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1. Introduction

The aim of this paper is to give an introduction to a class of geometric structures 

known as Joyce structures. These structures have appeared in several contexts recently, 

including integrable systems [12,19,20] and topological string theory [1,2]. A Joyce struc-

ture on a complex manifold M involves a one-parameter family of flat and symplectic 

non-linear connections on the tangent bundle TM , and gives rise to a complex hyperkäh-

ler structure on the total space X = TM . The precise definition first appeared in [11], 

but the essential features are standard in twistor theory (see e.g. [18]), and go back to 

work of Plebański [38].

Joyce structures take their name from a line of research initiated in [31] which aims 

to encode the Donaldson-Thomas (DT) invariants [32,35] of a three-dimensional Calabi-
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Yau (CY3) category in a geometric structure on its space of stability conditions [9,10]. 

From this point of view a Joyce structure should be thought of as a non-linear analogue 

of a Frobenius structure [16,17], in which the linear structure group GLn(C) has been 

replaced by the group of Poisson automorphisms of a complex torus (C∗)n. The wall-

crossing formula shows that the DT invariants can be viewed as the Stokes data for an 

isomonodromic family of irregular connections on P 1 taking values in this group. This 

perspective is the subject of [11] and is summarised in [14, Appendix A].

Relations between the wall-crossing formula in DT theory and real hyperkähler man-

ifolds were first discovered in the celebrated work of Gaiotto, Moore and Neitzke [24,25]. 

The connection with complex hyperkähler manifolds is somewhat different and was made 

in [14]. In physical terms the two stories are related by the conformal limit [1,2,23].

The geometry of a Joyce structure is often clearer when viewed through the lens of 

the associated twistor space p : Z → P
1. Each fibre of the map p is the leaf space of 

a half-dimensional foliation on X = TM . There are essentially three distinct fibres, Z0, 

Z1 and Z∞, of which Z0 is naturally identified with M . It is intriguing to note that in 

simple examples associated to the DT theory of a quiver, the fibre Z0 = M is a quotient 

of the space of stability conditions, whereas Z1 is closely related to the cluster Poisson 

variety. The fibre Z∞ remains rather mysterious.

An interesting class of examples of Joyce structures was constructed in [15]. The base 

M parameterises pairs consisting of a Riemann surface of some fixed genus g equipped 

with a quadratic differential with simple zeroes. The extension to spaces of quadratic 

differentials with poles of fixed orders will appear in [39]. These Joyce structures are 

expected to arise from the DT theory of the CY3 categories considered in [13,27], and 

relate in physics [8] to supersymmetric gauge theories of class S[A1]. We give explicit 

descriptions of the two simplest examples of this type, which are naturally associated 

to the DT theory of the A1 and A2 quivers respectively. The A2 example is particularly 

interesting, and is closely related to the Painlevé I equation.

1.1. Plan of the paper

We begin in Section 2 with the notion of a pre-Joyce structure on a complex manifold 

M . It gives rise to a complex hyperkähler structure on the total space X = TM . A Joyce 

structure is a pre-Joyce structure with certain additional symmetries. These symmetries 

are discussed in Section 3 and are controlled by a special type of integral affine structure 

on M which we call a period structure.1

The twistor space p : Z → P
1 associated to a Joyce structure is introduced in Section 4. 

In Section 5 we establish several new results on its structure. In Section 6 we show how to 

associate a strongly-integrable Hamiltonian system to a Joyce structure equipped with 

1 Some of this material appears also in [14] but we have chosen to tell the story again from the beginning 
because a more detailed treatment of several points seems worthwhile, and experience with examples has 
suggested a few small changes in the definitions.
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certain extra data, namely a Lagrangian submanifold R ⊂ Z∞, and an identification of 

M with an open subset of the cotangent bundle of a complex manifold B.

In the rest of the paper we discuss examples. In Section 7 we first recall from [15] 

the construction of Joyce structures of class S[A1] on spaces of holomorphic quadratic 

differentials. We then explain how some of the constructions from previous sections play 

out in this setting. In Section 8 and 9 we give explicit formulae in the two simplest cases, 

which are associated to the DT theory of the A1 and A2 quivers respectively.

1.2. Conventions

We work throughout in the category of complex manifolds and holomorphic maps. 

All symplectic forms, metrics, bundles, connections, sections etc. are holomorphic. The 

holomorphic tangent bundle of a complex manifold M is denoted TM , and the derivative 

of a map of complex manifolds f : M → N is denoted f∗ : TM → f∗(TN ). The map f is 

called étale if f∗ is an isomorphism. We use the symbol L to denote the Lie derivative.

Acknowledgements

The author is very grateful for conversations and correspondence with Sergey Alexan-

drov, Anna Barbieri, Maciej Dunajski, Dominic Joyce, Dimitry Korotkin, Davide Maso-

ero, Boris Pioline, Ian Strachan, Jörg Teschner and Iván Tulli.

2. Pre-Joyce structures

Recall [16,17] that a Frobenius structure on a complex manifold M consists of a pen-

cil of flat, torsion-free connections on the tangent bundle of M with certain additional 

properties (the existence of the identity and Euler vector fields, potentiality of the mul-

tiplication, etc). In a similar way, a Joyce structure on M consists of a pencil of flat, 

symplectic non-linear connections on the tangent bundle of M , again admitting certain 

additional symmetries. In this section we focus on the pencil of connections, which we 

refer to as a pre-Joyce structure, leaving discussion of the required symmetries to the 

next section.

2.1. Non-linear connections

We begin by briefly summarising some basic facts about non-linear connections in the 

sense of Ehresmann (see e.g. [33, Chapter 3]). Recall that we are always working in the 

category of complex manifolds, so all connections will be holomorphic.

Let π : X → M be a holomorphic submersion of complex manifolds. We denote the 

fibres by Xm = π−1(m). The derivative of π gives rise to a short exact sequence of 

bundles

0 −→ TX/M
i −→ TX

π∗−→ π∗(TM ) −→ 0. (1)
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Definition 2.1. A non-linear connection on the map π is a map of bundles h : π∗(TM ) →
TX satisfying π∗ ◦ h = 1.

Writing H = im(h) and V = TX/M , the tangent bundle of X decomposes as a direct 

sum TX = H ⊕ V . We call tangent vectors and vector fields horizontal or vertical if they 

lie in H or V respectively. Note that a vector field u ∈ H0(M, TM ) can be lifted to a hori-

zontal vector field h(u) ∈ H0(X, TX) by composing the pullback π∗(u) ∈ H0(X, π∗(TM ))

with the map h.

Consider a smooth path γ : [0, 1] → M . Given a point x ∈ Xγ(0) we can look for a 

lifted path α : [0, δ] → X satisfying α∗( d 
dt ) = h(γ∗( d 

dt )) and α(0) = x. Since we have not 

assumed that π is proper, such a lift will exist only for small enough δ > 0. For t ∈ [0, δ]

we call α(t) ∈ Xγ(t) the time t parallel transport of the point x along the path γ. Given 

a point x0 ∈ Xγ(0) we can find a δ > 0 and open subsets Ut ⊂ Xγ(t) with x0 ∈ U0, such 

that time t parallel transport along γ defines an isomorphism PTγ(t) : U0 → Ut for each 

t ∈ [0, δ].

Given complex manifolds M, N there is a connection on the projection map πM : M ×
N → M induced by the canonical splitting TM×N = π∗

M (TM )⊕π∗
N (TN ). The connection 

h is called flat if it is locally isomorphic to a connection of this form. More precisely:

Definition 2.2. The connection h is flat if the following equivalent conditions hold:

(i) for every x ∈ X there are local co-ordinates (x1, · · · , xn) on X at x, and (y1, · · · , yd)

on M at π(x), such that xi = π∗(yi) and h( ∂
∂yi

) = ∂
∂xi

for 1 � i � d,

(ii) the sub-bundle H = im(h) ⊂ TX is closed under Lie bracket: [H, H] ⊂ H.

Suppose given a relative symplectic form Ωπ ∈ H0(X, ∧2 T ∗
X/M ) on the map π. It 

restricts to a symplectic form Ωm ∈ H0(Xm, ∧2 T ∗
Xm

) on each fibre Xm. We say that 

the connection h preserves Ωπ if for any path γ : [0, 1] → M the partially-defined parallel 

transport maps PTγ(t) : Xγ(0) → Xγ(t) take Ωγ(0) to Ωγ(t). This is equivalent to the 

statement that for any horizontal vector field u on X the Lie derivative Lu(Ωπ) = 0.

Using the decomposition TX = H ⊕ V the relative form Ωπ can be lifted uniquely to 

a form Ω ∈ H0(X, ∧2 T ∗
X) satisfying ker(Ω) = H.

Lemma 2.3. 

(i) The connection h preserves Ωπ precisely if iv1
iv2

(dΩ) = 0 for any two vertical vector 

fields v1, v2 ∈ H0(X, TX/M ).

(ii) If the connection h is flat then it preserves Ωπ precisely if dΩ = 0.

Proof. Part (i) is [26, Theorem 4]. For part (ii), note that one implication follows from 

(i), so let us assume that h is flat and preserves Ωπ and prove that dΩ = 0.
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Take three vector fields u1, u2, u3 on X and consider the expression defining 

dΩ(u1, u2, u3). We can assume that each ui is either horizontal or vertical. Note that 

both horizontal and vertical vector fields are closed under Lie bracket, and ih(Ω) = 0

for any horizontal vector field h. Thus dΩ(u1, u2, u3) = 0 as soon as two of the ui are 

horizontal. In the remaining cases two of the ui are vertical, and the claim follows from 

part (i). �

Suppose that a discrete group G acts freely and properly on X preserving the map 

π. Then Y = X/G is a complex manifold and the quotient map q : X → Y is étale. 

There is an induced submersion η : Y → M and a factorisation π = η ◦ q. A connection 

h : π∗(TM ) → TX will be called G-invariant if g∗ ◦ h = h for all g ∈ G. There is then 

an induced connection j : η∗(TM ) → TY on η defined uniquely by the condition that 

q∗ ◦ h = q∗(j). We say that the connection h descends along the quotient map q.

2.2. Pre-Joyce structures

Let M be a complex manifold and let π : X = TM → M be the total space of the 

tangent bundle of M . There is a canonical isomorphism ν : π∗(TM ) → TX/M obtained 

by composing the chain of identifications

π∗(TM )x = TM,π(x) = TTM,π(x),x = TXπ(x),x = TX/M,x. (2)

We set v = i◦ν. A connection h : π∗(TM ) → TX on π then defines a family of connections 

hǫ = h + ǫ−1v parameterised by ǫ ∈ C
∗.2

0 TX/M
i

TX

π∗

π∗(TM )

hǫ

ν

0 (3)

Suppose that M is equipped with a holomorphic symplectic form ω ∈ H0(M, ∧2 T ∗
M ). 

Via the isomorphism ν we obtain a relative symplectic form Ωπ ∈ H0(X, ∧2T ∗
X/M )

which restricts to a linear symplectic form ωm on each fibre Xm = TM,m. We say that a 

connection on π is symplectic if it preserves Ωπ in the sense defined above.

