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Abstract

Diffusion Models (DMs) iteratively denoise random samples to produce high-quality data.
The iterative sampling process is derived from Stochastic Differential Equations (SDEs),
allowing a speed-quality trade-off chosen at inference. Another advantage of sampling
with differential equations is exact likelihood computation. These likelihoods have been
used to rank unconditional DMs and for out-of-domain classification. Despite the many
existing and possible uses of DM likelihoods, the distinct properties captured are unknown,
especially in conditional contexts such as Text-To-Image (TTI) or Text-To-Speech synthesis
(TTS). Surprisingly, we find that TTS DM likelihoods are agnostic to the text input. TTI
likelihood is more expressive but cannot discern confounding prompts. Our results show
that applying DMs to conditional tasks reveals inconsistencies and strengthens claims that
the properties of DM likelihood are unknown. This impact sheds light on the previously
unknown nature of DM likelihoods. Although conditional DMs maximise likelihood, the
likelihood in question is not as sensitive to the conditioning input as one expects. This
investigation provides a new point-of-view on diffusion likelihoods.

Keywords: Diffusion models, score-based generative modelling, likelihood

1. Introduction

DMs learn to estimate a data distribution that can be sampled from, specifically through
estimating the noise of an iterative denoising diffusion process. This training scheme can
be seen as Variational Lower Bound (VLB) maximization (Ho et al., 2020; Yang et al.,
2023). A desirable feature of DMs is exact likelihood computation, where the likelihood of
samples appearing in a data distribution can be calculated. Likelihood is predominantly
used as an objective evaluation metric for sample quality. Although DMs are popular for
text-guided synthesis, only unconditional tasks such as image-synthesis have focussed on
likelihood. There is limited analysis on whether likelihood is a useful feature for conditional
models, as used for TTI and TTS. Considering that DMs aim to maximize likelihood,
learning what properties the likelihood has provides valuable research. This paper forms
an initial survey on how likelihoods can be used in conditional scenarios and reviews any
unexpected behaviour observed. We explore Stable Diffusion XL (SDXL) (Podell et al.,
2023), a TTI model that uses Classifier-Free Guidance (CFG) (Ho and Salimans, 2022)
to generate images that depict text-prompts, and Grad-TTS (Popov et al., 2021), a TTS
model that uses a Mean-Reverting Variance-Preserving (MR-VP) SDE to synthesise speech
given a transcript. An acceptable assumption is that a conditional likelihood is a function
that is sensitive to the input data. We test this assumption through a series of experiments
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on both models, and find that, for both conditioning mechanisms, there is a lack of insight
as to how a conditional likelihood works. For example, SDXL likelihood cannot reliably
pair images and captions. For Grad-TTS, we find likelihood is attributed voice quality and
clean audio, but not inteligibility, leading to cases where audio sounds clean and the target
speakers voice is correctly synthesised, but the speech is unintelligible.

2. Background

2.1. Diffusion models

DMs are usually viewed as denoisers. They are formulated as a Markovian process (Sohl-
Dickstein et al., 2015; Ho et al., 2020), or with SDEs (Song et al., 2021b), as demonstrated
in this study. A DM models a diffusion process from prior distribution pT (X) to data
distribution p0(X). Given a forward noising process from t = 0 to t = T where T is the
terminal time-step, it is possible to transform a data sample X0 (e.g. an image or Mel-
spectrogram) to a Gaussian sample XT through a SDE (Eq. 1) with drift F(·) w.r.t. t and
diffusion g(·) w.r.t. the Wiener process W.

dX = F(X, t)dt+ g(t)dW (1)

Eq. 1 is expressed by the following reverse-SDE when running backwards in time (Anderson,
1982)

dX = [F(X, t)− g(t)2∇X log pt(X)]dt+ g(t)dŴ (2)

The gradient of the log-density ∇X log pt(X) is intractable, so it is estimated with a score-
model Sθ(·), a neural network trained with score matching (Hyvärinen, 2005; Song et al.,
2019; Vincent, 2011). Song et al. (2021b) find that there is a deterministic counterpart to
a reverse SDE 2, named a probability flow Ordinary Differential Equation (ODE) (Eq. 3a)

dX = [F(X, t)−
1

2
g(t)2∇X log pt(X)]dt (3a)

Hθ(X, t) = F(X, t)−
1

2
g(t)2Sθ(X, t) (3b)

For inference, a trained score-model is used (Eq. 3b). The formulation of Hθ(X, t) is an
example of a Neural ODE (NODE) (Chen et al., 2019). The connection with NODEs allows
exact likelihood computation of the ODE/SDE, which is the focus of this paper (Further
addressed in Section 3). Given that pT (XT ) is similar to Gaussian noise, one can sample a
Gaussian distribution and predict a real-sample X0 with a probability flow ODE (Eq. 3b).

