
This is a repository copy of Towards the generation of hierarchical attack models from
cybersecurity vulnerabilities using language models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221653/

Version: Published Version

Article:

Sowka, K., Palade, V., Jiang, X. orcid.org/0000-0003-4255-5445 et al. (1 more author)
(2025) Towards the generation of hierarchical attack models from cybersecurity
vulnerabilities using language models. Applied Soft Computing, 171. 112745. ISSN 1568-
4946

https://doi.org/10.1016/j.asoc.2025.112745

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Towards the generation of hierarchical attack models from cybersecurity
vulnerabilities using language models

Kacper Sowka a ,∗, Vasile Palade b , Xiaorui Jiang b , Hesam Jadidbonab a

a Centre for Future Transport and Cities, Coventry University, Coventry, United Kingdom
b Centre for Computational Sciences and Mathematical Modelling, Coventry University, Coventry, United Kingdom

A R T I C L E I N F O

Dataset link: 10.17632/s2sw4ck42n.1

Keywords:
Natural language processing
Siamese neural networks
Cybersecurity
Attack models

A B S T R A C T

This paper investigates the use of pre-trained language models and siamese neural networks to discern
sibling relationships between text-based cybersecurity vulnerability data. The ultimate purpose of the approach
presented in this paper is towards the construction of hierarchical attack models based on a set of text
descriptions characterising potential or observed vulnerabilities in a given system. Due to the nature of the
data, and the uncertainty sensitive environment in which the problem is presented, a practically oriented
soft computing approach is necessary. Therefore, a key focus of this work is to investigate practical questions
surrounding the reliability of predicted links towards the construction of such models, to which end conceptual
and practical challenges and solutions associated with the proposed approach are outlined, such as dataset
complexity and stability of predictions. Accordingly, the contributions of this paper focus on training neural
networks using a pre-trained language model for predicting sibling relationships between cybersecurity
vulnerabilities, then outlining how to apply this predictive model towards the generation of hierarchical attack
models. In addition, two data sampling mechanisms for tackling data complexity and a consensus mechanism
for reducing the amount of false positive predictions are outlined. Each of these approaches is compared and
contrasted using empirical results from three sets of cybersecurity data to determine their effectiveness.

1. Introduction

Within computer-based systems, the emergence of cybersecurity
vulnerabilities remains a key concern, as their presence may allow
attackers unwarranted control over critical functionality and access
to sensitive data. However, given the sheer scale and complexity of
modern day systems, it is impossible to anticipate every potential
vulnerability, and it is thus infeasible to completely secure any system
against an attack. Many approaches for dealing with this intractability
exist, ranging from security oriented development life-cycles, which
aim to minimise the severity and likelihood of emergent vulnerabili-
ties [1], to strategies for effectively responding to a newly discovered
vulnerability in the event that it is not discovered prior to release. In
the latter case, when cybersecurity experts discover a vulnerability in
a system, it is customary to inform the developer and then publish
information on the vulnerability publicly, in order to aid the mitigation
of future cyberattacks and allow a response (such as a security update)
to be mounted. One of the most popular mediums through which this
is done is the Common Vulnerabilities and Exposures (CVE) database
maintained by the MITRE corporation. As a primarily community run

∗ Corresponding author.
E-mail addresses: sowkak@coventry.ac.uk (K. Sowka), ab5839@coventry.ac.uk (V. Palade), ad5820@coventry.ac.uk (X. Jiang), ad4953@coventry.ac.uk

(H. Jadidbonab).

effort, CVE entries are mainly characterised by text descriptions written
by volunteers in an informal style describing the nature and occurrence
of the given vulnerability.

Although there are a wide variety of approaches applied throughout
the lifecycle of a software or hardware system, one common approach
is the utilisation of models for assessing cybersecurity risks [2,3] or
enumerating test cases [1,4]. In particular, attack models are often
used as a graphical representation of possible attacks within a given
system, which can enable cybersecurity analysts to more intuitively
determine areas of high risk. Within this paper, a specific type of attack
model, designated here as ‘‘hierarchical attack models’’, are considered
as a general class of attack models focused on building a hierarchy
grouping vulnerabilities into increasingly high level abstractions. A
prevailing example of this is the attack tree [5], which breaks down
high-level attack goals, such as ‘‘compromise user account’’, into sub-
goals governed by a logical operator, such as ‘‘obtain username AND
obtain password’’, and finally terminates at leaf nodes representing
atomic attack actions, such as those targeting a specific vulnerability
in the system like ‘‘brute force attack OR dictionary attack’’ against a

https://doi.org/10.1016/j.asoc.2025.112745
Received 24 January 2024; Received in revised form 7 October 2024; Accepted 5 January 2025

Applied Soft Computing Journal 171 (2025) 112745

Available online 17 January 2025
1568-4946/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

K. Sowka et al.

Fig. 1. Example of an attack tree (AND nodes are represented with lines bisecting
edges between the parent and children, with OR nodes utilising standard straight lines
as edges).

system which fails to restrict the amount of attempts one can make at
entering a password. This example can be seen in Fig. 1.

Methods for the generation of hierarchical attack models, in the
form of attack trees, can be found throughout the literature [3,6–
12]. To that end, with these methods mostly relying on the use of a
pre-defined system models [9–12] and/or libraries of attack patterns
that an algorithm can draw on [3,6,7,13], there is a potential in
utilising neural networks in order to draw inferences on the potential
relationships between individual vulnerability entries based entirely on
the data characterising each vulnerability, rather than on a pre-defined
reference to a system model or library of patterns.

In considering how to leverage the incredibly large CVE dataset
(with over 200,000 entries) for the construction of such hierarchical
attack models, various key characteristics of the data and the practical
utility of attack models must be considered. Prior work has demon-
strated the feasibility of using public MITRE datasets like CVE as the
basis for the generation of hierarchical attack models [3,6,7], although
existing approaches focus on utilising already existing links within the
data [14], which does not offer a feasible approach towards responding
to newly discovered vulnerabilities. In addition, due to the size of the
CVE dataset and that each entry is written by a 3rd party without
major constraints in format or lexicon, it can be challenging for both
human experts and algorithmic solutions to effectively discern the
interaction of one vulnerability with another. In practical terms, this
high volume of entries coupled with a lack of consistent language limits
the applicability of simple keyword lookup solutions to determine
the likely relationships between CVEs, and introduces a significant
amount of complexity when an exhaustive set of combinations for all
vulnerabilities is enumerated.

This paper will demonstrate how neural networks can be utilised
for predicting the likelihood of a relationship between vulnerabili-
ties from a public vulnerability dataset like CVE using pre-trained
language models. Then, the question of how this capability can be
used for grouping vulnerabilities together and lead to the practically
viable generation of hierarchical attack models is tackled. In addition,
two practical questions relating to data imbalance are explored, with
solutions being demonstrated and empirically verified. Primarily, the
focus of this paper is to investigate the ability of these networks to
reliably determine the relationships between unseen combinations of
known vulnerabilities, and as a further consideration the ability to
relate known vulnerabilities to previously unseen vulnerabilities will
also be evaluated.

In contrast to the traditional formal methods of attack model gener-
ation, which requires explicitly defined relationships within the data as
a pre-requisite [14,15], this paper fundamentally re-frames the problem
of generating hierarchical attack models into a data-driven machine
learning task and thus paves the way towards full machine learning

supported generation, which allows for emergent vulnerabilities to be
accounted for.

Hence, the contributions of this paper are: (a) the development
of neural networks employing a pre-trained language model for pre-
dicting sibling-level relationships between free-form text descriptions
of cybersecurity vulnerabilities, (b) two data sampling mechanisms to
tackle extreme data imbalance for effective training, (c) a consensus
mechanism for reducing the impact of false positives in predictions,
(d) an algorithm for creating basic groups of vulnerabilities based on
predicted relationships as a means towards hierarchical attack model
generation.

2. Background and related work

2.1. Cybersecurity datasets

There exists a notable selection of cybersecurity databases, each
offering different types of data with different contextualising infor-
mation at different levels of abstraction. These include, from most
tangible to most abstract: ExploitDB,1 Common Vulnerabilities and
Exposures (CVE),2 Common Weakness Enumeration (CWE),3 Common
Attack Pattern Enumerations and Classifications (CAPEC)4 and the
ATT&CK matrix.5 While ExploitDB considers code-level exploits, CVE
has a slightly higher level of abstraction by considering text descrip-
tions of individual vulnerabilities, CWE stores weaknesses that can
result in vulnerabilities emerging, CAPEC stores attack patterns which
utilise weaknesses and finally ATT&CK considers the highest level
attack goals via tactics and techniques.

A notable characteristic of these datasets are the relationships link-
ing their entries within and between each dataset. For instance, a
relatively high level entry from CWE is ‘‘CWE-284: Improper Access
Control’’, which has ‘‘child’’ CWEs associated with it, such as ‘‘CWE-
285: Improper Authorization’’, which represents a more specific in-
stantiation of the parent weakness. More importantly for the purposes
of this work, entries in CWE can be connected to CVE entries, which
results in collections of low level individual vulnerabilities based on
a relevant CWE weakness. This relationship is made easier to navi-
gate by BRON [16], which structures the various MITRE run datasets
(CVE,CWE,CAPEC,ATT&CK) into a bidirectional graph, making traver-
sal and collection simpler. In addition to its primary function in fa-
cilitating threat intelligence, BRON can also enable the collection of
training data for various cybersecurity relevant machine learning tasks,
as it provides textual and relational data.

In a more generalised context, CVE can be seen as a template for the
kind of dataset that a private corporation might maintain for its own
cybersecurity activities. While this would likely contain more salient
information than just a text description, the relevance of the solutions
presented in this paper to such datasets can be justified by the fact
that the manner of encoding each entry into neural embeddings can be
adapted to any format of data. For instance, though this paper focuses
on embedding natural language using DistilBERT, it is also feasible
to embed structured text, images or other forms of discrete data into
embeddings. This means that the general framework presented in this
paper can be applied to a wide variety of data sources.

In addition, the CVE dataset is continuously maintained and new en-
tries are constantly added, thus the envisioned potential of this method
is for neural networks to determine relationships between newly added
vulnerabilities. This remains true for privately maintained vulnerability
datasets, since as more information is gathered and new attacks are

1 https://www.exploit-db.com/
2 https://www.cve.org/
3 https://cwe.mitre.org/
4 https://capec.mitre.org/
5 https://attack.mitre.org/

Applied Soft Computing 171 (2025) 112745

2

K. Sowka et al.

discovered, new entries are inevitable and the deployment of a neural
network capable of determining the relationship of one vulnerability to
others can expedite the analysis of how a new vulnerability affects the
security of a given system. A key characteristic of the dataset chosen
for this paper is that certain groups of vulnerabilities have many more
entries than others. Thus, the ability to generalise in a manner that does
not ‘‘lose’’ these smaller groups is also explored as in the real world,
different types of vulnerabilities will be more or less common, but all
equally important to evaluate.

2.2. Language models for cybersecurity tasks

Previous work has shown that using pre-trained language models,
such as BERT [17], can be used for predicting relationships between
various MITRE cybersecurity datasets such as: CVEs and the ATT&CK
matrix [18], CVEs and CAPEC entries [19], CVEs and CWE entries [20],
predicting the exploitability rating of CVEs6 [21] and generating CVE
descriptions from ExploitDB entries [22]. Furthermore, there is work
on ‘‘fine-tuning’’ the BERT model to cybersecurity domain tasks [20,21,
23], which aims to improve the performance of downstream tasks by
allowing the encoder to learn domain specific language features. One
issue with deploying a BERT model is its large amount of parameters,
as the complexity of the network makes fine-tuning and application
resource intensive. Thus, extensions of the BERT model focusing on re-
ducing the model complexity such as ‘‘A lite BERT’’ (ALBERT) [24] and
DistilBERT [25] have been proposed, which use parameter-reduction
techniques and knowledge distillation respectively, to increase the
efficiency of the BERT model.

