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Abstract. We present a version of O’Neill’s theorem (Theorem 5.2 in
O’Neill in Am J Math 75(3):497–509, 1953) for piecewise linear approx-
imations.
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1. Introduction

Theorem 5.2 of Ref. [6] asserts that if f is a continuous function from a
topological polyhedron to itself, C is a component of the set of fixed points
of f, U is a Euclidean neighborhood of C containing no other fixed points of f,

r1, . . . , rk are integers whose sum is the fixed-point index of C, and x1, . . . , xk

are distinct points of C, then there is a map arbitrarily close to f whose fixed
points in U are x1, . . . , xk, with the fixed-point index of each xi being ri.

This note establishes a version of this result in the PL category. Specifically:
(i) we allow for the polyhedron to be a subset of a topological manifold,
and not homeomorphic to an Euclidean neighborhood; (ii) we weaken the
restriction that the component C be in the interior of the polyhedron and,
consequently, have to allow for the xi’s to be arbitrarily close to it; (iii) we
add the restriction that the manifold be the space of a simplicial complex and
that the approximating function be piecewise linear; (iv) in order to obtain a
regularity property for fixed points, we insist that they be interior points—
barycenters, even—of full-dimensional simplices and that the displacement
map of the approximating function be a homeomorphism locally around these
fixed points, if the ri’s are ±1.

Our interest in this problem was motivated by its intended use in game
theory. Nash equilibria of games obtain as fixed points of self maps on strat-
egy spaces. It is a frequent (and robust) feature of games that components of
equilibria lie on the boundary of the strategy space, which prompts the weak-
ening of O’Neill’s condition sub (ii) above. Also, fixed-point problems arising
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from games have a special structure, since the payoff functions of games are
multilinear. Hence, perturbations of a given fixed-point map associated with
a game have to satisfy certain conditions if they are to be associated with
fixed points of games, prompting us to investigate a multilinear version of
O’Neill’s theorem for games (see Ref. [2] for details). This paper presents
a linear version of the problem, where a stronger result is possible, and is
possibly of wider interest as well.

2. Statement of the theorem

We first set a few notational conventions and recall some definitions that will
be required for the statement of the main theorem (Theorem 2.1) and its
proof.

2.1. (Notational) conventions

For ζ > 0, define Bζ(x) to be the ball around x with radius ζ. The symbol idX

denotes the identity map on the set X. Given A ⊆ R
n and a map f : A → R

n,

df (x) ≡ x−f(x). Let X ⊂ R
n be compact, and f, g : X → R

n two continuous
maps, we denote ‖f − g‖ ≡ supx∈X‖f(x) − g(x)‖p, where ‖ · ‖p denotes the
ℓp-norm in R

n. Unless explicitly stated otherwise, we will assume that p = 2
and will omit the subscript p for notational convenience. If C ⊆ R

n, x ∈ R
n,

let d(x, C) ≡ infy∈C‖x − y‖.

2.2. Triangulations, polyhedra and pseudomanifolds

Our terminology and notation for polyhedral complexes is mostly standard.
In particular, we follow the convention of piecewise linear topology according
to which a map from X ⊂ R

m to R
n is linear if it is the restriction to X of

a map that is affine in the sense of linear algebra, i.e., the composition of a
linear transformation and a translation.

As always, a polytope P ⊂ R
m is the convex hull of a finite set of

points; an equivalent definition is that a polytope is an intersection of finitely
many closed half-spaces that happens to be bounded, hence compact. The
dimension of P is the dimension of its affine hull. The faces of P are P, the
empty face, and the intersections of P with the boundaries of closed half-
spaces that contain P ; faces other than P are proper. A (finite, bounded)
polyhedral complex Z in R

m is a finite collection of polytopes that contains
each face of each of its elements, such that the intersection of any two of its
elements is a face of both. If Y is a subset of Z that contains each of the
faces of each of its elements, then Y is a subcomplex of Z. For n = 0, . . . , m,

let Zn be the set of n-dimensional elements of Z. Elements of Z0 are vertices
of Z. The dimension of Z is the largest n such that Zn �= ∅. The mesh of
Z is the maximum of the diameters of the elements of Z. The space of Z is
|Z| =

⋃
P∈Z P. A set P ⊂ R

m is a polyhedron if it is the space of a polyhedral
complex, and its dimension is the dimension of any such complex.

