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To unleash the potential of quantum computers, noise effects on qubits’ performance must be
carefully managed. The decoders responsible for diagnosing noise-induced computational errors must
use resources efficiently to enable scaling to large qubit counts and cryogenic operation. Additionally,
they must operate at speed, to avoid an exponential slowdown in the logical clock rate of the
quantum computer. To overcome such challenges, we introduce the Collision Clustering decoder
and implement it on FPGA and ASIC hardware. We simulate logical memory experiments using
the leading quantum error correction scheme, the surface code, and demonstrate MHz decoding
speed – matching the requirements of fast-operating modalities such as superconducting qubits – up
to an 881 and 1057 qubits surface code with the FPGA and ASIC, respectively. The ASIC design
occupies 0.06mm2 and consumes only 8mW of power. Our decoder is both highly performant and
resource efficient, unlocking a viable path to practically realising fault-tolerant quantum computers.

I. INTRODUCTION

Quantum computers could potentially solve computa-
tional problems that are out of reach of classical com-
puters. However, to realise this potential all architec-
tures need to deal with the fragility of their quantum
bits (qubits) [1ś4]. Qubits are highly likely to inter-
act with the environment, leading to errors. Fortu-
nately, Quantum Error Correction (QEC) protocols en-
able fault-tolerant computation in the presence of noise.
These protocols are based on adding redundancy, encod-
ing and protecting information into logical qubits by us-
ing a larger number of physical qubits. While errors can
still corrupt the information, a signal is periodically gen-
erated from the logical data which characterises them.
A decoder running on classical hardware processes this
so-called syndrome, generating as an output the inferred
error that has occurred, informing the corrective steps
taken in subsequent operations.

QEC must be performed continuously, creating a
stream of syndrome data; as systems scale and logical
error rates decrease, the amount of data that needs to
be processed by a decoder increases signiőcantly. Large
computations will require real-time decoders that can
process data at the rate it is received to avoid the creation
of a backlog that grows exponentially with the depth of
the computation [5, 6], ultimately slowing it to a halt. Su-
perconducting quantum devices, for example, generate a
round of syndrome data in less than 1µs (a rate of MHz),
setting stringent requirements on decoder speed. Utility-
scale quantum computers will require an optimised hard-
ware decoder integrated in a tight loop at the heart of
the control system.

Most experiments to date have used fast and accu-
rate decoders implemented in software [7ś9] to decode of-
ŕine [10ś13] rather than in real-time, the syndrome data
being processed after the experiment has concluded. This

type of decoding cannot support logic branching which
is required to implement certain non-Clifford gates (the
most essential gates to support quantum operations)[14].
Real-time decoding has been demonstrated in small
scale experiments on ion-trap systems, using non-scalable
lookup tables implemented in software that only require
kHz speeds [15, 16]. However, in any scalable architec-
ture, fast algorithmic decoders must be tightly integrated
with the control system of the quantum computer to sat-
isfy latency requirements. Decoders implemented on ded-
icated classical hardware, such as Field Programmable
Gate Arrays (FPGAs) or Application Speciőc Integrated
Circuits (ASICs), provide a viable path to such a solu-
tion.

To meet the challenge of developing real-time decoders,
the community has begun to implement decoders on FP-
GAs [17ś20], and provide models of implementations on
ASICs [19, 21]. FPGAs will be sufficient for the medium
term. They provide the ŕexibility to adapt and change
implementations of decoders, helping to identify the pa-
rameters needed to optimise the system performance.
Until recently, only small instances of surface code de-
coders have been implemented on FPGAs [17, 19, 20].
Promising results have recently appeared on larger ex-
amples, where decoding an 881 qubit surface code mem-
ory simulation was demonstrated in under 1µs [18] per
round. However, only a toy noise model was used and
the design required signiőcant FPGA resources.

FPGA systems have high per-unit cost and power con-
sumption, hence they are not long-term solutions for scal-
ing to millions of qubits. Cost-effective scaling of useful
quantum computers will be achieved with ASICs, which
guarantee improved performance and reduced power con-
sumption at the cost of longer development times. Tight
integration between decoders and control systems in a
cryogenic environment will require ASICs [22].

In this work, we introduce the Collision Clustering
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(CC) decoder, designed to require few logical resources
on an FPGA and low ASIC power and area occupa-
tion, while being performant enough to keep up with the
syndrome generation time of the QPU. To demonstrate
this, we implement CC on a Xilinx Ultrascale+ XCVU3P
FPGA [23], and using industry leading EDA tools [24],
we also design an implementation on a 12nm FinFET
ASIC process node, signed off to a standard that is ready
to be taped out. Assuming a realistic circuit-level noise
model, on the FPGA we decode an 881-qubit surface code
in 810ns using only 4.5% of the available computational
elements (logic LUTs) and 10KB of memory. Moreover,
we obtain a threshold of 0.78%. The ASIC decodes a
1057 qubit surface code in 240ns, using only 0.06mm2 of
area and 8mW of power.