Of particular interest in this paper is the way in which several vul-
nerabilities (e.g. CVE entries) can be assigned to a group (e.g. a CWE),
which offers additional high-level insight into how individual vulnera-
bilities relate to the bigger picture. While CVE entries consist of only
a text description in their original source, with additional information
like severity being provided via the National Vulnerability Database7

managed by the National Institute of Standards and Technology, CWE
entries offer a gateway into relationships with other datasets, back-
ground details, applicable languages, common consequences, examples,
and more.

Das et al. [20] explore the use of a transformer-based encoder with
a siamese network for predicting links between CVE and CWE entries.
To that end, the authors fine-tune a BERT [17] model to produce
their ‘‘V2W-BERT’’ framework capable of predicting links between
CVEs and CWEs, with up to 97% accuracy for CVE entries classified
under commonly used CWEs. In addition, the authors introduce various
measures to account for rare or ‘‘zero-shot’’ examples for classifying
CVEs. This paper will instead focus on the related but novel task
of predicting sibling relationships between individual CVEs based on
shared CWE ‘‘parents’’, as a means of investigating the performance of
such a method in terms of only low-level vulnerability data, which can
be utilised in cases where groups of related vulnerabilities are known
but the semantic information on what groups them together (such as
a CWE description) is not available. In practice, this situation could
be encountered if the vulnerability groups were classified based on
empirical data, such as after performing a penetration test, and noting
that the following vulnerabilities were used in tandem or produced
similar results. Thus, during training and prediction, CWEs act purely as
groups of related CVEs for the purposes of this paper. While this may
seem like an arbitrary distinction, and many of the ideas introduced
in this paper could be utilised with an alternative task, this paper
focuses on an unexplored approach towards vulnerability data rather
than applying an existing approach in a different context in order to
investigate a novel perspective which also has security implications.

6 Based on https://www.first.org/cvss/
7 https://nvd.nist.gov/

Another category of methods considers using system logs directly
as a form of data on which to utilise neural networks [26]. For in-
stance, Li et al. [26] utilise a transformer network to encode vector
representations of system logs during an attack, then utilise an LSTM
network to predict attacks and construct an attack graph. This differs
from using public cybersecurity data as it focuses on a very specific
system implementation, and thus, while it provides much more salient
information, this would not be as generally applicable and requires
access to system logs in order to perform. However, methods such as
this could find use in attack tree generation schemes based on system
traces [14].

2.3. Generating hierarchical attack models

A common approach towards managing cybersecurity is using at-
tack models to emulate the behaviour of a given system whilst under
cyberattack. This can be approached in various ways, with graphical
models proving a popular method across various domains [2,8,15,26,
27]. In essence, the premise is that the system and/or possible attacks
are formally modelled using techniques like graphical and mathemat-
ical representations. As mentioned previously, of particular interest in
this paper are hierarchical attack models. These are defined here as
a broad class of attack models which are structured in a hierarchy,
separating different levels of abstraction between individual attack
actions and high-level goals.

In terms of what is actually being modelled, approaches such as
the attack tree [2,5] focus on just the attack model itself, with no
explicit modelling of the system itself beyond mentions to what a par-
ticular vulnerability targets. Meanwhile, attack graphs generally focus
on modelling the physical system such as network connections [27]
more explicitly and including them within the graph itself, such that
the behaviour of the system being targeted is modelled. Hong et al. [8]
introduce the concept of ‘‘Hierarchical Attack Representation Models’’,
not to be confused with the general class of hierarchical attack models,
which separate system modelling into the ‘‘top level’’ of a hierarchy and
the ‘‘bottom level’’ made up of individual vulnerabilities, thus explicitly
blending both approaches.

While generation strategies exist for all the above approaches [15,
26,28], the focus of this paper is on the generation of hierarchical
models in the style of attack trees, particularly from a ‘‘bottom-up’’
or ‘‘vulnerability first’’ perspective, focusing on the lowest level leaf
nodes first. While there is a wide variety of approaches in the literature
for generating attack trees, including the use of process calculus to
represent communications within a system [10], using a formal enter-
prise model to derive an attack tree [11], hierarchies of actions sourced
from system models or explicitly defined relationships [12] and using
a graph based system model to follow the flow of data in a network
and derive attack paths [9]. All of these focus on formally defined
algorithms with pre-defined relationships in the data [14,15], which
do not incorporate advances in machine learning that can open the way
for inferring relationships from vulnerability data directly without the
need for explicit models of the underlying system and its relationship
to the vulnerabilities.

An attack tree generation method needs some form of information
from which it can derive its nodes and the relationships between
them. While the use of system models for this purpose proved initially
popular, there has been increasing interest in using more generic attack
libraries to aid generation, with ‘‘model-free’’ methods that do not
necessitate the use of a system model also being proposed [13,14].
Of these, the work of Falco et al. [6] and Jhawar et al. [7] make
use of MITRE datasets as a generic attack library. Falco et al. utilises
various datasets to link high-level goals to increasingly tangible tools
and actions by traversing the connections from ATT&CK to CAPEC,
CWE, and finally CVEs. In short, this method uses a system model and
existing links within the dataset to structure sets of attacks, weaknesses
and vulnerabilities into an attack tree [6]. Jhawar et al. focus on a

Applied Soft Computing 171 (2025) 112745

3

K. Sowka et al.

semi-automatic process of enhancing a manually constructed attack
tree with generic attack patterns sourced from the link from CVE data
(sourced via the NVD). Then, Jhawar et al. use NLP to break down the
description and augment it with affected platforms via the Common
Platform Enumeration associated with it. In the end, this information
is used to associate the leaf nodes of an existing attack tree with actions
like ‘‘exploit CVE-XXXX-XXXX’’ [7]. While these methods differ in both
methodology and goals, they both utilise MITRE data by re-interpreting
existing links.

A much more recent work has also explored the generation of
attack trees by noting the connection between MITRE datasets and
hierarchical attack models [3]. Although similar on its surface and
tackling a related problem, the work of Pekaric et al. [3] concerns the
bottom up structuring of CVE and CWE data into attack trees using
the same underlying links between the datasets that this paper used to
source its training data. Following this initial structuring of attack trees
(or ‘‘fragments’’ as referred to in the paper), these are interpreted into
logical relationships such as OR,AND, SAND using relationship types
within CWE data.8 Thus, the goals of this work and the work presented
in this paper dovetail one another, since the work of Pekaric et al. [3]
depends entirely on the data already available, and the work in this
paper aims to provide a means to generate what Pekaric et al. label
as tree ‘‘fragments’’ from new vulnerability data, without explicitly
labelled relationships.

In the interest of integrating recent advancements, the role of large
language models in generating hierarchical attack models should be
touched on. Another recent publication has for the first time attempted
to utilise machine learning for the generation of attack trees, with the
stated desire to explore the feasibility of utilising large language models
specifically for the generation of attack trees [29]. However, in con-
trast to bespoke algorithm based approaches with clearly defined data
pipelines, this work concerns asking ChatGPT, a commercially available
but privately owned model, to create attack trees. These attack trees are
then compared to trees found in the literature using metrics developed
in preceding literature for quantifying the relationship between two
trees, in order to gauge the ability of this model to provide meaningful
attack trees. In general, while tangentially related to the type of method
explored in this paper, the conclusion of this work is that currently
ChatGPT cannot be trusted to provide reliable attack trees, certainly
not at scale. This is down to many different reasons, better explored
in literature focusing on the use of proprietary large language models,
but this comes down to the fact that it is too general-purpose to act
in a very specific and highly domain sensitive role. Compounded with
its proprietary nature, there are not many productive ways forward
to improve upon this model beyond increasingly byzantine prompt
hacking. However, this work provides productive insight in how trees
generated with the help of machine learning should be evaluated, and
cautions against blindly trusting the predictions yielded from a model
trained using machine learning. Thus, a bespoke model designed to be
used within the confines of an uncertainty-aware methodology allows
for more granularity and control over how these inferences are utilised
and interpreted.

Despite the popularity of attack trees in the literature, this paper is
focused on the more general hierarchy problem rather than tackling
attack tree generation head on, as the solutions presented here are
generally applicable, and do not focus on attack tree specific problems
such as assigning logical relationships to parent nodes. Indeed, no
attack tree data is being considered in this paper, rather the relationship
between the CVE and CWE dataset, and further CWE to CAPEC and
ATT&CK data, is being drawn as an analogue for a generic cybersecurity
hierarchy. This hierarchy is understood to bear significant similarity
to attack tree data [3,6,7], and the methods outlined in this paper are
applicable directly to attack tree generation if the data required to train
the necessary networks is available. Table 1 contains a summary of
some of the main methods for attack tree generation in the literature.

8 https://cwe.mitre.org/data/reports/chains_and_composites.html

Table 1
A table summarising some of the key works in hierarchical attack model generation.

Author Information source Generation method

Hong et al.
[28]

Model of physical
network

Uses logical reduction
techniques to generate smaller,
concise attack trees based on
system model

Vigo et al.
[10]

Process calculus Interprets the communication
between system and attacker
processes as being analogous to
the interaction between a
networked system and an
adversary.

Ivanova et al.
[11]

Enterprise graph
model

Determine credentials necessary
for attacker to obtain a given
asset and produce attack trees
for the procurement of these
credentials.

Gadyatskaya
et al. [12]

‘‘Refinement’’ library
and system model

Relies on a refinement
specification to dictate the
manner in which individual
attack actions derived from a
system model are structured in
a hierarchy.

Falco et al.
[6]

Applies a known set
of vulnerabilities and
methods to a system
model

Variety of public cybersecurity
datasets (including CWE and
CVE) and a system model.

Pekaric et al.
[3]

CVE, CPE, CVSS and
CWE

Applies libraries of attack
patterns to a set of
vulnerabilities to produce an
attack tree structure.

3. Sibling prediction of CVEs

In the context of relating CVEs to CWEs, a vital question must be
answered on how the emergent CVE to CVE relationships are to be
interpreted. If two CVEs are said to be linked to the same CWE, what
does that mean on a practical cybersecurity analysis level? Since CWEs
represent high-level categories of weaknesses, while CVEs represent
individual low-level vulnerabilities, the relationship from CWE to CVE
can be said to resemble a parent–child relation. Thus, a CVE sharing a
parent with another CVE can be said to have a sibling relationship to
that CVE.

In practical terms, a sibling relationship between CVEs mean that
these vulnerability descriptions roughly describe or relate to a similar
type of weakness. This can also be re-framed as enumerating different
ways in which a cybersecurity weakness can be exploited. While this
is a fairly abstract way of interpreting CVE to CVE relationships, its
a practically feasible and useful way of understanding a huge swathe
of historical vulnerability data. Additionally, being able to group to-
gether vulnerabilities targeting based on what ‘‘type’’ of weakness they
exploit can enable a cybersecurity analyst to better understand a large
collection of vulnerability descriptions.

