool of candidates. To ensure performance, 
the pool should be large enough, say T = 50 . I also tested a series of different sizes: 
T ∈ {50, 40, 30, 20, 10}. Finally, a subset of R diverse classifiers were chosen from the pool 
to fuse. The T  candidates were ranked in descending order of classifier diversity based on 
pair-wise diversity measures, as explained in Sect. “Diversity measure”. In this way, it was 
still difficult to determine the best subset, i.e., the best R value, to fuse, so I tested different 
values of R ( R = 2,3,… , T  ) and reported the best performance together with the corre-
sponding ensemble size R . As introduced in Sect. “Classifier stacking”, four voting meth-
ods were experimented, unweighted hard majority weighting (HARD—UNWEIGHTED), 
weighted hard majority voting (HARD—WEIGHTED), mean-probability soft majority 
voting (SOFT—MEAN), and reliability-enhanced soft voting (SOFT—RELIABILITY). 
HARD—UNWEIGHTED was done 10 times and averaged.2 With other methods, when-
ever there was a tie, though being very rare, macro F1 was used to break the tie. For each 
fusion method, the five diversity measures introduced in Sect. “Diversity measure” were 
tested and compared. For each diversity measure applied in combination with each fusion 
method, I reported the macro F1s of both the diversity-based ensembles without re-ranking 
(the ¬RR column in Tables 2, 3, 4) and the ensembles using diversity re-ranking defined in 
Sect. “Diversity re-ranking” (the RR_Rnk and RR_Val columns).

Results

Tables  2, 3, 4 show the results under all experimental setups with the 11-class scheme, 
6-class scheme and 2-grade scheme respectively. Each cell represents a combination of 
voter setups, including the type of voter and the diversity measure used for diversity rank-
ing (both are indicated by the row headers), the pool size of candidate base classifiers (T) 
and the diversity re-ranking methods, as well as whether re-ranking was used (both are 

2 The following randomly picked seeds were used: 11, 107, 211, 509, 521, 929, 971, 1061, 1753, and 1979.
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indicated by the column headers). For majority voting, it was difficult to determine the 
best R (classifiers to fuse) when using pair-wise diversity measures. Therefore, I reported 
the performance that was obtained using the best R ranging between 2 and T. The best 
voter performance and the corresponding “optimal” R are separated by “//” in each cell. 
The same notation is applied to all subsequent tables when necessary. This is a significant 
drawback of the majority voting method. It was hardly possible to reliably determine the 
“best” R using a held-out set, because a small difference between the distributions of the 
validation and test samples would be amplified, causing the R “optimised” on the valida-
tion set to become suboptimal or even poor on the test set. This drawback can be alleviated 
by the classifier stacking approach, which trains a meta-classifier to optimise the weights 
of the contribution of each classifier, making fusion results more stable. The best majority 
voters were HARD − WEIGHTED on the 11-class scheme with a pool of T = 40 candi-
date classifiers diversified by Q statistics and value-based re-ranking (the shaded cell in 
Table 2), and SOFT − RELIABILITY on the 6-class scheme with a pool of T = 40 can-
didates diversified by correlation coefficient and rank-based re-ranking (the shaded cell in 
Table 3). Compared to the best single models the performance gains were significant: 
for 11-class, a 4.6% absolute improvement from 66.16% (seq-08 in Table  1) to 70.78% 
(Table 2), and for 6-class, a 3% absolute improvement from 74.03% (seq-01 in Table 1) to 
77.05% (Table 3). On the 2-grade scheme, the best-performing single voter was HARD—
WEIGHTED with DivDM (disagreement measure) and R = 40, topping at 89.71%. There 
were quite a few ensemble settings performing equally well, achieving the second best per-
formance at 89.63%. This might be due to the fact that the important citation screening task 
was comparatively not as complex as the citation function classification task, which was 
proved by the good single model performance topping at 86.65% (see Table 1). The deci-
sion space was also much simpler, thus the diversities among classifiers were likely not as 
obvious as in citation function classification, resulting in many ensemble classifiers with 
similar behaviours.

Several conclusive observations could be made. Firstly, relatively weak classifiers 

did contribute to a stronger ensemble performance. When only a small number of top-
performing classifiers were selected, e.g., R = 10, 20 for 11-class (Table 2), R = 10, 20 for 
6-class (Table 3), and R = 10 for 2-grade (Table 4), the ensemble performance were not 
optimal. The best performances appeared when R = 40 for 11-class, R = 50 for 6-class and 
R = 30 for 2-grade schemes. Secondly, from the results on all three annotation schemes, 
it was safe to claim that when the pool of candidate classifiers is large and diverse 

enough, diversity re-ranking methods consistently improves fusion performance 
(RR > ¬RR). Generally, rank-based re-ranking was overall better than value-based 

re-ranking (RR_Rnk > RR_Val). Both claims could be seen from the “AVG” rows in all 
three tables. The extreme opposite case was that, when T = 10 , doing diversity re-ranking 
was worse than no re-ranking on all three annotation schemes. The reasons might be that 
the candidate pool was too small, thus missed a lot of candidates that provided commen-
tary views of the classification task. This explanation corroborates with my first claim that 
many weak classifiers are indeed helpful for building a better ensemble. The situation with 
the 2-grade scheme was an even more extreme opposite case, where the best voter appeared 
at T = 30 without doing re-ranking (though a few value-based re-ranking results rivaled). 
I also noted that the best ensemble size for all these rivaling voters was R = 15 , which first 
corroborate with the first claim above and also implied that there might be many important 
citation screeners that performed equally well, and the fusion of a subset of them reached 
the performance ceiling of majority voting because more base classifiers did not provide 
any complementary views. Thirdly, cognitively more challenging tasks might require a 
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larger candidate pool to allow more diversity. This actually implied the effectiveness of 
performing diversity analysis for combining classifiers like citation function classification 
(Nam et al., 2021).