The logical memory experiment simulated in this work
preserves a state for a őnite time period. To preserve
a logical state indeőnitely, the decoder must be able to
handle data being streamed in. We save this investigation
for future work.
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FIG. 1. Syndrome extraction circuit for a section of rotated
planar code. The circuit consists of Z (orange) and X (teal)
stabilizer measurements that are preformed with 4 layers of
CNOT gates and two layers of single-qubit (H) gates. Fi-
nally, the ancilla qubits are measured and reset (MR) for the
next round. Errors can happen at any stage of the circuit,
resulting in the circuit-level noise model described in detail in
Appendix C

II. THE COLLISION CLUSTERING DECODER

Collision Clustering (CC) is an implementation of
Union-Find [21, 25], a decoding algorithm with łalmost-
linearž asymptotic scaling. The input for CC is a decod-
ing graph (Appendix B). The vertices of this graph are
all the possible defects that can occur when running the
syndrome extraction circuit (Fig. 1), where a defect is a
change in the measurement outcome of a syndrome qubit
from one round of syndrome measurements to the next.
The edges of the graph correspond to error mechanisms
and are incident with the defects they cause. At a high
level, CC decodes by őrst partitioning the set of defects
of an input decoding graph into distinct subsets, known
as clusters. Each cluster is then decoded separately using
a simple procedure.

Das et al. described a detailed instruction set (micro-
architecture) for implementing Union-Find on an FPGA
or ASIC [21]. A key component of their micro-
architecture is the spanning tree memory (STM), a data
structure used in tracking the state of emerging clus-
ters. By simulating their design we identiőed a bottle-
neck when reading from and writing into the STM, which
signiőcantly slowed down the execution of the algorithm.
Therefore, we designed CC with a more memory efficient
data structure to track the state of emerging clusters at
the expense of asymptotic scaling. Using this architec-
ture, on system sizes of practical interest, and larger than
those modelled by Das et al. , we achieved the necessary
decoding speeds.

To decode each cluster, CC uses a reference logical op-
erator. The size of a minimal logical operator is the dis-
tance of a code, and is indicative of the number of errors
a code can suppress. In the case of the distance d sur-
face code, deőned on a d×d square lattice of data qubits
and requiring d2 − 1 syndrome qubits, we use the min-
imal length d logical Pauli operator running along one
of the boundaries of the lattice as the reference opera-
tor (Appendix A). To account for errors in the syndrome
extraction circuit, certain operators are repeatedly mea-
sured giving the decoding graph a 3D structure. In this
setting, the minimal logical operator is identiőed with a
2D boundary of the decoding graph, which we call the
logical boundary. Each odd size cluster that touches this
boundary ŕips the logical measurement, and so the cor-
rection bit returned by CC is the parity of the number
of odd sized clusters that touch the logical boundary.

A. Growth and Merge of Clusters

In CC, each defect begins in its own cluster. The clus-
ters then grow in the decoding graph, and, if two clusters
collide, that is overlap, they merge to form one cluster. A
cluster continues to grow so long as it has an odd number
of defects within it, or until it touches one of the open
boundaries of the decoding graph. Once all clusters have
stopped growing, this growth-and-merge stage of the al-
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gorithm terminates.
We keep track of the growing clusters in the Cluster

Growth Stack (CGS) data structure (Fig. 2a). Each entry
of the CGS contains the following information:

1. A vertex_id to represent which defect the entry is
for.

2. A growth_radius to represent how far this defect
has grown in the graph.

3. A valid_bit, set to 1 if this defect should be grown
in the next round of growth, and set to 0 if the
cluster containing it has stopped growing.

In the CGS, clusters grow by updating the growth radius
of the valid entries of the stack, requiring only a single
read and write operation per defect. This is signiőcantly
more memory efficient than the STM data structure pro-
posed by Das et al. [21]. For example, for a distance
d = 15 surface code on 449 qubits, our decoder uses 80%
less memory despite being able to handle a noise model
that requires more resources.

The Parent table (Fig. 2a) keeps track of which clus-
ter a vertex belongs to. It has an address in memory for
each defect, which holds the address of the corresponding
parent defect. Upon initialisation, each defect is its own
parent. Any entry with this property is called a root.
When two clusters merge, we set the root of one cluster
equal to the root of the other cluster, the choice of which
to update being arbitrary. The Merge unit (Fig. 2a) de-
termines whether two clusters should merge. It takes
each pair of defects (one defect from each cluster), calcu-
lates the distance between them in the decoding graph,
and checks if the sum of their growths is greater than
this distance. If it is, the two clusters merge. For a CGS
with s entries, this leads to s2/2 collision detection com-
parisons.

Key to checking cluster mergers is efficient computa-
tion of the distance between two defects. We exploit the
structure of the surface code to develop combinatorial
functions that compute the distances without the need to
traverse the graph. For a phenomenological noise model,
this function consists of computing the Manhattan dis-
tance on a cubic lattice, with modiőcations to account
for boundaries. Further modiőcations are required to ac-
count for extra space-time edges for the more realistic
circuit-level noise model (Appendix E).

III. COLLISION CLUSTERING
MICRO-ARCHITECTURE

Our micro-architecture of CC (Fig. 2a) is composed
of shared memories and registers, and three processing
units: Initialisation, Growth and Merge. The execution
of the algorithm and the associated data structures are
shown on a simple example in Fig. 2b.