2.2. Grad-TTS

Grad-TTS (Popov et al., 2021) is a TTS model that forms initial distributions centred on
text encodings Eθ(y) and applies a diffusion decoder to denoise into Mel-spectrograms.
Grad-TTS uses a linear noise schedule (Eq. 4) and an MR-VP SDE (Eq. 5) with ODE
equivalent (Eq. 6).

β(t) = β0 + (βT − β0)t (4)

dX =
1

2
(Eθ(y)−X)β(t)dt+

√

β(t)dW (5)
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dX =
1

2
((Eθ(y)−X)− Sθ(X, t,Eθ(y)))β(t)dt (6)

The MR-VP SDE method used for modelling the conditional distribution p0(X|y) is differ-
ent to CFG. Unlike CFG, there is no weighting parameter to control conditioning. We aim
to clarify such differences in conditional methods. We experiment with this model as it is
the first DM for Mel-spectrogram decoding.

2.3. Stable diffusion XL

SDXL is a latent DM for TTI that boasts the highest Parti Prompts score.1 It performs
efficient sampling by processing images through a pretrained encoder and applying DM
training within the latent space. The score estimator is a conditional U-Net (Ronneberger
et al., 2015) that takes image latent Xt and OpenCLIP/CLIP text embeddings (Radford
et al., 2021; Ilharco et al., 2021). In this work, we denote any network that encodes text y
as Eθ(·). Although SDXL was trained on multiple image sizes, sample quality is best for
1024× 1024. SDXL uses a sub-linear noise-schedule,

β(t) = (
√

β0 + (
√

βT −
√

β0)t)
2 (7)

which is a time-dependant function that controls how much noise is added at each time-step.
The cumulative perturbation of β(t), known as denoising diffusion implicit sampling (Song
et al., 2022), is given by

σ(t) =

√

1− ᾱ(t)

ᾱ(t)
(8)

where ᾱ(t) = Πt
s=0α(s) and α(t) = 1− β(t). leading to the following ODE

dX = Sθ

(

X
√

σ(t)2 + 1
, t,Eθ(y)

)

dσ(t) (9)

We refer readers to Song et al. (2022, 2021b) for the variance-exploding SDE that Eq. 9 is
derived from. To generate images that depict text prompts, CFG (Eq. 10) (Ho and Sali-
mans, 2022) is used to condition model outputs on the text input by mixing the conditional
(Eθ(y)) and unconditional (0) model outputs

Sθ(X, t,Eθ(y))
(ω) = Sθ(X, t,0) + ω[Sθ(X, t,Eθ(y))− Sθ(X, t,0)] (10)

This introduces a guidance scale parameter ω that controls the weight of the conditional
output. Although increasing guidance improves sample accuracy, it trades sample quality.
It is assumed that CFG models a conditional distribution p0(X|y), but the nuances of this
assumption are clarified in this paper (Section 4.2). We choose this model as it is the most
accessible large TTI DM at the time of writing.

1. At the time of writing, SDXL has a score of 33%, 11% higher than the next best model. https:

//huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard
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3. Diffusion likelihood computation

Albeit the lack of investigation into exact DM likelihoods, they are extensively applied in
numerous contexts.2 Exact DM likelihood is computed with the instantaneous change-of-
variables formula (Chen et al., 2019; Grathwohl et al., 2018):

log p0(X0) = log pT (XT ) +

∫ T

0
∇ ·Hθ(X, t)dt (11)

WhereHθ is a probability flow ODE (Eq. 3b). Computing the exact divergence∇·Hθ(Xt, t)
is intractable, but can be estimated with the Skilling-Hutchinson trace estimator (Skilling,
1989; Hutchinson, 1989).

∇ ·Hθ(X, t) = Ep(ϵ)[ϵ
⊤∇Hθ(X, t)ϵ] (12)

where ϵ is a random variable. The divergence integral
∫ T

0 ∇ · Hθ(X, t)dt can be solved
with a black-box ODE solver e.g. dopri5/RK45 (Dormand and Prince, 1980). Many ODE
solvers are efficiently implemented with torchdiffeq Chen et al. (2019). With a trained
score-model, the likelihood log p0(X0) is exact and can be used to measure the likelihood
of a generated sample X0.