A simplicial complex S in R
m is a polyhedral complex whose elements

are all simplices. We say that S is a triangulation of |S|. The carrier ∆(x) of
x ∈ |S| in S is the smallest element of S that contains x, so it is the unique
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element of S whose interior contains x. If Z is a simplicial complex, we say
that Y is a subdivision of Z if Y is a simplicial complex with |Y | = |Z|, and
every simplex of Z is the union of simplices of Y.

When X is the space of a subcomplex of Z, we write Z(X) to denote
the subcomplex of Z composed by the simplices of Z which are contained in
X.

If S, T are simplicial complexes, a function f : |S| → |T | is simplicial
(relative to the triangulations S and T ) if, for each σ ∈ S, there is a τ ∈ T

such that f maps each vertex of σ to a vertex of τ and the restriction of f

to σ is linear. If P ⊂ R
m and Q ⊂ R

ℓ are polyhedra, a function f : P → Q

is piecewise linear (PL) if there are simplicial subdivisions S of P and T

of Q with respect to which f is simplicial. A sufficient condition for this
(Theorem 2.14 of Ref. [7]) is that there is a simplicial subdivision S of P

such that the restriction of f to each σ ∈ S is linear.
A polyhedron of homogeneous dimension n is a polyhedron P that is the

union of finitely many n-dimensional simplices, provided that the intersection
of any two of the n-dimensional simplices is a (possibly empty) common face
of both. The collection of the n-dimensional simplices together with all their
faces then constitute a triangulation of P. If T is a triangulation of P, then
∂P is the union of those τ ∈ Tn−1 that are a face of exactly one σ ∈ Tn;
evidently ∂P is a polyhedron of homogeneous dimension n − 1.

A polyhedron P of homogeneous dimension n is an n-pseudomanifold,
provided the following hold for some triangulation T of P :

(1) Every element of Tn−1 is a face of at most two elements of Tn;
(2) For any two n-simplices σ, σ′ ∈ T there is a finite chain σ = σ1, . . . , σk =

σ′ of simplices in Tn such that σi ∩ σi+1 ∈ Tn−1.

2.3. Statement of the result

Let (Y, ∂Y ) be a topological n-manifold with ∂Y denoting its boundary and
assume Y ⊆ R

m for some finite m > 0. Let (X, ∂X) be an n-pseudomanifold
with boundary ∂X with X ⊆ Y. Suppose Y is a polyhedron of homogenous
dimension n with triangulation T, and X is the space of a subcomplex of Y of
homogenous dimension n, as well. We can assume without loss of generality
that m ≥ n + 1, by embedding Y in a Euclidean space of dimension larger
than n, when m = n. Let S ≡ T (X). Let f : X → Y be a continuous function
satisfying the following assumptions: (A) either f has no fixed points on the
boundary of X in Y, or f(X) ⊆ X; (B) the map f has a unique connected
component of fixed points (cf. Remark 2.3 for a generalization). Thanks to
assumption (A) about f, C has a well-defined index, call it c. Let U be a
neighborhood of C in X with closure denoted Ū .

Theorem 2.1. For every ε0 > 0, there exists δ0 > 0 such that for each 0 <

δ ≤ δ0 and each finite collection of points x1, . . . , xk and integers r1, . . . , rk

such that: (a) for each 1 ≤ i ≤ k, xi belongs to the interior of an n-simplex
of S, and d(xi, C) < δ, and (b)

∑
i ri = c, there exist subdivisions S∗ and T ∗

of S and T, resp., and a simplicial map h∗ : |S∗| → |T ∗| such that:

(1) ‖f − h∗‖ < ε0;
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(2) h∗(X) ⊆ X, if f(X) ⊆ X;
(3) the only fixed points of h∗ in Ū are the xi’s, and the index of each xi is

ri;
(4) for each i such that ri ∈ {−1,+1 }, there exist simplices σi ∈ S∗ and

τi ∈ T ∗ such that:
(a) σi ⊂ τi and xi is the barycenter of both σi and τi;
(b) h∗ maps σi homeomorphically onto τi.