A set of internal memories and registers keep the inter-
mediary computational state. The growth of the clusters

is tracked in the Cluster Growth Stack memory (Fig. 2a)
as previously described. Recall also that the Parent Ta-
ble (Fig. 2a) keeps track of the clusters; each defect is
represented by an address in memory, and the data rep-
resents its corresponding parent defect. Three registers
keep track of parameters for each growing cluster, the
Boundary, Logical and Parity registers (Fig. 2a). In each,
a defect is represented by an address. For the Boundary
and Logical registers, the bit is set to 1 if the correspond-
ing cluster touches any boundary, respectively the logical
boundary. In the Parity register, the bit is set to 1 if there
are an odd number of defects in the cluster.

Upon initialisation of the decoder, the Init unit
(Fig. 2a) processes the decoder conőguration, loads the
input syndrome data and appropriate data into the stor-
age elements.

The Grow unit (Fig. 2a) is responsible for growing
clusters. It updates the Cluster Growth Stack cluster
entries at every iteration, őnding the root of a cluster,
then writing the radius and validity status. While pro-
cessing a cluster, the Grow unit also checks for collisions
with either boundary, writing the colliding vertex and the
boundary or logical vertex to the Merge stack. The Grow
unit also simultaneously computes the logical correction
bit resulting from the growth stage. The correction is
discarded and recomputed on the next growth cycle if
growth is required, or is kept and used as the output
correction.

The Merge unit consists of Match and Union sub-units
(Fig. 2a), operating in parallel. The Match sub-unit per-
forms collision detection comparisons from CGS data. It
then writes colliding defect pairs onto the Merge stack.
The Union sub-unit reads collided vertex entries from the
Merge stack, then searches the Parent Table for the two
roots. It then updates the Parent Table, Logical, Bound-
ary and Parity registers with the results of the clusters’
union.

IV. PHYSICAL IMPLEMENTATION ON FPGA

In Table I we present the performance of our FPGA
implementation of CC applied to the rotated planar sur-
face code across a range of distances from 3 (17 qubits)
to 23 (1057 qubits). We use a circuit level noise model
(Appendix C), speciőcally a depolarization channel after
each 2-qubit gate with probability p, and a depolariza-
tion channel after each 1-qubit gate, measurement and
reset, each with probability p/10. We also ŕip the out-
come of each measurement with probability p. For the
data in Table I, we set p = 0.1%. We also plot in Fig. 3a
the decoding time per round for varying distances and
values of p. We see that the FPGA decoder can decode
below the 1µs threshold up to distance 21. We targeted a
maximum clock frequency (FMax) of 400 MHz, and due
to the low resource utilisation, FMax is not signiőcantly
impacted by increasing the distance of the code.

The precise resource requirements on the FPGA, in-
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FIG. 2. Collision clustering decoder. (a) Micro-architecture diagram of the CC decoder computation engine, with annotated
data flow. Each (sub-)unit uses a Finite State Machine (FSM) to control the computation. The input and output of the decoder
is accessible through programmable registers. The logical correction bit is recalculated on the fly during Grow. The Merge
processing element consists of Match and Union sub-units active in parallel. (b) Schematic of the CC decoder on an example of
a single round of a rotated planar surface code. In the Init image, the decoding graph with orange-highlighted defect vertices is
laid on top of the surface code with orange and teal squares, which correspond to different parity check operators. First, in the
Init step, the data structures are initialised with every defect being its own parent. In the main loop, the Grow step calculates
the validity of the clusters and increases the diameter of all valid clusters. The clusters are checked for collisions in the Merge
step and colliding pairs of clusters (highlighted by stars in the image) are pushed to the Merge stack. The Union step pops the
pairs from the Merge stack, makes one cluster root the root of the other, and updates the parity, boundary and logical registers
of the root of the cluster. Boundary and logical registers are only changed when merging with the boundary – marked by
auxiliary vertex 12 in the second growth step. By convention, the logical is defined to be the set of (orange) edges going to the
boundary on the left side of the code and is changed to 1 when a cluster merges with the left boundary. When all clusters are
invalidated, the final logical correction is calculated by summing logical registers of the roots of odd clusters. (c) The floorplan
of a distance d = 23 (1057 qubits) ASIC implementing the CC decoder. Annotated: Parent Table, Merge Stack and Cluster
Growth Stack SRAM cells; CC control logic formed of Init, Grow, and Merge processing units that are implemented as Finite
State Machines (FSM). Core sysreg logic contains input syndrome registers, control registers and the Metric Generation Unit.
Other coloured regions contain clocking, IO and other miscellaneous logic.

cluding the percentage of resource utilised, are also given
in Table I. The only resources required to implement CC
are trivial logic gates along with storage elements. No-
tably, no Digital Signal Processing (DSP) elements are
needed, whose use would increase the area of the imple-
mentation.

