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Implementing robust quantum error correc-
tion (QEC) is imperative for harnessing the
promise of quantum technologies. We intro-
duce a framework that takes any classical code
and explicitly constructs the corresponding
QEC code. Our framework can be seen to gen-
eralize the CSS codes, and goes beyond the sta-
bilizer formalism (Fig. 1). A concrete advan-
tage is that the desirable properties of a clas-
sical code are automatically incorporated in
the design of the resulting quantum code. We
reify the theory by various illustrations some of
which outperform the best previous construc-
tions. We then introduce a local quantum spin-
chain Hamiltonian whose ground space we an-
alytically completely characterize. We utilize
our framework to demonstrate that the ground
space contains explicit quantum codes with lin-
ear distance. This side-steps the Bravyi-Terhal
no-go theorem.

Overview

In a way information is an ultimate basic entity in Na-
ture. It is the information content that gives rise to
the vast complexity of the physical world even though
all known matter is built from a few subatomic par-
ticles. Information processing is a way by which we
can view the physical processes, information preser-
vation is how physical properties remain invariant in
time, and error correction is how a physical state is
restored when it deviates from its original form. One
can argue that better understanding of the informa-
tion preservation and processing is the next frontier of
science that bridges the micro and macro. Quantum
theory is currently the best we have that accounts for
the majority of physical phenomena. Therefore quan-
tum information science beckons us towards a deeper
understanding of the world.

Computation is our way of synthesizing informa-
tion processing for useful tasks. Therefore, quantum
computation promises to be the most powerful model
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of computation available to us based on our current
theories of nature.

As stated above, preserving information and error
correction are necessary parts of any reliable compu-
tation. On one hand, one can protect against errors
by designing error correcting codes that allow for re-
liable recovery of the encoded information. On the
other hand, nature herself provides innate resources
for the protection and correction of information.

Classical error correction, which applies to the
standard (classical) model of computation is a mature
and evolved őeld. However, the successes there do not
easily carry over to the quantum realm. The main
difficulty is that possible quantum errors that can
corrupt the computation or a state in the memory
are richer than classical errorsś besides bit-ŕip errors
that classical information suffers, there can be errors
in the phases. Moreover, nature herself provides
innate resources for the protection and correction of
information. These beg the questions:
1. To what extent can one import discoveries in
classical coding to the quantum realm?
2. Since the bulk of matter often resides in its
ground state, are there simple physical quantum
systems amenable to experimental realizations in the
lab whose ground states sustain good quantum codes?

In this paper we address both of these questions in
two parts, which we now overview:

Part 1 introduces a framework that takes any clas-
sical code and algorithmically constructs an explicit
quantum code. The challenge in designing quantum
codes is to not only correct the bit-ŕip errors, but
also to correct phase-ŕip errors. We construct quan-
tum codes with asymmetric distances given by dX and
dZ for the bit-ŕip and phase-ŕip errors respectively.
Similar to CSS codes, the logical codewords are sup-
ported on classical codewords of length n. However,
our formalism goes beyond the CSS and its gener-
alization (the stabilizer formalism). We are able to
identify codes outside the known paradigms. In the
simplest case, we encode a logical qubit as follows

♣0L⟩ =
∑

c∈C0

α(0)
c ♣c⟩, ♣1L⟩ =

∑

c∈C1

α(1)
c ♣c⟩, (1)

where C0 and C1 are disjoint subsets of C, and each

Accepted in Quantum 2024-11-21, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

01
2.

01
45

3v
3 

 [
qu

an
t-

ph
] 

 2
2 

N
ov

 2
02

4



CSS

Stabilizer

Codeword Stabilized

This work

Figure 1: Comparison of the codes attainable within this work with Calderbank-Shor-Steane (CSS) [1, 2], quantum stabilizer [3,
4], and codeword-stabilized (CWS) [5] codes. Inclusion of stabilizers and CWS is not strict as our codewords are supported
on disjoint sets. The star on the upper right indicates that we can identify codes outside of the previous frameworks.
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Figure 2: The encoding of one logical qubit from two disjoint
subsets of a classical code C.

c is a product state. A priori, the subsets C0 and C1

and the coefficients are not known. By mapping the
Knill-Laŕamme (KL) quantum error correction crite-
ria [6] to a linear algebra problem, we construct an ex-
plicit algorithm that can determine these unknowns.

Using our framework we őnd constant excitation
codes that outperform the best-known comparable
codes [7, 8].

To design a quantum code that encodes more than
one logical qubit, we provide a recursive algorithm.
This algorithm őnds the disjoint subsets of C and en-
forces the KL criteria by solving for feasible solutions
of a linear program. The algorithm outputs the logical
states:

♣jL⟩ =
∑

c∈Cj

α(j)
c ♣c⟩, j ∈ ¶0, 1, . . . ,M − 1♢, (2)

where M ≤ qc n with 0 < c < 1 resulting in quantum
codes with constant rates, and q is the dimension of
each qudit.

Let Vq(r) be the volume of the Hamming ball of

radius r deőned by

Vq(r) =

r∑

w=0

(
n

w

)

(q − 1)w. (3)

We prove (see Theorem 1):

Theorem. Take a classical code C of length n on
a q-ary alphabet with the distance of dX . If ♣C♣ ≥
2Vq(dZ − 1), then Alg. 1 and Alg. 2 in the paper ex-
plicitly derive M logical states as in Eq. (2) with bit-
and phase-flip distances of dX and dZ respectively.
Further, if C is chosen as a random code, with proba-
bility that approaches 1 as n goes to infinity, we have
2 ≤ M ≤ qc n and 0 < c < 1. The overall distance is
min(dX , dZ).

Our algorithm has a recursive structure. When the
inequality in the theorem is satisőed, the algorithm al-
ways constructs two logical codewords. The third and
subsequent logical codewords are found recursively by
determining the feasibility of a sequence of linear pro-
grams.

This recursive algorithm succeeds with high prob-
ability and almost surely over random codes. In the
rare case that the set of linear constraints have rows
that are all non-zero and are of the same sign, the
recursion becomes infeasible and algorithm halts. We
őnd that even if this happens we can always con-
struct Approximate Quantum Error Correcting Codes
(AQECC) [9] with linear distance and constant ex-
pected rate, provided that the underlying classical
code has these parameters. The trade-off is between
the expected number of logical states and the approx-
imation error as given by Eq. (33).

In addition to giving asymptotic results, this for-
malism works equally well to construct őnite size
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codes. To illustrate, we show examples of quantum
codes that can be constructed from classical codes in
the classical literature. Among the various, we őnd
that the Steane code is the unique solution of our
formalism when the input is Hamming’s [7,4,3] code.
The formalism introduced here is shown in relation to
other known formalism in Fig. 1.

Our framework allows one to have the following
perspective on designing quantum codes: instead
of choosing from existing quantum codes the best
quantum codes that suits a given physical system, one
can impose the constraints imposed by the physical
system a priori, and then construct quantum codes
that respect these constraints. There is a big distinc-
tion between the two approaches of quantum code
design. In the former approach, we might encounter
a situation where the best available quantum code
does not simultaneously have all the nice properties
that we would like to have, whereas in this case, we
ŕip the problem on its head. Namely, once we can
cast physical constraints in the language of classical
coding theory, we have a systematic approach to
design bespoke quantum codes that respects the
required physical constraints. In the second part of
our paper, we illustrate this with a concrete 2-local
spin chain Hamiltonian, and design quantum codes
for it. This illustrates a systematic approach towards
realising robust quantum codes in quantum matter.

Part 2 focuses on the physics of information. Since
topological models of quantum computation, it has
been recognized that quantum codes may naturally
appear in the ground space of physical systems [10].
Local Hamiltonians are considered more physical than
the general Hamiltonians. In particular the most
physical are 2-local interactions, and many have inves-
tigated the encoding of quantum codes in their ground
spaces.

The most celebrated example is Kitaev’s toric code
that resides in the ground space of a 4-local Hamilto-
nian, which is an effective Hamiltonian of a perturbed
2-local Hamiltonian [11]. Kitaev’s toric code is an
example of topological order and paved the way for
the topological model of quantum computation. The
compass model [12] is 2-local on a lattice, and has re-
cently been proposed as a candidate to encode quan-
tum codes in the eigenbasis of the Hamiltonian [13].
However, the performance of these quantum codes are
not well understood and have mainly been numeri-
cally investigated. The advantage of our work over
the aforementioned works is that we construct a 2-
local Hamiltonian, whose quantum error correcting
properties we analytically prove in the perfect quan-
tum error correction setting.

Brandao et al. [14] gave both constructive and non-
constructive proof of the existence of AQECCs within
the low-energy sector for a multitude of yoquantum
spin chains including ferromagnetic Heisenberg model

and spin-1 Motzkin spin chain [14]. The challenges
that remained were that the quantum error correc-
tion criteria was only approximately satisőed (hence
AQECCs), errors had to be on consecutive set of spins
for general spin chains, and the codes were in a low-
energy sector of the local Hamiltonian (i.e., not the
ground space). Moreover, the distance of the code
grows logarithmically with the number of spins.