Remark 2.2. The triangulation T ∗ can be chosen such that X is the space of a
subcomplex of T ∗. Also, S∗ can be chosen such that outside of a neighborhood
of the xi’s, it subdivides the triangulation T ∗(X). Apparently, we are unable
to get the stronger condition that S∗ subdivides the triangulation induced
by T ∗.

Remark 2.3. If the map f has finitely many connected components of fixed
points C1, . . . , Ck (for example, if f is semialgebraic), the proof of Theo-
rem 2.1 applies with insignificant modifications in order to obtain a simplicial
approximation g of f where the result stated in Theorem 2.1 holds for each
Ci.

Remark 2.4. When comparing Theorem 2.1 with Theorem 5.2 in Ref. [6], our
statement, ignoring the PL structure and applying it to triangulable mani-
folds, provides a couple of generalizations. First, Theorem 2.1 allows for fixed-
point components to intersect the boundary of X in Y, whereas in O’Neill,
a fixed point component is located in the interior of the pseudomanifold X.

Second, we allow for a pseudomanifold X that is the subset of a topological
manifold of the same dimension as X and contained in a Euclidean space,
while O’Neill requires X to be homeomorphic to a Euclidean neighborhood.
When the first case occurs, then f(X) ⊆ X, by our assumption on f, and the
index is well defined (explicitly, by the trace formula of O’Neill).

3. Auxiliary results

Lemma 3.1. Let τ be a n-simplex in R
m with barycenter x and let c be an

integer. There exists an n-simplex σ ⊂ τ with x as a barycenter and a PL
map h : σ → τ such that x is the unique fixed point of h and its index is c.

Furthermore, if c ∈ {−1,+1 }, h can be chosen to be an affine homeomor-
phism.

Proof. Consider first the case where |c| �= 1. We can assume without loss of
generality that m = n and x = 0. Take δ > 0 such that ℓ1-distance between
0 and ∂τ is greater than 2δ. Letting B ⊂ τ be the ℓ1-ball of radius δ around
0, it is sufficient to construct a PL function h : B → τ such that 0 is the
unique fixed point of h and its index is c. We can further reduce the problem
to the case n = 2: intersect τ (and B) with the linear subspace H of R

n

consisting of points where the last n − 2 coordinates are zero. If we have a
PL function h : H ∩ B → H ∩ τ where the index of 0 is c, we can extend it
to B by composing it with the projection from B to H ∩ B. The point 0 still
has index c under the extension.
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By the choice of δ, the problem is solved if we can find a PL function
d : B → B—to serve as the displacement of h—such that 0 is the only zero
of d and has degree c. The case c = 0 is obvious: map 0 to 0, the boundary of
B to some constant on ∂B and all other points by linear interpolation. Fix
now c such that |c| > 1. The ℓ1-ball B can be triangulated as the union of
four triangles (one in each orthant). Subdivide each of the triangles into |c|
triangles all of which having 0 as a vertex. There now exists a PL map from
B to itself that sends each of the 4c triangles of the subdivision to one of the
triangles of B and that has degree c.

For the case |c| = 1, the lemma requires h to be an affine homeomor-
phism, so we approach the problem slightly differently. Let w0, . . . , wn be the
vertices of τ. Take a simplex σ ⊂ τ of diameter less than δ, that has x as the
barycenter, and is such that, letting v0, . . . , vn be the vertex set of σ, there
is λ > 1 for which wi = x + λ(vi − x) for all i.