Definition 2.4. A pre-Joyce structure (ω, h) on a complex manifold M consists of

(i) a holomorphic symplectic form ω on M ,

(ii) a non-linear connection h on the tangent bundle π : X = TM → M ,

2 At this stage it might seem more sensible to parameterise the pencil by t = ǫ−1. In later applications 
however it is the parameter ǫ which appears most naturally.
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such that for each ǫ ∈ C
∗ the connection hǫ = h + ǫ−1v is flat and symplectic.

Take a local co-ordinate system (z1, · · · , zn) on M which is Darboux, in the sense that

ω =
1

2
·
∑

p,q

ωpq · dzp ∧ dzq, (4)

with ωpq a constant skew-symmetric matrix. We denote by ηpq the inverse matrix.

There are associated linear co-ordinates (θ1, · · · , θn) on the tangent spaces TM,m ob-

tained by writing a tangent vector in the form 
∑

i θi · ∂/∂zi. We thus get induced local 

co-ordinates (zi, θj) on the total space X = TM . In these co-ordinates

vi := v
( ∂

∂zi

)

=
∂

∂θi
. (5)

The fact that the connection h is flat and symplectic ensures that we can write

hi := h
( ∂

∂zi

)

=
∂

∂zi
+

∑

p,q

ηpq · ∂Wi

∂θp
· ∂

∂θq
, (6)

for locally-defined functions Wi = Wi(z, θ). Note that Wi is only well-defined up to the 

addition of functions ai(z) independent of the θ co-ordinates. We can fix these integration 

constants by insisting that Wi vanishes along the zero section M ⊂ X = TM , i.e. that

Wi(z1, · · · , zn, 0, · · · , 0) = 0. (7)

The connection hǫ is flat precisely if 
[

hi + ǫ−1vi, hj + ǫ−1vj

]

= 0 for all 1 � i, j � n. 

A short calculation shows that this holds for all ǫ ∈ C
∗ precisely if

∂

∂θk

(∂Wi

∂θj
− ∂Wj

∂θi

)

= 0, (8)

∂

∂θk

(∂Wi

∂zj
− ∂Wj

∂zi
−

∑

p,q

ηpq · ∂Wi

∂θp
· ∂Wj

∂θq

)

= 0, (9)

for all 1 � i, j, k � n.

Remark 2.5. So as to be able to include certain interesting examples it is sometimes useful 

to weaken the axioms of a (pre-) Joyce structure to allow the connection h : π∗(TM ) → TX

to have poles. In precise terms this means that h should be defined by a bundle map 

h : π∗(TM ) → TX(D) satisfying

(π∗ ⊗ OX(D)) ◦ h = 1π∗(TM ) ⊗ sD, (10)

where D ⊂ X is an effective divisor, and sD : OX → OX(D) is the canonical inclusion. 

When expressed in terms of local co-ordinates as above, this just means that the functions 
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Wi(z, θ) are meromorphic. We will refer to the resulting structures as meromorphic (pre-) 

Joyce structures.

2.3. Complex hyperkähler structures

The following structures have appeared before in the literature under various different 

names (see e.g. [4,19,29,30]). We emphasise that, as throughout the paper, all quantities 

appearing are holomorphic.

Definition 2.6. A complex hyperkähler structure (g, I, J, K) on a complex manifold X

consists of

(i) a metric g, i.e. a symmetric, non-degenerate bilinear form g : TX ⊗ TX → OX ,

(ii) endomorphisms I, J, K ∈ EndX(TX),

such that:

(HK1) the quaternion relations hold: I2 = J2 = K2 = IJK = −1,

(HK2) I, J, K are compatible with g and are parallel for the associated Levi-Civita 

connection ∇:

g(R(u1), R(u2)) = g(u1, u2), ∇(R) = 0, R ∈ {I, J, K}. (11)

Let M be a complex manifold with a holomorphic symplectic form ω. A non-linear 

connection h on the tangent bundle π : X = TM → M gives a decomposition

TX = im(h) ⊕ im(v) ∼ = π∗(TM ) ⊗C C
2. (12)

We can then define an action of the quaternions on TX by choosing an identification 

of the complexification of the quaternions H ⊗R C with the algebra of 2 × 2 matrices 

EndC(C2). We can also define a metric g by taking the tensor product of π∗(ω) with a 

linear symplectic form on C2.

With appropriate conventions this leads to the formulae3

I ◦ h = i · h, J ◦ h = −v, K ◦ h = i · v,

I ◦ v = −i · v, J ◦ v = h, K ◦ v = i · h,
(13)

which should be interpreted as equalities of maps π∗(TM ) → TX , and

g(h(u1), v(u2)) = 1
2ω(u1, u2), g(h(u1), h(u2)) = 0 = g(v(u1), v(u2)). (14)

3 Compared to [14] we have changed the signs of I and K, and divided the metric by 2.



8 T. Bridgeland / Advances in Mathematics 462 (2025) 110089 

It is easily checked that g is preserved by the endomorphisms I, J, K.

The following result implies in particular that a pre-Joyce structure on a complex 

manifold M induces a complex hyperkähler structure on the total space X = TM .

Theorem 2.7. The operators I, J, K are parallel for the Levi-Civita connection ∇ associ-

ated to g precisely if the connection hǫ = h + ǫ−1v is flat and symplectic for all ǫ ∈ C
∗.

Proof. We begin with a general remark. Let g : TX × TX → OX be a metric on a 

complex manifold X with associated Levi-Civita connection ∇. Let R ∈ EndX(TX)

be an endomorphism which is compatible with g and satisfies R2 = −1. We can then 

define a 2-form Ω on X by setting ΩR(u1, u2) = g(R(u1), u2). Let H ⊂ TX denote the 

+i eigenbundle of R. Then standard proofs from Kähler geometry apply unchanged in 

this holomorphic context to give implications

∇(R) = 0 =⇒ [H, H] ⊂ H, ∇(R) = 0 ⇐⇒ dΩR = 0. (15)

Return now to the setting above. For ǫ ∈ C
∗ we introduce the endomorphism

Jǫ = I − iǫ−1(J + iK). (16)

A simple calculation using the definitions (13) shows that J2
ǫ = −1, and that the +i

eigenbundle of Jǫ coincides with Hǫ = im(hǫ).

As in Section 2.2, the symplectic form ω on M induces a relative symplectic form Ωπ

on the projection π : X → M . Moreover, as explained before Lemma 2.3, there is then a 

unique 2-form Ωǫ on X satisfying the conditions

ker(Ωǫ) = Hǫ, Ωǫ(v(u1), v(u2)) = ω(u1, u2), (17)

where u1, u2 are arbitrary vector fields on M . Another calculation using (13) and (14)

shows that this form is given explicitly by the formula

Ωǫ = ǫ−2 · Ω+ + 2iǫ−1 · ΩI + Ω−, Ω± = ΩJ±iK . (18)

We can now prove the Theorem. Suppose first that I, J, K are parallel. Then Jǫ is 

parallel for all ǫ ∈ C
∗, and applying (15) with R = Jǫ we find that [Hǫ, Hǫ] ⊂ Hǫ and 

hence that hǫ is flat. Since Ωǫ is also parallel and hence closed, applying Lemma 2.3

shows that hǫ is symplectic. Conversely suppose that for all ǫ ∈ C
∗ the connection hǫ is 

flat and symplectic. Then by Lemma 2.3 again, dΩǫ = 0 for all ǫ ∈ C
∗, and this easily 

implies that dΩR = 0 for R ∈ {I, J, K}. By (15) we conclude that I, J, K are parallel. �
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2.4. Associated 2-forms

The complex hyperkähler structure (g, I, J, K) gives rise to closed 2-forms on X

ΩI(w1, w2) = g(I(w1), w2), Ω±(w1, w2) = g((J ± iK)(w1), w2). (19)

Note that ΩI is non-degenerate, but since (J ± iK)2 = 0 the forms Ω± have kernels.

Let us express these forms in terms of a local co-ordinate system (z, θ) on X as in 

Section 2.2. We denote by (hi, vj) the basis of covector fields dual to the basis of vector 

fields (hi, vj) defined by (5) – (6). Thus (hj , vi) = 0 = (vj , hi) and (hj , hi) = δij =

(vj , vi). Explicitly we have

hj = dzj , vj = dθj +
∑

r,s 
ηjr · ∂Ws

∂θr
· dzs. (20)

The definition (13) of the operators I, J, K immediately gives

(J + iK) ◦ h = −2v, (J + iK) ◦ v = 0 = (J − iK) ◦ h, (J − iK) ◦ v = 2h, (21)

and so we have

Ω+ =
1

2
·
∑

p,q

ωpq · hp ∧ hq, ΩI =
i 

2
·
∑

p,q

ωpq · vp ∧ hq, (22)

Ω− =
1

2
·
∑

p,q

ωpq · vp ∧ vq. (23)

Using the formulae (20) these expressions can be rewritten as

Ω+ =
1

2
·
∑

p,q

ωpq · dzp ∧ dzq, (24)

2iΩI =
1

2
·
∑

p,q

(

∂Wp

∂θq
− ∂Wq

∂θp

)

· dzp ∧ dzq −
∑

p,q

ωpq · dθp ∧ dzq, (25)

Ω− =
1

2
·
∑

p,q

ωpq · dθp ∧ dθq +
∑

p,q

∂Wq

∂θp
· dθp ∧ dzq − 1

2
·

∑

p,q,r,s

ηrs · ∂Wp

∂θr

∂Wq

∂θs
· dzp ∧ dzq.

(26)

Note that by (8) the first term in (25) is independent of the co-ordinates θk and hence 

descends to M . In the case of a Joyce structure the identity (47) shows that this term 

vanishes.
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3. Joyce structures

A Joyce structure on a complex manifold M is a pre-Joyce structure with certain 

additional symmetries. These symmetries are controlled by a special kind of integral 

affine structure on M which we call a period structure. After introducing the necessary 

definitions we derive some consequences of the extra symmetries, both for the associated 

complex hyperkähler structure on X = TM , and for the local generating functions Wi.

3.1. Period structures

Let H be a holomorphic vector bundle on a complex manifold M . By a lattice in H we 

mean a locally-constant subsheaf of abelian groups HZ ⊂ H such that the multiplication 

map HZ ⊗Z OM → H is an isomorphism. There is an induced flat (linear) connection ∇
on H whose flat sections are C-linear combinations of the sections of HZ.

Definition 3.1. A period structure (T Z
M , ∇, Z) on a complex manifold M consists of

(P1) a lattice T Z
M ⊂ TM whose associated flat connection is denoted ∇,

(P2) a vector field Z ∈ Γ(M, TM ) satisfying ∇(Z) = id.

Given a point p ∈ M , a basis of the free abelian group T Z
M,p extends uniquely to a basis 

of ∇-flat sections φ1, · · · , φn of TM over a contractible open neighbourhood p ∈ U ⊂ M . 

Writing the vector field Z in the form Z =
∑

i zi · φi then defines holomorphic functions 

zi : U → C. Given a local co-ordinate system (u1, · · · , un) on M , condition (P2) shows 

that

∂

∂uj
= ∇ ∂

∂uj

(Z) =
∑

i 

∂zi

∂uj
· φi, (27)

for all 1 � j � n, from which it follows that (z1, · · · , zn) is also a local co-ordinate 

system. Applying (27) with uj = zj then shows that φi = ∂
∂zi

. This implies in particular 

that the connection ∇ is torsion-free.