One of the main advantages of CC is its efficient use
of storage resources. Fig. 3b shows, for each code dis-
tance, the storage required for the main data struc-
tures. The micro-architecture has other storage elements
e.g. Boundary, Logical and Parity registers. These are
typically implemented as ŕip-ŕops and the overall results
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a) b)

c) d)

FIG. 3. Performance of our FPGA (Xilinx Ultrascale+ XCVU3P [23]) implementation of the CC decoder on the rotated planar
surface code. (a) Decoding time per syndrome measurement round as a function of code distance for different noise rates.
Even at a high noise just below threshold (p = 0.5%) expected in near-term hardware, our decoder can decode large (d = 11)
codes at sub-1µs per round rate. (b) FPGA memory size usage of different data structures for varying code distances using
p = 0.1%. Even at distance d = 23 the decoder uses below 13KB of memory, allowing for implementation on affordable FPGA
hardware. (c) Logical error probability for varying physical error rate p and a range of code distances demonstrating threshold
at around p = 7.8 × 10

−3. Points are generated using a maximum of 108 samples and the points with no more than 1 error
are removed. (d) Decoding time per round at p = 0.1% together with a projection of logical error probability to large distance
regime. The decoder is just short of 1µs per round at distance d = 23 on the affordable Xilinx Ultrascale+ XCVU3P hardware
while expected logical error probability is approaching 10

−12. Each accuracy point was obtained using 10
8 samples. Dashed

vertical line is a guide to the eye. Orange line is an exponential decay fit to the data and the orange shadowed region is the
standard deviation to the projection. All error bars are the standard error of the mean.

are given in Table I. For a distance 23 implementation,
the main storage requirement is around 13KB which is a
third of a level-1 data cache size in a typical application
CPU. Similar to these caches on CPUs, the CC memories
can be accessed at very high frequencies in a single clock
cycle, enabling performant data processing.

Some of the other known FPGA based hardware de-
coders [17, 18] require substantial resources at larger code
distances. Their data structures are also sized based on a
phenomenological noise model at p = 0.1%, so they have
signiőcantly under-counted resources compared to the re-
quirements for a circuit-level noise model of the same
magnitude, a more realistic noise model (Appendix C).

As well as being performant and resource efficient, our
implementation needs to be accurate to effectively sup-

press physical errors. The clusters generated by CC are
the same as those generated by Union-Find, resulting in
the same accuracy. This intuitively holds since any clus-
ter in Union-Find is the union of balls of different radii
centered on the defects, and is conőrmed empirically. We
demonstrate the accuracy of CC by calculating a thresh-
old plot [26], given in Fig. 3c. Our implementation has
a threshold of 0.78%, which means that for values of p
lower than this threshold errors are suppressed exponen-
tially by increasing the code distance. To further conőrm
the accuracy of CC, in Fig. 3d we estimate the distances
required to obtain very small logical error rates using CC.
We őrst calculate the logical error rate for code distances
up to d = 13 using 108 shots per data point. The result-
ing small error bars enable us to accurately project out
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Code
Distance

FPGA Performance FPGA Utilisation

Fmax
[MHz]

Exec-time
[µs] Logic LUTs LUTRAMs FlipFlops RAMB36 RAMB18

3 449 0.07 2491 (0.63%) 12 (0.01%) 1572 (0.20%) 0 (0.00%) 0 (0.00%)
5 445 0.06 2709 (0.69%) 27 (0.01%) 1670 (0.21%) 0 (0.00%) 0 (0.00%)
7 406 0.06 3092 (0.78%) 49 (0.02%) 1984 (0.25%) 0 (0.00%) 0 (0.00%)
9 408 0.07 3800 (0.96%) 100 (0.05%) 2483 (0.32%) 0 (0.00%) 0 (0.00%)
11 412 0.11 4600 (1.17%) 68 (0.03%) 3591 (0.40%) 0 (0.00%) 1 (0.07%)
13 411 0.16 5914 (1.50%) 105 (0.05%) 4136 (0.52%) 0 (0.00%) 1 (0.07%)
15 403 0.25 7793 (1.96%) 60 (0.03%) 5432 (0.69%) 1 (0.14%) 1 (0.07%)
17 408 0.37 10446 (2.66%) 90 (0.05%) 7184 (0.91%) 1 (0.14%) 1 (0.07%)
19 402 0.55 13331 (3.38%) 0 (0.00%) 9277 (1.18%) 2 (0.28%) 2 (0.14%)
21 405 0.81 17237 (4.37%) 0 (0.00%) 11957 (1.52%) 2 (0.28%) 2 (0.14%)
23 401 1.18 21693 (5.50%) 0 (0.00%) 15126 (1.92%) 5 (0.69%) 1 (0.07%)

TABLE I. FPGA results for decoding the rotated planar surface code, assuming p = 0.1%. Code distance: the size of the error
correcting code. Fmax: the maximum achieved clock frequency on the targeted FPGA. Exec-time: the execution time averaged
over 100,000 shots, normalised by dividing by the d rounds of syndrome generation. Logic LUTs: the number of FPGA lookup
tables used for logic primitives. LUTRAMs, FF, RAMB36 and RAMB18: different types of storage elements. The mapping of
CC data structures to a storage element depend on the size of the structure. The numbers in round bracket are the percentage
of the corresponding type of resource used on the FPGA.

to the small logical error rate regime. We see that using
CC, we can obtain a logical error rate approaching 10−12

with only a distance 23 surface code.