The relationship between likelihood and sample quality can be ambiguous (Theis et al.,
2016). There is a trend for likelihood-based models that improve likelihood degrading other
evaluation metrics e.g. Fréchet Inception Distance (FID), without degrading visual quality
(Song et al., 2021a). Although important for evaluation, likelihood theory has alternatively
been used for improved training and other tasks. Popov et al. and Song et al. use a
likelihood-weighted upper bound to train models with better likelihood. Lu et al. estimate
the likelihood to formulate high-order score matching, they stress the lack of understanding
of log p0(X0) yet produce good samples by maximising likelihood. DM likelihoods can be
applied to other tasks such as determining if a sample was used in training (membership
inference (Hu and Pang, 2023)) and out-of-domain detection (Graham et al., 2023). Popov
et al. evaluate Grad-TTS with likelihood, but it is left unspecified whether this likelihood
is conditional to the input text or not.

The implications of using conditional probability flow ODEs (Eq. 10; 6) are under-
explored. This paper provides empirical confirmation on the current state of conditional
DM likelihoods. Conditional likelihoods should correlate to high quality samples, but also
compatibility between the generated sample and the conditioning signal. Although this
assumption is intuitive, we demonstrate DM likelihood does not reflect compatibility as
expected.

Diffusion classifiers show that VLB performs well on conditional tasks. Image classifi-
cation with DMs is alternative task that DMs have been applied to (Li et al., 2023; Clark
and Jaini, 2023). Diffusion classifiers use VLB as a proxy for likelihood to speed up compu-
tation. Although they have impractical inference time, they are useful for diagnosing DMs,
such as textual robustness. Nevertheless, there is no agreed definition for likelihood e.g.
is it likelihood that a sample is from the training set? Is it the likelihood that a sample
belongs to a given class? As there is no standard interpretation of what likelihood means,
hence we explore the properties of likelihood.

2. The use of “exact” is used to distinguish from lower and upper bounds, in practice we use an estimation
of the “exact” likelihood.
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4. Experiments

4.1. Text-to-speech

The datasets we consider are the validation sets of LJSpeech (Ito and Johnson, 2017) and
TED-LIUM (Rousseau et al., 2012). The LJSpeech split contains around 1 hour of audio-
books read from a US-English female speaker. The TED-LIUM split contains around 3 hours
of male speakers and 1 hour of female speaker TED conference audio. To observe how likeli-
hood changes during the denoising diffusion process, we generate the LJSpeech set and mea-
sure likelihood at 8 equally-spaced intervals of t, we expect that likelihood increases as t de-
creases. We measure likelihood in Bits-Per-Dimension (BPD), − log p(X) log2 exp ·(Πidi)

−1,
where d is the shape ofX. Lower BPD means higher likelihood. Table 1 shows that although
likelihood increases as XT is denoised into data X0, the effect on other metrics is surpris-
ing. Mel-Cepstral Distortion (MCD) is a measure of how different two Mel-cepstra (audio

Table 1: Quantitative assessment of Grad-TTS from time 1 to 0.

Metric Ref
Time

1.00 0.88 0.75 0.62 0.50 0.38 0.25 0.12 0.00

BPD ↓ -0.06 2.79 2.79 2.79 2.79 2.77 2.72 2.55 1.35 -0.08
LogF0 ↓ 0.00 0.28 0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.27
MCD ↓ 0.00 6.52 6.52 6.52 6.50 6.47 6.43 6.39 6.34 6.31
WER ↓ 0.03 0.08 0.08 0.08 0.09 0.08 0.10 0.13 0.16 0.19
ASV ↑ 1.00 0.74 0.74 0.73 0.73 0.74 0.75 0.78 0.84 0.86

features) are from each other (Kominek et al., 2008).3 We note the root mean squared error
of the log fundamental frequencies as “LogF0”, this measures pitch/intonation accuracy.4