Recently, it was also shown that by leveraging on
a clock-work construction, one can design AQECCs
with linear distance that reside within the ground-
space of 10-local Hamiltonians [15]. However the chal-
lenge remained for constructing exact linear distance
codes that reside within the ground space of a 2-local
Hamiltonian.

Our work overcomes these challenges. We construct
explicit codes that exactly correct errors with linear
distance that encode one logical qubit (we could have
easily encoded a qudit as well). We write down a
new and explicit 2-local quantum integer spin-s chain
parent Hamiltonian, Hn, on n qudits. We analyti-
cally prove that its ground space can be spanned by
product states. By mapping these product states to
classical codewords, we reduce the problem of őnding
quantum codes in the ground space of our Hamilto-
nian to that of őnding classical codes that must obey
some constraints that are induced by the Hamiltonian.
The classical coding problem becomes that of őnding
q−ary codes with forbidden sub-strings. By leverag-
ing on existing constructions of binary codes, we con-
struct candidate classical codes for our algorithm to
run. See the following table for a comparison.

Properties Brandao et al [14] This work

QECC Apprx. ϵ = O(N−1/8) Exact
Distance d d = Ω(log(N)) d = Θ(N)

Rate Vanishes Vanishes
Error restriction consecutive spins None

Code space Low-energy eigenstates Exact g.s.

We now give details of the main features of the
Hamiltonian and its ground space. Let us consider a
spin chain of length n with open boundary conditions
and the local Hilbert space dimension of 2s+1, where
s ≥ 1 is a positive integer. We take a representation in
which ♣j⟩ denotes the sz = j state of a spin-s particle,
such that Ŝz♣j⟩ = j ♣j⟩ where j ∈ ¶0,±1,±2, · · · ,±s♢.

The local Hamiltonian whose ground space contains
the quantum code is Hn = HJ

n + Hs
n, where HJ

n =
J

∑n
k=1 (♣0⟩⟨0♣)k. The Hamiltonian Hs

n, is deőned by

Hs
n =

n−1∑

k=1

{
s∑

m=−s

Pm
k,k+1 +

s∑

m=1

Qm
k,k+1

}

, (4)

and the local terms are projectors acting on two neigh-
boring spins k, k + 1 are

Pm = ♣0↔ m⟩⟨0↔ m♣, Qm = ♣00↔ ±m⟩⟨00↔ ±m♣,
(5)
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Local Projector Local Moves Interpretation

Pm 0m←→ m0 spin transport
Qm 00←→ m,−m spin interaction

Table 1: Map between interactions and corresponding moves
in the underlying Markov chain. Here spin transport means
locally exchanging spin m with 0, and spin interaction means
local creating or annihilating m, −m.

where ♣0 ↔ m⟩ ≡ 1√
2

[♣0,m⟩ − ♣m, 0⟩], ♣00 ↔ ±m⟩ ≡
1√
2

[♣0, 0⟩ − ♣m,−m⟩], and we denoted by ♣j, ℓ⟩ the

spin state ♣sz
k = j, sz

k+1 = ℓ⟩. We will be mostly inter-
ested in s > 1.

Since Hs
n is free of the sign problem (i.e., stoquas-

tic), the local projectors deőne an effective Markov
chain, which have the following correspondence:

We prove that the ground state degeneracy is ex-
ponentially large in the number of spins (n≫ 1):

dim(ker(Hs
n)) =

(
−2 + rn+1

+ + rn+1
−

)

2(s− 1)
≈ rn+1

+

2(s− 1)
,

where r± ≡ (1 ±
√

1− 1/s), and ker(M) the kernel
of the operator M . Let us denote by Entq : [0, 1] →
[0, 1] the q-ary entropy function deőned by Entq(x) =
−x logq x − (1 − x) logq(1 − x) + x logq(q − 1). Our
main theorem is (this is Theorem 2 in the paper):

Theorem. Let 0 < τ ≤ 1/4 be a real and positive
constant. There exist quantum codes in ker(Hn) that
encode one logical qubit and have the distance of 2τn
whenever

Ent2(2τ) + Ent2s+1(2τ) log2(2s+ 1) + o(1) ≤ 1.

Second, there are explicit quantum codes which encode
one logical qubit with a distance of 2τn whenever

1/2− τ/0.11 ≥ log2(2s+ 1)Ent2s+1(2τ).

Remark. We call the constructions given by op-
timizing (58) and (59) as the Gilbert-Varshamov
(GV) [16, Chpt. 1] and Justesen construct [16,
Chpt. 10, Thm. 11] respectively. The GV construct
arises from choosing a random C, while the Justesen
construct uses the classical Justesen code to define C.

Our work side-steps the Bravyi-Terhal no-go the-
orem [17] which asserts that in one-dimension one
cannot have stabilizer codes with system-size depen-
dent distance. We also side-step the more general
no-go result given by Gschwendtner et al. [18] which
states that the degenerate ground space of gapped
Hamiltonians can only be QECs with a constant dis-
tance. The reason we can side-step these no-go results
is because our work considers QEC as a strict sub-
space of the ground space of Hamiltonians. In par-
ticular, this work could pave the way for construct-
ing the quantum codes with linear distance within

the ground space of translation invariant local spin
chains. We note that had we used all of the ground
space to construct the codes, this Hamiltonian could
have made the case for the őrst example of topolog-
ical order in one-dimension, which has been conjec-
tured to be impossible. The practical advantage of
our work is that such explicit Hamiltonians are easily
constructed in the laboratory in the near term, espe-
cially in atomic or ion trap architectures. Lastly, the
Hamiltonian is a generalization of the highly entan-
gled colored Motzkin spin chain [19], which may be of
independent interest.

0.1 Practical considerations

Here, we explain why the quantum codes we can con-
struct, particularly the non-stabilizer codes, are inter-
esting from a practical point of view.

A particular family of non-stabilizer codes that our
paper can construct, and also show potential in a
practical setting, are permutation-invariant quantum
codes. Permutation-invariant codes can be efficiently
prepared using either the usual Boykin gate set [20]
(Clifford + T gates) set [21], or quantum control type
of operations such as Rabi oscillations [22], or ge-
ometric phase gates [23]. In particular, geometric
phase gates can be performed in a very practical way,
because they only need (1) a linear interaction be-
tween the collective angular momentum operator of
the qubits and a bosonic mode, and the bosonic mode
to be initialized in a coherent state (a laser mode).
The paper [23] showed that geometric phase gates can
be performed in variety of physical systems. Good
candidate systems for geometric phase gates include
ion traps and cold neutral atoms.

Furthermore, there is potential to do quantum error
correction on permutation-invariant codes in a prac-
tical way, as described in Ref. [24]. Ref. [24] proposes
to perform quantum error correction by (1) measuring
the total angular momentum of sequences of consecu-
tive qubits, (2) performing geometric phase gates, and
(3) performing logical gate teleportation operations.
Ref. [24] explains how each one of these operations can
be performed in a practical way, by using the interac-
tion between collective spin operators and one or more
bosonic modes, combined with homodyne and hetero-
dyne measurements on these bosonic modes. Hence
permutation-invariant codes have strong potential to
be practical codes. Hence our paper’s formalism does
encompass codes with practical potential.

Our paper’s code construction formalism also en-
compasses a particular class of quantum codes that
reside in a decoherence free subspace of errors that
act coherently [25, 26, 27, 28], and are hence ‘error-
avoiding’ quantum codes. There has been recent work
on constant-excitation codes, which are quantum er-
ror correction codes that avoid coherent errors in
one axis (in Refs. [7, 8]). Using the code construc-
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tion formalism in our paper and also by consider-
ing non-stabilizer codes, we construct new constant-
excitation codes with improved distance-rate param-
eters for őxed code length.

We leave questions regarding the fault-tolerance of
quantum codes that can be constructed using our
framework as an open problem, and we are optimistic
about its ultimate resolution.

0.1.1 Why introduce a Hamiltonian?

Theoretical considerationsś This model is of theoreti-
cal interest because it allows for the encoding of lin-
ear distance codes in its ground space. Encoding
quantum information in the ground space of physical
Hamiltonians has a long history dating back to Ki-
taev’s toric code [10]. A motivation for our work was
the nice work of Brandao et al. [14] where existence of
codes in low energy eigenstates of local translation in-
variant spin chains were found. In this work we came
up with explicit and exact constructions and overcome
some of the limitations of that work. These were de-
tailed in the introduction and will be elaborated on
below.

Our work may also be useful in bringing new in-
sights into conformal őeld theories from quantum
codes [29], by allowing any classical code to be used
in the quantum coding framework.

Applied and engineering considerationsś Finding
new quantum codes can help hasten the dream of
fault-tolerant quantum computation. Our method
is distinct from other widely used methods to con-
struct quantum codes from classical codes, such as for
CSS codes, stabilizer codes, and codeword-stabilized
codes. A key feature of our code construction is that
we can take as input a general classical code, and de-
mand that the quantum code we construct must be
supported on the computational basis vectors that are
labelled by these classical codewords. The non-trivial
solution of the nullspace then gives us the amplitudes
over with the logical zero and logical one of our quan-
tum code will assume.