Recall [34] that an integral affine structure on a complex manifold M is a lattice 

T Z
M ⊂ TM whose associated flat connection ∇ is torsion-free. A local co-ordinate system 

(z1, · · · , zn) is then called integral affine if the tangent vectors ∂
∂zi

lie in the lattice T Z
M . 

Such co-ordinate systems are uniquely defined up to affine transformations of the form 

zi →
∑

j aijzj + vi with (aij) ∈ GLn(Z) and (vi) ∈ C
n.

Given a period structure on a complex manifold M we obtain an integral affine struc-

ture by forgetting the vector field Z. A system of integral affine co-ordinates (z1, · · · , zn)

will be called integral linear if Z =
∑

i zi · ∂
∂zi

. Such co-ordinate systems are uniquely 

defined up to linear transformations of the form zi →
∑

j aijzj with (aij) ∈ GLn(Z). 

Thus a period structure can be thought of as an integral linear structure.
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Definition 3.2. A period structure will be called homogeneous if the vector field Z gen-

erates an action of the multiplicative group C∗ on M .

We can use the connection ∇ on TM to lift the vector field Z on M to a horizontal 

vector field E on X = TM . If we take a system of integral linear co-ordinates (z1, · · · , zn)

on M , and associated co-ordinates (zi, θj) on X = TM as in Section 2.2, then

Z =
∑

i 
zi · ∂

∂zi
, E =

∑

i 
zi · ∂

∂zi
. (28)

In what follows we refer to both Z and E as Euler vector fields. This will hopefully not 

cause confusion since they live on different spaces.

Lemma 3.3. Let (T Z
M , ∇, Z) be a homogeneous period structure on a complex manifold 

M . Then the lifted Euler vector field E generates an action of C
∗ on X = TM . This 

action is obtained by combining the derivative of the action map a : C
∗ × M → M , with 

a rescaling of weight −1 on the linear fibres of the projection π : TM → M .

Proof. Take local co-ordinates (zi) on M and (zi, θj) on X as above. The C∗-action on 

M is given by t · (zi) = (tzi). The derivative of the action map a : C
∗ ×M → M defines a 

C
∗-action on X given by t · (zi, θj) = (tzi, tθj). Composing with the weight −1 rescaling 

action on the fibres gives the action t · (zi, θj) = (tzi, θj) whose generating vector field is 

E. �

3.2. Joyce structures

We define a Joyce structure by combining a pre-Joyce structure with a compatible 

period structure. Given a symplectic form ω : TM ×TM → OM there is an induced pairing 

η : T ∗
M × T ∗

M → OM defined by the condition that the induced maps ω♭ : TM → T ∗
M and 

η♭ : T ∗
M → TM are mutually inverse. We refer to η as the inverse of ω.

Definition 3.4. A Joyce structure on a complex manifold M consists of

(a) a period structure (T Z
M , Z, ∇) on M ,

(b) a pre-Joyce structure (ω, h) on M ,

satisfying the following compatibility conditions:

(J1) if η is the inverse of ω then (2πi)−1η takes integral values on the dual lattice 

(T Z
M )∗ ⊂ T ∗

M ,

(J2) the connection h is invariant under translations by the lattice (2πi) T Z
M ⊂ TM ,
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(J3) if E is the ∇-horizontal lift of the vector field Z, then for any vector field u on M

h([Z, u]) = [E, h(u)], (29)

(J4) the connection h is invariant under the action of the involution −1 : X → X which 

acts by multiplication by −1 on the fibres of π : X = TM → M .

We say that a Joyce structure is homogeneous if the underlying period structure is.

Given a period structure on a complex manifold M we introduce the quotient

X# = T #
M = TM /(2πi) T Z

M . (30)

Axiom (J2) is the statement that the connection h descends to a connection on the 

(C∗)n-bundle over M given by the projection π : X# → M .

Remark 3.5. In the context of DT theory, in which M is a space of numerical stability 

conditions on a CY3 category, the period structure (T Z
M , Z, ∇) and symplectic form ω are 

well-known and immediate: the integral linear co-ordinates are given by central charges, 

and the symplectic form is induced by the inverse of the Euler form. The extra content 

of the Joyce structure is then just the non-linear connection h, which however is required 

to satisfy a complicated system of symmetry and curvature conditions.

3.3. Associated hyperkähler structures

Given a Joyce structure on a complex manifold M , the associated complex hyperkähler 

structure (g, I, J, K) on X = TM defined in Section 2.3 has certain extra symmetry 

properties. For example, axiom (J2) ensures that it is invariant under the translations by 

the lattice (2πi) T Z
M ⊂ TM , and hence descends to the quotient manifold X# introduced 

above. The other axioms give the following result.

Lemma 3.6. There are identities

LE(I) = 0, LE(J ± iK) = ±(J ± iK), LE(g) = g. (31)

(−1)∗(I) = I, (−1)∗(J ± iK) = −(J ± iK), (−1)∗(g) = −g. (32)

Proof. We will evaluate both sides of each identity on vector fields of the form h(u) and 

v(u), where u is an arbitrary vector field on M . For the identities (31) note first that we 

have

LE(h(u)) = h(LZ(u)), LE(v(u)) = v(LZ(u) + u) (33)

The first of these equations is axiom (J3), and the second follows from Lemma 3.3.
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If u is a vector field on M then using (21) we have

(LE(J − iK)) h(u) = LE((J − iK) h(u)) − (J − iK) LE(h(u)) = 0, (34)

(LE(J − iK)) v(u) = LE((J − iK) v(u)) − (J − iK) LE(v(u))

= 2h(LZ(u)) − 2h(LZ(u) + u) = −2h(u),
(35)

and it follows that LE(J − iK) = −(J − iK). The claim LE(J + iK) = J + iK follows 

in the same way. The statement that LE(I) = 0 holds because by (33)

(LE(I)) h(u) = LE(I(h(u))) − I(LE(h(u))) = LE(ih(u)) − iLE(h(u)) = 0, (36)

with an analogous identity for v(u).

For the statement on the metric note first that (J1) implies that LZ(ω) = 2ω. Then 

using the definition (14) of the metric g we have

LE(g)(h(u1), v(u2)) = E · g(h(u1), v(u2)) − g(LE(h(u1)), v(u2)) − g(h(u1), LE(v(u2)))

= E · 1
2π∗(ω(u1, u2)) − 1

2π∗(ω(LZ(u1), u2))

− 1
2π∗(ω(u1, LZ(u2) + u2))

= 1
2π∗(LZ(ω)(u1, u2)) − 1

2π∗(ω(u1, u2)) = 1
2π∗(ω(u1, u2))

= g(h(u1), v(u2)),

(37)

where we used the fact that π∗(Ex) = Zπ(x) for all x ∈ X to write E · π∗(f) = π∗(Z · f)

for any function f on M . An easier argument gives

LE(g)(h(u1), h(u2)) = 0 = LE(g)(v(u1), v(u2)), (38)

so we find that LE(g) = g as required.

The identities (32) follow from the definitions (13) and (14) together with

(−1)∗(h(u)) = h(u), (−1)∗(v(u)) = −v(u). (39)

The first of these equations is axiom (J4), and the second is immediate from the definition 

of the involution −1. �

3.4. Plebański function

Consider a local system of integral linear co-ordinates (z1, · · · , zn) on M . Taking 

associated co-ordinates (zi, θj) on X = TM we can express the connections hǫ using 

locally-defined functions Wi = Wi(z, θ) as in Section 2.2. As before we fix the integration 

constants by imposing the condition that Wi vanishes on the zero section M ⊂ X =

TM .
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Lemma 3.7. There is a unique locally-defined function W = W (z, θ) which vanishes on 

the zero section M ⊂ X = TM and satisfies Wi = ∂W
∂θi

for all 1 � i � n. It also satisfies 

the relations

∂2W

∂θi∂zj
− ∂2W

∂θj∂zi
=

∑

p,q

ηpq · ∂2W

∂θi∂θp
· ∂2W

∂θj∂θq
(40)

∂2W

∂θi∂θj
(z1, · · · , zn, θ1 + 2πik1, · · · , θn + 2πikn)

=
∂2W

∂θi∂θj
(z1, · · · , zn, θ1, · · · , θn), (41)

W (λz1, · · · , λzn, θ1, · · · , θn) = λ−1 · W (z1, · · · , zn, θ1, · · · , θn), (42)

W (z1, · · · , zn, −θ1, · · · , −θn) = −W (z1, · · · , zn, θ1, · · · , θn), (43)

for all 1 � i, j � n, where (k1, · · · , kn) ∈ Z
n and λ ∈ C

∗.

Proof. Using the expressions (28) the axioms (J2) – (J4) become the conditions

∂Wi

∂θj
(z1, · · · , zn, θ1 + 2πik1, · · · , θn + 2πikn) =

∂Wi

∂θj
(z1, · · · , zn, θ1, · · · , θn), (44)

∂Wi

∂θj
(λz1, · · · , λzn, θ1, · · · , θn) = λ−1 · ∂Wi

∂θj
(z1, · · · , zn, θ1, · · · , θn), (45)

∂Wi

∂θj
(z1, · · · , zn, −θ1, · · · , −θn) = −∂Wi

∂θj
(z1, · · · , zn, θ1, · · · , θn). (46)

Note that (46) implies that both sides vanish along the zero section M ⊂ X = TM

where all θk = 0. It then follows that for all 1 � i, j � n

∂Wi

∂θj
− ∂Wj

∂θi
= 0. (47)

Indeed, (8) shows that this expression is independent of the co-ordinates θk, and so if it 

vanishes on the zero section it must be identically zero. It follows that there is a locally-

defined function W = W (z, θ) such that Wi = ∂W/∂θi. We again fix the integration 

constants by assuming that W vanishes on the zero section M ⊂ X = TM . In view of 

(7) we therefore have

W (z1, · · · , zn, 0, · · · , 0) = 0 =
∂W

∂θi
(z1, · · · , zn, 0, · · · , 0). (48)

The equations (40) then follow from (9). Indeed (9) shows that the difference of the two 

sides is independent of the co-ordinates θk, but by (46) and (48) both sides vanish along 

the zero section. Similarly, we deduce (42) from (45), and (43) from (46). �
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The function W is called the Plebański function, and the partial differential equations 

(40) are known as Plebański’s second heavenly equations.

4. Twistor space

In this section we define the twistor space p : Z → P
1 associated to a pre-Joyce 

structure on a complex manifold M . It is defined as the space of leaves of a foliation 

on P 1 × X, where as before X = TM denotes the total space of the tangent bundle of 

M . The construction coincides with the Penrose twistor space construction [37] applied 

to the complex hyperkähler manifold on X. We explain some special properties enjoyed 

by the twistor space of a Joyce structure, and derive an equation describing the twistor 

lines. In the final part we use this equation to revisit the analogy between Joyce and 

Frobenius structures which was the main topic of [11].

4.1. Construction of the twistor space

Let M be a complex manifold equipped with a pre-Joyce structure, and set X = TM . 

For each point (ǫ0, ǫ1) ∈ C
2 \ {0} there is a bundle map

ǫ0v + ǫ1h : π∗(TM ) → TX , (49)

whose image, which depends only on the corresponding point ǫ = [ǫ0 : ǫ1] ∈ P
1, is a 

half-rank sub-bundle H(ǫ) ⊂ TX . The definition of a pre-Joyce structure ensures that 

this sub-bundle is closed under Lie bracket, and hence defines a foliation on X. The 

twistor space Z defined below will have a map p : Z → P
1 whose fibre over the point 

ǫ ∈ P
1 is the space of leaves of this foliation.