In terms of implementing a predictive model for sibling relation-
ships, there are several approaches one could take. Given the text based
descriptions associated with both CVEs and CWEs, a predictive model
with an NLP pre-processing step seems like a natural starting point.
If one wishes to consider an arbitrary amount of CVEs at a time, a
graph neural network [30] approach could be deployed based on NLP
embeddings. However, this could lead to overly complex training cycles
due to the variability in the amount of CVEs assigned to each CWE.
A simpler approach would be to begin with a feedforward network
that takes a pair of NLP embeddings and determines the most likely
link connecting them. This can then be used pair-wise on all input
vulnerabilities, to determine the most likely groupings of CVEs. Thus,
inspired by the approach of Das et al. [20], a siamese network is
employed with ‘‘encoder’’ and ‘‘predictor’’ components separated by

Applied Soft Computing 171 (2025) 112745

4

K. Sowka et al.

Fig. 2. Visualisation of how the prediction network is designed. Encoder and predictor sections have separate hyperparameters, such as the amount of layers (m) and number of
neurons (n) in each layer.

an average pooling operation to ensure that the input CVE pairs are
order invariant. Fig. 2 shows the model architecture used in this paper.
With the siamese encoder component, input BERT embeddings from
vulnerability descriptions are each fed through a feedforward network,
which maintains two distinct sets of states for each input while sharing
weights. Then, the output of which is then averaged pair-wise to
provide a final encoder output. This is then fed to the ‘‘predictor’’
component, which is another feedforward network, ending in a sigmoid
output representing a probability distribution over the relationship
between the two input vulnerabilities. With the sigmoid output (𝑅𝐸 𝐿
in Fig. 2) tending towards 0 with a negative link and 1 with a positive
link.

In order to train the model, the network requires pairs of em-
beddings produced by BERT from text descriptions of CVEs alongside
their relationship to one another (sibling or not sibling). Given that
there are a lot of CVE entries, (200,000+), this leads to a substantial
amount of potential training data. As each CVE chosen to appear during
training needs to be embedded individually by the BERT encoder prior
to training, there is a significant pre-processing overhead involved.
Therefore, a more compact encoder known as DistilBERT [25] will be
used in place of the standard BERT model. This is due to both the
practical considerations of the experiments performed in this paper,
and the wider applicability of the proposed methodology, since it
renders the whole process more efficient.

4. Negative link problem

One factor which must be considered is how positive and negative
links are formed, as each CVE will possess a CWE ‘‘parent’’. To that
end, the interpretation used by this paper is that if two CVEs share
a CWE parent, they are considered related (and thus form a positive
link), while any two CVEs which do not share a parent are considered
unrelated (negative link). A visualisation of this can be seen in Fig. 3,
where fictional CWE 1 has children CVE 1 and 2, while CWE 2 has
children CVE 3, 4 and 5, with an example positive and negative link
being demonstrated.

A major complication with this comes in the mathematical con-
sequences of how positive and negative links are sampled. Let 𝐶 =

Fig. 3. An illustration of the difference between positive and negative links between
CVEs.

(𝑐1, 𝑐2,…) be a list of cardinalities for a given set of CWEs, denoting
the amount of CVEs associated with each CWE such that 𝑐𝑖 = |𝐶 𝑊 𝐸𝑖|.
Since positive links are sampled by taking ‘‘internal’’ pairs of nodes,
for any given 𝐶 𝑊 𝐸𝑖 the amount of positive pairs acquired is given by

𝑐𝑖!

(𝑐𝑖−2)!×2
. Thus, the total amount of positive links for a given set of node

cardinalities 𝐶 is given by Eq. (1).
|𝐶|∑
𝑖=1

𝑐𝑖!

(𝑐𝑖 − 2)! ⋅ 2
(1)

In contrast, the amount of negative pairs is sourced by the amount
of ‘‘external’’ combinations, and thus requires that the cardinalities
are multiplied. For instance, the amount of combinations between two

Applied Soft Computing 171 (2025) 112745

5

K. Sowka et al.

Fig. 4. Clique-based sampling of negative links. Red arrows show where negative links
are formed with a red ‘‘X’’ crossing an arrow showing a link NOT being formed. The
dotted line designates the boundary of two ‘‘cliques’’.

sets of CVEs (from two different parent CWEs) is derived by simply
multiplying their sizes, so for any given 𝑐𝑖 it is necessary to sum the
product of 𝑐𝑖 with every other member of 𝐶. This means that the total
number of external combinations is given by Eq. (2).
∑|𝐶|

𝑖=1

∑|�̂�|
𝑗=1

𝑐𝑖 ⋅ 𝑐𝑗

2
(2)

With �̂� denoting 𝐶− {𝑖} and the division by 2 being made necessary by
the fact that pairs are unordered, and thus entries such as {𝑐0, 𝑐1} and
{𝑐1, 𝑐0} are equivalent, and thus should not be counted twice.

Therefore, negative links will in most cases outnumber positive
links, with the imbalance growing proportionally to the amount of
CWEs/CVEs. Intuitively, this can be demonstrated by the fact that
each time a new entry 𝑐𝑛 is added into 𝐶, it will contribute 𝑐𝑛 ×

𝑐𝑛−1

2
positive links, which is independent of how many entries there are
in the set already, while the amount of negative links will increase
by

∑|𝐶|
𝑖=1

𝑐𝑛 × 𝑐𝑖, which will grow geometrically compared to the linear
growth of positive links w.r.t the contents of 𝐶.

Based on different selections of CVE to CWE links, two techniques
for dealing with the negative link problem will be contrasted.

4.1. Clique-based sampling

One approach to mitigating the negative link problem is to define
boundaries between cliques of CWEs within which CVEs are permitted
to form negative links. This could take the form of clustering together
CWEs based on some characteristics, such as the amount of children, or
with a specific goal in mind, such as minimising the amount of negative
links. However, these are rather arbitrary from the point of view of
the data, meaning that there would be a lack of syntactically valid
negative links which would likely impact the ability of the model to
generalise. Nevertheless, such an approach could be viable in certain
domain specific applications, where a carefully curated set of cliques
could result in a model designed for tasks in which it is desirable to
condition the formation of negative links between only certain groups.
Fig. 4 illustrates this idea.

4.2. Weighted random sampling

An alternative solution is to only utilise a subset of all the CVE
children to form negative links with, as illustrated in Fig. 5, based
on a weight inversely proportional to the relative size of the CWE.
This sampling is controlled by Eq. (3), which determines 𝑁𝑖 as the

Fig. 5. Weighted random sampling of negative links. Greyed-out CVEs with dashed
outlines are being skipped by the sampling process.

percentage of CVEs to sample from the given 𝐶 𝑊 𝐸𝑖.

𝑁𝑖 =

(∑
(𝐶) − 𝑐𝑖∑
(𝐶)

)𝑝

(3)

With 𝑐𝑖 being the cardinality of the CWE for which 𝑁𝑖 is being de-
termined,

∑
(𝐶) being the sum of all CWE cardinalities and 𝑝 being a

parameter determining the degree by which larger sets produce smaller
samples. Logically, this equation assigns 𝑁 such that the smaller the
cardinality 𝑐𝑖 with respect to all of 𝐶, more of its members will
be sampled. This is to ensure that relatively smaller CWEs are not
overshadowed by larger ones, and is based on the assumption that
over represented CWEs will be less affected by the culling of their
negative links. Empirically, the effectiveness of this equation at culling
the amount of samples from larger groups while leaving the smaller
groups untouched is demonstrated in Appendix A. Significantly, Eq. (3)
is not intended to be used to categorically blacklist certain CVEs for the
entirety of training, but rather to selectively skip negative links during
the sampling of training data such that most CVEs will still end up
included at least once in the data.

5. Towards building hierarchical attack models

5.1. Algorithm for grouping vulnerabilities

This section investigates how the neural networks described in
previous sections can be utilised towards producing hierarchical at-
tack models. Firstly, let each pairwise prediction between every vul-
nerability in a given input set be structured into a ‘‘prediction ma-
trix’’ 𝑃 , where entry 𝑃𝑖,𝑗 stores the predicted relationship between
vulnerabilities associated with indexes 𝑖 and 𝑗 respectively.

Fig. 6 illustrates 3 examples of how a prediction matrix for 3 vulner-
abilities {𝐴, 𝐵 , 𝐶} can be transformed into consistent groups, with 0 and
1 designating a negative and positive prediction respectively. Algorithm
1 shows a method for resolving a prediction matrix for an arbitrary
amount of vulnerabilities into groups in the manner shown in Fig. 6 by
interpreting the problem as a parent–child assignment problem with the
prediction matrix acting as a set of constraints for which vulnerabilities
can share a parent and which must be separate. To illustrate, in the
middle example in Fig. 6 nodes A and B are considered related to C,
but not to each other, and so the resultant grouping results in 2 separate
copies of C existing in two groups so that A and B do not have to share
a group with each other while each getting to share a group with C.

Applied Soft Computing 171 (2025) 112745

6

K. Sowka et al.

Fig. 6. Example of how a prediction matrix can be interpreted into groups.

Algorithm 1: Parent assignment with respect to predicted sib-
ling relationships

input : Prediction matrix (𝑃), List of vulnerabilities (𝑉)
output: Vulnerability groups based on relationships defined in

𝑃

1 𝑟𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 ← ∅

2 for 𝑖 ∈ 𝑉 do
3 for 𝑗 ∈ 𝑉 do
4 if 𝑖 ≠ 𝑗 then
5 𝑟𝑒𝑙 ← 𝑃𝑖,𝑗

6 𝑟𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 ← 𝑟𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 ∪ {({𝑖, 𝑗}, 𝑟𝑒𝑙)}
7 end

8 end
9 for ({𝑖, 𝑗}, 𝑟𝑒𝑙) ∈ 𝑟𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 do
10 𝑓 𝑜𝑟𝑏𝑖𝑑 𝑑 𝑒𝑛 ← ∅

11 for ({𝑖′, 𝑗′}, 𝑟𝑒𝑙′) ∈ 𝑟𝑒𝑙 𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 do
12 if 𝑟𝑒𝑙′ = 0 and 𝑖 = 𝑖′ then
13 𝑓 𝑜𝑟𝑏𝑖𝑑 𝑑 𝑒𝑛 ← 𝑓 𝑜𝑟𝑏𝑖𝑑 𝑑 𝑒𝑛 + 𝑗′

14 end
15 for 𝑝𝑎𝑟𝑒𝑛𝑡 ∈ 𝑖.𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ∪ 𝑗 .𝑝𝑎𝑟𝑒𝑛𝑡𝑠 do
16 if 𝑝𝑎𝑟𝑒𝑛𝑡.𝑐 ℎ𝑖𝑙 𝑑 𝑟𝑒𝑛 ∩ 𝑓 𝑜𝑟𝑏𝑖𝑑 𝑑 𝑒𝑛 = ∅ then
17 𝑖.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

18 𝑗 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

19 end
20 if No suitable parent found then
21 𝑝𝑎𝑟𝑒𝑛𝑡 ← Create new parent
22 𝑖.𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

23 𝑗 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

24 end
25 return set of groups of vulnerabilities

A flowchart summary of Algorithm 1 can be found in Fig. 7.
While not an attack model generator in itself, Algorithm 1 could

be used in a layer-wise manner to produce a model like an attack

tree [2,3,5], which structures vulnerabilities in a hierarchy based on
logical operators as parents (e.g. to enter a user account you must
obtain the username AND password). This would require two additional
functionalities: a multi class prediction model incorporating logical
operators (OR,AND) and a way to incorporate information from the
vulnerabilities into upper layers. Meaning, that the sibling prediction
network should predict the type of logical relationship connecting two
vulnerabilities rather than simply determining if there is one, and there
should be some mechanism for the prediction network to understand
newly created ‘‘parents’’ alongside the NLP encoded vulnerabilities to
allow the top side of the structure to be created mingling both ‘‘leaf’’
and ‘‘inner’’ nodes together.