V. PHYSICAL IMPLEMENTATION ON ASIC

Our ASIC implementation design is ready to be taped
out, having been signed-off using industry-leading Elec-
tronic Design Automation (EDA) tooling [24], top-tier
foundry silicon-proven multi-Vt libraries, SRAM IP and
spice models. This ensures high quality results which in-
clude all the fabrication process variations of device mod-
els and parasitic effects from the power network, clock-
tree synthesis, place and route stages.

In Table II we present two physical implementations of
CC on a 12nm FinFET process node: decoding a distance
7 and a distance 23 surface code. They respectively take
10ns and 240ns to decode per round of syndrome mea-
surements, using only 2.75mW and 7.85mW of power.

The control systems used today for quantum com-
puters cannot be scaled to control the large numbers
of qubits needed to run QEC schemes that obtain low
logical error rates. Cryogenic CMOS based control sys-
tems [27ś29] could represent a solution, in which case
only tight integration of the decoder will lead to optimal
performance. Current cryogenic systems however have a
strict power budget, in the order of 1W at the 4K tem-
perature range [30]. We envisage a maximum power bud-
get of tens of mW for a decoder, with qubit control and
readout remaining the primary consumption sources. In
addition to our ASIC implementations satisfying these
power budget constraints, in the near term our distance
7 instance of CC will be valuable in testing error correc-
tion experiments using cryogenic CMOS based control
systems.

A ŕoorplan deőnes the approximate locations, sizes
and shapes of various logical blocks of the design. It
helps determine how signals will interact between differ-
ent blocks, enabling performance, power and area opti-
mization. The ŕoorplan for a distance 23 implementation
is shown in Fig. 2c.

VI. DISCUSSION

To the best of our knowledge, there have been four
demonstrations of decoders implemented on dedicated
classical hardware [17ś20]. Lookup table decoders are
implemented on FPGAs in [17] and [20]. In both cases,
the error correction scheme demonstrated is relatively
simple; the distance 3 repetition code [20], and the dis-
tance 5 surface code [17]. The exponentially scaling mem-
ory requirements make lookup table decoders impractical
for surface code distances above 5. Contrary to this, we
have demonstrated that the CC decoder can easily scale
to handle surface code distances of practical interest.

In [19], a neural network surface code decoder is im-
plemented on an FPGA, up to only distance 5. Measure-
ment errors are not considered, limiting its effectiveness
and understanding of how the decoder will perform with
experimental qubits, counter to the more realistic noise
model we use. Additionally, the corresponding estimated
performance, power and area of the ASIC synthesis all
degrade signiőcantly when increasing the distance from
3 to 5, implying that the design will not effectively scale,
again in contrast to the efficient scaling of CC.

The most signiőcant prior implementation of a surface
code decoder on classical hardware is found in [18]. A
highly distributed implementation of Union-Find, called
Helios, is implemented on an FPGA, assuming a phe-
nomenological noise model. Each vertex of the decoding
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Code
Distance

ASIC Performance ASIC Area ASIC Power

Fmax
[MHz]

Exec-time
[µs]

Die-size
[mm2] FlipFlops

Dynamic

[mW]

Leakage

[mW]

7 2000 0.01 0.009 3957 2.73 0.02
23 2000 0.24 0.064 15840 7.72 0.13

TABLE II. CC ASIC results for decoding the rotated planar surface code using a 12nm FinFET process assuming p=0.1%.
We use industry-leading EDA tools to determine the frequency of the implementation. To calculate the execution time, we use
this frequency along with the cycle counts of the FPGA implementations.
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FIG. 4. Modelling improvements to the CC algorithm for
the next generation FPGA decoder with p = 0.1%. The re-
sults of our in-house modelling tool (base model, teal) are
compared with the FPGA-acquired data (green) from Fig. 3d
showing a high degree of correlation. The fit to the data is
showing a ∼ N1.5 scaling as the asymptotic regime has not
been reached. The modelling of the improvements to the al-
gorithm (upgraded model, orange) demonstrates a ∼ N1.2

scaling for the whole range of distances, allowing us to stay
below 1µs/round threshold up to d = 29. We assume 400
MHz FPGA for the modelled data.

graph is assigned a processing unit, and communication
across the design is limited e.g. typically only nearest
neighbour processing units can communicate with each
other. In this setting, a round of syndrome measurements
for a distance 21 surface code is decoded in 11.5ns on an
FPGA.