To give a global definition of the twistor space Z we first recall that the tangent bundle 

of the product P 1 × X has a canonical direct sum decomposition

TP 1×X = π∗
1(TP 1) ⊕ π∗

2(X), (50)

where π1, π2 denote the projections from P 1 × X onto the two factors. There is a half-

rank sub-bundle H ⊂ π∗
2(TX) which when restricted to a fibre π−1

1 (ǫ) is the sub-bundle 

H(ǫ) ⊂ TX . Composing with the canonical inclusion π∗
2(TX) ⊂ TP 1×X we can view H

as a sub-bundle of TP 1×X and this is easily seen to be closed under Lie bracket. The 

twistor space Z is then defined to be the space of leaves of the associated foliation on 

P
1 × X.

We denote by q : P
1 × X → Z the quotient map. There is an induced projection 

p : Z → P
1 which satisfies p ◦ q = π1. We denote by Zǫ = p−1(ǫ) ⊂ Z the twistor fibre 

over ǫ ∈ P
1, and qǫ : X → Zǫ the induced quotient map. For each ǫ ∈ P

1 there is a 

commutative diagram
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X

qǫ

P
1 × X

q

π1Zǫ Z

p

{ǫ} P
1

(51)

in which the horizontal arrows are the obvious closed embeddings.

Each point x ∈ X determines a section of the map p : Z → P
1

σx : P
1 → Z, ǫ → q(ǫ, x), (52)

which we refer to as a twistor line.

Recall the complex hyperkähler structure (g, I, J, K) on X and the associated closed 

2-forms Ω± and ΩI defined by (19). As in the proof of Theorem 2.7, an easy calculation 

using (13) shows that

H(ǫ) = im (ǫ0v + ǫ1h) = ker
(

ǫ2
0(J + iK) + 2iǫ0ǫ1I + ǫ2

1(J − iK)
)

. (53)

Since the right-hand side is precisely the kernel of the closed 2-form

ǫ2
0 Ω+ + 2iǫ0ǫ1 ΩI + ǫ2

1 Ω−, (54)

this 2-form descends along the map qǫ : X → Zǫ, and defines a symplectic form Ωǫ on 

Zǫ.

In more global terms, the formula (54) defines a twisted relative 2-form on P 1 × X, 

namely a section of the bundle π∗
1(O(2)) ⊗ π∗

2(∧2 T ∗
X). This descends along the quotient 

map q : X → Z to give a twisted relative symplectic form on the twistor space p : Z → P
1. 

By definition, this is the section Ω of the bundle p∗(O(2)) ⊗ ∧2 T ∗
Z/P 1 uniquely defined 

by the condition

q∗(Ω) = ǫ2
0 Ω+ + 2iǫ0ǫ1ΩI + ǫ2

1 Ω−. (55)

From now on we will take the usual embedding C ⊂ P
1 with affine co-ordinate 

ǫ = ǫ1/ǫ0, and write P
1 = C ∪ {∞} with ∞ = [0 : 1]. When ǫ ∈ C ∪ {∞}, the 

twistor fibre Zǫ is the space of leaves of the foliation on X associated to the integrable 

distribution im(hǫ) ⊂ TX , where as before we write hǫ = h + ǫ−1v. On the other hand 

the twistor fibre Z0 is the space of leaves of the foliation on X associated to the vertical 

sub-bundle im(v) = ker(π∗), and is therefore identified with M .

Restricting Ω to a twistor fibre Zǫ gives a complex symplectic form Ωǫ, well-defined 

up to multiplication by a nonzero constant. When ǫ ∈ C
∗ ∪ {∞} we fix this scale by 

taking
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q∗
ǫ (Ωǫ) = ǫ−2 Ω+ + 2iǫ−1 ΩI + Ω−, (56)

whereas for ǫ = 0 we take Ω0 = ω. We then have relations

q∗
0(Ω0) = Ω+, q∗

∞(Ω∞) = Ω−. (57)

Remark 4.1. Unfortunately, to obtain a well-behaved twistor space p : Z → P
1 we cannot 

in general just take the space of leaves of the foliation on P 1 × X. Rather, we should 

consider the holonomy groupoid, which leads to the analytic analogue of a Deligne-

Mumford stack [36]. We will completely ignore these subtleties here, and essentially 

pretend that Z is a complex manifold. In fact, for what we do here, nothing useful would 

be gained by a more abstract point of view, because we are only really using the twistor 

space as a useful and suggestive shorthand. All statements we make about the space 

Z can be easily translated into statements only involving objects on X. For example, 

a symplectic form on the twistor fibre Zǫ is nothing but a closed 2-form on X whose 

kernel coincides with the sub-bundle H(ǫ) ⊂ TX . Similarly, an étale map from the twistor 

fibre Zǫ to some complex manifold Y is just a holomorphic map f : X → Y such that 

ker(f∗) = H(ǫ).

4.2. Twistor space of a Joyce structure

Suppose now that we have a Joyce structure on a complex manifold M and consider 

the associated twistor space p : Z → P
1. Recall the vector field Z on M and the horizontal 

lift E on X. Using the decomposition (50) we can define a vector field on the product 

P
1 × X as the sum

Ẽ = ǫ 
d 

dǫ
+ E. (58)

Lemma 4.2. The vector field Ẽ descends along the quotient map q : P
1 × X → Z.

Proof. Let u be a vector field on M . Writing hǫ(u) = h(u) + ǫ−1v(u) and using (33) we 

have

[

Ẽ, hǫ(u))
]

= [E, h(u)] + ǫ−1[E, v(u)] − ǫ−1v(u)

= h([Z, u]) + ǫ−1v([Z, u]) = hǫ([Z, u]).
(59)

Thus LẼ preserves the sub-bundle Hǫ = ker(qǫ)∗, and the claim follows. �

Let us specialise to the case of a homogeneous Joyce structure. The C∗-action on M

generated by the vector field Z induces a C∗-action on X with generating vector field E

as in Lemma 3.3. Combining this with the standard action of C∗ on P 1 rescaling ǫ with 

weight 1, we can then consider the diagonal action on X ×P
1. It follows from Lemma 4.2
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that this descends to an action on Z. Thus we obtain C∗-actions on each of the spaces 

in the right-hand column of (51), and the vertical maps q and p intertwine these actions.

Since the map p : Z → P
1 is C∗-equivariant, there are at most three distinct twistor 

fibres: Z0, Z1 and Z∞, and as above there is an identification Z0 = M .4 Using the 

definition (19) and the identities (31) we have

LE(Ω+) = 2Ω+, LE(ΩI) = ΩI , LE(Ω−) = 0. (60)

The C∗-action on Z induces a C∗-action on Z0 and it follows from (60) that the sym-

plectic form Ω0 is homogeneous of weight 2 for this action. Similarly there is an induced 

C
∗-action on Z∞, but in this case the symplectic form Ω∞ is invariant.

We can use the C
∗-action to trivialise the map p : Z → P

1 over the open subset 

C
∗ ⊂ P

1. We obtain a commutative diagram

C
∗ × Z1

m

π1

p−1(C∗)

p

Z

p

C
∗ =

C
∗

P
1

(61)

where π1 is the projection onto the first factor, and the isomorphism m is the restriction 

of the action map m : C
∗ × Z → Z.

Consider the map y : C
∗ × X → Z1 given by

y(ǫ, x) = ǫ−1 · q(ǫ, x) = q(1, ǫ−1 · x). (62)

Note that, under the trivialisation (61), the restriction of the twistor line σx : P
1 → Z

becomes the section of π1 given by ǫ → (ǫ, y(ǫ, x)). Let us take a system of integral 

linear co-ordinates (z1, · · · , zn) on M and consider the induced co-ordinates (zi, θj) on 

X = TM as in Section 2.2.

Lemma 4.3. The map y(ǫ, x) satisfies the equation

∂

∂ǫ
y(ǫ, x) =

(

1 

ǫ2
·
∑

i 
zi · ∂

∂θi
+

1

ǫ 
·
∑

i,p,q

ηpq · zi · ∂2W

∂θi∂θp
· ∂

∂θq

)

y(ǫ, x), (63)

Proof. The formula y(ǫ, x) = q(1, ǫ−1 · x) shows that y is invariant under the diagonal 

C
∗-action on X × C

∗, and is therefore annihilated by the vector field

Ẽ =
∑

i 
zi · ∂/∂zi + ǫ · ∂/∂ǫ. (64)

4 Note that, unlike in the case of real hyperkähler manifolds, there is no requirement for an involution of 
the twistor space Z lifting the antipodal map on P 1. In particular, there need be no relation between the 
twistor fibres Z0 and Z∞.
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On the other hand, the formula y(ǫ, x) = ǫ−1 · q(ǫ, x) = ǫ−1 · qǫ(x) shows that y factors 

via the map

1 × qǫ : C
∗ × X → C

∗ × Zǫ. (65)

By definition of the twistor space it is therefore also annihilated by the vector fields 

hǫ(∂/∂zi) = hi + ǫ−1vi. The result then follows from the formulae (5) and (6). �

4.3. Preferred co-ordinates and Stokes data

The definition of a Joyce structure was first identified in [11] by considering an analogy 

between the wall-crossing formula in DT theory and a class of iso-Stokes deformations 

familiar in the theory of Frobenius manifolds. This analogy can be re-expressed in terms 

of the geometry of the twistor space p : Z → P
1, and leads to interesting conjectural 

properties of Z which we attempt to explain here. This section is speculative, and can 

be safely skipped. The basic point is that one should expect preferred systems of co-

ordinates on the twistor fibre Z1, in terms of which the twistor lines, viewed as maps 

C
∗ → Z1 via the trivialisation (61), have good asymptotic properties as ǫ → 0.

Let us fix a point m ∈ M and restrict attention to points x ∈ TM,m ⊂ X. Changing 

the notation slightly, we obtain a family of maps y(ǫ) : TM,m → Z1. Thus for each 

point x ∈ TM,m, the restriction of the twistor line σx : P
1 → Z corresponds under the 

trivialisation (61) to the map ǫ → (ǫ, y(ǫ)(x)). It is then interesting to observe that the 

equation (63) controlling the variation of y(ǫ) is formally analogous to the linear equation

d 

dǫ
y(ǫ) =

(

U

ǫ2
+

V

ǫ 

)

y(ǫ) (66)

occurring in the theory of Frobenius manifolds. In the equation (66) the matrices U and 

V are infinitesimal linear automorphisms of the tangent space TmM at a point m ∈ M

of a Frobenius manifold, whereas the corresponding quantities in (63) are infinitesimal 

automorphisms of the vector space TM,m preserving the linear symplectic form ωm. This 

analogy was the main topic of [11].