Classifier stacking

Experimental setup

Four types of meta-classifier were used, k-Nearest Neighbour (k-NN), Support Vector 
Machine (SVM), Naïve Bayes (NB) and Linear Discriminant Analysis (LDA). For k-NN, 
the following values were selected: k = 5,7, 11,13,15 . Base classifier’s predicted labels 
were used as inputs. For SVM, both polynomial kernels and RBF (Radial Basic Function) 
kernels were used. They were denoted as SVM-Poly and SVM-RBF. Base classifiers’ pos-
terior probabilities (of predicted labels) were used as inputs for both SVM and LDA. For 
NB, Categorical Naive Bayes (CatNB) was used for citation function classification and 
Bernoulli Naïve Bayes (BerNB) was used for important citation screening, both taking 
base classifiers’ predicted labels as inputs.

Table 5 summarises the hyperparameters tuned for each meta-classifier. For k-NN, the 
only option needs to be tuned was the weighting of instances (nearest neighbours used for 
voting), either “uniform” (i.e., equally weighted) or “distance” (inversely weighted based 
on distance to the test sample). For CatNB and BerNB, the only hyperparameter tuned was 
� , the additive value used for smoothing the Naïve Bayes estimate of the counts of feature 
values with respect to each category.3 For SVM-RBF, the hyperparameter was � in the RBF 
kernel function while SVM-Poly had one more parameter—the degree of polynomial d.4 
For both SVM-Poly and SVM-RBF, the regularisation coefficient C was a common hyper-
parameter.5 Due to the large number of hyperparameter settings of SVM, I first performed 
grid search using a large but coarse range of C and � values, found the less promising 
ranges of value for both parameters, and then narrowed down to a smaller but finer range of 
hyperparameters values as in Table 5. For all the meta-classifiers, the five diversity meas-
ures (Sect. “Diversity measure”) were also part of the hyperparameters to be tuned. Finally, 
note that only rank-based re-ranking was used in the meta-classifier experiments as this 
was proved an overall better re-ranker when there was abundance in candidate classifiers.

Two groups of experiments were done for classifier stacking. The first group was done 
purely on the test split. For a more robust evaluation, fivefold cross validation was done and 
the best performance across all hyperparameter setups was reported. The cross-validation 
results on the test split were regarded as the upper limit of meta-classifier. The more com-
mon practice is to optimise the meta-classifiers on a held-out set, here using the validation 
set enriched with training samples that caused errors to at least two base classifiers, and 
apply the “optimal” parameter setting to the test split. Again, fivefold cross validation and 
grid search were used for hyperparameter tuning on the held-out set. Then, meta-classifiers 
were trained using the “optimised” hyperparameters on the whole held-out samples and 
then were evaluated against the test set.

3 https:// scikit- learn. org/ stable/ modul es/ naive_ bayes. html# categ orical- naive- bayes.
4 https:// scikit- learn. org/ stable/ modul es/ svm. html# kernel- funct ions.
5 https:// scikit- learn. org/ stable/ modul es/ svm. html# svm- class ifica tion.

https://scikit-learn.org/stable/modules/naive_bayes.html#categorical-naive-bayes
https://scikit-learn.org/stable/modules/svm.html#kernel-functions
https://scikit-learn.org/stable/modules/svm.html#svm-classification
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Results

Tables 6, 7, 8 show the fivefold cross-validation results of all the meta-classifiers on the 
test split, where the best performance for each meta-classifier (each row in the tables) was 
highlighted in bold font and the best overall meta-classifier in bold underlined. Gener-
ally, k-NN often was not a strong meta-classifier, and SVM (either SVM-RBF or SVM-
Poly) was among the most powerful meta-classifier. On the 11-class scheme, the best per-
formance was 70.81% by SVM-RBF (Table  6), beating reliability-enhanced soft voting, 
which was 70.78% (Table 2). However, a fundamental difficulty for voter was the choice 
of the right number (R) of selected classifiers, for which there was no systematic way to 
decide. Classifier stacking removed this complexity by properly weighting the pool of can-
didates (of size T), which in essence softly excluded “bad” base classifiers by learning to 
set a small enough weight for them. Classifier stacking thus is a more convenient method 
to use, especially when the candidate pool is too large to manoeuvre manually. However, 
on the 6-class and 2-grade schemes, the best performances of classifier stacking were 
76.85% (Table 7) and 89.53% (Table 8) respectively, underperforming the voting counter-
parts, which reported 77.05 and 89.63% in Tables 3 and 4 respectively. However, the per-
formances were still significantly better than the best single classifier, by (70.78 − 66.16 =) 
4.62% on the 11-class scheme, by (76.85 − 74.03 =) 2.82% on the 6-class scheme, by 
(89.53 − 86.65 =) 2.88% on the 2-grade scheme respectively. Note that, these performances 
were regarded as oracle values (imprecisely speaking upper-bounds), as they were directly 
obtained from the test set through cross-validation.

On the contrary, Tables  9, 10, 11 show the performances of the meta-classifiers that 
were tuned on the held-out split through fivefold cross validation and their best valida-
tion performances, together the optimal hyperparameters for each meta-classifier. Because 
the held-out set extended the original validation set with training samples, it is reason-
able that the validation performances were obviously higher. Table 12 shows the perfor-
mances of these optimal meta-classifiers obtained on the test split. Now the best perfor-
mances were around 69.66% (by LDA) on the 11-class scheme (still a 3.50% increase), 
77.33% (by SVM-Poly) on the 6class scheme (a significant 3.30% increase), and 88.68% 
(by k-NN when k = 7) on the 2-grade scheme (only a 2.03% increase). I note that differ-
ent meta-classifiers, called level-1 meta-classifiers, exhibited vastly different performances 
from each other, and they shew abundant variety and the potential for being further com-
bined. Indeed, I did some preliminary correlation analysis of the level-1 voters and level-1 
meta-classifiers (omitted due to space constraint), and found that level-1 voters shew sig-
nificantly limited diversity among each other (and indeed either further stacked voting or 
stacked meta-classifier on level-1 voters could not bring performance improvement), while 
classifier diversity among level-1 meta-classifiers had much higher potential for further 
stacking to obtain better performance. So, I will focus on deep stacking of meta-classifiers 
in the following subsection.