The fundamental difference between Helios and CC
is the amount of parallelisation that the Helios archi-
tecture can take advantage of. In Helios, all clusters
are worked on simultaneously, whereas in CC, there is
a limit to the amount of parallelisation that can be lever-
aged for performance. A consequence of this is that He-
lios can achieve faster decoding speeds. However, He-
lios’ distributed network requires data transfer between
neighbouring processing elements, which will always re-
quire resources. CC uses a global data structure e.g. the
distance function, and optimisations of this global data

structure can minimize resources. This difference is man-
ifest when comparing the two implementations. Helios
requires a large numbers of lookup tables (LUTs) and
registers (900k LUTs and 240k registers). Registers are
necessary in a distributed implementation so that data
can be accessed at the same time in a small number of
cycles. However, a register is an order of magnitude big-
ger in size and power consumption compared to a bit
in memory. Hence, the numbers of LUTs and registers
required by Helios will lead to a large area and power con-
sumption, increasing the cost of any chip developed and
preventing the integration with a cryogenic control sys-
tem. Our implementation of CC is very resource efficient
(Table I) while at the same time satisőes the performance
requirements needed for superconducting qubits, and so
is amenable to operating in cryogenic environments (Ta-
ble II).

Although we have already demonstrated CC decod-
ing at speed with low FPGA utilization for large dis-
tance codes, we are developing further improvements
to enhance its performance in future generations. Cur-
rently, the Match stage performs all-to-all cluster colli-
sion checks at every growth step, a bottleneck at large
distances. We can remedy this by őrst taking advantage
of the syndrome ordering in time, reducing the number of
comparisons. Secondly, as the clusters get invalidated in
the later iterations of the Grow-Merge loop, most com-
parisons are between invalid clusters. We can avoid this
by keeping track of the valid clusters and ensuring that
the comparisons between invalid clusters are removed.

To quantitatively assess the impact of such improve-
ments, we modelled the enhanced CC algorithm using
a hardware-indicative Python library which predicts the
number of FPGA cycles and memory footprint. This
model has been successfully validated using experimental
data based on the current CC algorithm implementation
(Fig. 4), giving us conődence in our projections. The en-
hanced CC algorithm is expected to improve the scaling
to ∼ N1.2; as a result, we will be able to decode a dis-
tance 29 surface code in under 1µs with only a modest
sized FPGA. This is a step technological improvement
with respect to [18], where the possibility to decode a
distance 29 surface code in under 1µs was suggested (al-
though not modelled), yet it would have required one of
the largest commercially available FPGAs.
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VII. CONCLUSION

In this work we introduced the Collision Cluster-
ing (CC) decoding algorithm and described a micro-
architecture for its implementation. Fault-tolerant quan-
tum computing requires a decoder to process error syn-
dromes at speed in order to prevent a decoding back-
log that exponentially slows down the logical clock rate.
Moreover, any scalable quantum computer requires a de-
coder to be resource efficient, which will also enable tight
integration with control systems in a cryogenic environ-
ment. To meet these requirements, we designed CC to
be memory and power efficient. While CC has non-linear
asymptotic scaling, this is remedied with parallelisation
and pipelining for the relevant code distances, demon-
strating that CC is a scalable, fast and highly resource-
efficient decoder.

To verify this, we implemented CC on both an FPGA
and ASIC. We decoded a logical memory experiment us-
ing large distance surface code examples in under 1µs per
syndrome measurement round assuming a circuit-level
noise model. On a modest sized FPGA, a distance 21
surface code took 810ns to decode per round, utilising
only 4.5% of the available resources, and on a 12nm Fin-
FET process node, a distance 23 surface code took 210ns
to decode per round using only 0.06mm2 area and 8mW
power.

To preserve a logical state indeőnitely, sliding win-
dow decoding [31] can be used. While continuous rounds
of syndrome measurements are being generated, the de-
coder processes only a contiguous set, or window, of these
rounds. Utilising the whole window, the decoder commits
to a correction for the longer lived defects in the window,
storing it in software. The window then slides up to in-
clude more recent rounds of measurements, the process
repeats, and the correction is updated. Certain bound-
ary effects make this process more complex than the one
simulated in this work. Therefore, developing a fast and
efficient sliding window implementation of CC will be an
important next step in the advancement of decoders for
fault-tolerant computation.
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Appendix A: Surface codes

Surface codes are a family of codes that have been stud-
ied extensively since their discovery over twenty years
ago [33]. They can be implemented on 2D architectures
with őxed nearest neighbour interactions, a topology of-
ten used in QPUs based on superconducting qubits, for
example. Moreover, extensive theoretical work has been
developed to execute fault-tolerant computations based
on these codes [14, 34ś36]. Surface codes also achieve
the highest thresholds ś corresponding to the minimum
qubit physical error rates required to start correcting er-
rors effectively ś among currently available error correc-
tion schemes [26], and they have been implemented in
several near-term error correction experiments [10ś12].
Combined, these observations make surface codes likely
candidates for the error correction schemes used in the
őrst fault-tolerant devices. In this work, we use the ro-
tated surface code (Fig. 5) [37].

The surface code is deőned on a d × d square lattice
(where d is the number of data qubits in each dimension
of the lattice) by operators that check the parity of sets
of qubits in either the Pauli Z or X basis (Fig. 5). These
operators are measured repeatedly to generate the syn-
drome and project the qubits into a logical computation
space. We call a single round of measuring all the parity
check operators a round of syndrome measurements, and
the measurement data generated a round of syndrome
data. For the rotated planar code, a round of syndrome
measurements requires d2 − 1 syndrome qubits, giving
a total of 2d2 − 1 qubits. The logical qubit is deőned
by logical Pauli operators forming a path between op-
posite boundaries. The distance of the surface code is
the minimum number of Pauli operators in such a logical
operator, which is just the side length d of the lattice.