Suppose that the matrix U in (66) has distinct eigenvalues ui ∈ C. The Stokes rays 

of the equation (66) are then defined to be the rays ℓij = R>0 · (ui − uj) ⊂ C
∗. A 

result of Balser, Jurkat and Lutz [3] shows that in any half-plane H(ϕ) ⊂ C
∗ centred 

on a non-Stokes ray r = R>0 · exp(iπϕ) ⊂ C
∗, there is a unique fundamental solution 

Φ : H(ϕ) → GLn(C) to (66) satisfying

Φ(ǫ) · exp(U/ǫ) → id as ǫ → 0. (67)

Comparing these canonical solutions for half-planes H(ϕ±) centred on small perturba-

tions r± of a Stokes ray ℓ ⊂ C
∗ defines the Stokes factors S(ℓ) ∈ GLn(C).
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Turning to the equation (63), note that the first term on the right-hand-side is the 

translation-invariant vector field U =
∑

i zi · ∂/∂θi on TM,m corresponding to the value 

Zm ∈ TM,m of the vector field Z defined by the period structure on M . Exponentiating 

this vector field yields well-defined linear automorphisms exp(U/ǫ) of the vector space 

TM,m given in co-ordinates by θi → θi + ǫ−1zi. The above analogy then suggests that 

there should be a countable collection of Stokes rays ℓ ⊂ C
∗, and for any half-plane 

H(ϕ) ⊂ C
∗ centred on a non-Stokes ray r = R>0 ·exp(iπϕ) ⊂ C

∗, a symplectomorphism 

F : Z1 → TM,m, such that Φ(ǫ) := F ◦ y(ǫ) : TM,m → TM,m satisfies5

exp(U/ǫ) ◦ Φ(ǫ) → id as ǫ → 0. (68)

The maps F corresponding to different half-planes H(ϕ) then differ by compositions 

of symplectic automorphisms S(ℓ) ∈ Autωp
(TM,m) associated to rays ℓ ⊂ C

∗. These 

automorphisms S(ℓ) should be viewed as non-linear Stokes factors.

In practice the above analogy should be considered a guiding principle rather than 

a precise statement. In particular we cannot expect the map F to be defined on the 

whole of Z1. Nonetheless the basic point is that once we have chosen a system of integral 

linear co-ordinates (z1, · · · , zn) near the point m ∈ M , there should be preferred systems 

of Darboux co-ordinates (t1, · · · , tn)6 on open subsets of Z1, depending on a choice of 

half-plane H(ϕ) ⊂ C
∗. Given a point x ∈ X with local co-ordinates (zi, θj) these should 

satisfy

ti(y(ǫ)(x)) ∼ −ǫ−1zi + θi + O(ǫ), (69)

as ǫ → 0 in the half-plane H(ϕ).

We observed in Section 3.2 that axiom (J2) of Definition 3.4 implies that the connec-

tions hǫ = h + ǫ−1v descend to the quotient manifold X# = TM /(2πi) T Z
M . We can then 

define a twistor space Z# in exactly the same way as before by considering the space of 

leaves of the resulting foliation on P 1 × X#. We can then repeat the above discussion 

replacing Z1 with Z#
1 and the vector spaces TM,m with the tori

T #
M,m = TM,m/(2πi) T Z

M,m
∼ = (C∗)n. (70)

This leads to an analogy between Frobenius structures and Joyce structures in which 

the group of linear automorphisms of the vector space TM,m is replaced by the group of 

symplectic automorphisms of the torus T #
M,m.

5 The factors in (67) and (68) appear in different orders because we are working in the group of symplectic 
automorphisms of the space C

n rather than the opposite group of Poisson automorphisms of its ring of 
functions: compare [11, Section 6.6].

6 Unfortunately these co-ordinates are usually denoted (x1, · · · , xn) since in certain examples they are 
the logarithms of cluster X co-ordinates. We can only apologise for this excess of x’s.
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5. Further properties of twistor space

Let M be a complex manifold equipped with a Joyce structure. In this section we 

gather some miscellaneous results about the associated twistor space p : Z → P
1 as-

sociated to a Joyce structure. Firstly, we investigate Hamiltonian generating functions 

for the C∗-action on Z∞. Secondly, we observe that the zero section M ⊂ X = TM is 

contracted by the quotient map q∞ : X → Z∞, and hence defines a distinguished point 

0 ∈ Z∞. Structures on the tangent space T0 Z∞ can then be pulled back to give linear 

structures on the tangent bundle TM . Finally we explain an alternative way to describe 

a Joyce structure in terms of local co-ordinates and a generating function.

5.1. Joyce function

From the Cartan formula and (60) we have

diE(Ω−) = LE(Ω−) − iE(dΩ−) = 0. (71)

Let us consider a locally-defined function F on X satisfying dF = −iE(Ω−). Then F

descends along the quotient map q∞ : X → Z∞. Indeed, if a vector field u on X is 

horizontal for the connection h = h∞ then

u(F ) = iu(dF ) = −iuiE(Ω−) = iEiu(Ω−) = 0, (72)

since Ω− = q∗
∞(Ω∞). We call the resulting function F : Z∞ → C, or its pullback to X, 

a Joyce function.7 In the case of a homogeneous Joyce structure, F is a Hamiltonian 

generating function for the symplectic action of C∗ on Z∞.

Note that F is only well-defined up to the addition of a constant. It follows from 

Lemma 5.2 below that the pullback q∗
∞(F ) is constant along the zero section M ⊂

TM = X. We can therefore normalise F by insisting that it vanishes on this locus. 

Assuming that M is connected this is equivalent to the statement that F vanishes on 

the distinguished point 0 ∈ Z∞ of Lemma 5.2. With this normalisation q∗
∞(F ) becomes 

a global function on X.

To write an explicit expression for the Joyce function let us choose a local system of 

co-ordinates on M as in Section 3.4, and denote by W = W (z, θ) the resulting Plebański 

function.

Lemma 5.1. The Joyce function F is given by the expression

F (zi, θj) = v(E)(W ) =
∑

q

zq · ∂W

∂θq
(73)

7 In [11] we used the term Joyce function as a synonym for the Plebański function W of Section 3.4. 
Following [1] we now prefer to use it for the function introduced here, which was also considered by Joyce 
[31].
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Proof. Using (26) and (40), and recalling that Wi = ∂W/∂θi, we have

iE(Ω−) = −
∑

p,q

zq
∂2W

∂θp∂θq
dθp +

∑

p,q

∂2W

∂zp∂θq
(zp dzq − zq dzp)

= −
∑

p,q

zq
∂2W

∂θp∂θq
dθp −

∑

p,q

zq
∂2W

∂zp∂θq
dzp −

∑

q

∂W

∂θq
dzq

= −
∑

p 

( ∂F

∂θp
dθp +

∂F

∂zp
dzp

)

= −dF,

(74)

where we used the homogeneity property (42) in the form 
∑

p zp · ∂W
∂zp

= −W . The 

expression (73) vanishes along the zero section M ⊂ TM = X by the relation (48). �

5.2. Distinguished point of Z∞

In this section we will assume that the base M of our Joyce structure is connected. 

For simplicity we also assume that the Joyce structure is homogeneous, although this is 

not strictly necessary.

Lemma 5.2. The map q∞ : X → Z∞ contracts the zero section M ⊂ X = TM to a single 

point 0 ∈ Z∞ which is a fixed point for the induced C∗-action on Z∞.

Proof. Note that the parity property (43) and the formula (6) imply that along the zero 

section M ⊂ X = TM we have hi = ∂/∂zi. The first claim follows immediately from this. 

The second claim holds because the action of C∗ on X preserves the zero section. �

The operator J : TX → TX maps vertical tangent vectors to horizontal ones, and 

hence identifies the normal bundle to the zero section M ⊂ TM with the tangent bundle 

TM . The derivative of the quotient map q∞ : X → Z∞ identifies this normal bundle 

with the trivial bundle with fibre TZ∞,0. The combination of these two maps gives an 

isomorphism

TM,p
J−→ NM⊂X,p

q∞,∗−→ TZ∞,0, (75)

for each point p ∈ M ⊂ TM , and hence a flat connection on the tangent bundle TM . 

This is the linear Joyce connection from [11, Section 7], which appeared in the original 

paper of Joyce [31]. In co-ordinates it is given by the formula

∇J
∂

∂zi

( ∂

∂zj

)

= −
∑

l,m 
ηlm · ∂3W

∂θi ∂θj ∂θl

∣

∣

∣

θ=0
· ∂

∂zm
. (76)

It was shown in [14, Section 3.2] that ∇J coincides with the Levi-Civita connection of 

the complex hyperkähler structure on X restricted to the zero-section M ⊂ X = TM .
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The following result follows immediately from the definitions.

Lemma 5.3. The weight space decomposition for the action of C∗ on TZ∞,0 defines via the 

identification (75) a decomposition TM
∼ = 

⊕

i∈Z
Vi into ∇J -flat sub-bundles Vi ⊂ TM . �

If the distinguished point 0 ∈ Z∞ is an isolated fixed point for the C∗ action, there 

are some additional consequences described in the following result. An example when 

this condition holds is described in Section 9 below.

Lemma 5.4. Suppose the point 0 ∈ Z∞ is an isolated fixed point for the action of C∗.

(i) The Hessian of the Joyce function F defines a non-degenerate symmetric bilinear 

form on TZ∞,0. Via the identification (75) this induces a metric on M whose Levi-

Civita connection is the linear Joyce connection ∇J .

(ii) The positive and negative weight spaces of the C
∗-action on TZ∞,0 define via the 

identification (75) a decomposition TM = V− ⊕ V+ into ∇J -flat sub-bundles. These 

are Lagrangian for the symplectic form ω.

Proof. Part (i) is immediate from the result of Lemma 5.1 that F is the Hamiltonian for 

the C∗-action on Z∞. For part (ii), note that since Ω− is C∗-invariant, the positive and 

negative weight spaces in TZ∞,0 are Lagrangian for the form Ω−. The result then follows 

by noting that the operator J exchanges the forms Ω− = q∗
∞(ω∞) and Ω+ = π∗(ω), so 

the composite (75) takes the form ωp to Ω∞,0. �

The metric g of Lemma 5.4 is given in co-ordinates by the formula

g
( ∂

∂zi
,

∂

∂zj

)

=
∂2F

∂θi∂θj

∣

∣

∣

θ=0
. (77)

This is the Joyce metric of [11, Section 7], which also appeared in the original paper [31].

5.3. Another Plebański function

In Section 3.4 we described a Joyce structure in local co-ordinates using the Plebański 

function W = W (z, θ). For the sake of completeness we briefly discuss here an alternative 

generating function, also introduced by Plebański [38]. In the literature (see e.g. [18]) 

the function W is called the Plebański function of the second kind, whereas the function 

U introduced below is the Plebański function of the first kind.