Deep stacking

Experimental setup

In the experiments, I only tested stacking on level-1 meta-classifiers, because they showed 
rich diversity. Reliability-enhanced soft voting was used for building the stacked voter 



 
Scien

to
m

etrics

Table 6  Meta-classifier performance of fivefold cross validation on 11-class scheme on test split

RR_Rnk; R = 50 40 30 20 10 BEST,

CatNB 70.33 69.47 69.55 69.04 68.34 70.33//R = 50

Dis, α N/A, 0.0008 DF, 0.0004 DF, 0.0007 DM, 0.8 DF, 0.02 0.0008

k-NN (k = 7) 67.1 68.3 69.12 69.82 68.32 69.82//R = 20

Dis, weighting N/A, uniform DF, uniform DF, uniform DF, uniform RE, uniform DF, uniform

k-NN (k = 9) 67.9 69.14 69.47 69.59 67.92 69.59//R = 20

Dis, weighting N/A, uniform QS/DM, distance RE, distance DF, uniform CC/QS/DM, uniform DF, uniform

k-NN (k = 11) 67.9 68.84 68.81 69.33 67.45 69.33//R = 20

Dis, weighting N/A, uniform DF, distance DF, distance DM, uniform CC/QS/DM, uniform DM, uniform

k-NN (k = 13) 68.19 68.61 68.46 69.43 67.56 69.43//R = 20

Dis, weighting N/A, distance CC, distance DF, distance CC, uniform CC/QS/DM, uniform CC, uniform

LDA 69.76 70.29 70.4 69.46 69.45 70.40//R = 30

Dis, λ N/A, 0.75 QS/DM, 0.8 DF, 0.45 DM, 0.3 RE, 0.2 DF, 0.45

SVM-RBF 69.53 70.81 70.41 70.13 68.85 70.81//R = 40

Dis, C, d, γ N/A, 1.2, 2, 0.02 RE, 1.4, 2, 0.01 QS/RE/DM, 0.9, 2,
0.04

DF, 0.7, 2, 0.1 DF, 1, 2, 0.08 RE, 1.4, 2, 0.01

SVM-Poly 70.18 70.03 70.37 70.14 68.09 70.37//R = 30

Dis, C, d, γ N/A, 5, 2, 0.01 QS/DM, 9, 2, 0.01 QS/RE/DM, 0.7,
2, 0.04

DF, 0.3, 2, 0.1 DF, 0.5, 2, 0.16 QS/RE/DM, 0.7,
2, 0.04
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Table 7  Meta-classifier performance of fivefold cross validation on 6-class scheme on test split

RR_Rnk; R = 50 40 30 20 10 BEST

CatNB 75.07 75.27 76.06 75.90 76.70 76.70//R = 10

Dis, α N/A, 0.02 DF, 0.04 DF, 4.4 DF 1.8 CC/RE, 3.9 CC/RE, 3.9

k-NN (k = 5) 73.96 75.04 74.72 74.70 76.66 76.66//R = 10

Dis, weighting N/A, uniform DF, uniform DF, uniform DF distance CC/RE, uniform CC/RE, uniform

k-NN (k = 7) 76.15 74.49 74.78 74.83 76.15 76.15//R = 10

Dis, weighting N/A, CC/RE, uniform CC/RE, distance DF, distance DF, distance CC/RE, uniform CC/RE, uniform

LDA 75.39 76.85 75.40 75.91 76.35 76.85//R = 40

Dis, λ N/A, 0.25 DF, 0.2 DF, 3 RE, 0.25 QS/DM, 0.1 DF, 0.2

SVM-RBF 76.67 76.01 76.37 76.71 75.76 76.71//R = 20

Dis, C, d, γ N/A, 5, 2, 0.006 QS/DM, 8, 2, 0.004 DF, 3, 2, 0.01 DF, 0.5, 2, 0.12 QS/DM, 1.8, 2,
0.1

DF, 0.5, 2, 0.12

SVM-Poly 75.99 75.59 76.38 76.75 75.24 76.75//R = 20

Dis, C, d, γ N/A, 1.3, 2, 0.02 DF, 1.8, 3, 0.02 DF, 0.1, 2, 0.1 DF, 1.3, 3, 0.04 CC/RE, 0.2, 2, 0.18 DF, 1.3, 3, 0.04



 
Scien

to
m

etrics

Table 8  Meta-classifier performance of fivefold cross validation on 2-grade scheme on test split

RR_Rnk; R = 50 40 30 20 10 BEST

BerNB N/A, 88.24 88.43 88.16 88.62 87.44 88.62//R = 20

Dis, α N/A, 6 DM, 3.6 CC/DF, 0.0001 CC/RE, 1.0 QS/RE/DM, 0.0001 CC/RE, 1.0

k-NN (k = 7) 86.69 87.36 87.91 88.28 88.81 88.81//R = 10

Dis, weighting N/A, uniform QS, uniform CC/DF/RE, distance DF, distance CC, uniform CC, uniform

k-NN (k = 9) 86.6 87.32 88.67 88.61 88.48 88.67//R = 30

Dis, weighting N/A, uniform QS, uniform RE, distance DF, distance CC, uniform RE, distance

k-NN (k = 11) 86.97 87.52 88.73 88.41 89.02 89.02//R = 10

Dis, weighting N/A, uniform QS/DM, uniform CC/DF, uniform DF, distance CC, uniform CC, uniform

k-NN (k = 13) 87.13 87.52 88.51 88.62 89.15 89.15//R = 10

Dis, weighting N/A, uniform QS, uniform RE, distance DF, distance DF, uniform DF, uniform