For any permutation π : {0, . . . , n} → {0, . . . , n}, we can define an affine
homeomorphism fπ : σ → τ that sends vi to wπ(i). Obviously x is the only
fixed point of fπ. By virtue of the assumptions on σ, there is a retraction
r : τ → σ that sends wi to vi for each i, and that is affine on each face of
τ. For a permutation π, x is also an isolated fixed point under fπ ◦ r and its
index is the same under fπ and fπ ◦ r.

Suppose π is a cyclic permutation where the only cycle involves all n+1
elements. Then, the index of x under fπ is +1 as under fπ ◦r it is the unique
fixed point. To obtain a fixed point of index −1, consider a permutation π

that leaves, say, 0 fixed, and is cyclic on the others. Under the map fπ ◦ r,

there are three fixed points, w0, x, and the barycenter of the face opposite
w0. The index of the first and the last fixed points is +1, assigning x an index
of −1. �

Lemma 3.2. Let T̂ be a triangulation of Y. Let {xi}
k
i=1 be a subset of Y, with

each xi contained in the interior of a simplex τi ∈ T̂n. For each δ > 0, there
exists a triangulation T̃ of Y that subdivides T̂ and satisfies the following:

(1) The mesh of T̃ is less than δ;

(2) For each i = 1, . . . , k, there exist n-simplices σi ∈ T̃ and τi ∈ T̂ with
σi ⊂ τi, xi the barycenter of σi.

Proof. For each i = 1, . . . , k, consider an n-simplex σi ⊂ int(τi) with diam-
eter less than δ that has xi as a barycenter. For each i, take a polyhedral
subdivision Pi of τi that has σi as an n-dimensional polyhedron, without
introducing new vertices in τi beyond those of σi and τi. There exists a trian-
gulation T̂ ′

i of τi which subdivides Pi, without introducing new vertices (cf.

Proposition 2.9 in Ref. [7]). The simplices of the triangulation T̂ ′
i , for each i,

together with the other simplices of the triangulation T̂ , form a triangulation
T̂ ′ of Y. Now iterating sufficiently many times the barycentric subdivision of
T̂ ′ modulo ∪iσi, (cf. [10]), we obtain a triangulation T̃ that subdivides T̂ ′ and

has mesh less than δ as well. The triangulation T̃ satisfies both requirements
of the lemma. �
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Lemma 3.3. Let T̂ be a triangulation of Y and let σ ∈ T̂n. Let Ŝ be any
triangulation of σ. There exists a triangulation T̃ of Y that subdivides T̂ such
that T̃ (σ) = Ŝ and the simplices of T̂ that are disjoint from σ are simplices

of T̃ .

Proof. Let Ŝ be the collection of simplices in Ŝ that are contained in maximal
proper faces of σ. Let T̂ be the collection of simplices in T̂ that intersect σ

but are not contained in σ. Let T̂0 = { τ ∈ T̂ | τ ∩ σ = ∅, τ ⊂ ̺ ∈ T̂ }.

Let f ∈ Ŝ and assume ̺ ∈ T̂ contains f. The convex closure of f with any
simplex in T0 ∩̺ is a simplex. Taking the convex closure of simplices in ̺∩ Ŝ

and in T̂0 ∩ ̺ produces a triangulation of ̺, which adds no vertices to the
faces ̺ that are not contained in σ. The simplices of Ŝ, the simplices obtained
by the triangulation just defined in the simplices of T̂ and simplices of the
triangulation T̂ which do not intersect σ, define the triangulation T̃ of the
statement. �

We say the triangulation T̃ from Lemma 3.3 extends the triangulation
Ŝ from σ to Y.

Definition 3.4. A fiber bundle (with fiber F) is a tuple (E, B, F, p) where:

(1) p : E → B is a continuous surjective map from the total space E to the
base space B ;

(2) For each x ∈ B, there exists a neighborhood U ⊆ B of x such that
hx : p−1(U) → U × F is a homeomorphism that satisfies p = p1 ◦ hx,

where p1 is the projection over the first coordinate.