Our proposal to engineer a two-local Hamiltonian
to stabilize quantum information is in line with the
ideas utilizing quantum control techniques to suppress
the noise before employing quantum error correction.
We differ from traditional approaches in quantum
control procedures where one typically applies dynam-
ical decoupling pulses to create an essentially a trivial
identity Hamiltonian that acts on the system when
no quantum gates are performed. In this situation,
however, local errors are not energetically penalized.
In contrast, one might envision that quantum control
methods can engineer a Hamiltonian that energeti-
cally penalizes the dominant noise rates that occur in
a quantum system before introducing quantum error
correction [30, 31].

In many practical physical systems, noise is biased
and can be dominated by bit-ŕip or phase-ŕip type

errors. We consider a biased noise model that is dom-
inated by bit-ŕip type errors. On a spin-system, we
expect our Hamiltonian to energetically penalize bit-
ŕip errors. This would allow our engineered Hamilto-
nian to greatly suppress the noise rates of the dom-
inant (bit-ŕip) type of errors. The remaining errors
can then be cleaned up using our quantum code with
a linear distance. The advantage of engineering our
Hamiltonian, as compared to, for instance, the surface
code Hamiltonian, is that the Hamiltonian terms that
we require are two-local, whereas the surface code re-
quires many-body interactions, which is challenging
to realize in practice.

The Hamiltonian we will introduce has the form
Hn =

∑n−1
k=1 Hk,k+1; see Eq.(47). Its ground space

has a strict subspace that is the quantum code. We
could make the model sums of commuting local terms
by considering a new Hamiltonian that skips all (say)
even interactions and write H ′

n =
∑

k odd Hk,k+1.
The ground space of H ′

n contains the ground space
of Hn and therefore also includes the quantum code.
One could continue this way and eventually get
a Hamiltonian that is trivial (i.e., no interaction)
H ′′ = I for which any quantum code is in the
łground spacež. The price one pays following this
crooked path is that Nature will help less and less in
suppressing the rate at which errors appear.

0.2 Discussions and open problems

This paper provides a rigorous framework for the sys-
tematic construction of a quantum codes from any
classical code. We illustrate the theory through a se-
ries of examples and proved that new quantum codes
with linear distance and constant rate can be con-
structed using this work. Our formalism encapsu-
lates the CSS formalism, and has an intersection with
stabilizer and codeword-stabilized (CWS) formalisms
(see subsection 1.5.2). However, there are codes inside
the stabilizer and CWS formalism that our formalism
does not capture. For example, the őve-qubit code
is not covered by our formalism because the corre-
sponding classical code has a distance of one. Alg. 2
can construct logical states beyond a logical qubit.
The relation of our work to the previous is faithfully
depicted in the Venn diagram (Fig. 1) shows.

Our formalism can take as the input any classical
linear, self-orthogonal code, and then derive the cor-
responding CSS code. This is because CSS codes,
which rely on these types of classical codes, can also
be completely cast within our framework. It will be
interesting to classify all quantum codes that can be
obtained within our framework if one were to start
with classical linear, self-orthogonal codes.

Another open problem would be to őnd an alterna-
tive way of getting at our logical qudit construction
by directly using the large freedom in choosing codes
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in our construction (namely the high-dimensional ker-
nel of the matrix A in Eq. (13) and Fig. 3). It would
also be interesting to see an extension of our formal-
ism to encompass all stabilizer codes, and indeed, any
arbitrary quantum code. With the exception of per-
mutation invariant codes (subsection 1.5.3), most of
the analysis herein takes the classical codewords and
uses them to deőne a product basis over which the
logical quantum states are deőned. The extension of
our results to include non-product basis for the logical
codewords calls for further investigation.

Another interesting problem is to őnd a Hamil-
tonian whose ground space is quantum code with a
macroscopic distance, and the local and global ground
states satisfy a consistency criterion as deőned in [32].
This would then serve as the őrst example of topolog-
ical quantum order in one-dimension. We would have
found it easy to prove a gap above the degenerate
ground space of the local Hamiltonian herein; how-
ever, since the code occupies a subspace of the ground
space one would need to prove a local gap lower bound.
This means that in order to move from a subspace
of the ground space to another subspace an operator
with a large support needs to be applied.

1 Part 1: Explicit quantum codes from

classical codes

1.1 Constructing a logical qubit with linear dis-

tance

In this section, we want to design q-ary quantum
codes with bit-ŕip distance of dX and a phase-ŕip
distance of dZ using a q-ary classical code C ⊂
¶0, 1 . . . , q − 1♢n as an input. The minimum distance
of the quantum code is then d = min(dX , dZ).

To correct errors on q-ary quantum codes, we con-
sider errors in the generalized Pauli basis. Let us de-
note by ω the primitive root of unity ω ≡ exp(2πi/q).
The Z and X type Pauli matrices are respectively
given by

Z =

q−1
∑

j=0

ωj ♣j⟩⟨j♣ , X =
∑

j∈Zq

♣j⟩⟨j + 1♣ . (6)

And any Pauli operator is equivalent to XaZb up to
a phase for some a, b = 0, . . . , q − 1. We consider
the set Pauli operators on n qudits Pn = ¶XaZb :
a, b = 0, . . . , q − 1♢⊗n that span the space of linear
operators on n qudits. Given any Pauli in Pn that
has the form P = Xa1Zb1 ⊗ · · · ⊗ XanZbn , we de-
note wtX(P ) = wt(a) and wtZ(P ) = wt(b), where
a = (a1, . . . , an), b = (b1, . . . , bn), and wt(·) denotes
the Hamming weight of the vector. It is easy to see
that for any non-negative integer r ≤ n, we have
∑r

w=0 ♣Zw♣ = Vq(r), where Vq(r) =
∑r

w=0

(
n
w

)
(q−1)w

is the volume of the q-ary Hamming ball of radius r
as before.

For the KL criteria to hold for a quantum code
with logical codewords ♣0L⟩ and ♣1L⟩ on n qubits with
a bit-ŕip distance of dX and a phase-ŕip distance of
dZ , it suffices to require that for all generalized Pauli
matrices P such that wtX(P ) ≤ dX−1 and wtZ(P ) ≤
dZ − 1, these hold:

⟨0L♣P ♣0L⟩ = ⟨1L♣P ♣1L⟩ (7)

⟨0L♣P ♣1L⟩ = 0 . (8)

Eqs. (7) and (8) are the non-deformation and orthog-

onality conditions respectively. If we demand that

1. dist(C) ≥ dX : the minimum distance of C is at
least dX

2. Supp(0L) ∩ Supp(1L) = ∅ : (the logical code-
words ♣0L⟩ and ♣1L⟩ are supported on distinct
codewords in C),

then the orthogonality condition (Eq. (8)) trivially
holds. To verify the non-deformation condition
(Eq. (7)), we note that ⟨0L♣P ♣0L⟩ = ⟨1L♣P ♣1L⟩ = 0
whenever P is not diagonal. Hence the only non-
trivial cases to be veriőed are the diagonal general-
ized Pauli operators, where the set of diagonal Pauli
operators of weight w is

Zw = ¶Zz1 ⊗ · · · ⊗ Zzn : wt(z) = w♢ . (9)

In general, for any diagonal Pauli operator P , the
expectations ⟨0L♣P ♣0L⟩ and ⟨1L♣P ♣1L⟩ are complex
numbers. This is in contrast to the case where P
are Kraus operators of the amplitude damping chan-
nel, in which all such expectations are real, or when
P are diagonal operators and q = 2. For Eq. (7) to
hold, the following has to hold for all Paulis P with a
weight at most d− 1:

Re (⟨0L♣P ♣0L⟩)− Re (⟨1L♣P ♣1L⟩) = 0

Im (⟨0L♣P ♣0L⟩)− Im (⟨1L♣P ♣1L⟩) = 0 ,

The quantum code we deőne depends on a łbalanced"
real non-zero column vector x = (x1, x2, . . . , xm)T in
the sense that

m∑

i=1

xi = 0.

Let x+
k = max¶xk, 0♢, x−

k = −min¶xk, 0♢, and
x = x+

1 + · · · + x+
m. We can decompose the vec-

tor x into its positive and negative components
x = x+ − x− where x+ = (x+

1 , . . . , x
+
m)T and

x− = (x−
1 , . . . , x

−
m)T respectively. We also have

x = ∥x+∥1 = ∥x−∥1 = ∥x∥1 /2. For example,
using this notation x = (1, 2,−1,−1,−1)T gives
x+ = (1, 2, 0, 0, 0)T and x− = (0, 0, 1, 1, 1)T , and x =
3.