LDA 88.33 88.7 88.7 88.54 88.53 88.70//R = 30

Dis, λ N/A, 0.9 CC/QS/RE, 1.0/0.9/1.0 QS/DM, 1.0 QS/DM, 0.7 DF, 0.9 QS/DM, 1.0

SVM-RBF 88.23 88.81 89 89.3 89.3 89.30//R = 10

Dis, C, d, γ N/A, 0.3, 2, 0.002 CC/RE, 0.1, 2, 0.004 QS/DM, 01, 2, 0.004 QS/DM, 0.1, 2, 0.004 CC, 0.1, 2, 0.002 CC, 0.1, 2, 0.002

SVM-Poly 88.41 88.81 89 88.81 89.53 89.53//R = 10

Dis, C, d, γ N/A, 0.1, 2, 0.006 CC/DF/QS/RE, 0.1, 2, 0.008 QS/RE/DM, 0.1, 2, 
0.01/0.006/0.01

QS/DM, 0.1, 2, 0.01 CC, 0.1, 2, 0.02 CC, 0.1, 2, 0.02
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Table 9  Meta-classifier optimisation by fivefold cross validation on 11-class scheme on enriched validation set

RR_Rnk; R = 50 40 30 20 10 BEST

CatNB 72.62 73.45 73.58 72.54 72.17 73.58//R = 30

Dis, α N/A, 2.1 DF, 2.3 DM, 0.04 DM, 0.001 DF, 3.7 DM, 0.04

k-NN (k = 7) 72.13 72.43 72.04 72.3655 72.07 72.43//R = 40

Dis, weighting N/A, distance RE, distance DM, distance DF, uniform DF, uniform RE, distance

k-NN (k = 9) 72.19 72.27 71.65 72.28 72.13 72.28//R = 20

Dis, weighting N/A, distance QS/DM, distance RE, uniform DF, uniform DF, distance DF, uniform

k-NN (k = 11) 72.2 72.15 71.7 72.28 72.07 72.28//R = 20

Dis, weighting N/A, distance RE, distance DM, uniform DF, uniform DF, distance DF, uniform

k-NN (k = 13) 72.2 72.02 71.64 71.63 71.99 72.20//R = 50

Dis, weighting N/A, distance RE, distance DM, distance DF, distance DF, distance distance

LDA 72.52 73.8 72.82 72.51 72.08 73.80//R = 40

Dis, λ N/A, 0.9 QS/DM, 0.9 DF, 0.95 DM, 0.7 DM, 0.85 QS/DM, 0.9

SVM-RBF 72.8 72.83 73.06 72.89 72.81 73.06//R = 30

Dis, C, d, γ N/A, 1.9, 2, 0.04 RE, 1.9, 2, 0.04 DM, 1.2, 2, 0.06 DF, 1.7, 2, 0.04 DF, 1.2, 2, 0.14 DM, 1.2, 2, 0.06

SVM-Poly 72.92 72.93 72.43 72.2 71.92 72.93//R = 40

Dis, C, d, γ N/A, 0.1, 2, 0.08 QS/DM, 0.1, 2, 0.16 DM, 1, 2, 0.04 DF, 0.6, 2, 0.12 DF, 0.4, 2, 0.2 QS/DM, 0.1, 2, 0.16
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Table 10  Meta-classifier optimisation by fivefold cross validation on 6-class scheme on enriched validation set

RR_Rnk; R = 50 40 30 20 10 BEST

CatNB 74.73 75.71 76.57 75.1 75.78 76.57//R = 30

Dis, α N/A, 4.6 DF, 5.9 RE, 5.3 QS, 3.8 DF, 1.0 RE, 5.3

k-NN (k = 7) 75.33 76.93 77 76.86 75.23 77.00//R = 30

Dis, weighting N/A, uniform CC/QS/RE/DM, distance RE, distance DF, distance QS, distance RE, distance

k-NN (k = 9) 75.62 76.17 76.89 76.83 75.61 76.89//R = 30

Dis, weighting N/A, CC/RE, uniform CC/QS/RE/DM, distance QS, distance QS, distance QS, distance QS, distance

k-NN (k = 11) 75.13 76.22 76.88 76.92 76.08 76.92//R = 20

Dis, weighting N/A, CC/RE, uniform CC/QS/RE/DM, distance RE, distance Df, distance QS, distance DF, distance

k-NN (k = 13) 75.01 76.22 76.97 76.76 75.94 76.97//R = 30

Dis, weighting N/A, CC/RE, uniform CC/QS/RE/DM, distance RE, distance DF, distance QS, distance RE, distance

LDA 74.8 75.12 75.1 74.36 74.7 75.12//R = 40

Dis, λ N/A, 1 CC/QS/RE/DM, 1.0 QS, 0.5 QS/DM, 0.45/1.0 QS, 0.3 CC/QS/RE/DM, 1.0

SVM-RBF 76.31 76.85 77.5 77.29 75.47 77.50//R = 30

Dis, C, d, γ N/A, 6, 2, 0.02 CC/QS/RE/DM, 1.7, 2, 0.04 RE, 0.9, 2, 0.06 DM, 0.7, 2, 0.1 CC/RE/DM, 0.1, 2, 0.02 RE, 0.9, 2, 0.06

SVM-Poly 76.19 76.85 76.68 76.36 74.42 76.85//R = 40

Dis, C, d, γ N/A, 0.6, 2, 0.06 CC/QS/RE/DM, 0.2, 3, 0.06 CC, 0.6, 3, 0.04 DM, 0.5, 3, 0.06 QS, 1.9, 3, 0.1 CC/QS/RE/DM, 0.2, 3, 0.06
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Table 11  Meta-classifier optimisation by fivefold cross validation on 2-grade scheme on enriched validation set