5.2. Consensus mechanism

If we contrast the task being learned by the neural networks with
the context in which they are deployed, a degree of disconnect be-
comes obvious. In general, it can be said that the sibling prediction
network is trying to maximise the probability that it correctly classifies
the relationship between two given vulnerabilities. In contrast, the
task being performed by Algorithm 1 is attempting to maximise the
probability that each group of vulnerabilities it produces resembles
an actual group of vulnerabilities in the underlying data. In practice,
this is performed by treating each pair-wise prediction as categorical
constraints on which vulnerabilities can appear together. However, this
means that false positive and false negative predictions can significantly
disrupt the generation process, even if they are incredibly rare, as
each negative prediction can induce the generation of two incorrect
groups in place of one correct grouping (see Fig. 6). As such, in order
to perform sampling in a more holistic manner, the way that these
predictions are interpreted should somehow be conditioned by other
predicted links, instead of being taken in isolation.

This problem can be seen in the context of trust [31], in the sense
that we wish to compute the degree to which each node-wise prediction
is trusted with respect to all other predictions, as each prediction will
likely vary depending on which node is ‘‘asked’’, in spite of the ground
truth remaining unchanged. In essence, the desire is to implement
a mechanism which can first quantify the ‘‘trust’’ one should assign
to each prediction, then a mechanism is needed to collect all these
‘‘opinions’’ on each prediction and use them to arrive at an overall
consensus of the most likely configuration of predicted relationships.
Another way of approaching this is through the lens of Dempster–Shafer
theory, which concerns the combination of evidence to quantify the
belief of a certain outcome or state [32].

With this in mind, a rudimentary ‘‘trust model’’ is proposed here
to quantify ‘‘evidence’’ for how likely a predicted link is to be true
based on the predictions made for other related vulnerabilities. As a
simple model, this will consider only direct links (e.g. siblings will
be considered, but not siblings of siblings). As a running example, let
𝑉 = (𝐴, 𝐵 , 𝐶 , 𝐷 , 𝐸) be an ordered list of vulnerabilities, and 𝑃 the
prediction matrix where each entry 𝑃𝑖,𝑗 indexes predicted relationships
according to the order of 𝑉 :

𝑃 =

⎛
⎜⎜⎜⎜⎜⎝

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 0 1 1 1 1

𝐵 1 0 1 1 0

𝐶 1 1 0 1 0

𝐷 1 1 1 0 0

𝐸 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

𝐴, 𝐵, 𝐶 and 𝐷 are all considered siblings, however 𝐴 is the only
entry in this group to consider 𝐸 a sibling, as can be seen when cross
referencing the entries of the matrix P. Intuitively, it can be concluded
that due to the other siblings of 𝐴 all agreeing that 𝐸 is unrelated to
them, it is likely that the prediction that 𝐴 and 𝐸 are siblings is a
false positive. To allow 𝐴 to arrive at this conclusion, a trust function
must be defined, which quantifies the ‘‘opinion’’ of an intermediary

Applied Soft Computing 171 (2025) 112745

7

K. Sowka et al.

Fig. 7. Flowchart summarising the main ideas behind Algorithm 1.

vulnerability on the supposed connection. Thus, in each computation
of trust, there are 3 entities of interest: the original, intermediary and
suspected vulnerabilities. In essence, the original vulnerability is the
one asking the intermediary vulnerability if the suspected vulnerability
can be trusted (aka, if its related).

𝑓 (𝑠, 𝑟) =
⎧
⎪⎨⎪⎩

0 if 𝑠 = 0
1 if 𝑠 = 1 and 𝑟 = 1
−1 if 𝑠 = 1 and 𝑟 = 0

(4)

Eq. (4) defines a simple trust function 𝑓 (𝑠, 𝑟) where 𝑠 signifies if
the intermediary vulnerability is a sibling of the original vulnerability
and 𝑟 is the relationship between the intermediary vulnerability and
the suspected vulnerability. For example, to quantify the opinion of 𝐵
as the intermediary on if 𝐴 and 𝐸 are related:

𝑓 (𝑃𝐴,𝐵 , 𝑃𝐵 ,𝐸) = 𝑓 (𝑃0,1, 𝑃1,4) = 𝑓 (1, 0) = −1

If 𝐵 was not a sibling of 𝐴, then its relationship to 𝐸 would have no
bearing on the final consensus, hence 𝑓 returns 0 for cases where the
intermediary vulnerability is unrelated; but since 𝐵 is a sibling of 𝐴, and
𝐵 considers 𝐸 unrelated, 𝐵 contributes a −1 to the consensus. Before
arriving at a final consensus, a ‘‘score’’ matrix 𝑆 must first be assembled
to quantify the effects of 𝑓 on the prediction matrix 𝑃 as a whole, for
instance the ‘‘evidence’’ of the link between 𝐴 and 𝐸 from its other
siblings 𝐶 and 𝐷 should also be quantified and tallied. Each element in
𝑆 is calculated based on 𝑃 using Eq. (5).

𝑆𝑖,𝑗 = 𝑃𝑖,𝑗 +
∑
𝑘=1

𝑓 (𝑃𝑖,𝑘, 𝑃𝑘,𝑗) for 𝑖 ≠ 𝑗 ≠ 𝑘 (5)

Applied Soft Computing 171 (2025) 112745

8

K. Sowka et al.

Note that the score matrix is not symmetrical, as 𝐸 gauges its own
opinion on all other vulnerabilities based on its one link to 𝐴 and thus
in isolation will conclude that it too should be related to all these
vulnerabilities. Hence, a final ‘‘consensus matrix’’ 𝐶 can be derived
from the score matrix using Eq. (6), which effectively folds the matrix
in on itself to normalise all opinions in both directions and convert the
predictions into discrete 1 or 0 values.

𝐶𝑖,𝑗 =

{
1 if 𝑆𝑖,𝑗 + 𝑆𝑗 ,𝑖 > 0

0 otherwise
(6)

To illustrate, take the previous example of 𝑃 for the vulnerabilities
{𝐴, 𝐵 , 𝐶 , 𝐷 , 𝐸}, using Eqs. (5) and (6). Consider the false positive
between 𝐴 and 𝐸 represented by the prediction matrix entries 𝑃1,5 and
𝑃5,1, where the value is 1 when a 0 is expected. Computing the score
matrix entry for 𝑆1,5 can be seen in Eq. (7), for 𝑆5,1 in Eq. (8), and the
resulting consensus matrix entry is derived next.

𝑆1,5 = 𝑃1,5 + 𝑓 (𝑃1,2, 𝑃2,5) + 𝑓 (𝑃1,3, 𝑃3,5) + 𝑓 (𝑃1,4, 𝑃4,5)

= 1 + 𝑓 (1, 0) + 𝑓 (1, 0) + 𝑓 (1, 0)

= 1 − 1 − 1 − 1
= −2

(7)

𝑆5,1 = 𝑃5,1 + 𝑓 (𝑃5,2, 𝑃2,1) + 𝑓 (𝑃5,3, 𝑃3,1) + 𝑓 (𝑃5,4, 𝑃4,1)

= 1 + 𝑓 (0, 1) + 𝑓 (0, 1) + 𝑓 (0, 1)

= 1 + 0 + 0 + 0
= 1

(8)

According to Eq. (6), entries 𝐶1,5 and 𝐶5,1 depend on 𝑆1,5 + 𝑆5,1.
Since 𝑆1,5 +𝑆5,1 = 1 − 2 = −1 and −1 < 0, both 𝐶1,5 = 𝐶5,1 = 0. With the
resultant 𝑆 and 𝐶 matrices looking as follows:

𝑆 =

⎡
⎢⎢⎢⎢⎢⎣

0 2 2 2 −2

3 0 3 3 −1

3 3 0 3 −1

3 3 3 0 −1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

𝐶 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
As can be seen in matrix 𝐶, the suspected false positive has been

removed and now all the sibling relationships are internally consistent.
In datasets like the CVE/CWE relationships being used in this paper,
this approach can lead to a significant decrease in ‘‘anomalous’’ groups
being formed by Algorithm 1, as will be shown empirically further on.

6. Experimental results

Within this work, the key intention is to explore the ability of neural
networks using DistilBERT encoding of vulnerability descriptions to
learn to predict previously unseen pairs of vulnerabilities. This means
that in the following experiments, the primary objective is to deter-
mine if these networks can successfully predict relationships between
vulnerabilities that have been seen during training, but with unseen
pairings of these known vulnerabilities. An additional dimension to
this is the potential for brand new vulnerabilities to be evaluated
using these same networks. In short, there are 2 separate levels of
generalisation considered here: generalising to unseen links between
previously seen vulnerabilities and generalising to links between vul-
nerabilities which have never been seen at all. Finally, these different
abilities to generalise can be shown using 3 experimental environments:
testing unseen pairings of known CVEs (old-to-old), testing known CVEs
against unknown CVEs (old-to-new), and testing all pairings of unseen
CVEs (new-to-new).

Note that at the present, the ability to generalise this method to
pairing new CVEs with new CVEs is out of scope, but the eventual
end goal of a vulnerability-to-vulnerability prediction scheme is to
enable new to new vulnerability prediction. To that end, the following
experiments aim to gauge this ability on 3 separate collections of CWEs,
with an additional 2 modifications being introduced for the express

purpose of evaluating the ability to generalise to unseen CVEs. These
data collections have been assembled using the 2 data sampling mech-
anisms introduced above. Further, these experiments are also designed
to take into account different scales, with the amount of CWEs and their
respective cardinalities being a key variable, and the intended effect is
to observe just how much smaller CWEs get ‘‘lost’’ in the training data.
This is done by noting the average, maximum and minimum sizes of
CWE groups, and producing a correlation coefficient between the size
of the group and its accuracy and F1 score for fine-tuned and base data.
Another metric aiming to highlight the performance of low size CWE
groups is taking the accuracy and F1 score of each CWE in isolation,
then taking an average where every group has equal weight. In practice,
this results in the more common low-size CWEs bringing down the
average metric to demonstrate their relative poor performance.

Finally, the ability to deploy these networks towards generation of
hierarchical attack models is evaluated, on unseen pairings of known
CVEs and on a mixture of known and unknown CVEs. In addition, these
experiments also demonstrate if the consensus mechanism introduced
above can help in increasing the reliability of these predictions.

All training data was collected from BRON on 02/08/2022 and
structured into pairs according to the two strategies outlined prior
in Sections 4.1 and 4.2 (clique based and weighted random sampling
respectively). Next, 80% of all data was used as training data, and 5-
fold cross validation was used to optimise hyperparameters to avoid
potential bias towards a specific data selection. Networks ultimately
trained on the entire training data were tested using the remaining
20% of data (consisting of unseen pairings of CVEs). Finally, the ability
of the networks to successfully determine the relationship between old
CVEs (aka those included in the training data) and new CVEs (released
or associated with CWEs after 02/08/2022) is also quantified using a
separately acquired dataset.9

Most experiments (with the exception of the consensus mechanism
experiments) contrast the results of base DistilBERT encoder with an
encoder fine-tuned using Masked Language Modelling, with the fine-
tuning process following guidelines set out by Devlin et al. [17] in the
original BERT paper (with more details on the process in Appendix B).
In short, the best performing fine-tuned model was achieved with a
batch size of 16 and a learning rate of 5.00𝐸 − 05. Note that the
parameters were frozen during sibling prediction training for both fine-
tuned and base DistilBERT encoders. Results tables contain 4 commonly
used machine learning metrics: Acc = Accuracy, Pre = Precision, Rec
= Recall, F1 = F1 Score. A 0.1 dropout layer after the average pooling
operation (AVG in Fig. 2) and 0.1 L2 regularisation on neurons in the
prediction network were also used.