Word Error Rate (WER) is the ratio of transcription errors to the number of words; to
measure intelligibility we calculate the WER of the transcript generated by the Automatic
Speech Recognition (ASR) foundation model Whisper (Radford et al., 2022). We measure
speaker similarity (ASV) by comparing the cosine similarity between embeddings from the
speaker verification foundation model Titanet (Koluguri et al., 2021). Likelihood is corre-
lated to ASV, marginally with MCD, but not LogF0. WER increases as likelihood improves.
The results suggest that composition between the source text and hypothesis utterance5 is
modelled by the encoder Eθ(·), and the diffusion decoder does not model the exact likeli-
hood between text and speech p0(X|y). We verify this through an ASR decoder rescoring
experiment on LJSpeech. An ASR pipeline generates a list of hypothesis transcripts for a
given utterance, which are scored by a weighted combination of an Acoustic model (AM)
score and a language model score to find the best transcription. We view this pipeline as
a diagnostic tool for how well Grad-TTS likelihoods can measure speech/text compatibil-
ity. We replace the AM score with Grad-TTS likelihoods and execute standard hypothesis
rescoring techniques (Kahn et al., 2022). We test a wav2vec2 model finetuned on 10 minutes
of audiobook data (Panayotov et al., 2015), and Whisper (Table 2). In all cases, the DM

3. We calculate MCD with the method presented in ESPnet (Gao et al., 2023)
4. For reference, Tacotron 2 and Fastspeech 2 achieve 0.26 and 0.24 LogF0 respectively (Ren et al., 2022).
5. The ASR output

5
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Table 2: WER% ↓ of n-best list rescoring strategies including Grad-TTS.

AM Model AM Score Grad-TTS LL Oracle Best Oracle worst Random

wav2vec2 13.3 19.6 10.5 29.0 20.2
Whisper 3.3 4.7 1.5 7.2 4.3

likelihoods yield a worse score than the AM, although better than the oracle worst for both
AMs.6 This suggests that the likelihoods may have some sensitivity to textual changes
but lack an expressive linguistic representation. To survey how DM likelihood interacts
with intelligibility and speaker quality, we employ Grad-TTS to adapt TED-LIUM live-talk
data (Rousseau et al., 2012) to aid an ASR model trained on audiobooks. ASR models
perform worse when the acoustic properties differ between train and test data. We pass
the spectrogram through a Gaussian blur with kernel 5 and σ = 1, simulating text encoder
output N (X) ≈ Eθ(y).

7 The forward ODE is used to calculate XT , X0 is produced with
the reverse ODE thereafter. Given that Grad-TTS is trained on LJSpeech, the newly gen-
erated X0 will be acoustically similar to the data the ASR model was trained on. WER will
be reduced if Grad-TTS can successfully adapt between live-talk and audiobook domains.
We experiment with both Euler and RK45 solvers (Table 3). The Euler method produces

Table 3: Quantitative assessment of cross-domain adaptation with Grad-TTS.

ODE sampler Metric

Forward Reverse WER ↓ BPD ↓ ASV ↑

None None 0.46 1.66 0.52
Euler Euler 0.94 -1.47 0.66
RK45 Euler 0.57 6.92 0.54
RK45 RK45 0.57 1.83 0.55

unintelligible audio, yet has high speaker similarity and improved likelihood (BPD). The
RK45 sampler degrades intelligibility to a lesser degree than Euler, but speaker adaptation
is negligible. The trend is that greater shift towards the LJSpeech speaker (ASV increases)
produces less intelligible audio (WER increases).

4.2. Text-to-image

Datasets considered are PACS (Li et al., 2017), a domain generalisation dataset that in-
cludes images of 9 classes in 4 domains (photo, art, cartoon, sketch) and CLEVR (Johnson
et al., 2017), a diagnostic dataset containing synthetic images of 3 3D objects of 8 colours.
We use images generated from Lewis et al. (2023) e.g. a “red sphere” (Figure 1(a)). We
use a subset of CLEVR consisting of single objects. For both datasets we repeat each

6. Although Grad-TTS performs better than random for the wav2vec2 hypothesis list, this result is in-
significant for an 82% confidence interval with the matched-pairs significance test (Gillick and Cox,
1989).

7. This method is further explained in Appendix A
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class-domain/shape-colour pair 20 times. Images are resized to 5122/10242. We report the
likelihood of SDXL, where we use CFG to generate PACS. We compute FID and CLIP sim-
ilarity to measure image quality and compatibility respectively (Table 4.2). FID measures

Table 4: The SDXL generative process from t = 1 to 0 with CFG=7 at 1024 resolution.