Two fiber bundles (Ē, B̄, F̄ , p̄) and (E, B, F, p) are isomorphic if there
exist homeomorphisms h̄ : Ē → E and h : B̄ → B such that h ◦ p̄ = p ◦ h̄.

The fiber bundle (E, B, F, p) is trivial if E = B × F and p is the projection
over the first coordinate. For notational convenience, we will say that a fiber
bundle is trivial if it is isomorphic to a trivial bundle.

Definition 3.5. A n-microbundle over the base space B is a tuple (E, B, e, p)
where e : B → E and p : E → B are continuous maps such that:

(1) p ◦ e = idB ;
(2) For every b ∈ B, there are a neighborhood U ⊆ B of b and a neigh-

borhood V ⊆ E of e(b) such that e(U) ⊆ V, p(V ) ⊆ U and hV : V →
U × Bn

1 (0) a homeomorphism satisfying: (i) p1 ◦ hV = p|V , and (ii)
h ◦ e|U = i, where i : B → B × Bn

1 (0), i(b) ≡ (b, 0) and p1 is the
projection over the first coordinate.

Let Y ∗ = Y ⊔∂Y Y be the compact, connected, n-dimensional, boundary-
less topological manifold containing Y, obtained by attaching Y with itself
along its boundary. Let p1 be the natural projection from Y ∗ × Y ∗ to its
first factor. Let ∆ = { (y, y) ∈ Y ∗ × Y ∗ }. Let D : Y ∗ → Y ∗ × Y ∗ be the
diagonal map, which sends x ∈ Y ∗ to (x, x) ∈ ∆. For each δ > 0, let Bδ(∆)
be the set of (x, y) ∈ Y ∗ × Y ∗ such that ‖x − y‖ ≤ δ. Let Bn

1 (0) be the
unit ball of R

n. Given open sets V in Y ∗ × Y ∗ and U in Y , we say that a
homeomorphism h : V → U × Bn

1 (0) is trivializing for D if h ◦ D(x) = (x, 0).
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We say h is trivializing for p1 if p1 = q1 ◦ h, where q1 : Y ∗ × Bn
1 (0) → Y ∗ is

the projection over the first coordinate.
The n-microbundle (Y ∗ ×Y ∗, Y ∗, D, p1) is called the tangent microbun-

dle of Y ∗ (see Example (iii) in Chapter 14 of Ref. [9] or Ref. [5]).

Lemma 3.6. For each δ > 0, there exists a neighborhood Zδ of ∆ in Bδ(∆)
such that the restriction of p1 to Zδ is a fiber bundle (Zδ, Y

∗, Bn
1 (0), p1|Zδ

).

Proof. We start by constructing a microbundle (Oδ, Y
∗, D, p1) where Oδ ⊂

Bδ(∆). Consider the tangent microbundle of Y ∗. For each x ∈ Y ∗, there exist
an open neighborhood Ux ⊂ Y ∗ of x, an open neighborhood Vx ⊂ Y ∗ × Y ∗

of (x, x) and a trivializing homeomorphism hx : Vx → Ux × Bn
1 (0) for both

the diagonal map D and the projection p1. By compactness of ∆, there exist

finitely many x1, . . . , xk such that
⋃k

i=1 Vxi
is a neighborhood of the diagonal

∆. For each xi, there exists λi > 0, such that h−1
xi

(Uxi
× Bn

λi
(0)) ⊂ Bδ(∆).

Take λ = mini{λi} and let Wi ≡ h−1
xi

(Uxi
× Bn

λ (0)) ⊂ Bδ(∆). The union
Oδ ≡

⋃
i Wi is, therefore, a microbundle such that Oδ ⊂ Bδ(∆). Applying

the Kister–Mazur Theorem (Theorem 2 in Ref. [4]), we obtain a neighbor-
hood Zδ ⊂ Oδ of the diagonal ∆ such that (Zδ, Y

∗, Bn
1 (0), p1|Zδ

) is a fiber
bundle. �

We now present the final auxiliary result which will be used in the proof
of Theorem 2.1. The result is known (see, for example, Corollary 2.6 in Ref.
[1]).