RR_Rnk; R = 50 40 30 20 10 BEST

BerNB 89.58 89.79 90.01 90.06 89.8 90.06//R = 20

Dis, α N/A, 4.9 CC/QS, 0.0001 CC/QS, 0.0001 DM, 0.0001 QS, 0.0001 DM, 0.0001

k-NN (k = 7) 90.37 90.83 90.16 90.84 90.68 90.84//R = 20

Dis, weighting N/A, uniform CC, uniform QS, uniform DM, uniform DF, uniform DM, uniform

k-NN (k = 9) 90.27 90.79 90.15 89.86 90.79 90.79//R = 40

Dis, weighting N/A, uniform CC/QS, uniform DM, uniform DM, uniform DF, distance CC/QS, uniform

k-NN (k = 11) 90.27 90.59 89.89 90.08 90.33 90.59//R = 40

Dis, weighting N/A, uniform RE, uniform QS, uniform DM, uniform DM, uniform RE, uniform

k-NN (k = 13) 90.53 90.58 90.13 90.08 90.14 90.58//R = 40

Dis, weighting N/A, uniform DF, uniform DF, uniform DM, uniform DF, distance DF, uniform

LDA 90.41 90.68 90.45 89.99 90.23 90.68//R = 40

Dis, λ N/A, 0.65 DM, 0.5 QS/DM, 0.65 DF, 0.6 DM, 0.75 DM, 0.5

SVM-RBF 90.16 90.23 90.41 90.36 90.85 90.85//R = 10

Dis, C, d, γ N/A, 0.1, 2, 0.002 DM, 4, 2, 0.18 DM, 0.1, 2, 0.04 DM, 1.3, 2, 0.006 CC/RE, 2, 2, 0.008 CC/RE, 2, 2, 0.008

SVM-Poly 90.16 90.23 90.41 90.36 90.85 90.85//R = 10

Dis, C, d, γ N/A, 0.1, 2, 0.002 DM, 4, 2, 0.18 DM, 0.1, 2, 0.04 DM, 1.3, 2, 0.006 CC/RE, 2, 2, 0.008 CC/RE, 2, 2, 0.008
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(results in Table 13). According to the results in Tables 6, 7, 8, SVM-RBF and SVM-Poly 
were chosen to build the stacked meta-classifier, for which fivefold cross-validation was 
done on the test set for performance reporting (results in Table 14). Instead of finding the 
“most diverse” set of level-1 meta-classifiers, I opted to perform an ablation-style study. I 
ran a series of experiments by first removing each category of level-1 meta-classifiers (i.e., 
k-NN with different k’s, NB either CatNB or BerNB, LDA, SVM (either SVM-RBF, SVM-
Poly or both) and then removing more level-1 meta-classifiers of two or more categories. 
I decided to test a large number of such combinations to optimise the final ensemble’s 
performance. Both level-2 voter and level-2 meta-classifier (SVM-RBF and SVM-Poly) 
were reported. In Tables 13 and 14, the “¬” symbol means a meta-classifier or a number 
of meta-classifiers of this type were excluded from the experiment. For k-NN’s, I also 
included the k’s of the excluded meta-classifiers. What is more, k = 5 or 15 did not perform 
well on the 11-class and 2-grade schemes, so they were pre-excluded from the ablation 
study. Similarly, k = 9–15 were pre-excluded for any experiments on the 6-class scheme. 
Finally, the “*” symbol means the best configuration among all ablation experiments about 
k-NN. This best configuration was used in further ablation with other classifiers, say the 
“¬ NB, k-NN *” and “¬ LDA, k-NN *” rows. The top-3 performances were highlighted by 
bold underscored, bold, and underscored fonts respectively.

Results

Table  13 shows the performances of reliability-enhanced soft voting on different 
combinations of level-1 meta-classifiers. On each annotation scheme, the best, second 

Table 12  Meta-classifier performances after being tuned on enriched validation set

Top three results on each annotation scheme are in bold underline, bold and underlined fonts respectively

11-class 6-class 2-grade

valid test valid test valid test

NB 73.58//R = 30 67.79 76.57//R = 30 76.43 90.06//R = 20 88.24

Dis, α CatNB: DM, 0.04 CatNB: RE, 5.3 BerNB: DM, 0.0001

k-NN (k = 7) 72.43//R = 40 68.26 77.00//R = 30 75.35 90.84//R = 20 88.86

Dis, weighting RE, distance RE, distance DM, uniform

k-NN (k = 9) 72.28//R = 20 69.26 76.89//R = 30 75.52 90.79//R = 40 87.45

Dis, weighting DF, uniform QS, distance CC/QS, uniform

k-NN (k = 11) 72.28//R = 20 68.78 76.92//R = 20 75.95 90.59//R = 40 87.71

Dis, weighting DF, uniform DF, distance RE, uniform

k-NN (k = 13) 72.20//R = 50 68.98 76.97//R = 30 75.44 90.58//R = 40 87.87

Dis, weighting distance RE, distance DF, uniform

LDA 73.80//R = 40 69.66 75.12//R = 40 75.75 90.68//R = 40 88.18

Dis, λ QS/DM, 0.9 CC/QS/RE/DM, 1.0 DM, 0.5

SVM-RBF 73.06//R = 30 69.60 77.50//R = 30 75.40 90.85//R = 10 86.45

Dis, C, d, γ DM, 1.2, 2, 0.06 RE, 0.9, 2, 0.06 CC/RE, 2, 2, 0.008

SVM-Poly 72.93//R = 40 68.43 76.85//R = 40 77.33 90.85//R = 10 86.45

Dis, C, d, γ QS/DM, 0.1, 2, 0.16 CC/QS/RE/DM, 0.2, 
3, 0.06

CC/RE, 2, 2, 0.008
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and third best performances were highlighted in bold underlined, bold and underlined 
fonts respectively. The promising aspect was that voting on meta-classifiers significantly 