In our construction of quantum codes using the
classical code C, we only consider logical codewords
that are linear combinations over labels in C with
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only real coefficients. Hence, we deőne the two logi-
cal codewords of our quantum code as

♣0L⟩ =
1√
x

(√

x+
1 ♣c1⟩+ · · ·+

√

x+
m♣cm⟩

)

,(10)

♣1L⟩ =
1√
x

(√

x−
1 ♣c1⟩+ · · ·+

√

x−
m♣cm⟩

)

.(11)

Since that x+
j x

−
j = 0 for all j ∈ [m], the logical states

♣0L⟩ and ♣1L⟩ have disjoint supports.

We next clarify the connection between x and the
non-deformation conditions by constructing a real
matrix A that enforces these conditions. Roughly
speaking, this matrix has rows labeled by diagonal
Pauli errors of weight at most dZ − 1 and columns
labeled by the states ♣c1⟩, . . . , ♣cm⟩. While the order-
ing of the rows of A is unimportant, we will collect
the rows in groups corresponding to the weights of P .
The matrix A is deőned by

A =
∑

P ∈Z0

m∑

k=1

♣P ⟩⟨k♣

+

d−1∑

w=1

∑

P ∈Zw

m∑

k=1

¶Re (⟨ck♣P ♣ck⟩) ♣P, 0⟩⟨k♣

+Im (⟨ck♣P ♣ck⟩) ♣P, 1⟩⟨k♣♢ . (12)

In matrix representation A is a wide rectangular ma-
trix and writes

A =








1 · · · 1
a2,1 · · · a2,m

... · · ·
...

a2Vq(2t)−1,1 · · · a2Vq(2t)−1,m







≡








aT
1

aT
2
...

aT
2Vq(2t)−1








(13)

where ar = (ar,1, . . . , ar,m)T are column vectors. The
reason for introducing the matrix A is that the non-
deformation condition for correcting t errors using the
vector x is enforced by the constraint (see Fig.3)

Ax = 0 .

Lemma 1. Let x be a non-zero real vector such that
Ax = 0. Let ♣0L⟩ and ♣1L⟩ be logical codewords
that depend on x as in Eqs. (10) and (11). Then
⟨0L♣P ♣0L⟩ = ⟨1L♣P ♣1L⟩ for any diagonal Pauli of
weight at most dZ − 1.

Proof. Recall that x = x+
1 + · · · + x+

m. Since each
♣ck⟩ is a product state, we have ⟨cj ♣P ♣ck⟩ = 0 for all
distinct j and k, and for all diagonal Pauli of weight
at most dZ − 1. We can use the definitions of logical
codewords (Eqs. (10) and (11)) to write

x (⟨0L♣P ♣0L⟩ − ⟨1L♣P ♣1L⟩)

=

m∑

k=1

x+
k ⟨ck♣P ♣ck⟩ −

m∑

k=1

x−
k ⟨ck♣P ♣ck⟩

=

m∑

k=1

xk⟨ck♣P ♣ck⟩

where on the second line we used xk = x+
k − x−

k .
Using Eq. (12) we see that ⟨ck♣P ♣ck⟩ = ⟨P, 0♣A♣k⟩ +
i⟨P, 1♣A♣k⟩. Therefore

x (⟨0L♣P ♣0L⟩ − ⟨1L♣P ♣1L⟩)

=

m∑

k=1

xk (⟨P, 0♣A♣k⟩+ i⟨P, 1♣A♣k⟩)

=
m∑

k=1

(⟨P, 0♣Axk♣k⟩+ i⟨P, 1♣Axk♣k⟩)

=⟨P, 0♣Ax + i⟨P, 1♣Ax ,

because x =
∑m

k=1 xk♣k⟩. Since the first row of A
is all ones, Ax = 0 implies ⟨0L♣0L⟩ = ⟨1L♣1L⟩. More-
over, in the above, P is an arbitrary diagonal Pauli of
weight at most dZ − 1, and the requirement Ax = 0
implies ⟨0L♣P ♣0L⟩ = ⟨1L♣P ♣1L⟩ for any diagonal Pauli
of weight at most dZ − 1.

The condition Ax = 0 is satisőed for any x ∈
ker(A). It is then important to understand the struc-
ture of the kernel. Since A is real, any vector in
its kernel must be real, which we then use to de-
sign an explicit quantum code that obeys the gen-
eralized orthogonality conditions above. Whenever
♣C♣ ≥ 2Vq(dZ−1), that is the number of codewords in
C is strictly greater than the number of rows in A, by
the rank-nullity theorem, A must have a non-trivial
kernel. We thus have the following existence theo-
rem for quantum codes that reside within the ground
space of Hn.

Lemma 2. (Existence) Let C have a minimum dis-
tance at least dX . If ♣C♣ ≥ 2Vq(dZ − 1), then Alg. 1
constructs a quantum code with one logical qubit and
with a bit-flip and phase-flip distance of dX and dZ

respectively. Moreover, this quantum code can be con-
structed from any nonzero x ∈ ker(A).

This lemma shows that we can derive the logical
codewords of our quantum code from a classical code,
and only requires C to have a minimum distance of
dX and for ♣C♣ to be at least twice the size of the q-ary
Hamming ball of radius dZ − 1.

We proceed to derive a more explicit expression for
the entries of the matrix A in Eqs. (12) and (13). We
will show that these entries are elements of a őnite-
sized set given by

¶cos(2πk/q) , sin(2πk/q) : k = 0, . . . , q − 1♢ . (14)
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Figure 3: Illustration of Ax = 0 in Lemma 1, where the matrix A has [2Vq(dz − 1) − 1] rows and m columns (top of this
figure). The vector xc has m real components and denotes any solution in the kernel. Since the first row of A is all ones (P
corresponds to the identity matrix), the vector xc is balanced– the sum of all entries is equal to zero.

For any classical string c = (c1, . . . , cn)T ∈ C with
ci = 0, 1, . . . , q − 1, the quantum state is ♣c⟩ =
♣c1, c2, . . . , cn⟩, and when P = Zz1 ⊗ · · · ⊗ Zzn , we
have

⟨c♣P ♣c⟩ =

n∏

j=1

⟨cj ♣Zzj ♣cj⟩

=
n∏

j=1

⟨cj ♣
∑

k∈Σc

(ωk)zj ♣k⟩⟨k♣cj⟩ (15)

=

n∏

j=1

ωzjcj = ωzT c (16)

= cos

(
2π zT c

q

)

+ i sin

(
2π zT c

q

)

. (17)

The őrst row of A is all ones, and all other entries are
given by

A′ =

dZ −1∑

w=1

∑

wt(z)=w

∑

c∈C

[

cos

(
2π zT c

q

)

♣z, 0⟩⟨c♣

+ sin

(
2π zT c

q

)

♣z, 1⟩⟨c♣
]

. (18)

Since zT c is always an integer, it follows that the en-
tries of A must take values from the set in (14).

Remark 1. In Eq. (18) finding a solution in the ker-
nel amounts to finding linear combination of roots of
unity that vanish. See for example section III and ref-
erences in [33]. There is a vast literature (see chapter
7 in [16]) on this topic and properties of the under-
lying code that controls the values of the integers zT c
can in principle be utilized to give analytic solutions.

Remark 2. When q = 2, all rows in A′ that are
labeled by ♣z, 1⟩ are equal to zero, because the argument
of the sine is always an integer multiple of π.

This section is summarized in the following algo-
rithm:

Algorithm 1. Input: A classical code C ⊂
¶0, 1, . . . , q − 1♢n with m ≡ ♣C♣.

• Form the matrix A defined by Eq.(12).

• Solve Ax = 0 to find x ̸= 0. Define x+,x− ≥ 0
such that x = x+ − x− as in Lemma 1

• Let C0 be the set of codewords ck with k ∈
supp(x+). And let C1 be the set of codewords
ck with k ∈ supp(x−).

• For all c ∈ C0, assign α
(0)
c =

√

x+
c , and for all

c ∈ C1, assign α
(1)
c =

√

x−
c .

Output: A logical quantum bit with codewords ♣0L⟩
and ♣1L⟩ as defined in Eqs. (10) and (11). The code
distances are dX = dist(C) and dZ that satisfies
m > 2Vq(dZ − 1)− 1.

1.1.1 Limitations of the formalism

Can we use the classical repetition code with code-
words 0. . . 0 and 1. . . 1 to make a QEC code with
distance 2? There are only two linearly independent
columns in the matrix A. Hence, we can only have a
non-trivial kernel if we have less than two rows. This
is not sufficient for even detecting a single error, which
would require a distance to be equal to two. This is
consistent with the fact that the quantum repetition
code, with codespace spanned by ♣0 . . . 0⟩ and ♣1 . . . 1⟩,
cannot deal with phase errors.

Next, we consider a classical code C, and like to
design a corresponding QEC code with maximum
distance. As an example, we consider a classical
code that comprises of the codewords 000000, 001110,
010101, 011011, 100011, 101101, 110110, and 111000.
We like to know if our framework allows us to ob-
tain a QEC code with distance 3. However, when we
construct the A matrix using our formalism, we őnd
that its nullspace has dimension 0. Hence, there is
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no QEC code with support on computational states
labelled by C with distance 3.