The quality of the QPU determines the initial error
rate of the physical qubits. The distance of the surface
code is a measure of the capability of this code to suppress
the physical error rate down to a target logical error rate
ś the larger the distance, the lower the logical error rate.
Quantum algorithms demonstrating industrially relevant
advantage over classical computation consistently require
at least 1012 reliable quantum operations [38ś43]. There-
fore, any error correction scheme needs to reduce the log-
ical error rate to 10−12 or lower, which will require very
large distances.

The number of physical qubits and the amount of infor-
mation that needs to be processed by the decoder grow
signiőcantly with d, whereas the time available to pro-
cess this information remains constant. As a result, a
major challenge for the development of effective decoders
is demonstrating a sufficiently fast computation even for
large distances, so to avert the backlog problem.
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FIG. 5. Quantum Error Correction using a rotated planar surface code. (a) Quantum circuits to measure the Z (top) and
X (bottom) parity checks. The circuit is continuously repeated until the computation ends and all qubits are measured out.
(b) The logical information is encoded by combining multiple physical qubits laid out on a surface (orange and teal grid). The
physical qubits can be divided into data qubits (Di, empty circles) encoding the state, and syndrome qubits (S, full circles).
Repeated measurements of syndrome qubits provides information about errors. Possible error mechanisms can be represented
by a graph in which nodes represent differences between syndrome measurements in consecutive rounds (potential defects)
and edges represent error mechanisms that create the corresponding pair of defects (Appendix B for more details). Error
mechanisms that trigger only one defect (teal nodes) are in addition connected to a fictitious boundary node (not drawn). Z
and X parity check patches (teal and orange squares) protect against X and Z errors respectively, and we decompose any Y error
into an X error and Z error. The resulting disjoint decoding graphs are used to decode X and Z errors – only the Z check graph
is shown here. (c) Two rounds of syndrome measurements displaying only a part of the circuit that involves a single data and
two syndrome qubits (top). The possible error mechanisms are depicted with different colours: data (red), measurement (blue),
and hook (purple) errors and result in corresponding edges in the decoding graph (bottom). (d) Comparison of defect rate for
phenomenological and circuit-level noise models with the same noise rate on distance 23 rotated planar surface code. While
the decoding of circuit-level noise is made more complicated by the presence of hook edges, it also results in approximately 3.5
times more defects due to more possible error locations.

Appendix B: Decoding the surface code

The core challenge in quantum error correction is to
preserve a logical state, known as logical memory [10].
For the surface code, this involves initialising a logical
state, performing several rounds of syndrome measure-
ments, and őnishing with a logical Pauli measurement.
We are concerned with the overall effect of errors on the
outcome of the logical measurement. Therefore, the de-

coding problem is to determine whether the logical mea-
surement has been ŕipped given the observed syndrome
and logical measurements.

The circuit used to measure the parity check operators
(Fig. 5a) has a syndrome qubit that is reset and mea-
sured, single qubit gates, and two-qubit gates that map
errors onto the syndrome qubit. In addition to the noise
on the data qubits, each of these operations potentially
introduce additional noise mechanisms. This is why the
parity check operators are measured repeatedly, forming
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the syndrome. If no errors occur, these measurements
produce the same results in consecutive rounds. There-
fore, an error is detected when there is a change in the
outcome of a measurement from one round to the next.
We call these changes in measurement outcomes defects.

The syndrome is best represented in a decoding graph
(Fig. 5b). The vertices of the decoding graph correspond
to all possible defects. If an error mechanism triggers
two defects, we connect the corresponding vertices by
an edge. Some error mechanisms only trigger a single
defect e.g. errors on the data qubits on the boundaries
of the lattice. To capture these error mechanisms, we
connect the corresponding defects to virtual boundary
vertices. By taking the XOR of consecutive rounds of
syndrome measurements, we can identify the syndrome
with the set of defects that have been triggered. The
decoding problem can now be rephrased as determining
the most likely logical measurement given the defects in
the decoding graph generated by running the syndrome
extraction circuit.

The decoding graph is actually two disjoint decoding
graphs, one generated by Z checks, to correct X errors,
and one generated by Z checks, to correct X errors. We
decompose the Y errors included in our noise model into
X and Z errors, which are handled in the appropriate
decoding graph. More accurate decoding schemes ex-
ist that handle Y errors by correlating the two decoding
graphs [10, 44]. We save an investigation into hardware
implementations of correlated decoders for future work.

Appendix C: Noise model

Noise models vary both in the level of errors they pro-
duce as well as the types of error mechanism that can oc-
cur, which have a signiőcant impact on the decoder per-
formance. Throughout this work, we sample syndromes
using the Clifford circuit simulator Stim [32] with several
independent noise channels, parameterized by a single
probability p, that give a rough approximation of noise
channels characteristic of a generic superconducting de-
vice:

• Depolarisation of both qubits after each 2-qubit
gate with probability p.