Lemma 3.7. Let (E, B, F, p) be a fiber bundle over a paracompact and con-
tractible space B. Then, (E, B, F, p) is trivial.

4. Proof of Theorem 2.1

With preparations complete, we proceed to the proof of Theorem 2.1 per
se. Let W ⊂ Y ∗ be a neighborhood of Y for which there exists a retraction
rY : W → Y. There exists δ̃ > 0 such that the δ̃-neighborhood Y (δ̃) around

Y in Y ∗ is contained in W and the δ̃-neighborhood X(δ̃) around X in Y ∗

retracts to X. We denote this retraction by rX for notational convenience.
Define ℓX : [0, δ̃] → R+ by the maximum of ‖x − rX(x)‖ over all x ∈ Y ∗

such that d(x, X) ≤ δ. If else, define ℓY : [0, δ̃] → R+ by the maximum
of ‖x − rY (x)‖ over all x ∈ W such that d(x, Y ) ≤ δ. Observe that for
∗ ∈ {X, Y }, ℓ∗ is continuous and ℓ∗(0) = 0. For δ > 0, denote by Bδ(C) the
δ-neighborhood around C in R

m.

Let ε0 > 0. By continuity of ℓ∗(·), ∗ ∈ {X, Y }, choose δ̄ > 0 sufficiently
small such that ℓ∗(δ̄) + δ̄ < ε0. Fix δ0 > 0 such that

Graph(f) ∩ (Bδ0
(C) × Y ) ⊂ Zδ̄. (0)

Fix any δ ∈ (0, δ0) and choose points x1, . . . , xk in the interior of n-simplices
of S with d(xi, C) < δ. Let r1, . . . , rk be integers such that

∑
ri = c.

Apply now the Hopf Approximation Theorem (Theorem 2.5, Appen-
dix C in Ref. [3]) to obtain two subdivisions T0 and S0 of T, with S0 a
subdivision of T0, and a simplicial map g : |S0(X)| → |T0| such that:
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(1) ∀x ∈ X, d(f(x), g(x)) < δ̄;
(2) g(X) ⊆ X if f(X) ⊆ X;
(3) Graph(g) ∩ (Bδ(C) × Y ) ⊂ Zδ̄;
(4) g has finitely many fixed points, each of which is contained in the interior

of an n-simplex in S0(X);
(5) The boundary of Bδ(C)∩X in X has no fixed points of g and the index

of g over Bδ(C) is c;
(6) All fixed points of g are contained in Bδ(C).

Let F (g) be the set of fixed points of g in Bδ(C). Consider an open neigh-

borhood V ⊂ X \∂X of F (g)∪
⋃k

i=1{xi} that is contractible and contained in
Bδ(C)∩ (X \∂X). Using the fact that V is contractible, Lemmas 3.6 and 3.7
imply that the restriction of p1|Zδ̄

to Zδ̄|V ≡ (p1|Zδ̄
)−1(V ) defines the trivial

bundle (Zδ̄|V , V, Bn
1 (0), p1). Therefore, letting q1 : V ×Bn

1 (0) → V be the nat-
ural projection on the first factor, there exists a homeomorphism ϕ : Zδ̄|V →
V ×Bn

1 (0) such that p1|Zδ̄|V = q1 ◦ϕ. We note that Graph(g|V ) ⊂ Zδ̄|V (from
(3) above). The restriction of ϕ to the x-section (Zδ̄|V )x = {(x, y) ∈ Zδ̄|V }
is a homeomorphism with {x}×Bn

1 (0). Let now (hx)x∈Bn
1
(0) be a continuous

family of homeomorphisms from Bn
1 (0) to itself, such that hx sends x to 0;

let ϕ2 be the coordinate map of ϕ mapping to Bn
1 (0). We can now define

ψ : Zδ̄|V → V × Bn
1 (0) by (x, y) �→ (x, hϕ2(x,y) ◦ ϕ2(x, y)); this is a homeo-

morphism that sends (y, y) to y ×{0}. Letting Z∗
δ̄
|V ≡ Zδ̄|V −{∆}, it follows

that ψ|Z∗

δ̄
|V is a homeomorphism Z∗

δ̄
|V → V × (Bn

1 (0) − {0}).