However if the designed distance is reduced to 2,
then we can use our formalism to derive the following
error-detecting quantum code

♣0L⟩ =
1

2
(♣0, 0, 0, 0, 0, 0⟩+ ♣0, 1, 1, 0, 1, 1⟩

+♣1, 0, 1, 1, 0, 1⟩+ ♣1, 1, 0, 1, 1, 0⟩) (19)

♣1L⟩ =
1

2
(♣0, 0, 1, 1, 1, 0⟩+ ♣0, 1, 0, 1, 0, 1⟩

+♣1, 0, 0, 0, 1, 1⟩+ ♣1, 1, 1, 0, 0, 0⟩) (20)

1.2 Constant-excitation codes with better pa-

rameters

When spurious classical őelds interact uniformly with
a system of spins, an effective unitary evolution Uθ =
exp(iθ(Z1 +. . . Zn)) acts on the spins. Here Zi applies
a phase ŕip on the ith qubit and the identity operation
on the remaining qubits. The unitary operator Uθ,
known as a coherent error [7], can severely damage the
qubits, especially when quantum control techniques
twirl it into a Pauli error basis which cause Uθ can
introduce multiple phase-ŕip errors on the physical
system.

Constant-excitation (CE) codes on n qubits with
excitation number w are quantum codes that are sup-
ported on computational basis states ♣x⟩ where x are
n-bit vectors of Hamming weight w. Since any CE
code is a subspace of a őxed eigenspace of the opera-
tor Z1+· · ·+Zn, CE codes are left invariant under the
action of any coherent error Uθ for any θ, and hence
completely avoid coherent errors [7]. Therefor, CE
codes are advantageous to use when coherent errors
are the dominant source of errors in quantum systems.

In the construction of [7], the CE codes are ob-
tained by concatenating any quantum code with the
dual-rail code [34]. CE codes obtained through this
construction must have an even number of qubits and
excitation number equal to half the number of qubits.
In [8], constructions of CSS-type CE codes are also
discussed, where the number of qubits can be odd
(such as in a [[5,1,2]] CE code).

Our formalism in this paper further develops the
theory of constant excitation codes. To obtain
constant-excitation code of distance d, the key ingre-
dient needed is a classical constant weight code on
n bits of distance d that has sufficiently many code-
words. Now denote A(n, d, w) as the maximal number
of classical codewords in a constant weight code on n
bits of distance d and weight w. Then our framework
can derive CE codes from such constant weight codes
whenever

A(n, d, w) ≥
d−1∑

k=0

(
n

k

)

(21)

for some w. Let A(n, d, w) denote any lower bound to

A(n, d, w). Then A(n, d, w) ≥ ∑d−1
k=0

(
n
k

)
implies that

A(n, d, w) ≥ ∑d−1
k=0

(
n
k

)
. Hence we seek lower bounds

on A(n, d, w), which we can obtain from the tables in
[35]. Note that any constant weight code has d ≥ 2,
and hence we trivially have A(n, 2, w) =

(
n
w

)
. Since

(
4
2

)
≥ 1 + 4, our framework allows us to construct a

four-qubit CE code with two excitations.
Using lower bounds on A(n, d, w) from [35] where

d = 2, 4, we obtain a table of CE codes, specifying
what nnew and nprev are, where nnew and nprev denote
how many qubits previous CE codes [7, 8] and our CE
codes need respectively.

The table illustrates that our CE codes, for a őxed
distance, use fewer qubits than previous CE codes.

Distance (d) nprev nnew

2 5[8], 8 [7] 4 (w = 2)
4 20 [7] 15 (w = 7, 8)

In the above table, for the constructions using the
concatenation framework of [7], the codes used are the
four-qubit error detection code concatenated with the
dual-rail code, and a [[10,1,4]] stabilizer code concate-
nated with the dual-rail code. While there might be
some other error model in which the dual-rail code
might outperform the CE codes we construct, this
analysis is beyond the scope of our paper.

Using the quantum Gilbert-Varshamov bound for
quantum codes we know that [[n, 1, d]] asymptotically
exist if 1 − Ent4(d/n) ≥ 0. Let dQGV ≈ 0.18929 be
such that 1−Ent4(dQGV/n) = 0. Then concatenation
of such codes with dual-rail codes gives CE codes with
asymptotic relative distance of dQGV/2 ≈ 0.0946.
Such CE codes do not attain the quantum Gilbert
Varshamov bound.

Next we turn our attention to the asymptotic struc-
ture of constant weight codes [35] When the Gilbert
bound is applied to constant weight codes, one can
obtain [35, Theorem], which provides the lower bound

A(n, 2δ, w) ≥
(

n
w

)

∑δ−1
i=0

(
w
i

)(
n−w

i

) ≥
(

n
w

)

(
w
δ

)(
n−w

δ

) . (22)

Hence to construct asymptotic CE codes with w =
n/2, it suffices to require that

(
n

n/2

)(
n/2

δ

)2

≥
∑

k=02δ−1

(
n

k

)

. (23)

or equivalently

1− 2Ent2(d/n) ≥ 0, (24)

where d = 2δ. The maximum possible asymptotic
value of d/n is approximately 0.11 which is larger than
0.0946. Hence we prove that there are CE codes that
asymptotically outperform those obtained using the
concatenation construction of [7].
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1.3 Constructing logical states with linear dis-

tance and constant rate

In building a single logical qubit we used any one non-
zero solution in the kernel of A to identify two dis-
joint subsets C0 and C1. Since the number of rows is
2Vq(dZ−1)−1 and the number of columns by Gilbert-
Varshamov bound satisőes m ≥ qn/Vq(dZ − 1), from
Lemma 2 and the asymptotic relation of the volume
of the Hamming ball and the q-ary entropy function,
we őnd that the ratio of the number of columns to the
number of rows is asymptotically exponentially large

1

n
logq

(
m

# rows

)

≥ 1− 2Entq

(
dZ

n

)

(25)

where dZ/n ∈ [0, (q − 1)/q]. Here we exploit this
to derive roughly qn(1−2Entq(dZ /n)) logical quantum
states, and hence obtaining a linear rate r ≈ (1 −
2Entq(dZ/n)). Below we think of M ∝ m/(# rows).

We now generalize the construction of two quan-
tum states (a logical qubit) to more quantum states
(a logical qudit). Suppose we identify M subsets
¶C0, C1, . . . , CM−1♢ such that Ci ⊂ C for all i ∈
¶0, . . . ,M − 1♢ and that the subsets are pairwise dis-
joint Ci∩Cj = ∅ for all i ̸= j. Deőne the logical qudit
as

♣0L⟩ =
∑

c∈C0

α(0)
c
♣c⟩

♣1L⟩ =
∑

c∈C1

α(1)
c
♣c⟩

...

♣(M − 1)L⟩ =
∑

c∈CM−1

α(M−1)
c

♣c⟩ . (26)

where for every j = 1, . . . ,M − 1, we have the nor-
malization

∑

c∈C0



α(0)
c

)2

=
∑

c∈Cj



α(j)
c

)2

(27)

Clearly these states are orthonormal. The KL criteria
then writes

ΠP Π = cP Π (28)

where Π = ♣0L⟩⟨0L♣+♣1L⟩⟨1L♣+· · ·+♣(M−1)L⟩⟨(M−
1)L♣ is a projector of (potentially exponentially large)
rank M . The orthogonality and non-deformation con-
ditions now write:

⟨iL♣P ♣jL⟩ = cP δi,j , i, j ∈ ¶0, 1, 2, . . . ,M − 1♢ .

We őrst check orthogonality. Since the subsets are
pairwise disjoint and futhermore C has a minimum
distance of dX , we have ⟨iL♣P ♣jL⟩ = 0 for all i ̸= j
for and all diagonal Paulis. Moreover, ⟨iL♣P ♣jL⟩ = 0
if 1 ≤ wtX(P ) ≤ dX − 1, which is inherited from the
classical code’s distance dX . We now turn our atten-
tion to the non-deformation condition. As before it is

clear that ⟨iL♣P ♣iL⟩ = 0 for all i ∈ ¶0, 1, . . . ,M − 1♢
and Paulis with 1 ≤ wtX(P ) ≤ dX − 1. This follows
from the distance of the code as before. Therefore, it
is again sufficient to prove the non-deformation condi-
tion for diagonal Paulis. We need to őnd the subsets
C1, C2, . . . , CM−1 such that

⟨0L♣P ♣0L⟩ = ⟨1L♣P ♣1L⟩ = · · · = ⟨(M−1)L♣P ♣(M−1)L⟩.
(29)

Our method constructs the sets C0, . . . , CM−1 such
that they are disjoint and satisfy the foregoing equa-
tion. Unlike the qubit case, our proof technique will
not be seeking a solution in the kernel of A anymore,
rather we recursively build the logical quantum states.

An exciting open problem would be to see an alter-
native construction that uses the exponentially large
kernel of the matrix A.

For every new logical state we need to call the fol-
lowing algorithm once:

Algorithm 2. Input: A set of 2Vq(dZ − 1) columns
of A and a vector b of size 2Vq(dZ − 1)− 1.