Consider a Joyce structure on a complex manifold M . We can introduce local co-

ordinates on X = TM by combining local Darboux co-ordinates (z1, · · · , zn) on the 

twistor fibre Z0 = M as in Section 2.2, with the pullback of local Darboux co-ordinates 

(φ1, · · · , φn) on the twistor fibre Z∞. Then by definition
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Ω+ =
1

2
·
∑

p,q

ωpq · dzp ∧ dzq, Ω− =
1

2
·
∑

p,q

ωpq · dφp ∧ dφq. (78)

To find an expression for ΩI in the co-ordinate system (zi, φj), note that since Z∞ is 

the quotient of X by the distribution spanned by the vector fields hi of (6), we can write

∂

∂zi

∣

∣

∣

∣

φ

=
∂

∂zi

∣

∣

∣

∣

θ

+
∑

p,q

ηpq · ∂2W

∂θi∂θp
· ∂

∂θq
, (79)

where the subscripts indicate which variables are being held fixed. Then

∂

∂zr

∣

∣

∣

∣

φ

(

∑

k

ωksθk

)

=
∂2W

∂θr∂θs
, (80)

and the symmetry of the right-hand side ensures that there is a locally-defined function 

U = U(zi, φj) on X satisfying the equations

∂U

∂zs
=

∑

k

ωksθk, 
∂2U

∂zr∂zs
=

∂2W

∂θr∂θs
. (81)

The formula (25) then becomes

2iΩI = −d
(

∑

p,q

ωpqθp dzq

)

= −
∑

p,q

∂2U

∂φp∂zq
· dφp ∧ dzq. (82)

After restricting to a fibre of π : X → M the formula (26) shows that

∑

p,q

ωpq · dθp ∧ dθq =
∑

p,q

ωpq · dφp ∧ dφq, (83)

which implies that

∑

p,q

ωpq · ∂θp

∂φi
· ∂θq

∂φj
= ωij . (84)

Using (81) we then obtain the relations

∑

r,s 
ηrs · ∂2U

∂φi∂zr
· ∂2U

∂φj∂zs
= −ωij (85)

which are known as Plebański’s first heavenly equations.



T. Bridgeland / Advances in Mathematics 462 (2025) 110089 25

6. Hamiltonian systems

In this section we show how to use a Joyce structure to define a time-dependent Hamil-

tonian system. The construction depends on two additional pieces of data: a cotangent 

bundle structure on Z0, and a Lagrangian submanifold R ⊂ Z∞. We give some motiva-

tion in the next section, where, in the particular case of Joyce structures of class S[A1], 

we relate our Hamiltonian systems to isomonodromy connections.

6.1. Hamiltonian systems

We begin with the following definition.

Definition 6.1. A time-dependent Hamiltonian system consists of the following data:

(i) a submersion f : Y → B with a relative symplectic form Ω ∈ H0(Y, ∧2 T ∗
Y/B),

(ii) a flat, symplectic connection k on f ,

(iii) a section ̟ ∈ H0(Y, f∗(T ∗
B)).

For each vector field u ∈ H0(B, TB) there is an associated function

Hu = (f∗(u), ̟) : Y → C. (86)

There is then a pencil kǫ of symplectic connections on f defined by

kǫ(u) = k(u) + ǫ−1 · Ω♯(dHu). (87)

The system is called strongly-integrable if these connections are all flat.

These definitions become more familiar when expressed in local co-ordinates. Take 

co-ordinates ti on the base B, which we can think of as times, and k-flat Darboux 

co-ordinates (qi, pi) on the fibres of f , so that Ω =
∑

i dqi ∧ dpi. We can then write 

̟ =
∑

i Hi dti and view the functions Hi : Y → C as time-dependent Hamiltonians. 

The connection kǫ is then given by the flows

kǫ

( ∂

∂ti

)

=
∂

∂ti
+

1

ǫ 
·
∑

j

(∂Hi

∂pj

∂

∂qj
− ∂Hi

∂qj

∂

∂pj

)

. (88)

The condition that the system is strongly-integrable is that for all 1 � i, j � n

∑

r,s 

(∂Hi

∂qr
· ∂Hj

∂ps
− ∂Hi

∂qs
· ∂Hj

∂pr

)

= 0, 
∂Hi

∂tj
=

∂Hj

∂ti
. (89)

For a nice exposition of Definition 6.1 see [5, Section 5]. Note that Boalch works in 

the real C∞ setting, whereas we assume, as elsewhere in the paper, that all structures 
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are holomorphic. Note also that Boalch assumes that Y = M × B is a global product, 

with M a fixed symplectic manifold, and k the canonical connection on the projection 

f : M × B → B. We can always reduce to this case by passing to an open subset of Y .

6.2. Hamiltonian systems from Joyce structures

Let M be a complex manifold with a holomorphic symplectic form ω. By a cotangent 

bundle structure on M we mean the data of a complex manifold B and an open embed-

ding M ⊂ T ∗
B , such that ω is the restriction of the canonical symplectic form on T ∗

B. We 

denote by ρ : M → B the induced projection map.

The Liouville 1-form on T ∗B restricts to a 1-form λ ∈ H0(M, T ∗
M ) on the open 

subset M . It will be convenient to distinguish λ from the tautological section β ∈
H0(M, ρ∗(T ∗

B)). The two are identified via the inclusion ρ∗(T ∗
B) →֒ T ∗

M induced by ρ.

Given local co-ordinates (t1, · · · , td) on B, there are induced linear co-ordinates 

(s1, · · · , sd) on the cotangent spaces T ∗
B,b obtained by writing a 1-form as 

∑

i si dti. 

In the resulting co-ordinates (si, tj) on M we have

ω =
∑

i 
dti ∧ dsi, β =

∑

i 
si · ρ∗(dti), λ =

∑

i 
si dti. (90)

Let M be a complex manifold equipped with a Joyce structure. Thus there is a pencil 

of flat, symplectic connections hǫ = h + ǫ−1v on the projection π : X = TM → M , and 

closed 2-forms ΩI and Ω± on X. We denote by p : Z → P
1 the associated twistor space. 

Suppose also given:

(i) a cotangent bundle structure M ⊂ T ∗
B ,

(ii) a Lagrangian submanifold R ⊂ Z∞.

Set Y = q−1
∞ (R) ⊂ X, and denote by i : Y →֒ X the inclusion. There are maps

Y
i

X
π

M
ρ

B (91)

Define p : Y → M and f : Y → B as the composites p = π ◦ i and f = ρ ◦ π ◦ i. We make 

the transversality assumption:

(⋆) For each b ∈ B the restriction of q1 : X → Z1 to the fibre f−1(b) ⊂ Y ⊂ X is étale.

The following result will be proved in the next section.

Theorem 6.2. Given the above data there is a strongly-integrable time-dependent Hamil-

tonian system on the map f : Y → B uniquely specified by the following conditions:

(i) the relative symplectic form Ω is induced by the closed 2-form i∗(2iΩI) on Y ;
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(ii) for each ǫ ∈ C
∗ the connection kǫ on f : Y → B satisfies

im(kǫ) = TY ∩ im(hǫ) ⊂ TX ; (92)

(iii) the Hamiltonian form is ̟ = p∗(β) ∈ H0(Y, f∗(T ∗
B)).

To make condition (iii) more explicit, take a co-ordinates system (t1, · · · , td) on B, 

and extend to a co-ordinate system (si, tj) on M as above. We can also extend to a 

co-ordinate system (ti, qj , pj) on Y as in Section 6.1. Then writing Hi = p∗(si), we have 

̟ =
∑

i Hi · f∗(dti), and

kǫ

( ∂

∂ti

)

=
∂

∂ti
+

1

ǫ 
·
∑

j

(

∂Hi

∂qj

∂

∂pj
− ∂Hi

∂pj

∂

∂qj

)

. (93)

The main claim of Theorem 6.2 is then that the connections kǫ are all flat, so that the 

conditions (89) hold for the Hamiltonians Hi.

6.3. Proof of Theorem 6.2

Take a point y ∈ Y ⊂ X with π(y) = m ∈ M and set b = ρ(m). Given a tangent 

vector u ∈ TB,b let us choose a lift w ∈ TM,m satisfying ρ∗(w) = u. Using the maps 

hǫ, v : π∗(TM ) → TX as in Section 2.2 we then obtain tangent vectors hǫ(w), v(w) ∈ TX,y. 

Recall that hǫ(w) = ǫ−1v(w) + h(w), and note that h(w) ∈ TY,y, since Y = q−1
∞ (R), and 

q∞ contracts the leaves of h = h∞. This implies that for any ǫ ∈ C
∗ the following two 

conditions are equivalent:

(a) v(w) ∈ TY,y ⊂ TX,y,

(b) hǫ(w) ∈ TY,y ⊂ TX,y.

Thus when (b) holds for some ǫ ∈ C
∗ it holds for all such ǫ.

Consider next the transversality statement

(⋆)ǫ The restriction of qǫ : X → Zǫ to the fibre f−1(b) ⊂ Y ⊂ X is étale at the point 

y ∈ Y .

Since the kernel of the derivative of qǫ at the point y ∈ X is the image of hǫ(TM,m), the 

condition (⋆)ǫ is equivalent to

h−1
ǫ (TY,y) ∩ ker(ρ∗) = (0) ⊂ TM,m. (94)

But this is also the condition for the existence of a unique lift w ∈ TM,m satisfying 

condition (b). Thus since we assumed (⋆)ǫ for ǫ = 1, it holds for all ǫ ∈ C
∗.
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We can now construct connections kǫ on π : Y → B for all ǫ ∈ C
∗ by setting kǫ(u) =

hǫ(w), where w is the unique lift satisfying condition (b). In more geometric terms, the 

condition (⋆)ǫ ensures that the map (f, qǫ) : Y → B × Zǫ is étale, and the connection 

kǫ is then pulled back from the trivial connection on the projection B × Zǫ → B. This 

second description shows in particular that the resulting connection kǫ is flat.

The closed 2-form q∗
ǫ (Ωǫ) defines a relative symplectic form on f by the condition 

(⋆ǫ). Recall the identity of closed 2-forms

q∗
ǫ (Ωǫ) = ǫ−2q∗

0(Ω0) + 2iǫ−1ΩI + q∗
∞(Ω∞) (95)

from Section 4. On restricting to Y the last term on the right-hand side vanishes, since 

R ⊂ Z∞ is Lagrangian. On further restricting to a fibre f−1(b) ⊂ Y the first term also 

vanishes, since ρ−1(b) ⊂ M is Lagrangian. Thus for ǫ ∈ C
∗ the forms ǫ ·q∗

ǫ (Ωǫ) define the 

same relative symplectic form Ω on f , and this is also induced by 2iΩI . Note that the 

kernel of the restriction Ωǫ|Y clearly contains the subspace im(kǫ), and hence coincides 

with it. This implies that the connection kǫ on f is symplectic [26, Theorem 4].

Observe next that there is a commutative diagram

TX

−(2iΩI )♭

T ∗
X

TM
ω♭

v

T ∗
M

π∗

(96)

since the relations (13) show that for tangent vectors w1 to M and w2 to X

−2iΩI(v(w1), w2) = −g(2iI(v(w1)), w2) = −2g(v(w1), w2) = g((J + iK)(h(w1)), w2)

= Ω+(h(w1), w2) = (π∗ω)(h(w1), w2) = ω(w1, π∗(w2)).

(97)

The fact that the closed 2-form i∗(2iΩI) induces a relative symplectic form on the 

map f : Y → B is the statement that the composite of the bundle maps

ker(f∗) TY

(2iΩI )♭

T ∗
Y T ∗

Y /f∗(T ∗
B) (98)

is an isomorphism. The relative Hamiltonian flow r corresponding to a function H : Y →
C is then the unique vertical vector field on the map f : Y → B which is mapped to dH

viewed as a section of T ∗
Y /f∗(T ∗

B). In symbols we can write (2iΩI)♭(r) = dH + f∗(α) for 

some covector field α on B.

Consider the canonical section ̟ = p∗(β) ∈ H0(Y, f∗(T ∗
B)). Note that given a vector 

field u ∈ H0(B, TB) the corresponding Hamiltonian Hu = (f∗(u), ̟) = p∗(ρ∗(u), β) on 

Y is pulled back from M . Let us lift u to a vector field w on M as above. Then kǫ(u) =
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hǫ(w) = h(w) + ǫ−1 · v(w). We claim that v(w) is the relative Hamiltonian flow r defined 

by the function Hu. To prove this we must show that the 1-form (2iΩI)♭(v(w))−dHu on 

Y is a pullback from B. By the commutative diagram (96) this is equivalent to showing 

that the 1-form ω♭(w) − d(ρ∗(u), β) on M is a pullback from B.