Metric Data
Time

1.00 0.75 0.50 0.25 0.00

BPD ↓ -0.17 0.07 0.08 -0.08 -0.12 -0.08
FID ↓ 0.00 478.91 369.91 225.89 221.40 229.08
CLIP ↑ 29.50 22.72 23.49 28.10 27.97 28.16

the distance between real and synthetic image distributions. CLIP measures the compat-
ibility between prompts and images. These metrics can be related to MCD and WER in
the TTS experiment. Similar to Table 1, FID and BPD both decrease, suggesting that the
generative process improves sample quality and likelihood with respect to t. Although there
is a clear trend that FID does decrease over time, it is higher than typical.8 It is assumed
that this is because SDXL was trained on more data than PACS, thus generating many
samples absent in the PACS dataset. Unlike Grad-TTS, the conditional metric (CLIP)
improves, showing that CFG expresses a more conditional likelihood than the MR-VP SDE
that used by Grad-TTS. Table 5 shows setting a higher CFG scale intuitively produces

Table 5: Impacts of CFG, reconstruction (-R) and image sizes.

Metric Data
CFG Size-Reconstruct

0.00 3.00 5.00 7.00 512 512-R 1024 1024-R

BPD ↓ -0.17 -0.04 -0.05 -0.07 -0.08 0.02 -0.01 0.07 -0.01
FID ↓ 0.00 300.98 249.67 227.14 229.08 406.39 406.26 478.91 480.34
CLIP ↑ 29.50 23.16 26.70 27.68 28.16 22.73 22.75 22.72 22.71

higher-likelihood samples. To measure how the generative process is intertwined with likeli-
hood, we apply the forward process then backward process to an image producing an image
similar to the original but with features more consistent to synthetic images. We dub this
operation reconstruction.9 Reconstruction increases likelihood without affecting other met-
rics, revealing inconsistency (Table 5). Lastly, we investigated visual-language reasoning,
an important ability for TTI models. We are interested in observing whether DM likeli-
hood can correctly match images to captions from a list of compositionally confounding
captions. Although diffusion classifiers show that this is possible with proxy-likelihoods,
can the same be said with exact likelihood? We evaluate the ability to discern objects on
CLEVR. For each image, we present all confounding prompts e.g. the correct prompt is
“a photo of a red sphere” but instead “a photo of a red cube” is provided. Accuracy is
calculated based on the number of correct captions that were given the highest likelihood.
We confound both colour and shape, but not at the same time. Correspondingly, we are

8. The DM in Song et al. (2021b) yields 2.92 FID on CIFAR-10.
9. An example is given in Appendix C
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(a) (b)

Figure 1: Example data from CLEVR (a) and PACS (b)

interested in other visual-language concepts. Complementary to the CLEVR experiment,
we use PACS to measure the likelihood sensitivity to object vs domain changes e.g. a photo
of a horse (Figure 1(b)). The results are shown in Table 6. It can be seen that the scores

Table 6: Prompt accuracy on CLEVR and PACS

Params CLEVR PACS

Reconstruct CFG Colour Shape Class Domain

✗ 0 12 33 86 50
3 0 33 0 0
5 25 33 0 0

✓ 0 38 33 14 0
3 12 0 14 0
5 12 0 0 0

Random 12 33 11 25
CLIP-score 63 67 100 100

are unexpectedly low. We also provide scores from random selection and when selecting
captions with the highest CLIP score. The results on CLEVR are comparable to random
choice, when reconstruction is used, shape accuracy is reduced. SDXL performs better on
PACS without reconstruction and guidance. This is anomalous behaviour since the rest of
the PACS results are typically 0% accuracy.

5. Conclusion

Given that DMs are trained to maximise the VLB of likelihood, it is important to understand
the nuances of this exact likelihood. This is especially true for conditional tasks where
the conditional likelihood is often modelled implicitly, such as with a MR-VP SDE, or
with CFG. We show that any reasonable assumptions should by verified as the task and
conditional ODE used has substantial impact on the nature of DM likelihood. For Grad-
TTS, the MR-VP SDE likelihood models speaker characteristics and smooth spectrograms,
but not features of language. Such findings are contrary to what one would expect for a

8
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probabilistic conditional process between speech and text. For SDXL, CFG does appear to
model prompt-faithful image generation, but exact likelihood from SDXL cannot be used for
prompt classification. This is inconsistent with the concept of Diffusion Classifiers that use
lower bounds on likelihood for classification. Hence, we quantitatively show a current lack
of understanding of DM likelihood. This paper represents introductory evidence that more
attention should be placed in experiments and theoretical understanding in DM likelihood,
especially on conditional tasks.