• Check that the augmented homogeneous linear
system as described in Section 5 of [36] does not
have a row that is all of the same sign.

• If no row has non-zero entries of the same sign,
apply the algorithm of [36] to find a point in the
feasible set, i.e., a solution x ≥ 0. End the algo-
rithm.

• If there is a row that is all of same sign, augment
the set of columns by one and repeat. If all the
columns are exhausted, then output fail.

Output: If succeeded, output a solution x ≥ 0 in the
feasible set.

If recursively successful, then the algorithm can at
least be called m/2Vq(dZ − 1) = qn(1−2Entq(dZ/n))

times. The success is guaranteed if at any step of
recursion no row of all the same sign is encountered.

We demonstrate the recursive construction of log-
ical quantum states by őrst building a qutrit (three
logical states). Recall that A has 2Vq(dZ−1)−1 rows
whose őrst row is all ones, we now proceed to őnd a
natural partitioning of the columns of A. To construct
a logical qubit, we use the őrst 2Vq(dZ−1) columns of
A as follows. Let the matrix A′

1 be deőned by the őrst
2Vq(dz − 1) columns of A. Now solve for the solution
x1 inA′

1x = 0, where x1 has 2Vq(dZ−1) components.
This matrix equation certainly has a non-trivial ker-
nel because it has more columns than rows. Just as
in the one logical qubit construction in Alg. 1 we will
őnd an x = x

+ − x
− where x

+ ≥ 0 and x
− ≥ 0,

∑

i x
+
i =

∑

i x
−
i , and that supp(x+)∩ supp(x−) = ∅.

We build the logical qubit exactly as in Eqs. (10) and
(11).

We then rearrange the columns of A′
1 according to

the supports of x
+ and x

− and write the concate-
nated matrix [A1A2], where A1 has a set of columns
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labeled by codewords cs such that s ∈ supp(x+) and
A2 has columns labeled by codewords cs such that
s ∈ supp(x−). The new equation being satisőed is

[A1A2]

[
x

+
1

−x
−

1

]

= 0 ,

where x
+
1 ,x

−

1 ≥ 0. To build the third logical state,
we select a set of 2Vq(dZ − 1) new columns out of A
and solve

[A2A3]

[

−x
−

1

x2

]

= 0 , x2 ≥ 0,

where −x
−

1 is treated őxed from the previous step
and we solve for a solution x2 ≥ 0. A solution exists
as A3x2 = A2x

−

1 is under-constrained. Although this
can be formally thought of as a linear programming
problem, where the objective function is just zero and
a point in the feasible set is sought, we proceed differ-
ently and give an explicit algorithm based on Dines’
Annals of Math (1926) [36].

Once x2 ≥ 0 is found this way, we proceed to solve

[A3A4]

[
x2

−x3

]

= 0 , x3≥ 0,

where now x3 is the unknown. Just as before this
amounts to solving A4x3 = −A3x2 where the right-
hand side is a known vector. Continuing this way we

can build 2 ≤M ≤ qn(1−2Entq(
dZ
n

)) logical states.
The results of this section prove the following main

theorem of part 1 of this work:

Theorem 1. Take a random classical code C of
length n on a q-ary alphabet with a minimum distance
of dX . Then almost surely with probability equal to
1 as n goes to infinity, we have ♣C♣ ≥ 2Vq(dZ − 1).
Moreover, using Alg. 1 and multiple calls to Alg. 2 ex-
plicitly, we will with probability 1 as n goes to infinity
derive the M quantum logical states in (26) with bit-
and phase-flip distances of dX and dZ respectively.
The overall distance is min(dX , dZ).

When the A matrix is wide (under-constrained)
Alg. 1 always constructs two logical codewords (a log-
ical qubit). The third and subsequent logical code-
words are found recursively by calling Alg. 2 multiple
times. Alg. 2 succeeds with high probability and al-
most surely over random codes. In the rare case that
the set of linear constraints have rows that are all non-
zero and are of the same sign, the recursion becomes
infeasible and algorithm halts. As shown in [36] this
is the only way that the algorithm can fail. We deőne
a random classical code as one whose codewords have
entries over Σ = ¶0, 1, 2, . . . , q − 1♢ such that each
entry is independently and randomly drawn from the
uniform distribution over Σ.

Lemma 3. M quantum logical states can be con-
structed as long as in each step of the recursion, no

row other than the first has entries that are all non-
zero and with the same sign. When C is a random
classical code, then with high probability, Alg. 2 suc-
ceeds in providing a quantum code with constant rate.

Proof. The first part of the Lemma follows from the
proof of Dines [36] applied to every step of the re-
cursion. To prove the second part, first recall that
at each step we are solving a linear system with
ρ ≡ 2Vq(dZ − 1) columns and ρ − 1 rows. To find
positive solutions of this linear system, we employ
Dines algorithm which is itself recursive. Hence we
will prove that at every step of Dines recursive algo-
rithm, it fails with low probability. We prove this by
induction, first starting with the base case.

Recall that ω ≡ exp(2πi/q). For every diagonal P
of weight at least one, ⟨c♣P ♣c⟩ is a random variable
that takes the values ¶1, ω, . . . ωq−1♢ with a uniform
probability. From Eq. (17) we know that each ⟨c♣P ♣c⟩
is equal to a ωj for some j ∈ ¶0, 1, . . . , q − 1♢. That
is, Re(⟨c♣P ♣c⟩) and Im(⟨c♣P ♣c⟩) are random variables
that take values in [−1, 1]. Since the code words are
random and uniformly distributed over the symbols,
by symmetry the probability of an entry having a pos-
itive (or negative) sign is a half when q is even and
is at most 2/3 when q is odd. Moreover the entries
are independent. Hence the probability that a given
row has all the same sign is (3/2)−ρ+1. And by a
union bound, the probability that any of the ρ − 1
rows have entries whose all entries have the same sign
is O(ρ (3/2)−ρ).

Now we prove the induction step. We take q to
be even for now, which ensure that aij are symmetric
random variables with mean zero. Note that Dines al-
gorithm takes a matrix with matrix elements aij , and
constructs a new matrix ar,ij = a1iarj − a1jari. In
the new matrix, the indices i and j belong to disjoint
sets I and J . The number of columns in the new ma-
trix is ♣I♣♣J ♣. For the induction hypothesis, we assume
that the matrix elements aij are identical and sym-
metric random variables with zero mean, which are
furthermore independent with respect to the column
index j. We will show that ar,ij will then also be a
symmetric random variable with zero mean and also
furthermore be independent with respect to the new
column indices ij.

We now show that the ar,ij has zero mean. For that
we see E(ar,ij) = E(a1iarj) − E(a1jari) because the
expectation is linear. Next the independence of i and j
imply that E(a1iarj) = E(a1i)E(arj) and E(a1jari) =
E(a1j)E(ari). Substituting this shows that E(ar,ij) =
0 because aij are independent random variables with
mean zero.

We now note that the random variables ar,ij are in-
dependent with respect to the column labels ij. This
follows readily from the independence of aij with re-
spect to j. For instance, treat i to be fixed and con-
sider ar,ij and ar,ij′ for j ̸= j′.

We next show that the random variables ar,ij are
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symmetric. For this, we use the fact that the product
of non-degenerate symmetric random variables is a
symmetric random variable [37].

In the base case, we have shown that aij satisfies the
induction hypothesis with high probability. We have
just shown that ar,ij is symmetric, independent, and
has zero mean with respect to ij. This proves that
its entries have equal probability of being positive or
negative.

It remains to bound the probabilities of failure of
our algorithm under our recursion and Dines recur-
sion. With high probability, the product ♣I♣♣J ♣ is go-
ing to be greater than the number of columns in aij .
As shrinking the number of columns will only be due
to at most one entry of a different sign, this happens
with very low probability. The probability of this hap-
pening is at most 2ρ(1/2)ρ−1 for large ρ. The proba-
bility of a single row with all the same sign is at most
2(1/2)ρ. Hence the total probability of a given row
being pathological is at most 2(1/2)ρ + 2ρ(1/2)ρ−1 =
O(ρ(1/2)ρ). The probability of a matrix at any step
of Dines recursion to have a pathological row is there-
fore at most O(ρ2(1/2)ρ)). Since our algorithm has
O(m/ρ) steps, our algorithm’s failure probability is
at most O(mρ(1/2)ρ). The number of codewords in
our q-random code is m ≤ qn, and therefore m2−ρ is
at most (qn2−2cn

) for some constant c ∈ [0, 1], our al-
gorithm will succeed with overwhelming probability.
Although this proof is specialized for the case where
q is even, a similar argument will work for q odd.

In the next section, we őnd that even if this happens
we can always construct Approximate Quantum Error
Correcting Codes (AQECC) [9] with linear distance
and constant rate, provided that, the underlying clas-
sical code also has a linear distance and a sufficiently
large rate.