The following hyperparameters were chosen for each network after
performing 5-fold cross validation:

• Epochs: 100.
• Loss: Categorical cross entropy.
• Predictor architecture: 128,64,32,16.
• Encoder architecture: 512,256,128,64.
• BERT Pooling: CLS.
• Dropout: 0.1.
• L2 regularisation: 0.1.
• Batch size: 32.
• Learning rate: 5e-7.

For clique-based data in Dataset 1, negative links were drawn
entirely from within each clique, with training pairs from all cliques
being mixed together, shuffled and split into a training and test set. For
Datasets 2 and 3, pairs were sampled from all CWEs using weighted
random sampling, with the training and test set splits being derived
from a common, randomly shuffled pool that included all CWEs.

9 See Appendix C for details.

Applied Soft Computing 171 (2025) 112745

9

K. Sowka et al.

Table 2
Results of the sibling prediction experiment on Dataset 1.

Acc % Pre % Rec % F1 %

Old–Old Fine-tune 99.99 99.99 99.98 99.99

Old–Old Base 99.38 99.94 99.04 99.48

Old–New Fine-tune 85.87 83.85 91.45 87.49

Old–New Base 79.96 80.95 82.23 81.59

New–New Fine-tune 72.04 76.28 78.19 77.22

New–New Base 66.31 77.54 62.54 69.24

Table 3
Additional data for experimental results on Dataset 1.

Encoder Metric Value

Fine-Tuned

Correlation between size and accuracy 0.29

Correlation between size and F1 score 0.6

Average individual accuracy 99.84

Average individual F1 score 53.3

Base

Correlation between size and accuracy 0.14

Correlation between size and F1 score 0.67

Average individual accuracy 99.36

Average individual F1 score 44.34

Table 4
Results of the sibling prediction experiment on Dataset 2.

Acc % Pre % Rec % F1%

Old–Old Fine-tune 97.79 96.81 99.08 97.93

Old–Old Base 93.09 89.08 99.04 93.80

Old–New Fine-tune 82.68 62.53 70.93 67.03

Old–New Base 75.00 49.76 75.45 59.97

New–New Fine-tune 77.53 51.56 46.40 48.84

New–New Base 70.56 40.46 57.97 47.66

6.1. Dataset 1

Dataset 1 is the largest, incorporated 3 cliques of 5 CWEs each,
whose breakdown can be seen in Appendix C. This set was chosen at
random to contain relatively low-cardinality CWEs. With a grand total
of 2283 unique CVEs and a negative to positive ratio of roughly 33:50.
Overall results for Dataset 1 can be seen in Table 2.

Taken at a glance, these results do not tell the full story however,
as there are 15 CWE groups with varying sizes being flattened into 4
overall metrics. Overall, the 3 cliques had an average CWE cardinality
of 151, with a maximum of 868 and minimum of 2. On the basis of
results obtained from testing on individual CWE groups, 3 CWEs had
not a single positive example in the test set due to its small size,
with another having only a single incorrectly classified positive sample.
Table 3 shows additional contextual information, such as the Pearson
correlation coefficient between the size of the CWE and accuracy/F1
score.

6.2. Dataset 2

Details of the composition of Dataset 2 can be found in Appendix C.
For this set, 8 CWEs and 𝑝 = 2 was chosen to achieve a ratio of 2:3
between negative and positive links, the average CWE cardinality was
316.75, with a maximum of 1091 and a minimum of 12.

Results for Dataset 2 can be seen in Table 4, with additional data in
Table 5.

6.3. Dataset 3

Details of the composition of Dataset 3 can be found in Appendix C,
the design of this data sample was to include more high cardinality

Table 5
Additional data for experimental results on Dataset 2.

Encoder Metric Value

Fine-Tuned

Correlation between size and accuracy −0.77

Correlation between size and F1 score 0.92

Average individual accuracy 88.43

Average individual F1 score 30.65

Base

Correlation between size and accuracy −0.84

Correlation between size and F1 score 0.92

Average individual accuracy 82.72

Average individual F1 score 27.90

Table 6
Results of the sibling prediction experiment on Dataset 3.

Acc % Pre % Rec % F1%

Old–Old Fine-tune 99.19 98.86 99.80 99.33

Old–Old Base 99.71 99.64 99.88 99.76

Old–New Fine-tune 84.78 62.97 79.84 70.41

Old–New Base 84.98 65.88 70.04 67.90

New–New Fine-tune 49.92 27.57 55.07 36.74

New–New Base 80.81 50.12 39.02 43.88

Table 7
Additional data for experimental results on Dataset 3.

Encoder Metric Value

Fine-Tuned

Correlation between size and accuracy −0.64

Correlation between size and F1 score 0.65

Average individual accuracy 88.87

Average individual F1 score 36.33

Base

Correlation between size and accuracy −0.63

Correlation between size and F1 score 0.6

Average individual accuracy 89.49

Average individual F1 score 39.73

CWEs while maintaining the same hyperparameters. For this set of
CWEs the value of 𝑝 = 1 was chosen to achieve a better balance of
negative and positive links, leading to a ratio of roughly 33:50 negative
to positive links. Same hyperparameters were used as in Datasets 1 and
2, but with a larger mean CWE cardinality of 573.25, from a maximum
of 2789 and minimum of 44. Table 6 shows the results for Dataset 3,
with cardinality aware data in Table 7.

6.4. Generation experiment

In order to gauge the effectiveness of the consensus mechanism,
while also demonstrating the ability of the networks trained on
weighted random data to generalise to mainly unseen negative links,
this experiment concerns groups created using Algorithm 1 on the test
sets of Dataset 2 and 3, with and without using the consensus mech-
anism outlined in Section 5.2. During prediction, the best performing
network was used in each case, meaning that the fine-tuned encoder
was used for Dataset 2 predictions, and the base encoder was used for
Dataset 3 predictions.

Firstly, for each Dataset, 100 CVE sets were prepared at random
from the two, three and four largest CWEs such that the node se-
lection produced pairings which never appear in training data. Using
the largest CWEs means that there is a minimal amount of potential
negative links in the training data; while maximising the potential
pool of vulnerabilities, making the sampling easier, with each CWE
contributing a maximum of 10 CVEs. Following this, a prediction
matrix 𝑃 was prepared for each set using the relevant neural network
alongside a consensus matrix 𝐶 using Eqs. (5) and (6), after which

Applied Soft Computing 171 (2025) 112745

10

K. Sowka et al.

Table 8
Results for 100 randomly chosen sets of known CVEs for
Dataset 2 and 3, showing the effectiveness of the consensus
mechanism.

Data # Direct Consensus

2 69.01 88.71

Dataset 2 3 71.68 91.29

4 65.61 78.85

2 75.33 94.14

Dataset 3 3 84.82 98.34

4 74.84 88.25

Table 9
Results for 100 randomly chosen sets of known and unknown CVEs for
Dataset 2 and 3.

Data CWEs (IDs) Direct Consensus

74, 326 52.5 70.23

Dataset 2 326, 400 52.93 73.71

74, 400 62.97 77.5

74, 326, 400 48.97 62.44

203, 94 34.19 37.27

Dataset 3 94, 306 48.27 60.1

203, 306 57.58 78.61

203, 94, 306 50.91 67.34

Algorithm 1 was used to generate groups for both matrices 𝑃 and 𝐶.
Results for this experiment on unseen pairings of old CVEs can

be seen in Table 8, with the columns explained as: ‘‘Dataset’’ is the
dataset from which entries were sampled, ‘‘#’’ being the amount of
CWEs included in the sampling process (with each only being allowed
to contribute a max of 10 CVEs), ‘‘Direct’’ displaying results using
just matrix 𝑃 and ‘‘Consensus’’ showing results with the consensus
mechanism via matrix 𝐶. This is computed as the average similarity
of the generated group to the real CWE group it most resembles. This
similarity metric is obtained using the Jaccard similarity coefficient,
which was also used by Gadyatskaya et al. for gauging the similarity
of the ‘‘ground truth’’ trees in literature to the ones generated by
ChatGPT [29].

In addition, the same experiment was performed for 100 sets of 6
old and 4 new CVEs, this time examining the top 3 largest CWEs against
one another. These results can be seen in Table 9.

7. Discussion and future work

7.1. Discussion of empirical results

7.1.1. Performance of neural networks
It can be clearly seen that as long as both CVEs have been previously

seen in some form, any of the trained networks can correctly determine
a previously unseen combination of these with a very high accuracy
of about 93% to 99%. When it comes to determining links between
a previously seen CVE and a brand new CVE, the results are much
poorer. Although an average accuracy of roughly 80% is achieved by all
3 networks, this is coupled with a poor F1 score around 60%, contrasted
with an F1 score of 96% to 99% for previously seen CVEs. Predictably,
the accuracy and F1 scores for predicting links between completely
new CVEs drops further, to levels which have questionable utility in
a practical application at this stage.

This offers a variety of insights, as further analysis reveals that a
bulk of the inaccuracies stems from the less represented (aka smaller)
CWE groups, an issue also plaguing the work of Das et al. for which the
authors successfully employ a ‘‘reconstruction decoder’’ to decrease the
bias towards larger groups [20]. Employing regularisation techniques

such as this, alongside adjusting the selection of cliques and values of
𝑝 may yield more promising results when applied towards the new-
to-new prediction problem. Interestingly, while Dataset 1 shows a
positive correlation between size of CWE and accuracy, the other 2
experiments show a strong negative correlation. This could be due
to the sampling mechanism, as the other 2 utilise random weighted
sampling, but is more likely to do with the fact that Dataset 1 contains
more very small CWEs with a deceptively high accuracy, due to less
of their positive examples appearing in the test set. F1 score remains
positively correlated with CWE size in all experiments, which makes
intuitive sense as more represented CWE groups are more likely to be
remembered by the network.

7.1.2. Fine-tuned vs base DistilBERT encoder
In terms of comparison between the fine-tuned and base DistilBERT

encoder, some remarkable results can be seen. Counter-intuitively, the
fine-tuning process does not seem to have induced consistent improve-
ment in performance, with the base encoder measurably outperforming
the fine-tuned encoder in Dataset 3.

In Dataset 1, as seen in Table 2, when determining links in previ-
ously seen CVEs, the fine-tuned encoder only slightly outperforms the
base DistilBERT encoder. However, a more dramatic improvement is
seen when contrasting the old-to-new and new-to-new performance.
In most cases, all metrics are boosted by a noticeable margin, which
becomes more dramatic in new-to-new performance.

In Dataset 2, as seen in Table 4, there is also a significant im-
provement when using the fine-tuned encoder, though the scale of
this improvement is more visible in old-to-old experiments than in
the Dataset 1 experiment. Measurable improvement is also seen in
old-to-new and new-to-new prediction, though the F1 score remains
poor.

Dataset 3, as seen in Table 6, shows the most counter-intuitive
results. In contrast to the previous 2 experiments, the base encoder
shows slight improvement in predicting old-to-old and old-to-new CVE
relationships, however this improvement becomes significant when
predicting new-to-new CVEs.