Let δ1 > 0 be such that the set-distance d(V, ∂X) > δ1 and mini�=j

d(xi, xj) ≥ 3δ1. Let δ2 > 0 be such that for each i = 1, . . . , k, any n-simplex
τi with barycenter at xi and diameter less than δ2 is contained in V and is
such that τi × τi ⊂ Zδ̄. Consider now a closed connected neighborhood B of
F (g) ∪

⋃
i{xi} that is contained in the interior of V. Let d(∂V, B) ≥ δ3 > 0.

Fix η ≡ min{δ1, δ2, δ3}. Lemma 3.2 now gives a simplicial subdivision T1 of
T0 with mesh less than η such that each xi is the barycenter of an n-simplex
τi ∈ T1. Our choice of η implies that the collection of simplices τi is pairwise
disjoint. Let P be the closed star of B with respect to T1. The set P is a
orientable, connected n-pseudomanifold with boundary ∂P (with associated
triangulation T1(P )) contained in V.

For each i, using Lemma 3.1 in each τi, we obtain a n-simplex σi ⊆ τi

and a PL map hi : σi → τi such that xi is the barycenter of both σi and τi,

and the only fixed point of hi, with index ri. Take now a subdivision T2 of
T1 that has each σi as an n-simplex of T2 if |ri| = 1. Using Theorem 2.14 in

Ref. [7], there exist for each i for which |ri| �= 1, simplicial subdivisions Ŝ(σi)

and T̂ (τi) of σi and τi, such that hi : |Ŝ(σi)| → |T̂ (τi)| is simplicial. Using

Lemma 3.3, there exist subdivisions Ŝ of T2 and T̂ of T1 that extend Ŝ(σ1)

and T̂ (τ1). Since σ2 and τ2 are disjoint from σ1 and τ1, respectively, the same

lemma guarantees that σ2 is an n-simplex of Ŝ, and τ2 an n-simplex of T̂ .

This observation applied iteratively together with Lemma 3.3 implies there
exists a subdivision Ŝ2 of T2 and T̂2 of T1 such that for each i = 1, . . . , k, Ŝ2

extends the triangulation Ŝ(σi) and T̂2 extends the triangulation T̂ (σi). For

notational convenience we drop the subscripts of T̂2 and Ŝ2 and refer to these
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triangulations only as T̂ and Ŝ. Note that if |ri| = 1, then we can assume

that σi ∈ Ŝn and τi ∈ T̂n.

Define q : ∂P ∪
⋃

i σi → Y ∗ by q|∂P ≡ g|∂P and for each i = 1, . . . , k,

q|σi
≡ hi. Let Q = P \

⋃
xi∈V (σi \ ∂σi). The set Q is a connected, orientable,

n-pseudomanifold with boundary ∂Q = ∂P ∪
⋃

xi∈V ∂σi. Define now a map

dq : ∂Q → Bn
1 (0) − {0} by d(x) = q2(ψ(x, q(x))), where q2 is the projection

on the second factor. Clearly, the degree of d is zero. By the Hopf Extension
Theorem (Corollary 18, Chapter 8 in Ref. [8]), dq extends to a map over
Q, still denoted dq. This defines a map h : Q → Y ∗ by letting h(x) =
p2(ψ

−1(x, dq(x))), where p2 is the projection on the second factor.