1.4 AQECCs with designed rates

In the unlikely case, where building logical quantum
states using Alg. 2 of the previous section fails, we
can always build an AQECC as we now show. We
introduce an algorithm that produces a quantum code
with M logical codewords satisfying the KL criteria
approximately. Here M can be strictly larger than
2 at the expense of an approximation error, which is
equal to the inődelity of quantum code.

Suppose C1, . . . , CM/2 are disjoint subsets of the
classical code C whose minimum distance is dX .
Hence each Cj , j ∈ [M/2] inherits the distance dX ,
where we take M to be even for simplicity. Suppose
that for every j ∈ [M/2], it holds that

♣Cj ♣ ≥ 2Vq(dZ − 1) . (30)

For each classical code Cj , we use Alg. 1 to construct a
corresponding matrix Aj from which we derive logical

codewords ♣(2j)L⟩, ♣(2j−1)L⟩ that satisfy the KL cri-
teria for quantum codes with a bit-ŕip and phase-ŕip
distance of dX and dZ respectively.

It is clear from our construction that for every di-
agonal Pauli P of weight at most dZ − 1,

⟨(2j)L♣P ♣(2j)L⟩ = ⟨(2j − 1)L♣P ♣(2j − 1)L⟩ = γj,P

(31)

where γj,P is a complex number of norm at most
one. Now for each j ∈ [M/2], let Γj = (γj,P )
be a row vector of length Vq(dZ − 1) with compo-
nents that correspond to diagonal Paulis of weight at
most dZ − 1. Then it follows that each Γj lies in
a ♣Vq(dZ − 1)♣-dimensional complex unit ball corre-
sponding to a hyper-cube of length two centered at
the origin with respect to the inőnity norm.

Suppose maxj,k∈[M/2] ∥Γj − Γk∥∞ = δ. Then be-
cause of Eq. (31) we have

max
j,k=1,...,M

max
P
♣⟨jL♣P ♣jL⟩ − ⟨kL♣P ♣kL⟩♣ = δ. (32)

It remains to őnd a suitable upper bound for δ. To
relate the error δ in satisfying the non-deformation
to the size of the code ♣C♣ and the number of logical
qubits we can construct, we rely on the following fact.

Fact. Consider the complex hyper-cube of side length
two in N dimensions. Let x be the number of points
distributed randomly inside it. Then there exists a ball
of radius δ in the infinity norm that contains at least
x(δ/2)N points in expectation.

The number of points inside the unit hyper-cube
is x = ⌊♣C♣/(2Vq(dZ − 1))⌋. The radius of the ball is
δ. The dimension of the hyper-cube is Vq(dZ − 1).
Hence from the above fact, we have that the expected
number of logical codeword pairs is EM = 2x(δ/2)N

which writes

EM ≥ 2

⌊ ♣C♣
2Vq(dZ − 1)

 (
δ

2

)Vq(dZ −1)

. (33)

The inődelity ϵ deőned by one minus the worst case
entanglement ődelity of the quantum code can be up-
per bounded as shown in [38], to be

ϵ ≤ O
(
δ V 4

q (dZ − 1)
)
, (34)

when the noisy quantum channel introduces bit-ŕip
and phase-ŕip weights at most dX − 1 and dZ − 1
uniformly at random.

1.5 Illustrations

In this section we illustrate our framework through a
series of examples. It is noteworthy that the őrst ex-
ample is a one-to-one correspondence between the cel-
ebrated classical and quantum results of Hamming’s
and Steane’s respectively.
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1.5.1 C as a [7,4,3] Hamming code gives the Steane
code

In classical coding theory, we use the notation
(n,m, d) to denote a binary code with codewords
of length n that has m codewords, a distance of d.
We use [n, log2 m, d] to denote a binary code with
codewords of length n that has m codewords, a dis-
tance of d, and is furthermore a linear code. Con-
sider the case when C is generated from the code-
words 1000110, 0100101, 0010011, and 0001111. This
classical code is the celebrated [7,4,3] Hamming code,
and has been used previously by Steane to obtain the
[[7,1,3]] Steane code. Applying our framework to C,
we get the unique solution

♣0L⟩ =
1√
8

(♣0, 0, 0, 0, 0, 0, 0⟩+ ♣0, 0, 0, 1, 1, 1, 1⟩

+♣0, 1, 1, 0, 1, 1, 0⟩+ ♣0, 1, 1, 1, 0, 0, 1⟩
+♣1, 0, 1, 0, 1, 0, 1⟩+ ♣1, 0, 1, 1, 0, 1, 0⟩

+♣1, 1, 0, 0, 0, 1, 1⟩+ ♣1, 1, 0, 1, 1, 0, 0⟩) (35)

♣1L⟩ =
1√
8

(♣0, 0, 1, 0, 0, 1, 1⟩+ ♣0, 0, 1, 1, 1, 0, 0⟩

+♣0, 1, 0, 0, 1, 0, 1⟩+ ♣0, 1, 0, 1, 0, 1, 0⟩
+♣1, 0, 0, 0, 1, 1, 0⟩+ ♣1, 0, 0, 1, 0, 0, 1⟩

+♣1, 1, 1, 0, 0, 0, 0⟩+ ♣1, 1, 1, 1, 1, 1, 1⟩) .
(36)

This is in fact equivalent to the Steane code.

1.5.2 C as a nonlinear cyclic code

We now give an example of a quantum code con-
structed from a non-linear classical code. Take the
nonlinear (4, 8, 2) code with codewords that are cyclic
permutations of 0001 and 1110. The corresponding
kernel of the matrix A has dimension 3, and one so-
lution to this gives an error detecting quantum code
with logical codewords

♣0L⟩ =
1√
2

(♣0, 0, 0, 1⟩+ ♣1, 1, 1, 0⟩) (37)

♣1L⟩ =
1√
2

(♣0, 0, 1, 0⟩+ ♣1, 1, 0, 1⟩). (38)

In fact, we can have the additional logical codewords

♣2L⟩ =
1√
2

(♣0, 1, 0, 0⟩+ ♣1, 0, 1, 1⟩) (39)

♣3L⟩ =
1√
2

(♣1, 0, 0, 0⟩+ ♣0, 1, 1, 1⟩). (40)

This gives a quantum code of dimension 4 and a min-
imum distance of 2. This quantum code is also an
example of a CWS code. This is because for every
j = 0, 1, 2, 3, there is a Pauli operator that takes
the stabilizer state 1√

2
(♣0, 0, 0, 0⟩+ ♣1, 1, 1, 1⟩) to ♣jL⟩.

Since this quantum code is CWS, quantum error cor-
rection can proceed using formalism developed for

CWS codes [5]. This quantum code also has some
other attractive properties. First, by inducing cyclic
shifts in the underlying qubits, we can move from one
logical codeword to another. Second, this quantum
code is stabilized by X⊗4 and is affected uniformly by
Z⊗4. Together, this implies that the quantum code
is invariant under transversal X and Y and Z opera-
tions.

1.5.3 Permutation-invariant quantum codes

Our quantum code construction formalism can also
extend to quantum codes with logical codewords that
are supported on non-product basis states. One ex-
ample of such codes are permutation-invariant quan-
tum codes, which are invariant under any permutation
of the underlying particles. Permutation-invariant
quantum codes have been explicitly constructed using
a variety of different techniques [39, 40, 38, 41, 42, 43].
Recently, permutation-invariant quantum codes have
been considered for applications such as for quantum
storage [31], or for robust quantum meterology [44],
and they can also be prepared in physically realistic
scenarios [22].

When permutation-invariant quantum codes are
constructed on n qubits, they must be superpositions
over Dicke states

♣Dn
w⟩ =

1
√

(
n
w

)

∑

x1,...,xN ∈¶0,1♢
x1+···+xn=w

♣x1⟩ ⊗ · · · ⊗ ♣xn⟩. (41)

Here w is the weight of the Dicke state, and counts the
Hamming weights of its constituent computation basis
states’ labels. The Dicke states for qubit states are
labeled by only their weights, of which there are only
n+1 possibilities. For our quantum code construction,
we can choose the logical states to be supported on
♣Dn

w1
⟩, . . . , ♣Dn

wm
⟩ where wj+1 − wj ≥ d for any j =

1, . . . ,m − 1, and d is the desired minimum distance
of the quantum code.

When a quantum code is permutation-invariant,
we only need to consider equivalence classes of Pauli
operators up to a permutation. For Dicke states,
⟨Dn

w♣P ♣Dn
w⟩ are not necessarily zero even when the

Pauli P is non-diagonal [44], we need to count the
number of all Paulis of weight at most d − 1 up to a
permutation. The number of unique qubit-Paulis up
to a permutation having a weight of at most w is equal
to the number of ways to order a w-tuple in ¶1, 2, 3♢w

in a non-decreasing sequence, and this number is just
(

n+w−1
w

)
. Hence to total number of Paulis that we

need to consider for the non-deformation conditions
is at most

∑d−1
w=0 3w.

Now we consider a variation of the A-matrix from
Alg. 1 with the matrix elements

⟨Dn
wj
♣P ♣Dn

wj
⟩, (42)

where P labels the rows and j labels the columns.