Why this is the case remains rather unclear. Intuitively, this phe-
nomenon could be explained by the fact that the prediction network
might not use the more salient data obtained with the fine-tuned
encoder when faced with CVEs it has previously examined, as it can
learn more specific features of these CVEs (arguably, overfit to them),
while when faced with unseen CVEs, it instead is forced to rely on
more salient language features obtained using the fine-tuned encoder.
However, this does not account for the fact that the fine-tuned encoder
shows improvement in all data sampled except for the Dataset 3 results.
This would most likely be explained by some other parameter of the
data, such as the selection of CWEs and the language used within the
description of its CVEs, or difference in the data distribution.

7.1.3. Generation experiments and consensus mechanism
With respect to the experiments performed with Algorithm 1 and

the consensus mechanism, it is clear that in all cases the consen-
sus mechanism performs very well in minimising the impact of false
positive and negative predictions on the stability of the generation al-
gorithm. However, despite the networks achieving a significant level of
accuracy in their predictions, with the average similarity level staying
relatively high, there is still a notable amount of error, particularly
when unseen CVEs are introduced. Results for Dataset 3 in Table 8
show much better results than in Table 9, which may suggest that the
networks trained on Dataset 3 have begun overfitting to seen previously
seen CVEs, which lead to a decrease in generalisability. In contrast,
Dataset 2 seems to have retained better results during generation, with
the consensus similarity peaking at 77.5 for CWEs 74 and 400, its
notable that these are the largest CWEs in the dataset with 658 and
1091 CVEs respectively, compared to 253 CVEs for the third largest CWE
326. Evidently, both the amount of underlying groups (CWEs) and the

Applied Soft Computing 171 (2025) 112745

11

K. Sowka et al.

size of these groups present has a major effect on the results, with both
datasets showing a notable decrease in similarity as one goes from 2 or
3 to 4 underlying groups being present in Table 8, clearly showing that
for tasks involving more than 2 or 3 groups a more robust approach
is needed. A similar effect is seen in Table 9, although not universally,
as Dataset 3 boasts its 2nd largest consensus similarity for all 3 CWEs.
Again, this is explained by the relative sizes of these, as CWE 203 has
only 270 CVEs compared to 2789 and 700 for CWEs 94 and 306.

These datasets have been designed in this way deliberately, to study
the degree to which smaller groups get lost in the midst of larger ones.
While resource constraints meant that experiments could not be per-
formed without negative link culling strategies, the estimated amount
of negative links would have been 2322906 for Dataset 2 and 6234292 for
Dataset 3. This is in stark contrast to the actual amount of negative links
sourced using weighted random sampling, 779216 and 2796013 for each,
a reduction of 3 and 2 fold respectively. Without this, negative links
would have dominated the dataset and during initial experimentation
on smaller datasets, the networks struggled to determine any positive
links at all. As such, the experiments summarised in Tables 8 and 9
show that even without 2/3rds of negative links the networks can still
learn to determine when CVEs are not related to each other.

7.2. Practical viability

Undoubtedly, the biggest limitation of the work presented thus far is
the difficulty to meaningfully generalise to brand new CVEs. While not
utilised in this work, approaches for better mitigating the imbalance of
certain groups over others do exist, most relevant to this domain being
the use of a reconstruction decoder by Das et al. [20]. It is clear from
the results that including too many CWEs in the underlying training
data can severely limit the performance and generality of the trained
networks. In future work, methods proposed in this paper, such as
the use of a consensus mechanism and the weighted random sampling
of negative links should be combined with approaches such as the
reconstruction decoder with a cohesive use-case or example to better
determine the ability of this approach to generalise to new data.

Despite this limitation however, the prediction of old-to-old and old-
to-new CVEs does have several practical applications. In cases where
a series of empirical tests (e.g. penetration tests) has yielded groups
of vulnerabilities that are observed to exist alongside one another.
Though without underlying contextualising information such as as-
sociated CWEs, this method could be used to train a model which
can determine how these vulnerabilities could interact with new or
hypothetical vulnerabilities based on text descriptions. In essence, the
way in which CWEs are used to group together CVEs does not always
align to observed co-existence of vulnerabilities, rather the sibling level
relationships within CWE suggest that these CVEs are thought to induce
or exploit similar weaknesses in various different systems. If instead,
vulnerability groups were assigned based on observable dependency
when performing an actual attack, these relationships could perhaps be
learned and used to generate new attack trees in the manner described
within this paper.

Another major result shown by the consensus experiment in Table 8
is that weighted random sampling of negative links does not seem
to damage the generality of models trained on partial data, as the
results were based on sampling groups of nodes for which there were
0 combinations shown in training data, yet a high degree of similarity
for predicted groups was still achieved using Algorithm 1. It is however
unclear just how much the culling of negative links from otherwise
legitimate examples adversely affects the end result, and more data
would need to be collected to more effectively gauge the trade-off
between performance and resource use. While somewhat overlooked in
this paper, the clique-based sampling method could potentially provide
comparable performance on similar tasks, however the scope of this
paper does not include formulating a domain specific case study robust
enough to investigate this potential.

Regarding the data sampling mechanisms introduced to cull the
imbalance between positive and negative links, there are several prac-
tical considerations one should keep in mind. For instance, the culling
of negative links while preserving all positive links could introduce a
sampling bias to the dataset. This culling of negative links also rests on
the assumption that any negative links which are removed would be
counterbalanced by remaining negative links to similar CVEs, since we
assume that CVEs assigned to the same CWE would in large part refer
to similar vulnerabilities.

A major limitation of the clique-based method is that the culling
of negative links between arbitrarily defined groups of data can hurt
the generalisation potential of the networks. While weighted random
sampling does remove certain links, it never forbids the formation of
links between specific groups of CWEs, with the definition of cliques
introducing a level of bias that a random sample of all combinations
does not. Thus, unless there is a justifiable reason for drawing such
boundaries (such as one provided by a domain specific example),
weighed random sampling appears to be the better and more gener-
ally applicable solution. Another approach could see a more general
application of the concept behind the use of such cliques, or even a
blend of clique and weighted random sampling, by defining CWE level
associations on how relevant they are to one another (and thus if they
should form negative links at a certain rate between one another),
perhaps using the internal CWE hierarchy as a basis for this.

Therefore, while the weighted random sampling and consensus
mechanism described in this paper provide a solid foundation, there
is still a lot of work to be done before any such approach can be
deployed towards a practically useful methodology for creating hier-
archical attack models. More studies are needed to shed more light
alongside additional solutions for tackling the main challenges towards
practically viable cybersecurity activities, such as the construction of
attack models based on empirical data.

7.3. Future work

Principally, this paper has set out to open up the possibility of
utilising machine learning based predictive models for constructing
hierarchical attack models in the style of attack trees. Although many
questions have been addressed within this work, many remain to be
investigated.

In terms of practical viability, further research should be conducted
on how viable vulnerability-to-vulnerability prediction is when using
vulnerabilities grouped based on characteristics not described by CWE
membership. As mentioned above, if a penetration test or an analysis of
the data determined different groups of vulnerabilities, a method such
as the one introduced in this paper should be deployed to determine
how well a neural network can learn to associate future vulnerabilities
within these groups.

In addition, more work needs to be done on the way positive and
negative links are sampled between vulnerabilities, and a mechanism
is needed to account for overlapping interpretations of group member-
ship (e.g. vulnerabilities appearing in multiple groups) and underlying
relationships in the data (e.g. CVEs belonging to CWEs that are linked
to one another).

Also worth noting is the fact that beyond just CVE and CWE, there
is a wide range of sources for hierarchical relationships between more
abstract MITRE datasets, with there being at least 2 additional datasets
placed above CWE [16]. This could provide a source for further devel-
opment of the methods and algorithm introduced in this paper. While
one might ask why existing work was not sufficient to build hierarchical
threat models, such as the CVE to CWE prediction performed by Das
et al. [20], the focus in this paper was for a scheme driven purely by
vulnerability data, with no contextualising data for vulnerability groups
(e.g. CWE descriptions).

A major limitation of the method presented in this paper is the
interpretation of negative links. That is, assuming that just because

Applied Soft Computing 171 (2025) 112745

12

K. Sowka et al.

two vulnerabilities belong to different groups, they are not relevant to
one another. This assumption is somewhat mitigated by the consensus
mechanism, as the interpretation now goes to a consensus of multiple
different measurements on the relevance of a given vulnerability, but
there are still several issues. Namely, CVEs can feasibly be assigned
under multiple CWEs, and the way in which negative links are sampled
means that two CVEs may be assigned a negative link despite actually
being relevant to one another. In essence, within this work there is no
mechanism for resolving (rare though not trivial) cases with contradic-
tory links, e.g. 2 CVEs being siblings in one CWE but not in another. In
addition, CWEs belong to their own hierarchical structure, with parent–
child relationships being common between several CWEs. This means
that, when discerning the relationship between CVEs belonging to dif-
ferent CWEs, we should factor in the relationship between those CWEs
too (e.g. if these CWEs share a parent CWE). Notably, Das et al. [20]
factor in this hierarchical relationship by interpreting a positive link
to a CWE to extend to the parents of that CWE too. However, this
intuition may not follow when performing CVE to CVE predictions, and
further work should be done on how to precisely interpret negative
links between CVEs in the context of their association to the CWE
hierarchy.

Immediately, the next step towards full generation of attack trees
is a way to apply Algorithm 1 in a recursive layer-wise manner.
This would consist of treating each newly generated set of parents as
additional nodes for whom siblings must be assigned, thus the task
would be to keep generating new layers of parent nodes until no more
sibling relationships can be found. Conceptually, the main difficulty is
in establishing how the embeddings would be derived for these new
parent nodes, as the leaf nodes have their BERT embeddings sourced
from text descriptions, a way to connect these nodes to subsequent
layers would need to be established. Another concern is the complex-
ity of introducing additional layers, since predictably each new layer
would have less and less nodes there would have to be some method
for ensuring that these are not ‘‘lost’’ in the large amount of leaf nodes
present in the training data. In the same vein, it should also hold that
a subset of valid child nodes should result in embeddings similar to
another subset, or the full set seen in training data.

This is a problem for which a wide variety of approaches could be
applied. One approach could be to interpret the generation using Graph
Neural Networks [30], as various tasks in the field of machine learning
graph generation have found success with utilising learned represen-
tations for nodes and/or edges [33]. A conceptually simpler approach
would be to somehow utilise the text descriptions directly in the top
layers, through methods such as concatenation of child descriptions
and using summarisation techniques [34] to produce text descriptions
for parents. An even simpler approach would be to simply take the
average of the child embeddings, originating ultimately at the NLP
embedded ‘‘leaf nodes’’ sourced from CVEs. It would also be necessary
to incorporate logical labels for parent nodes in order to produce an
attack tree generator [3,5], however how this could be achieved is also
an open question, with Graph Neural Networks once again providing a
possible way forward through learned representations of typed edges.

In the case of text encoders, future work must be done to investigate
the impact of fine-tuning on the generalisability of trained networks,
and fine tuning strategies beyond masked language modelling should
be applied. Given the nature of the data, a transfer learning approach
could be taken where a large subset of CVEs from one domain is used
to train and fine-tune the initial encoder, and a smaller domain specific
dataset is used to further apply the network for the domain. Further,
work should be done on investigating how the full BERT encoder
performs on this task, as due to resource limitations, this paper had
to utilise the smaller DistilBERT model.

In regards to more practical considerations, the methodology pre-
sented in this paper will have to contend with a large and varied
set of vulnerabilities if it is to have a practically viable use case
in performing cybersecurity analysis. To that end, questions around

generalising to unseen CVE pairings have already been touched on, and
further research must be conducted on how to best perform negative
link sampling in order to allow for training on larger vulnerability
datasets. Since CVE is a widely used dataset for vulnerability analysis,
iterating upon the methods presented in this paper will improve its
practical viability in determining links between real vulnerability data.