improved the ensemble performances over each individual level-1 meta-classifier 
(refer to Table 12): 71.66% v.s. 69.66% on the 11-class scheme, 78.16% v.s. 77.33% on 
the 6-class scheme, and 89.67% v.s. 88.86% on the 2-grade scheme. The level-2 reliability-
enhanced soft voting performances were also better than the cross-validated meta-classifier 
performances (refer to Tables  6, 7, 8): 71.48% v.s. 70.81% on the 11-class scheme 
(Table 6), 78.16% v.s. 76.85% on the 6-class scheme (Table 7), and 89.67% v.s. 89.53% 
on the 2-grade scheme (Table  8). The performances also outperformed or rivalled the 
best level-1 majority voters (refer to Tables 2, 3, 4): 71.48% v.s. 70.78% on the 11-class 
scheme (Table  2), and 78.16% v.s. 77.05% on the 6-class scheme (Table  3). The only 
exception happened on the important citation screening task, where the best meta-classifier 
performance was 89.67% compared to 89.73% by the best voter (Table 4). This is still very 
encouraging. Meanwhile, it was very clear that the optimal level-2 voting performances 
were not achievable by using all level-1 meta-classifiers. On the 11-class and 6-class 
annotations, the “All” rows significantly underperformed other ablated meta-classifier 

Table 13  Performances of level-2 reliability-enhanced soft voting on level-1 meta-classifiers

Top three results on each annotation scheme are in bold underline, bold and underlined fonts respectively

Excluded from voting 11-class 6-class 2-grade

All 70.30 77.07 89.34

k ≠ 5,15 k ≠ 9–15 k ≠ 5,15

¬ k-NN (1) 71.35 77.62 89.38

k ≠ 11–13,5,15 k ≠ 7, 9–15 k ≠ 7–9,5,15

¬ k-NN (2) 71.10 77.81* 89.55

k ≠ 9,11–13,5,15 k ≠ 5, 9–15 k ≠ 11,7–9,5,15

¬ k-NN (3) 71.14 89.38

k ≠ 7,11–13,5,15 k ≠ 13,7–9,5,15

¬ k-NN (4) 71.66* –- 89.10

k ≠ 7–9,5,15 –- k ≠ 11–13,5,15

¬ k-NN (5) 71.48 76.74 89.67*

k ≠ 7–9,11–13,5,15 k ≠ 5–7, 9–15 k ≠ 11–13,7–9,5,15

¬ NB 71.48 78.12 89.34

¬ LDA 70.43 78.16 89.34

¬ SVM-RBF 70.39 77.31 89.34

¬ SVM-Poly 70.46 77.37 89.34

¬ SVM 70.39 77.49 88.74

¬ NB, LDA 70.17 77.56 89.14

¬ NB, SVM-RBF 70.23 78.04 89.34

¬ NB, SVM-Poly 70.23 78.10 89.34

¬ LDA, SVM-RBF 69.90 77.59 89.34

¬ LDA, SVM-Poly 70.01 78.07 89.18

¬ NB, k-NN * 70.76 77.04 89.50

¬ NB, k-NN (5) 71.29 77.40 Same as above

¬ LDA, k-NN * 70.68 78.12 89.50

¬ LDA, k-NN (5) 71.03 77.15 Same as above
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combinations about k-NN. The most extreme case was the 2-grade scheme, where the 
best level-2 voter performance was obtained without any k-NN. Again, it highlights that, 
for majority voters, it is a very challenging problem how to select the best subset for 

voting.
Table  14 shows the performances of level-2 metaclassifier (SVM-RBF) on all three 

annotation schemes. First of all, the best level-2 meta-classifiers’ performances rivaled 
the best performances of level-2 voters, and significantly outperformed all level-1 meta-
classifiers (refer to Tables 6, 7, 8) and most reliability-enhanced voters (refer to Tables 2, 3, 
4): 71.75% v.s. 70.81% (Table 6) or 70.71% (Table 2) on the 11-class scheme, and 78.03% 
v.s. 76.85% (Table 7) or 77.05 (Table 3) on the 6-class scheme, and 89.63% v.s. 89.53% 
(Table  8) or 89.71% (Table  4) on the 2-grade scheme. The only exception was that the 
best level-2 meta-classifier slightly underperformed the level-1 reliability-enhanced voter 
on the important citation screening task. What is more encouraging is that level-2 meta-
classifier is much easier to be used than level-2 voters. This was demonstrated by the good 
performances of the level-2 meta-classifiers that were trained to combine all level-1 meta-
classifier predictions (see the “All” row in Table 14). Indeed, on the 11-class and 6-class 

Table 14  Performances of level-2 meta-classifier on level-1 meta-classifiers

Top three results on each annotation scheme are in bold underline, bold and underlined fonts respectively

Excluded from voting 11-class 6-class 2-grade

All 71.75* 78.03* 89.57

k ≠ 5,15 k ≠ 9–15 k ≠ 5,15

¬ k-NN (1) 71.49 77.92 89.58

k ≠ 11–13,5,15 k ≠ 7,9–15 k ≠ 7–9,5,15

¬ k-NN (2) 71.41 77.84 89.58

k ≠ 9,11–13,5,15 k ≠ 5,9–15 k ≠ 11,7–9,5,15

¬ k-NN (3) 71.45 – 89.43

k ≠ 7,11–13,5,15 – k ≠ 13,7–9,5,15

¬ k-NN (4) 71.28 – 89.63*

k ≠ 7–9,5,15 – k ≠ 11–13,5,15

¬ k-NN (5) 71.51 77.89 89.53

k ≠ 7–9,11–13,5,15 k ≠ 5–7,9–15 k ≠ 11–13,7–9,5,15

¬ NB 71.37 77.63 89.58

¬ LDA 71.07 77.84 89.41

¬ SVM-RBF 71.27 77.55 89.37

¬ SVM-Poly 71.58 77.76 89.37

¬ SVM 71.17 77.52 89.37

¬ NB, LDA 70.88 77.96 89.37

¬ NB, SVM-RBF 71.41 77.92 89.37

¬ NB, SVM-Poly 71.71 77.99 89.37

¬ LDA, SVM-RBF 70.27 77.98 89.37

¬ LDA, SVM-Poly 71.12 77.92 89.20

¬ NB, k-NN * Same as ¬ NB Same as ¬ NB 89.58

¬ NB, k-NN (5) 71.44 77.13 89.53

¬ LDA, k-NN * Same as ¬ LDA Same as ¬ LDA 89.58

¬ LDA, k-NN (5) 71.44 76.96 89.53
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schemes, the best performances were obtained from learning to fuse all level-1 meta-
classifiers, while on the 2-grade scheme this resulted in the third highest performance. 
This confirmed my previous hypothesis that level-2 meta-classifier has the ability to 

softly exclude unsuitable level-1 meta-classifiers by lowering their weights and impacts 
in ensembling. Level-2 meta-classifier also stablised the performances of level-1 meta-
classifiers, making the final ensemble more robust.