This final step is perhaps most easily done in local co-ordinates (si, ti) on M as above 

in which β =
∑

i sidti and ω =
∑

i dti ∧ dsi. If we take u = ∂
∂ti

then (ρ∗(u), β) = si and 

the lift w has the form w = ∂
∂ti

+
∑

j aj
∂

∂sj
for locally-defined functions aj : M → C. 

But then ω♭(w) = dsi −
∑

j aj dtj , and since the ti are pulled back via ρ this proves the 

claim. We have now defined the symplectic connections kǫ for ǫ ∈ C
∗ and proved the 

relation (88). We can then define a symplectic connection k = k∞ by the same relation. 

Since the kǫ are flat for all ǫ ∈ C
∗ the relations (89) hold, and it follows that k is also 

flat.

7. Joyce structures of class S[A1]

In this section we discuss an interesting class of examples of Joyce structures. They are 

related to supersymmetric gauge theories of class S[A1], and were first constructed in the 

paper [15]. The base M parameterises pairs (C, Q) consisting of an algebraic curve C of 

some fixed genus g ≥ 2, and a quadratic differential Q ∈ H0(C, ω⊗2
C ) with simple zeroes. 

The generalisation to the case of meromorphic quadratic differential with poles of fixed 

orders will be treated in the forthcoming work [39]. After reviewing the construction of 

these Joyce structures, we relate the twistor fibre Z1 to the associated character variety, 

and the Hamiltonian systems of Section 6 to isomonodromy connections.

7.1. Construction

For each point (C, Q) ∈ M there is a branched double cover p : Σ → C defined 

via the equation y2 = Q(x), and equipped with a covering involution σ : Σ → Σ. Taking 

periods of the form y dx on Σ identifies the tangent space T(C,Q)M with the anti-invariant 

cohomology group H1(Σ, C)−. The intersection pairing on H1(Σ, C)− then induces a 

symplectic form on M , and the dual of the integral homology groups H1(Σ, Z)− defines 

an integral affine structure T Z
M ⊂ TM . There is a natural C∗-action on M which rescales 

the quadratic differential Q with weight 2. Taken together this defines a period structure 

on M .

The usual spectral correspondence associates to a σ-anti-invariant line bundle L on 

Σ, a rank 2 vector bundle E = p∗(L) ⊗ √
ωC on C with a Higgs field Φ. A key ingredient 

in [15] is an extension of this correspondence which relates anti-invariant connections ∂

on L to connections ∇ on E. Given this, we can view the space X# appearing in (30)

as parameterising the data (C, E, ∇, Φ). The pencil of non-linear connections hǫ is then 

obtained by requiring that the monodromy of the connection ∇ − ǫ−1Φ is constant as 

the pair (C, Q) varies.
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To explain the construction in a little more detail, let us fix a parameter ǫ ∈ C
∗ and 

contemplate the following diagram of moduli spaces:

M(C, E, ∇, Φ)

α βǫ

M(C, Q, L, ∂)

π3

M(C, Q, E, ∇ǫ)

π2

ρ′

M(C, E, ∇ǫ)

π1

M(C, Q)
= M(C, Q)

ρ
M(C)

(99)

Each moduli space parameterises the indicated objects, and the maps ρ, ρ′ and πi are 

the obvious projections. The map α is the above-mentioned extension of the spectral 

correspondence, and the map βǫ is defined by the rule

βǫ(C, E, ∇, Φ) = (C, − det(Φ), E, ∇ − ǫ−1Φ). (100)

An important point is that α is birational, and βǫ is generically étale.

Given a point of M = M(C, Q), an anti-invariant line bundle with connection (L, ∂)

on the spectral curve Σ has an associated holonomy representation H1(Σ, Z)− → C
∗. 

This determines (L, ∂) up to an action of the group of 2-torsion line bundles on C. 

We therefore obtain an étale map from M(C, Q, L, ∂) to the space X#. The isomon-

odromy connection on the map π1 is a flat symplectic connection whose leaves consist 

of connections (E, ∇ǫ) with fixed monodromy. Pulling this connection through (99)

gives a family of non-linear symplectic connections hǫ on the projection π : X# → M . 

This gives rise to a meromorphic Joyce structure on M , with the poles arising be-

cause α is only birational rather than an isomorphism, and βǫ is only generically 

étale.

7.2. Twistor space

Consider the twistor space p : Z# → P
1 associated to the Joyce structure of Sec-

tion 7.1. It could be an interesting problem to try to give a direct moduli-theoretic 

construction of this space. For now we can at least describe the fibre Z1 up to an étale 

cover. Note that since these Joyce structures are meromorphic, the connections hǫ are 

only well-defined on the projection π : X0 → M of an open subset X0 ⊂ X = TM . 

We define the twistor fibres as the spaces of leaves of the resulting foliations of 

X0.

Choose a reference surface Sg of genus g, set G = PGL2(C), and define

MCG(g) = π0(Diff+(Sg)), X (g) = Homgrp(π1(Sg), G)/G. (101)
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Then the mapping class group MCG(g) acts on the character stack X (g) in the usual 

way, and sending a quadruple (C, E, ∇) to the monodromy of the connection ∇ defines 

a map

μ : M(C, E, ∇)/J2(C) → X (g)/ MCG(g), (102)

whose fibres are by definition the horizontal leaves of the isomonodromy connection. 

Transferring this map across the diagrams (99), and passing to the leaf space yields an 

étale map

μ : Z#
ǫ → X (g)/ MCG(g). (103)

It would be interesting to test the speculations of Section 4.3 in this context. It has 

been suggested that the appropriate Darboux co-ordinates to consider on the character 

variety X (g) are the Bonahon-Thurston shear co-ordinates [7,21]. Let us instead consider 

spaces of quadratic differentials with poles of fixed orders. The corresponding Joyce 

structures will appear in [39]. It is natural to expect that there is a similar map to 

(103) in which X (g) is replaced with a space of framed local systems [22]. It is then 

expected that the preferred Darboux co-ordinates associated to a general half-plane 

H(ϕ) are the Fock-Goncharov co-ordinates for the WKB triangulation determined by 

the horizontal trajectories of the quadratic differential e−2πiϕ · Q. It follows from the 

work of Gaiotto, Moore and Neitzke [25], and the results of [13], that as ϕ varies these 

satisfy the jumps (76) determined by the DT theory of the corresponding category. The 

asymptotic property (69) should follow from existing results in exact WKB analysis. The 

whole story has been treated in full detail [12] in the special case discussed in Section 9

below.

7.3. Hamiltonian systems

Let us consider the Hamiltonian system of Theorem 6.2 in the case of Joyce structures 

of Section 7.1. Recall that a crucial feature of the construction of these Joyce structures 

is the isomonodromy connection on the map

π1 : M(C, E, ∇1) → M(C), (104)

which is both flat and symplectic. To construct a Hamiltonian system we need a whole 

one-parameter family of such connections. In the notation of Section 6, the isomonodromy 

connection is k1, but we also need the connection k∞ before we can write (87). This issue 

is often a little hidden in the literature because in many examples there is a natural 

choice for the reference connection k∞ which is then taken without further comment. It 

is discussed explicitly in [28], and is also mentioned for example in [6, Remark 7.1].

One way to try to define a Hamiltonian system on the map (104) is to choose for each 

bundle E a distinguished ‘reference’ connection ∇∞. Then we can define a Higgs field 
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Φ = ∇∞ − ∇1 and for ǫ ∈ C
∗ a connection ∇ǫ = ∇∞ − ǫ−1Φ. We can then define kǫ to 

be the isomonodromy connection for the family of connections (E, ∇ǫ). Many interesting 

examples of isomonodromic systems in the literature involve bundles with meromorphic 

connections on a genus 0 curve. Since the generic such bundle E is trivial, it is then 

natural to take ∇∞ = d. But for bundles with connection on higher genus curves there 

is no such canonical choice.

Consider the meromorphic Joyce structures of Section 7.1. Note that the base M =

M(C, Q) has a natural cotangent bundle structure, with B = M(C) being the moduli 

space of curves of genus g, and ρ : M → B the obvious projection ρ : M(C, Q) → M(C). 

Indeed, the tangent spaces to M(C) are the vector spaces TCM(C) = H1(C, TC), and 

Serre duality gives H0(C, ω⊗2
C ) = H1(C, TC)∗. Thus T ∗

B parameterises pairs (C, Q) of a 

curve C together with a quadratic differential Q ∈ H0(C, ω⊗2
C ), and M ⊂ T ∗

B is the open 

subset where Q has simple zeroes.

Let us choose a Lagrangian R ⊂ X (g)/ MCG(g). Pulling back by the étale map 

gives a Lagrangian in Z∞ which we also denote by R. The subspace of the quotient 

X (g)/ MCG(g) consisting of monodromy representations of connections on a fixed bundle 

E is known to be Lagrangian. Then for a generic bundle E we can expect these two 

Lagrangians to meet in a finite set of points, and so locally on the moduli of bundles we 

can define ∇∞ by insisting that its monodromy lies in R.

Using the natural cotangent bundle structure ρ : M → B and the Lagrangian R ⊂
Z∞ we can now apply the construction of Section 6.2 to these examples. We obtain a 

diagram

Y = q−1
∞ (R) 

i

f

M(C, E, ∇, Φ)
β1 M(C, E, ∇1)

π1

M(C)

(105)

where the map β1 is defined by setting ∇1 = ∇ − Φ.

The isomonodromy connection defines a flat connection h1 on the map π1. The Hamil-

tonian system of Theorem 6.2 defines a whole pencil of flat connections kǫ on the map f . 

The transversality assumption ensures that the map β1 ◦ i is étale, and the pullback of 

the connection h1 then coincides with k1. Thus by choosing the Lagrangian R ⊂ Z∞ and 

using it to define reference connections, we have upgraded the isomonodromy connection 

to a Hamiltonian system.

8. The doubled A1 example

In this section we discuss a simple and rather degenerate example of a pre-Joyce 

structure which does not quite satisfy the conditions to be a Joyce structure. It is related 

to the DT theory of the A1 quiver.
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8.1. Pre-Joyce structure

We take M = C
∗ × C with co-ordinates (z, z∨), and consider the total space of the 

tangent bundle X = TM with corresponding co-ordinates (z, z∨, θ, θ∨) as in Section 2.2. 

We define a pre-Joyce structure on M by taking the symplectic form

ω =
1 

2πi
· dz ∧ dz∨, (106)

and the pencil of connections h + ǫ−1v defined by

hǫ

(

∂

∂z

)

=
∂

∂z
+

1

ǫ 
· ∂

∂θ
+

θ

2πiz
· ∂

∂θ∨
, hǫ

(

∂

∂z∨

)

=
∂

∂z∨
+

1

ǫ 
· ∂

∂θ∨
. (107)

The corresponding Plebański function is

W (z, z∨, θ, θ∨) = − θ3

6(2πi)2z
. (108)

The formulae (24) - (26) become

Ω+ =
1 

2πi
· dz ∧ dz∨, 2iΩI =

1 

2πi

(

dθ ∧ dz∨ − dθ∨ ∧ dz
)

, (109)

Ω− =
1 

2πi
· dθ ∧ dθ∨ − θ

(2πi)2z
· dθ ∧ dz. (110)

The above pre-Joyce structure was extracted from the DT theory of the A1 quiver in 

[11, Section 8] by first applying a doubling procedure and then solving the resulting 

Riemann-Hilbert problem. The doubling procedure is required because the Euler form 

of the category is degenerate, and in fact identically zero.