Limitations

This paper intends to demonstrate the potential adverse effects of introducing (implicit)
conditioning mechanisms into frameworks originally studied for unconditional modelling.
This paper does not provide any theoretical explanations to the unexpected behaviour
observed, nor are any new explicit conditional likelihood methods derived. This paper has
only explored two types of conitional generation, and only with their respective “iconic”
model, whether this generalises to all diffusion models is unknown. Diffusion models are
an instance of a continuous normalizing flow, a natural extension is to observe if other
continuous normalizing flows e.g. flow-matching models exhibit the same behaviour.
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Appendix A. Grad-TTS encoder and decoder output

(a) (b)

Figure 2: Grad-TTS encoder output (a) and decoder output (b). The encoder produces
intelligible spectrograms, and the decoder removes distortion and encourages
speaker characteristics. The fact that the encoder output is similar to distorted
spectrograms is core to the unsupervised domain adaptation method in Table 3
where blurry spectrograms are treated as input to the diffusion decoder.
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Appendix B. Additional tables

Table 7: Various metrics during the generative process over time. The image distribution
quality (FID) and prompt accuracy (CLIP) improve, as does the likelihood (BPD).
The best results are found at 1024 resolution with a high guidance scale.

pipe 1.00 0.75 0.50 0.25 0.00

CFG height r BPD FID CLIP BPD FID CLIP BPD FID CLIP BPD FID CLIP BPD FID CLIP

0 512 ✗ 0.02 417.58 22.58 0.02 399.30 23.62 -0.01 310.19 22.68 -0.01 308.96 22.23 -0.01 310.24 22.55

3 512 0.02 412.40 22.60 0.02 391.65 23.90 -0.01 280.20 23.75 -0.02 279.52 23.45 -0.01 278.99 23.66

5 512 0.02 409.33 22.67 0.02 378.74 24.18 -0.02 268.82 24.36 -0.02 268.72 23.95 -0.02 264.01 24.35

7 512 0.02 406.39 22.73 0.02 373.26 24.31 -0.02 257.55 24.63 -0.03 257.93 24.31 -0.02 257.00 24.56

0 512 ✓ 0.01 417.80 22.58 0.00 399.60 23.61 -0.01 309.89 22.65 -0.02 308.74 22.23 -0.01 311.61 22.57

3 512 -0.00 412.18 22.60 -0.00 392.58 23.93 -0.02 282.78 23.87 -0.02 278.91 23.47 -0.02 280.99 23.67

5 512 -0.01 408.25 22.68 -0.01 374.78 24.19 -0.02 269.79 24.41 -0.03 266.02 24.08 -0.02 265.90 24.28

7 512 -0.01 406.26 22.75 -0.01 373.70 24.31 -0.02 256.47 24.63 -0.03 256.94 24.36 -0.02 259.19 24.66

0 1024 ✗ 0.07 478.22 22.59 0.08 418.89 21.98 -0.04 300.59 23.00 -0.06 309.11 22.99 -0.04 300.98 23.16

3 1024 0.07 478.30 22.65 0.08 399.29 22.51 -0.05 245.04 26.55 -0.08 251.32 26.59 -0.05 249.67 26.70

5 1024 0.07 478.65 22.70 0.08 380.89 23.04 -0.07 231.44 27.72 -0.10 232.38 27.69 -0.07 227.14 27.68

7 1024 0.07 478.91 22.72 0.08 369.91 23.49 -0.08 225.89 28.10 -0.12 221.40 27.97 -0.08 229.08 28.16

0 1024 ✓ 0.06 478.22 22.59 0.08 418.82 21.97 -0.04 300.53 23.02 -0.06 308.12 22.99 -0.04 301.76 23.17

3 1024 0.05 479.91 22.65 0.03 402.99 22.49 -0.06 252.33 26.55 -0.09 263.05 26.60 -0.06 255.12 26.77

5 1024 0.02 480.88 22.68 0.00 384.40 23.01 -0.07 239.35 27.69 -0.11 241.89 27.66 -0.07 235.62 27.73

7 1024 -0.01 480.34 22.71 -0.01 375.69 23.43 -0.09 231.81 27.96 -0.13 228.23 27.95 -0.09 234.73 28.10

Appendix C. SDXL Images

(a) (b)

Figure 3: A source image (a) and a reconstructed image (b), with caption “panda eating
cake”. The panda and orientation are preserved but the domain has changed.
The cake has been absorbed.
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