Discussions and remarks

What makes ensembling effective

Recently, Jiang and Chen (2023) presented a comprehensive study of the wide range of 
options for citation modelling and their impacts on the performance of citation function 
classification. Their study laid the foundation for building ensemble classifiers for citation 
context analysis, that is a decent number of base classifiers. Most of the time, fusion 
of the top-10 or top-20 base classifiers did not result in the best ensembling performance 
for citation function classification. However, this is not the only factor for the success of 
ensembling approaches. On the one hand, fusing more base classifiers does not neces-
sarily lead to better performance. In Table 2, the strongest voting performance happened 
with T = 40 candidate classifiers and an R = 22 base classifiers that were diversified and re-
ranked with Q statistics and value-based re-ranking and fused by a HARD—WEIGHTED 
voter. Similarly, in Table 4, T = 40 and R = 12 resulted in the strongest voter, again diversi-
fied and re-ranked with Q statistics and valued-based re-ranking and fused by HARD—
WEIGHTED voting. Instead, in Tables  2, 3, 4, a significant performance drop with 
a smaller T (T ∈ {30, 20, 10}) can often be observed. On the other hand, with a smaller 
T, meaning with less options of base classifier, re-ranking did not produce better perfor-
mances (see the “¬RR” columns with T ∈ {20, 10} in Tables 2, 3, 4).

Diversity plays an important role in finding the best ensemble. On the one hand, the 
best voter outperformed the naïve ensemble in Jiang and Chen (2023), where T = 20 was 
the experimented number of candidate classifiers. On the 11-class annotation scheme, 
the best performance using HARD—UNWEIGHTED voting and diversity ranking alone 
was 70.13% (see the DivDF row in Table  2), better than their reported 69.98% (Jiang & 
Chen, 2023, Table  10). Even better performances were obtained using stronger fusion 
rules, achieving 70.33% using HARD—WEIGHTED, 70.65% using SOFT—MEAN, and 
70.41% using SOFT—RELIABILITY, all ranked by double fault (DivDF). On the 6-class 
annotation scheme, the best voter achieved 76.60% using HARD—WEIGHTED and 
double fault, which was slightly better than their reported 76.47% (Jiang & Chen, 2023, 
Table 10). However, the other three voting methods did not improve over Jiang and Chen’s 
naïve ensemble method. On the other hand, it is not guaranteed that introducing diversity 
always has a positive impact. Instead, the impacts were mixed. I found that, when the 
number of candidate classifiers (T) is large, the most diverse set often tended to exclude 
the strongest base classifiers and include many weak ones, which often lead to suboptimal 
ensembling performances by diversity ranking alone. It is confident to say, when there 

are a decent number of base classifiers re-ranking is the key to the (further) success 

of ensembling. On both citation function classification and important citation screening, 
the best performing ensemble used either rank-based or value-based re-ranking (Tables 2, 
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3, 4). Rank-based re-ranking seems to be more outstanding and more stable than value-
based re-ranking, which can be concluded from the fact that the “RR_Rnk” columns often 
recorded better average results than the “RR_Val” columns (see all the “AVG” rows).

Effectiveness versus complexity

Sect. “What makes ensembling effective” revealed that a decent number of base classi-
fiers is the prerequisite for building a good ensemble. Typically, T should be quite large. 
On the 11-class annotation scheme (Table  2), T = 40 achieved the best, third and fourth 
best F1’s 70.78%, 70.70% and 70.69%. On the 6-class annotation scheme (Table 3), T = 50 
achieved the top six F1’s, from 77.05% down to 76.81%. Regarding meta-classifiers, the 
best performances were also achieved using a larger number of base classifiers, T = 40, 
which achieved the best F1’s 70.83% (Table 6) and 76.85% (Table 7) on the 11- and 6-class 
schemes respectively. This results in high computational complexity at both the training 
and inference stages. Similar observations can be derived from Table 12: T = 40 for the best 
level-1 meta-classifiers on both the 11- and 6-class schemes. The non-shared nature of each 
base classifier’s parameters makes both the training and inference stages time-consuming 
and environmentally unfriendly.

To balance effectiveness and complexity, sometimes a smaller T and R may be chosen 
for the voters. However, many difficulties exist. Firstly, voters are extremely sensitive to 
the number of base classifiers (R), no matter what diversity measure or diversity re-rank-
ing method were used. The “optimal” R reported in Tables 2, 3, 4 are hardly possible to 
be generalisable to unknown samples. The “optimal” R values for the validation, test and 
extended held-out sets were also different. Secondly, all the best meta-classifiers required 
a large T value, typically T ≥ 30 for citation function classification (Tables 6, 7 and 12). 
There was no easy way to reduce T while maintaining a good enough ensemble perfor-
mance. A promising direction will be reducing the ensembling overhead by training the 
base classifiers using a shared-parameter architecture approach. For example, a common 
underlying language model (e.g., SciBERT used in the current paper) may be used and 
fine-tuned for all citation context analysis models. The adaption for different citation mod-
elling architectures may be implemented by training a separate shallow Transformer layer 
for each of the 35 model architectures. Alternatively, a number of language models may 
be finetuned, each responsible for a family of citation modelling architectures. In this way, 
hopefully near optimal ensemble performances could be achieved with minimal increased 
overheads, which only happen in the non-shared Transformer layers. I leave such ideas to 
future work.