8.2. Period structure

We can define a period structure on M by declaring the co-ordinates (z, z∨) to be 

integral linear. The resulting lattice T Z
M ⊂ TM is spanned by integral linear combinations 

of the vector fields ∂
∂z and ∂

∂z∨ . This is a homogeneous period structure, since the vector 

field

Z = z · ∂

∂z
+ z∨ · ∂

∂z∨
(111)

generates the C∗-action t · (z, z∨) = (tz, tz∨). The inverse η : T ∗
M × T ∗

M → OM of the 

symplectic form ω satisfies η(dz∨, dz) = 2πi.

Combining the above pre-Joyce structure and period structure does not quite yield a 

Joyce structure. The problem is with axiom (J2): the connection (107) is not invariant 

under translations by the lattice (2πi) T Z
M since it depends on θ rather than its exponen-

tial. This problem seems to be related to the doubling procedure referred to above.
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8.3. Alternative co-ordinates

There is another integral affine structure on M with integral affine co-ordinates

v = z, v∨ = z∨ − z

2πi

(

log
( z

2πi

)

− 1

)

. (112)

The associated co-ordinates (v, v∨, φ, φ∨) on X = TM are

φ = θ, φ∨ = θ∨ − θ

2πi
· log

( z

2πi

)

. (113)

In this co-ordinate system the connection hǫ takes the form

hǫ

(

∂

∂v

)

=
∂

∂v
+

1

ǫ 
· ∂

∂φ
, hǫ

(

∂

∂v∨

)

=
∂

∂v∨
+

1

ǫ 
· ∂

∂φ∨
, (114)

and hence the corresponding Plebański function W (v, v∨, φ, φ∨) = 0.

Note however that since

Z = v · ∂

∂v
+

(

v∨ − v

2πi

)

· ∂

∂v∨
, (115)

we cannot combine this integral affine structure with the vector field Z to form a period 

structure.

8.4. First Plebański function

It follows from (114) that the fibre co-ordinates (φ, φ∨) are preserved by the connection 

h = h∞. By (26) they satisfy

Ω− =
1 

2πi
· dφ ∧ dφ∨. (116)

They therefore descend to Darboux co-ordinates on the twistor fibre Z∞. The corre-

sponding first Plebański function defined as in Section 5.3 is

U(z, z∨, φ, φ∨) =
1 

2πi

(

z∨φ − φ∨z +
φz

2πi
− φz

2πi
· log

( z

2πi

)

)

. (117)

It satisfies

∂U

∂z∨
=

θ

2πi
, 

∂U

∂z
=

−θ∨

2πi 
. (118)

The Jacobian matrix has entries
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∂2U

∂z∂φ
= − 1 

2πi
log

( z

2πi

)

, 
∂2U

∂z∨∂φ
=

1 

2πi
= − ∂2U

∂z∂φ∨
, 

∂2U

∂z∨∂φ∨
= 0, (119)

and has determinant −1/(2πi)2 as required by the first Plebański equation (85).

Remark 8.1. In this case the Jacobian matrix (119) is skew-symmetric. This means we 

can find F = F(z, z∨) such that

∂F
∂z

=
∂U

∂φ 
, 

∂F
∂z∨

= − ∂U

∂φ∨
. (120)

Then F is closely related to the prepotential of [11, Section 7]. Explicitly we have

F(z, z∨) =
zz∨

2πi 
− 1 

(2πi)2

(

1

2
z2 log

( z

2πi

)

− 3

4
z2

)

. (121)

9. The A2 example

Here we consider a very interesting Joyce structure which is perhaps the simplest 

non-trivial example. It is related to the DT theory of the A2 quiver, and is an example 

of a Joyce structure of class S[A1]. For more details on this example we refer the reader 

to [12].

9.1. Period structure

The base of the Joyce structure is

M = {(a, b) ∈ C
2 : 4a3 + 27b2 �= 0}. (122)

Associated to a pair (a, b) ∈ M is a quadratic differential

Q0(x) dx⊗2 = (x3 + ax + b) dx⊗2 (123)

on P
1 which has a single pole of order 7 at x = ∞ and simple zeroes. There is an 

associated double cover Σ → P
1 which is the projectivization of the affine elliptic curve 

y2 = x3 + ax + b.

Take a basis of cycles (γ1, γ2) ⊂ H1(Σ, Z) with intersection γ1 · γ2 = 1. We shall need 

the periods and quasi-periods of the elliptic curve Σ. They are given by

ωi =

∫

γi

dx

2y
, ηi = −

∫

γi

x dx

2y
, (124)

and satisfy the Legendre relation ω2η1 − ω1η2 = 2πi.
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There are local co-ordinates on M given by

zi =

∫

γi

y dx =

∫

γi

√

x3 + ax + b dx, (125)

and relations

∂

∂a
= −η1

∂

∂z1
− η2

∂

∂z2
, 

∂

∂b
= ω1

∂

∂z1
+ ω2

∂

∂z2
. (126)

We define a period structure on M by declaring (z1, z2) to be the integral linear 

co-ordinates. We take the symplectic form

ω = − 1 

2πi
dz1 ∧ dz2 = da ∧ db. (127)

Note that the inverse satisfies

η
(

dz1, dz2

)

= 2πi (128)

and so axiom (J1) of Definition 3.4 is satisfied.

The Euler vector field is

Z = z1
∂

∂z1
+ z2

∂

∂z2
=

4a

5 

∂

∂a
+

6b

5 

∂

∂b
. (129)

Note that Z does not generate a C∗ action on M . In fact the moduli space of quadratic 

differentials of the form (123) is the quotient M/μ5, where the group μ5 ⊂ C
∗ acts via 

ζ · (a, b) = (ζ4a, ζ6b). The vector field Z generates an action of C∗ on this quotient.

9.2. Joyce structure

We have local co-ordinates (zi, θj) on the tangent bundle X = TM . We consider the 

quotient X# = TM /(2πi) T Z
M . The fibre over a point (a, b) ∈ M is the cohomology group 

H1(Σ, C
∗) ∼ = (C∗)2. We introduce some alternative co-ordinates on X# by the relation

θi = −
∫

γi

(

p 

x − q
+ r

)

dx

2y
, (130)

where p2 = q3 + aq + b and r ∈ C. The integral is well-defined up to multiples of 2πi. 

The numbers ξi = exp(θi) are the holonomies of a connection on the line bundle on Σ

with divisor (q, p) − ∞.

In terms of the fibre co-ordinates (θa, θb) associated to the co-ordinates (a, b) we then 

have
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θi = −ηiθa + ωiθb. (131)

The functions (θa, θb) are given explicitly by

θa = −1

4

(q,p) 
∫

(q,−p)

dx

y
, θb =

1

4

(q,p) 
∫

(q,−p)

xdx

y
− r. (132)

The Joyce structure on X = TM is obtained by taking the connection hǫ given by

hǫ

(

∂

∂a

)

= −2p

ǫ 

∂

∂q
− q

ǫ 

∂

∂r
+

(

∂

∂a
− r

p

∂

∂q
− r2(3q2 + a) − qpr

2p3

∂

∂r

)

, (133)

hǫ

(

∂

∂b

)

= −1

ǫ 

∂

∂r
+

(

∂

∂b
+

r

2p2

∂

∂r

)

. (134)

This is the isomonodromy connection for a pencil of connections ∇ − ǫ−1Φ on the 

trivial rank 2 bundle on P 1 with

∇ = d −
(

r 0
0 −r

)

dx

2p 
, Φ =

(

p x2 + xq + q2 + a
x − q −p

)

dx. (135)

Equivalently we can consider the deformed cubic oscillator

y′′(x) = Q(x)y(x), Q(x) = ǫ−2Q0(x) + ǫ−1Q1(x) + Q2(x), (136)

where the terms in the potential are

Q1(x) =
p 

x − q
+ r, Q2(x) =

3 

4(x − q)2
+

r

2p(x − q)
+

r2

4p2
. (137)

There is a rational expression for the Plebański function

W =
1 

4(4a3 + 27b2)p

(

2apr3 − (6aq2 − 9bq + 4a2)r2 − 3p(3b − 2aq)r − 2ap2
)

, (138)

although note that this does not satisfy the second of the normalisation conditions (48). 

In other words, the uniquely-defined Plebański function of Lemma 3.4 differs from the 

above expression by a function of the form 
∑

i ai(z) · θi.

9.3. Further properties

In the co-ordinates (a, b, q, r) the Euler vector field E is

E =
4a

5 

∂

∂a
+

6b

5 

∂

∂b
+

2q

5 

∂

∂q
+

r

5

∂

∂r
. (139)
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The expressions (126) and (131) and a short calculation using (132) gives

2iΩI = −da ∧ dθb + db ∧ dθa = dq ∧ dp + da ∧ dr. (140)

The twistor fibre Z∞ is the space of leaves of the foliation defined by the connection 

h = h∞. The functions

φ1 = q +
ar

p 
, φ2 =

r

2p
, (141)

descend to Z∞ because they are constant along the flows (133) and (134) with ǫ = ∞. 

Moreover, if we restrict to a fibre F of the projection π : X = TM → M by fixing (a, b), 

then

− 1 

2πi
· dθ1 ∧ dθ2

∣

∣

F
= dθa ∧ dθb

∣

∣

F
= −dr

2p
∧ dq

∣

∣

F
= dφ1 ∧ dφ2

∣

∣

F
. (142)

Thus we have

Ω∞ = dφ1 ∧ dφ2. (143)

The first Plebański function U : X → C of Appendix 5.3 is given by

U =
1

2

(q,p) 
∫

(q,−p)

(x3 + ax + b)1/2 dx, (144)

because a simple calculation using the flows (133) and (134) shows that

∂U

∂b 

∣

∣

∣

∣

φ

= h
( ∂

∂b

)

U = −θa, 
∂U

∂a 

∣

∣

∣

∣

φ

= h
( ∂

∂a

)

U = θb. (145)

Since the C∗-action rescales φ1 and φ2 with weights −2
5 and 2

5 respectively, we have

iE(Ω∞) = iE(dφ1 ∧ dφ2) =
2

5
d(φ1φ2). (146)

The Joyce function F of Section 5.1 is given by

F =
1

5
(1 − 2φ1φ2), (147)

where for the constant normalisation we used the limiting behaviour of q, p, r along the 

zero section M ⊂ TM as discussed in [12, Section 4.3].

The distinguished fixed point of Z∞ is defined by (φ1, φ2) = (0, ∞). It is an isolated 

fixed point. The linear Joyce connection on M is the one whose flat co-ordinates are 
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(a, b), and the negative and positive weight spaces V− and V+ of Lemma 5.4 are spanned 

by ∂
∂a and ∂

∂b respectively. The Joyce metric is

g =
1

5
· (da ⊗ db + db ⊗ da). (148)
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