The graph of h is guaranteed to be in Bδ̄(∆) but not in Q×Y, so, from
h we now construct another map whose graph is in Q×Y. Since Graph(h) ⊂
Z∗

δ̄
|V ⊂ Bδ̄(∆), if h(x) ∈ Y ∗\Y, then it follows that h(x) ∈ Y (δ̄); if f(X) ⊂ X,

then we have that h(x) ∈ X(δ̄). In the latter case, define ĥX : Q → Y

by ĥ = rX ◦ h; in the former case, let ĥY = rY ◦ h. Therefore, we have

that for each x ∈ Q ⊂ V ⊂ X \ ∂X, if f(X) ⊆ X, then ĥX(Q) ⊆ X and

‖x − ĥX(x)‖ ≤ ℓX(δ̄) + δ̄; if else, ‖x − ĥY (x)‖ ≤ ℓY (δ̄) + δ̄. In either case, we

can extend the map ĥ∗, ∗ ∈ {X, Y } to a map over X by letting it be equal to

g everywhere on X \ P, denoting the extension still by ĥ∗.

For notational convenience, because the proofs in the two cases (f(X) ⊆
X and f(X) �⊂ X) are equal, we will omit the subscripts X and Y from ℓX

and ℓY , as well as from ĥX and ĥY , writing only ℓ and ĥ.

Recall that: (i) P ⊂ V ⊂ Bδ(C)∩ (X \∂X), so, from (0), Graph(f |P ) ⊂

Zδ̄ ⊂ Bδ̄(∆), which implies that ‖f |P − idP ‖ ≤ δ̄; (ii) ‖idQ − ĥ|Q‖ ≤ ℓ(δ̄)+ δ̄;

(iii) for each i, since τi × τi ⊂ Zδ̄ ⊂ Bδ̄(∆), then ‖idσi
− ĥ|σi

‖ ≤ δ̄. Since

P = Q ∪
⋃

i σi, (i)–(iii) imply ‖f |P − ĥ|P ‖ ≤ ℓ(δ̄) + 2δ̄. In X \ P, the map

ĥ equals g, and therefore, from (1), ‖f |X\P − ĥ|X\P ‖ ≤ δ̄. Hence, we have

‖f − ĥ‖ ≤ ℓ(δ̄) + 2δ̄.

Note now that by construction ĥ has no fixed points in X \
⋃

i(σi \∂σi).

Since this is a compact set, let 0 < α < δ̄ be such that ‖x − ĥ(x)‖ > 3α for

all x ∈ X \
⋃

i(σi \ ∂σi). By Lemma 3.2, we can take a subdivision T ∗ of T̂

such that:

(1) The diameter of each simplex is less than α;
(2) for each i, τi is the space of a subcomplex T ∗(τi) of T ∗;
(3) For each i for which |ri| = 1, there is a full-dimensional simplex τ∗

i of
T ∗ that has xi as its barycenter.

Recall that, for each i, the map ĥ|σi
= hi : σi → τi is simplicial by

construction w.r.t. to triangulations Ŝ(σi) of σi and T̂ (τi) of τi. Since T ∗(τi)

is a subdivision of T̂ (τi), by Lemma 2.16 in Ref. [7], there exists, for each i,

a subdivision S∗(σi) of Ŝ(σi) such that ĥ|σi
: |S∗(σi)| → |T ∗| is simplicial for

each i. When ri = ±1, as ĥ|σi
is an affine homeomorphism to τ∗

i , the simplex
σ∗

i of S∗(σi) that maps to τ∗
i has xi as the barycenter for each such i. As

before, applying Lemma 3.3 recursively for i = 1, . . . , k, we can extend the
triangulation S∗(∪iσi) to a triangulation Ŝ∗ of X. Using now the Theorem
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and Addendum in Ref. [10], we can consider a sufficiently fine barycentric

subdivision S∗ of Ŝ∗ modulo S∗(∪iσi) and a simplicial map h∗ : |S∗| → |T ∗|

such that the restriction of h∗ to ∪iσi equals ĥ and ‖h∗ − ĥ‖ < 2α. It is easily
verified that h∗ has all the stated properties of the theorem.
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