Which ensembling approach(es) work better

This paper investigated three aspects of building and improving an ensemble classifier: 
classifier diversity, diversity re-ranking, and fusion techniques. It is hard to conclude which 
diversity measure is the best. For majority voting, decisions need to be made case by case 
depending on the type of voter, the number of base classifiers, the annotation scheme, and 
the re-ranking method. Comparatively, it is safer to conclude that rank-based re-ranking 

is in overall a more stable and effective method. The average performances of the “RR_
Rnk” columns were typically better than the “RR_Val” columns (value-based re-ranking) 
for different types of voters in citation function classification when T > 10 (Table 2, 3). The 
level-1 voters induced by five diversity measures could be curther combined, for example 
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by simply majority voting. Regarding import citation screening, this phenomenon is more 
obvious when T > 30 (Table 4). The reason might be that there were many base classifiers 
performing equally well on this less complex task and thus much more base classifiers 
were needed for introducing enough diversity.

Considering fusion technique, I argue that meta-classifier is a better choice. Although 
the level-1 meta-classifier did not report better performance than the “optimal” level-1 vot-
ers (Table 12), meta-classifier has several advantages over voter. Firstly, Sect. “Effective-
ness versus complexity” has mentioned the difficulty in choosing the optimal number of 
base classifiers to combine, and even it is “optimised” on the held-out set, it is unlikely 
possible to generalise to unseen samples. Secondly, level-1 voters showed little diversity 
while there was abundant diversity among level-1 meta-classifiers. This made it possible to 
further fuse the level-1 meta-classifiers to further improve the ensemble performance. Both 
stacked voter (Table 13) and stacked meta-classifier (Table 14) achieved new states of the 
art. Level-2 meta-classifiers that were trained with all level-1 meta-classifiers achieved the 
highest citation function classification performances on both the 11- and 6-class schemes. 
On important citation function, near optimal performance was achieved. This greatly sim-
plifies the optimisation of the classifier stacking approach. In addition, I conjecture that 
both level-1 and level-2 meta-classifiers optimised by cross-validation could better gener-
alise to unseen samples. However, good meta-classifiers could only be obtained by using 
a large number of base classifiers. This made it harder to achieve a balance between effec-
tiveness and complexity. Finally, the relatively poor performance of voting on all level-1 
meta-classifiers again signifies the benefit of meta-classifier, which is able to softly tune on 
and off certain base classifiers by assigning high and low weights to them.

Conclusions

Motivated by the important finding in Jiang and Chen (2023) that there is no single best 
classifier for all citation function categories, the current paper proposed, experimented and 
evaluated the ensemble approaches to citation context analysis, including citation function 
classification and important citation screening. The main contribution is the exploitation of 
three sources of classifier diversity to facilitate ensemble building, namely citation mod-
elling, diversity ranking and diversity re-ranking. The large space of citation modelling 
options allowed for the design of 36 deep learning architectures and the training of 180 
citation context analysis models. Five pair-wise diversity measures were used for selecting 
a diverse set of base classifiers to fuse. To avoid excluding the strongest base classifiers, 
one major contribution of the current paper was the proposal of two diversity re-ranking 
methods to make a good trade-off of classifier performance against classifier diversity, 
namely value-based re-ranking and rank-based re-ranking. Both diversity re-ranking meth-
ods had significant impacts on the success of ensembles, and rank-based re-ranking method 
concluded to be a more stable method. Overall, the current study emphasized the necessity 
of proper diversity analysis for building a powerful citation context analysis ensemble.

Four voting methods and five meta-classifiers were used for fusing the selected base 
classifiers, including a novel and effective voting method named reliability-enhanced soft 
voting, which defined soft vote as the product of base classifier’s performance (reliance) 
and posterior probability of prediction (confidence). A prerequisite for the success of 
ensembling approaches is a large enough pool of base classifiers for diversity analysis and 
classifier selection. This also implied the value of weak classifiers. The strongest classifiers 
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and a diverse subset of relatively weak classifiers both contributed to performance 
improvement of ensembles. The level-1 voters achieved significant performance 
improvements, but it was an extremely challenging task to choose the optimal number 
of base classifiers to fuse, severely harming the usability of majority voting in practice. 
Though underperforming the voting methods, most meta-classifiers also achieved new 
states of the art over prior studies. The success of meta-classifier requires a large pool of 
base classifiers after diversity analysis, which is a double-sided sword. On the one hand, 
the need for further classifier selection was eliminated because useless classifiers are softly 
ruled out by being assigned low weights. On the other hand, this made it harder to achieve 
a balance between effectiveness and complexity at both the training and inference stages.

Another obvious benefit of meta-classifier is that level-1 meta-classifiers showed abun-
dant diversity in contrast to voting, which can be exploited to build a stacked meta-clas-
sifier for further performance improvements on both the citation function classification 
and important citations screening tasks. Reliability-enhanced soft voting and kernel sup-
port vector machine (on level-1 meta-classifiers) significantly improved the performance, 
achieving 5.50 and 5.59% absolute increases respectively on the 11-class citation function 
scheme, 4.14 and 3.99% on the 6-class scheme, and 4.02 and 3.99% on the task of impor-
tant citation screening. Again, meta-classifier was proved easy to use because filtering 
level-1 classifiers became unnecessary. More specifically, level-2 meta-classifiers trained 
on all level-1 meta-classifiers achieved the best (or at least rivaling) ensembling perfor-
mances. On the contrary, reliability-enhanced soft voting on all level-1 meta-classifiers was 
severely suboptimal. In summary, the current paper argued that meta-classifier is a better 
ensembling method compared to majority voting.
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