Finally, the ability to retain information on ‘‘rare’’ CVEs belonging
to smaller CWE groups should be explored, most obviously by applying
existing techniques such as reconstruction decoder by Das et al. [20].
In cases where very few examples exist, the hierarchical nature of CWE
may yield a larger set of training examples (from a larger ‘‘parent’’
CWE) on which to train an initial model, and then apply a sort of
transfer learning to fine-tune the prediction network on the smaller set.

8. Conclusion

This paper has proposed a method for the prediction of sibling-level
relationships between vulnerability data in the form of CVE entries
grouped together using their associations to CWE entries. Having iden-
tified the challenges in terms of data complexity, particularly with
data imbalance, two strategies for reducing class imbalance towards
negative links have been outlined and empirically tested.

Additionally, an algorithm for using these predictions to build rudi-
mentary groups of vulnerabilities was introduced alongside a consensus
mechanism increasing the confidence of predicted links, which has
been shown to be capable of producing groups that resemble the
underlying CWE groupings for CVEs from which the training data was
sampled. Finally, the remaining challenges and limitations of the work
outlined in this paper were discussed together with the directions for
future research needed to bridge the gap towards the full generation of
hierarchical attack models using machine learning. Challenges include
answering fundamental questions on scaling the approach proposed
in this paper to practical real-world applications. This concerns how
to most effectively apply the data sampling mechanisms discussed in
relation to the negative link problem together with the best way to
generalise to newly discovered vulnerabilities.

CRediT authorship contribution statement

Kacper Sowka: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Data curation, Conceptualiza-
tion. Vasile Palade: Writing – review & editing, Supervision, Re-
sources, Methodology, Conceptualization. Xiaorui Jiang: Writing –
review & editing, Supervision, Conceptualization. Hesam Jadidbonab:
Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Kacper Sowka reports financial support and equipment, drugs, or sup-
plies were provided by Horiba-Mira Ltd. This research was performed
as part of a PhD studentship co-funded by Coventry University and
HORIBA MIRA, with the deliverables of the project (code, prototype,
trained models etc) being the intellectual property of HORIBA MIRA
held for the potential development of future services or products.
If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

The authors declare that beyond the co-funding of this research by
Coventry University and HORIBA MIRA, as part of a Ph.D. studentship,
they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this
paper. While the deliverables of the project (code, prototype, trained
models etc.) are the intellectual property of HORIBA MIRA held for
the potential development of future services or products, this did not
directly influence the contents of this paper.

Applied Soft Computing 171 (2025) 112745

13

K. Sowka et al.

Acknowledgements

This research was co-funded by Coventry University and HORIBA
MIRA.

Appendix A. Effect of different values of 𝒑 on weighted random
sampling

For this Appendix, all CWEs acquired on 02/08/2022 with a car-
dinality larger than 2 have been compiled into a single dataset, which
amounts to 220 CWES with the mean amount of CVE children being
555.93, the median being 58 and mode being 2 and max being 19340.
With respect to this data, the effect of different values for 𝑝 in Eq. (3)
can be seen in Table A.10. Column ‘‘𝑝’’ designates the value of 𝑝 used
to derive the values for the given row, ‘‘% positive links’’ refers to
how many of the total links are positive, ‘‘% from max’’ refers to
the percentage of all children of the largest CWE group (with 19340
children) that were sampled for the given 𝑝 value and ‘‘% from median’’
refers to the percentage of children sampled from a CWE with the
median amount of children (58).

Appendix B. Fine-tuning on CVE data using masked language mod-
elling

When fine tuning the DistilBERT encoder, all CVE data acquired
from BRON on 02/08/2022 was collected, with each CVE description
being tokenized using the Huggingface DistilBERT tokenizer, which was
used with the uncased Huggingface DistilBERT model.10 The following
hyperparameters were used during the fine-tuning process:

• Max sequence length: 128
• Data entries: 175294
• Train split: 75% (131930)
• Validation split: 10% (16978)
• Test split: 15% (26386)
• Epochs: 4
• Warmup steps: 500
• Loss: Cross entropy across logits for each word in the vocabulary

Table B.11 shows the results for all the hyperparameters suggested
for fine-tuning in the BERT paper [17], including masking 15% of all
tokens, with each column having the following meaning:

• Loss: Cross entropy loss between the target logits and the pre-
dicted logits for each word in the vocabulary
• Exact: Amount of times the model predicted the correct word

exactly (most likely prediction was the actual masked word as
per the label)
• Top 5: Amount of times the top 5 predictions by the model

included the actual masked word (includes exact predictions)
• Incorrect: Amount of incorrect guesses made by the model (not

in the top 5)
• Accuracy: Percentage of times that the predicted word was

guessed exactly correct 𝑒𝑥𝑎𝑐 𝑡
𝑖𝑛𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡+𝑡𝑜𝑝5

• Top 5 Acc.: Percentage of times that the top 5 predicted words
included the actual masked word 𝑡𝑜𝑝5

𝑖𝑛𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡+𝑡𝑜𝑝5

As the best performing model, the DistilBERT model fine-tuned
using a batch size of 16 and a learning rate of 5.00E−05 was chosen
as the fine-tuned encoder for every experiment. A further run on these
hyperparameters using the test set produces remarkably similar results,
seen compared with the earlier validation results in Table B.12, which
solidifies the generality of the fine-tuned model.

10 https://huggingface.co/distilbert-base-uncased

Table A.10
Effect of different values of 𝑝 on the balance between positive and negative links.

𝑝 % Positive links % From max % From median

1 6.2% 84.2% 100%

2 6.9% 70.9% 99.9%

3 7.6% 59.7% 99.9%

4 8.3% 50.2% 99.8%

5 9.0% 42.3% 99.8%

6 9.8% 35.6% 99.7%

7 10.5% 30.0% 99.7%

8 11.3% 25.2% 99.6%

9 12.1% 21.2% 99.6%

10 12.9% 17.9% 99.5%

Appendix C. Dataset

For all experiments performed in this paper, data on the text de-
scriptions of CVEs and their links to CWEs were sourced using the
publicly available ArangoDB BRON database,11 collected using the
ArangoDB API. An interesting quirk of this with relation to the data
available for the experiments used, was that when data was first
collected on 02/08/2022 there were significantly less CVE connections
available than if the data was fetched now, by a factor of over a 100,
and many of the ‘‘new’’ connections are questionable. Naturally, this
means that the dataset used in this paper is a subset of the ‘‘full’’
data that is available, which was always going to be the case given
the staggering amount of data available via CVE alone. Principally,
the decision to work with this ‘‘reduced’’ dataset was to allow for
experiments involving a large amount of possible groups, and the
100-fold increase in connections is suspicious, as many of them seem
spurious. On the latter point, comparing the CVE to CWE connections
in the ‘‘older’’ dataset and what can be derived by fetching data from
the NVD API for CVEs.12 and the ‘‘Observed Examples’’ section of CWE
data13 When performing a rudimentary comparison between the links
present in the ‘‘original’’ repositories and the ones present in BRON,
for the ‘‘older’’ BRON collection 115929 out of 119745 links are exactly
the same (96.8%), while in a ‘‘new’’ version of BRON collected on
18/08/2023 only 1571 out of 177438 (0.9%) are exactly the same, with
the average increase in links being 23.39. Therefore, given this huge
increase in links, it is difficult to verify the veracity of these new links
and so an older version more in line with the original data is being
used.

A copy of this data subset can be found in JSON format using the
DOI ‘‘10.17632/s2sw4ck42n.1’’. It is important to remember that the
edges referred to in the BRON data are not analogous to the relation-
ships predicted in this paper, as the BRON data considers parent–child
relations while this paper is concerned with siblings, which can be
derived form parent–child relations.

Importantly, the choice of the CVE dataset was as a generic rep-
resentative for vulnerability datasets frequently receiving new entries
rather than the only relevant use case, since the intention of this work
was to demonstrate the overarching principles behind using neural net-
works, NLP and the techniques outlined to manage cybersecurity data
rather than to draw conclusions on CVE exclusively. In principle, the
idea is that by using the current understanding of vulnerabilities and
their relationship to each other one can train neural networks to learn
underlying patterns in cases where there is no data for what charac-
terises the groups of vulnerabilities, allowing for quicker vulnerability
analysis.

11 http://bron.alfa.csail.mit.edu/info.html
12 https://services.nvd.nist.gov/rest/json/cves/1.0
13 https://cwe.mitre.org/data/csv/1000.csv.zip

Applied Soft Computing 171 (2025) 112745

14

K. Sowka et al.

Table B.11
Results showing empirical performance of fine tuning on DistilBERT with respect to batch size and learning rate on all CVE
data.

Batch size Learning rate Loss Exact Top 5 Incorrect Accuracy Top 5 Acc.

2.00E−05 0.1363 129 122 161 711 52 139 60% 76%
16 3.00E−05 0.1291 132 928 164 595 49 255 62% 77%

5.00E−05 0.1212 137 031 167 819 46 031 64% 78%

2.00E−05 0.1507 121 668 155 974 92 182 57% 73%
32 3.00E−05 0.1415 126 397 159 648 54 202 59% 75%

5.00E−05 0.1313 131 685 163 694 50 156 62% 77%

distilbert-base-uncased 9.9554 56 564 91 387 122 463 26% 43%

Table B.12
Comparison between the best performing masked language model when tested on two different datasets.

Set Loss Exact Top 5 Incorrect Accuracy Top 5 acc.

Test 0.1218 87 587 107 170 29 899 64% 78%
Validation 0.1212 137 031 167 819 46 031 64% 78%

New CVEs were acquired on 06∕10∕2023 using the above described
NVD and CWE APIs.

For each dataset, the following selection of CWEs was used, with
the CVE cardinality being shown in square brackets.

C.1. Dataset 1

Numbers designate the ‘‘cliques’’ of CWEs in Dataset 1.

1. CWE 497: Exposure of Sensitive System Information to an Unau-
thorised Control Sphere [3], CWE 326: Inadequate Encryption
Strength [237], CWE 613: Insufficient Session Expiration [163],
CWE 1284: Improper Validation of Specified Quantity in Input
[2], CWE 61: UNIX Symbolic Link (Symlink) Following [8].

2. CWE 122: Heap-based Buffer Overflow [84], CWE 281: Improper
Preservation of Permissions [107], CWE 772: Missing Release
of Resource after Effective Lifetime [370], CWE 943: Improper
Neutralisation of Special Elements in Data Query Logic [3], CWE
426: Untrusted Search Path [373].

3. CWE 732: Incorrect Permission Assignment for Critical Resource
[865], CWE 303: Incorrect Implementation of Authentication
Algorithm [3], CWE 228: Improper Handling of Syntactically
Invalid Structure [2], CWE 538: Insertion of Sensitive Informa-
tion into Externally-Accessible File or Directory [10], CWE 763:
Release of Invalid Pointer or Reference [39].