• Depolarisation of each idle qubit and after each
single-qubit gate, including measurement and reset
operations, with probability p/10.

• Randomly change the result of a measurement with
probability p.

We use the parametrisation where depolarising a single
qubit means applying a random non-identity Pauli error:

E(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) (C1)

Depolarising two qubits means applying one of the 15
non-identity two qubit Pauli errors uniformly at random

(so that each two qubit error occurs with probability
p/15).

Our circuit-level noise model, illustrated in Fig. 5c,
generates a larger quantity and variety of defects than
the phenomenological noise model [31] which abstracts
away the details of generating the syndrome, and is a
less realistic noise model. On a distance d = 23 rotated
planar surface code with p = 0.1%, our noise model pro-
duces defects at a rate of 1.35% (or about 3.6 defects
per round), while the phenomenological noise model [18]
with the same probability p produces defects at a rate of
0.38% (or about 1 defect per round, Fig. 5d). The details
of the circuit that is used in our experiment are in Fig. 6
and the stim [32] circuits used to simulate the noise are
available on Zenodo with the DOI identiőer 10.5281/zen-
odo.11621877.

Appendix D: Application to other codes

In the future, different target applications will require
different code distances based on the length of the compu-
tation to be performed. For this reason, decoding hard-
ware that can only deal with a very speciőc code and
code distance has limited value in the real world.

The decoding graph in the CC decoder is encoded by
the distance calculation function, and this is the only part
of the design that has to change based on the code. This
makes CC and its implementations applicable to a large
family of codes. The current implementation is opti-
mised for the surface code where efficient closed form dis-
tance functions exist. For more general decoding graphs,
closed-form distance functions could be developed by us-
ing graph embedding techniques, or the design could be
adapted to utilise efficient lookup tables of distances.

Appendix E: Coordinate embedding and distance
function

The collision clustering algorithm relies on fast and ef-
őcient calculation of the shortest path between any two
nodes of the decoding graph. This can be done for a large
number of cases by isometrically embedding the graph in
a normed coordinate space and having a distance func-
tion compute the norm between the node coordinates.
Here we outline an approach to embedding the rotated
planar code graph for both the phenomenological and
circuit-level noise model.

Each node can be trivially (not necessarily isometri-
cally) embedded in a 3D space by labelling it with its
coordinates:

X = (x1, x2, t) (E1)

First, consider the phenomenological noise model and the
unweighted decoding graph. In this case, there are no
hook edges and all graph connections are along the prin-
cipal axes of the coordinate system (see Fig. 7). The
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FIG. 6. Diagram of the circuit for a round of check measurements for distance 5 rotated planar code. Full circuits together
with the noise model are available as stim [32] files on Zenodo with the DOI identifier 10.5281/zenodo.11621877.

distances between nodes of the graph are then computed
by simply taking a Manhattan distance:

D(X1, X2) = ||X1 −X2||1 = |∆x1|+ |∆x2|+ |∆t| (E2)

We can also easily add weights to such a graph if we
assume that the weights obey the translational symmetry
(i.e., all edges along a particular direction have the same
weight). In this case, we have 3 weights w1, w2, w3 along
the x1, x2, t directions respectively. The correct distance
can again be calculated with the Manhattan norm, but

now the embedded coordinates need to be scaled:

X = (w1x1, w2x2, w3t) (E3)

D(X1,X2) = ||X1 −X2||1

= w1|∆x1|+ w2|∆x2|+ w3|∆t|

In the circuit level noise model, hook edges are added
which increases the complexity (see Fig. 7). The diagonal
hook edges mean we can not isometrically embed the
graph in 3D space. However, the unweighted circuit-level
graph can be isometrically embedded into 4D space using
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FIG. 7. Rotated planar code graph coordinate system embedding. (a) Sketch of the 5x5 rotated planar code and the principal
axes. The coordinate system is aligned at 45° to the code. With the phenomenological noise model, graph is described by the
nearest-neighbour connections along the x̂, ŷ and t̂ directions. With the circuit-level noise model we get additional diagonal
connections that are dependent on the schedule of entangling operations in the circuit and that connect nodes that are both
spatially and time-like separated. In the literature, these are often referred to as hooks. Here, they are represented by ĥ1, ĥ2

and Ĥ. A choice of the origin for the coordinate system as used in CC is shown in the bottom left corner of the figure.

the L1 norm:

X =

(

x1

2
,
x2

2
,
x1 + t

2
,
x2 + t

2

)

(E4)

D(X1,X2) =||X1 −X2||1

=
1

2
(|∆x1|+ |∆x2|+

+|∆x1 +∆t|+ |∆x2 +∆t|)

In the CC decoder presented in the main paper, the clus-

ters are labelled by their coordinates (Eq. (E1)) and the
distance calculated when needed according to Eq. (E4).
The boundary is treated as a special node and the dis-
tance to the boundary calculated as min(x1, d−x1) where
d is code distance and the origin of the coordinate sys-
tem is as deőned in Fig. 7. The Eq. (E4) can be extended
to the weighted graph assuming translational symmetry,
but requires an embedding in 7D space and is beyond the
scope of this paper.
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