C.2. Dataset 2

CWE 345: Insufficient Verification of Data Authenticity [216], CWE
693: Protection Mechanism Failure [45], CWE 294: Authentication
Bypass by Capture-replay [76], CWE 74: Improper Neutralisation of
Special Elements in Output Used by a Downstream Component (’Injec-
tion’) [658], CWE 288: Authentication Bypass Using an Alternate Path
or Channel [12], CWE 326: Inadequate Encryption Strength [253], CWE
400: Uncontrolled Resource Consumption [1091], CWE 754: Improper
Check for Unusual or Exceptional Conditions [183]

C.3. Dataset 3

CWE 682: Incorrect Calculation [69], CWE 697: Incorrect Compari-
son [44], CWE 306: Missing Authentication for Critical Function [700],
CWE 665: Improper Initialisation [203], CWE 94: Improper Control
of Generation of Code (’Code Injection’) [2789], CWE 824: Access of
Uninitialised Pointer [109], CWE 203: Observable Discrepancy [270],
CWE 770: Allocation of Resources Without Limits or Throttling [402]

Data availability

While the code and trained models used to derive these results
cannot be provided due to prior agreements in relation to funding, the
data used was acquired from a publicly available instantiation of the
BRON dataset and can be further distributed based on the MIT license
which applies to BRON10 . This selection can be found in JSON format
using the DOI 10.17632/s2sw4ck42n.1.

References

[1] M. Felderer, M. Büchler, M. Johns, A.D. Brucker, R. Breu, A. Pretschner, Security
testing: A survey, 101, Academic Press Inc., 2016, pp. 1–51, http://dx.doi.org/
10.1016/bs.adcom.2015.11.003,

[2] B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees, Comp. Sci. Rev. 13–14 (C)
(2014) 1–38, http://dx.doi.org/10.1016/j.cosrev.2014.07.001, arXiv:1303.7397.

[3] I. Pekaric, M. Frick, J.G. Adigun, R. Groner, T. Witte, A. Raschke, M. Felderer,
M. Tichy, Streamlining attack tree generation: A fragment-based approach, 2023,
arXiv:2310.00654.

[4] M. Cheah, H.N. Nguyen, J. Bryans, S.A. Shaikh, Formalising systematic security
evaluations using attack trees for automotive applications, in: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), in: LNCS, vol. 10741, Springer Verlag, 2018,
pp. 113–129, http://dx.doi.org/10.1007/978-3-319-93524-9_7.

[5] B. Schneider, Secrets and Lies - Chapter 21: Attack trees, in: Secrets and
Lies: Digital Security in a Networked World, John Wiley & Sons, 2000, http:
//dx.doi.org/10.1002/9781119183631.

[6] G. Falco, A. Viswanathan, C. Caldera, H. Shrobe, A master attack methodology
for an AI-based automated attack planner for smart cities, IEEE Access 6 (2018)
48360–48373, http://dx.doi.org/10.1109/ACCESS.2018.2867556.

[7] R. Jhawar, K. Lounis, S. Mauw, Y. Ramírez-Cruz, Semi-automatically augmenting
attack trees using an annotated attack tree library, in: Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), in: LNCS, vol. 11091, Springer Verlag, 2018, pp.
85–101, http://dx.doi.org/10.1007/978-3-030-01141-3_6.

[8] J. Hong, D.-S. Kim, HARMs: Hierarchical attack representation models for
network security analysis, Aust. Inf. Secur. Manag. Conf. (2012) 3–5, http:
//dx.doi.org/10.4225/75/57b559a3cd8da, URL https://ro.ecu.edu.au/ism/146.

[9] M. Kern, B. Liu, V.P. Betancourt, J. Becker, Model-based attack tree generation
for cybersecurity risk-assessments in automotive, in: 2021 IEEE International
Symposium on Systems Engineering, ISSE, IEEE, Vienna, Austria, 2021, pp. 1–
7, http://dx.doi.org/10.1109/ISSE51541.2021.9582462, URL https://ieeexplore.
ieee.org/document/9582462/.

[10] R. Vigo, F. Nielson, H.R. Nielson, Automated generation of attack trees,
in: 2014 IEEE 27th Computer Security Foundations Symposium, 2014, pp.
337–350, http://dx.doi.org/10.1109/CSF.2014.31, URL http://ieeexplore.ieee.
org/document/6957121/.

[11] M.G. Ivanova, C.W. Probst, R.R. Hansen, F. Kammüller, Transforming Graphical
System Models to Graphical Attack Models, in: Graphical Models for Security.
GraMSec 2015. Lecture Notes in Computer Science, vol. 9390, Springer, 2016,
pp. 82–96, http://dx.doi.org/10.1007/978-3-319-29968-6_6, URL http://link.
springer.com/10.1007/978-3-319-29968-6_6.

Applied Soft Computing 171 (2025) 112745

15

K. Sowka et al.

[12] O. Gadyatskaya, R. Jhawar, S. Mauw, R. Trujillo-Rasua, T.A.C. Willemse,
Refinement-aware generation of attack trees, in: Security and Trust Management,
Vol. 10547, first ed., Springer International Publishing, 2017, http://dx.doi.org/
10.1007/978-3-319-68063-7_11.

[13] S. Pinchinat, F. Schwarzentruber, S.L. Cong, Library-based attack tree synthesis,
in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), in: LNCS, 12419,
Springer Science and Business Media Deutschland GmbH, 2020, pp. 24–44,
http://dx.doi.org/10.1007/978-3-030-62230-5_2.

[14] K. Sowka, V. Palade, H. Jadidbonab, P. Wooderson, H. Nguyen, A review
on automatic generation of attack trees and its application to automotive
cybersecurity, in: Artificial Intelligence and Cyber Security in Industry 4.0,
Springer Nature Singapore, 2023, pp. 165–193, http://dx.doi.org/10.1007/978-
981-99-2115-7_7.

[15] A.-M. Konsta, A.L. Lafuente, B. Spiga, N. Dragoni, Survey: Automatic generation
of attack trees and attack graphs, Comput. Secur. 137 (2024) 103602, http:
//dx.doi.org/10.1016/j.cose.2023.103602.

[16] E. Hemberg, J. Kelly, M. Shlapentokh-Rothman, B. Reinstadler, K. Xu, N.
Rutar, U.-M. O’Reilly, Linking threat tactics, techniques, and patterns with
defensive weaknesses, vulnerabilities and affected platform configurations for
cyber hunting, 2021, arXiv:2010.00533.

[17] J. Devlin, M.-W. Chang, K. Lee, K.T. Google, A.I. Language, BERT: Pre-training
of deep bidirectional transformers for language understanding, in: Proceedings
of NAACL-HLT 2019, 2019, pp. 4171–4186, URL https://aclanthology.org/N19-
1423.pdf.

[18] B. Ampel, S. Samtani, S. Ullman, H. Chen, Linking common vulnerabilities
and exposures to the MITRE att&ck framework: A self-distillation approach,
in: ACM Conference Knowledge Discovery and Data Mining, KDD’21, 2021,
http://dx.doi.org/10.1145/3447548.3469450.

[19] K. Kanakogi, S. Ogata, H. Kanuka, H. Washizaki, A. Hazeyama, Y. Fukazawa,
T. Kato, N. Yoshioka, Tracing CAPEC attack patterns from CVE vulnerability
information using natural language processing technique, in: Proceedings of
the 54th Hawaii International Conference System Science, 2021, URL https:
//hdl.handle.net/10125/71462.

[20] S.S. Das, E. Serra, M. Halappanavar, A. Pothen, E. Al-Shaer, V2W-BERT: A
framework for effective hierarchical multiclass classification of software vul-
nerabilities, in: 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics, DSAA, IEEE, 2021, pp. 1–12, http://dx.doi.org/10.1109/
DSAA53316.2021.9564227.

[21] J. Yin, M. Tang, J. Cao, H. Wang, Apply transfer learning to cybersecurity:
Predicting exploitability of vulnerabilities by description, Knowl.-Based Syst. 210
(2020) 106529, http://dx.doi.org/10.1016/j.knosys.2020.106529.

[22] J. Sun, Z. Xing, H. Guo, D. Ye, X. Li, X. Xu, L. Zhu, Generating informative
CVE description from exploitdb posts by extractive summarization, 2021, arXiv:
2101.01431.

[23] K. Ameri, M. Hempel, H. Sharif, J. Lopez, K. Perumalla, P. Legg, CyBERT:
Cybersecurity claim classification by fine-tuning the BERT language model, J.
Cybersecur. Priv. 1 (2021) 615–637, http://dx.doi.org/10.3390/JCP1040031,
https://www.mdpi.com/2624-800X/1/4/31.

[24] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, G. Research,
ALBERT: A lite BERT for self-supervised learning of language representations,
in: 2020 International Conference on Learning Representations, 2019, URL https:
//iclr.cc/virtual_2020/poster_H1eA7AEtvS.html.

[25] V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter, 2019, URL https://arxiv.org/abs/
1910.01108v4.

[26] T. Li, Y. Jiang, C. Lin, M.S. Obaidat, Y. Shen, J. Ma, DeepAG: Attack graph
construction and threats prediction with bi-directional deep learning, IEEE Trans.
Dependable Secur. Comput. 20 (2023) 740–757, http://dx.doi.org/10.1109/
TDSC.2022.3143551.

[27] J. Hoffmann, Simulated penetration testing: From "Dijkstra" to "Turing Test++",
in: Proceedings International Conference on Automated Planning and Scheduling,
ICAPS, 2015, pp. 364–372, URL https://fai.cs.uni-saarland.de/hoffmann/papers/
icaps15inv.pdf.

[28] J.B. Hong, D.S. Kim, T. Takaoka, Scalable attack representation model using logic
reduction techniques, in: Proceedings - 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom 2013,
2013, pp. 404–411, http://dx.doi.org/10.1109/TrustCom.2013.51.

[29] O. Gadyatskaya, D. Papuc, ChatGPT knows your attacks: Synthesizing attack trees
using LLMs, in: C. Anutariya, M.M. Bonsangue (Eds.), Data Science and Artificial
Intelligence, Springer Nature Singapore, Singapore, 2023, pp. 245–260.

[30] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph
neural network model, IEEE Trans. Neural Netw. 20 (2009) 61–80, http://dx.
doi.org/10.1109/TNN.2008.2005605.

[31] D.D.S. Braga, M. Niemann, B. Hellingrath, F.B.D.L. Neto, Survey on compu-
tational trust and reputation models, ACM Comput. Surv. 51 (2019) 1–40,
http://dx.doi.org/10.1145/3236008.

[32] G. Shafer, Dempster’s rule of combination, Internat. J. Approx. Reason. 79 (2016)
26–40, http://dx.doi.org/10.1016/j.ijar.2015.12.009.

[33] F. Faez, Y. Ommi, M.S. Baghshah, H.R. Rabiee, Deep graph generators: A survey,
2020, URL http://arxiv.org/abs/2012.15544.

[34] W.S. El-Kassas, C.R. Salama, A.A. Rafea, H.K. Mohamed, Automatic text sum-
marization: A comprehensive survey, Expert Syst. Appl. 165 (2021) 113679,
http://dx.doi.org/10.1016/j.eswa.2020.113679.

Applied Soft Computing 171 (2025) 112745

16

	Towards the generation of hierarchical attack models from cybersecurity vulnerabilities using language models
	Introduction
	Background and related work
	Cybersecurity datasets
	Language models for cybersecurity tasks
	Generating hierarchical attack models

	Sibling prediction of CVEs
	Negative link problem
	Clique-based sampling
	Weighted random sampling

	Towards building hierarchical attack models
	Algorithm for grouping vulnerabilities
	Consensus mechanism

	Experimental results
	Dataset 1
	Dataset 2
	Dataset 3
	Generation experiment

	Discussion and future work
	Discussion of empirical results
	Performance of neural networks
	Fine-tuned vs base DistilBERT encoder
	Generation experiments and Consensus mechanism

	Practical viability
	Future work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Effect of different values of p on weighted random sampling
	Appendix B. Fine-tuning on CVE data using Masked Language Modelling
	Appendix C. Dataset
	Dataset 1
	Dataset 2
	Dataset 3

	Appendix . Data availability
	References