Accepted in Quantum 2024-11-21, click title to verify. Published under CC-BY 4.0. 13



From this, we can get permutation-invariant quan-
tum codes with a minimum distance of d whenever

(⌊n/d⌋+ 1) ≥ 1 +

d−1∑

w=0

3w. (43)

For instance, when d = 3 this inequality becomes

⌊n/3⌋ ≥ (1 + 13), (44)

and this formalism show that we can get gives
permutation-invariant codes with a distance of d = 3
when n ≥ 42. This bound is however loose, because
there are permutation-invariant quantum codes with
d = 3 on 9 qubits [39, 38], and even on 7 qubits [40].
This suggests that rather than using loose bounds on
the nullity of the A matrix in Alg. 1, we need to ex-
ploit additional structure about the kernel of A to
realize the full potential of our formalism.

1.5.4 Remarks on optimality

If we take the metric of optimality to be maximiza-
tion of the distance d for őxed length n and number
of encoded qubits k, then our construction is not opti-
mum. This is because the őve-qubit code is the unique
[[5,1,3]] code, and our framework does not encompass
it. To see this, note that the classical codewords on
which the [[5,1,3]] code is supported on comprise of a
distance-1 classical code.

We demonstrate examples of optimal quantum
codes using our framework which use the Hamming
code and a nonlinear cyclic code in Sec. 1.5.1 and
Sec. 1.5.2 respectively.

1.6 Recovery procedure

If a quantum code satisőes the KL criteria [6] exactly,
we can use the KL procedure (Ref. [6]) to construct
explicit recovery maps for the quantum code. We
brieŕy review this recovery procedure.

Given an M -dimensional quantum code, the cor-
rectible subspaces reside within a space spanned by
W1♣kL⟩, . . . ,Ww♣kL⟩, where k ∈ ¶0, 1, . . . ,M −1♢ and
Wj are matrices that we call correctible errors. Using
any Gram-Schmidt procedure on W1♣kL⟩, . . . ,Ww♣kL⟩
for every k ∈ ¶0, 1, . . . ,M − 1♢, we obtain a set of or-
thonormal states

♣Fk,1⟩, . . . , ♣Fk,r⟩.

Here r is the dimension of the space spanned by
W1♣kL⟩, . . . ,Ww♣kL⟩, and is identical for every k. For
any such Gram-Schmidt decomposition, and for any
j ∈ [r], we can form the projectors

Pj =

M−1∑

k=0

♣Fk,j⟩⟨Fk,j ♣. (45)

From the KL criteria, these projectors are pair-wise
orthogonal, and we can derive the corresponding uni-
tary operators Uj so that the recovery operation with
Kraus operators UjPj will correct all errors spanned
by the elements of the correctible set Ω. These Kraus
operators correspond to the operational procedure of
őrst performing projective measurements given by the
projectors ¶P1, . . . , Pr♢, obtaining an error syndrome
j that corresponds to the projector Pj , and applying
a conditional unitary operation Uj to complete the
recovery procedure.

This KL recovery procedure does not guarantee
a priori efficient implementations of these recovery
maps. Indeed, the complexity of these projective mea-
surements and conditional unitary operations when
decomposed into individual experimentally accessible
operations or quantum-gate sequences remains to be
elucidated. We believe that a constructing a system-
atic and efficient decoding scheme that is compati-
ble with our quantum coding framework is an impor-
tant milestone to be achieved in bringing our quantum
codes closer toward implementation.

2 Part 2: Linear distance codes in

ground space of local Hamiltonians

2.1 Local Hamiltonian and its ground space

Let us consider a spin chain of length n with open
boundary conditions and the local Hilbert space di-
mension of 2s + 1, where s ≥ 1 is a positive inte-
ger. We take a representation in which ♣j⟩ denotes
the sz = j state of a spin-s particle:

Ŝz♣j⟩ = j ♣j⟩, j ∈ Σ .

The local Hamiltonian whose ground space will be
shown to contain a nontrivial quantum error correct-
ing code is

Hn = HJ
n +Hs

n (46)

where HJ
n = J

∑n
k=1 (♣0⟩⟨0♣)k. Recall that the Hamil-

tonian Hs
n, is deőned by

Hs
n =

n−1∑

k=1

{
s∑

m=−s

Pm
k,k+1 +

s∑

m=1

Qm
k,k+1

}

, (47)

and the local terms are projectors acting on two neigh-
boring spins k, k + 1 deőned by

Pm = ♣0↔ m⟩⟨0↔ m♣
Qm = ♣00↔ ±m⟩⟨00↔ ±m♣; (48)

where

♣0↔ m⟩ ≡ 1√
2

[♣0,m⟩ − ♣m, 0⟩] (49)

♣00↔ ±m⟩ ≡ 1√
2

[♣0, 0⟩ − ♣m,−m⟩] , (50)
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and we denoted by ♣j, k⟩ the spin state ♣sz
k = j, sz

k+1 =
k⟩. There are 3s local projectors as P 0

k,k+1 automati-
cally vanishes. See Fig. 4.

In the simplest form s = 1, and we have

H1
n =

1

2

n−1∑

k=1

¶♣0↔ 1⟩⟨0↔ 1♣ + ♣0↔ −1⟩⟨0↔ −1♣

+ ♣00↔ ±1⟩⟨00↔ ±1♣♢ ,

where ♣1↔ 0⟩ ∝ ♣0, 1⟩ − ♣1, 0⟩, ♣ − 1↔ 0⟩ ∝ ♣0,−1⟩ −
♣ − 1, 0⟩, and ♣ ± 1↔ 00⟩ ∝ ♣0, 0⟩ − ♣1,−1⟩. Below we
will be mostly interested in s > 1, because the case of
s = 1 has a ground space of dimension too small for
us to construct non-trivial QEC codes, and the case of
s > 1 offers a ground space of large enough dimension
for us to construct non-trivial QEC codes.

Lemma 4. Suppose H1 ≥ 0 and H2 ≥ 0, and H1 +
H2 is a frustration free (FF) Hamiltonian with zero
energy ground state. Then the ground space of H1 +
H2 coincides with the intersection of the ground spaces
of H1 and H2.

Proof. Any state in the intersection of the kernels of
H1 and H2 automatically vanishes on H1 +H2. Con-
versely, a state ♣ψ⟩ that is in the kernel of the sum
H1 +H2 obeys ⟨ψ♣(H1 +H2)♣ψ⟩ = 0. Since each sum-
mand is a positive operator, so is their sum, and for
♣ψ⟩ to be a zero energy ground state of H1 + H2 it
has to vanish on each summand ⟨ψ♣Hi♣ψ⟩ = 0 for
i = 1, 2. Therefore ♣ψ⟩ is a FF ground state of each
Hi as well.

It is clear that

spec(HJ
n ) = J¶0, 1, 2, . . . , n♢ (51)

whose gap we denote by ∆(HJ
n ) = J . The kernel of

HJ
n is the span of all product states ♣t⟩ of weight n,

where t ∈ Σn
∗ ; note that the letter 0 is excluded in

these strings.

We will obtain the ground space ofHn by taking the
intersection of the ground space of HJ

n with Hs
n. We

proceed to analytically derive the ground space of Hs
n

after preliminary deőnitions. From now we assume
that m is a positive integer unless stated otherwise.

Since Hs
n is free of the sign problem (i.e., stoquas-

tic), the local projectors deőne an effective Markov
chain, which have the correspondence shown in Table
1.

We say two strings t, z are equivalent, denoted by
t ∼ z if z can be reached from t by applying a se-
quence of the local moves deőned in the table. We
deőne a set of equivalence classes as follows. Let
k denote the number of nonzero letters in a prod-
uct state (Eq. (52)). Using a consecutive set of
the local moves stated above, we can take any state
. . .m0 . . . 0(−m) · · · → . . . 0 . . . 0m(−m)0 . . . 0 · · · →

. . . 0000 . . . . We then move all the zeros to the right-
most end and ensure that all strings are of the form

cx1,...,xk
= x1 . . . xk 0 . . . 0

︸ ︷︷ ︸

n−k

(52)

where xi ∈ Σ∗. By assumption the string x1 . . . xk

cannot be further reduced and n− k is the maximum
number of zeros. Then it follows that if xi = m then
it must not have to its immediate right an xi+1 =
−m for otherwise the annihilation rule (m,−m)→ 00
would further reduce it.

Lemma 5. Any string t ∈ Σn is equivalent to one
and only one cx1,...,xk

(Eq. (52)).

Proof. By applying the local moves in the table above
to any string t, one can make sure that there are no
substrings m(−m) or m0 · · · 0(−m) for any m ∈ [s],
where [s] = ¶1, 2, . . . , s♢. Now suppose we apply these
moves to t as much as possible to bring it as close as
possible to the state of all zeros. Then if t contains
a single m, then the first non-zero letter to its right
cannot be −m. Similarly if t contains at least one −m
then the first non-zero letter to its left must not be m.
By applying 0(−m)→ (−m)0 and 0m→ m0 we move
all the zeros to the right to obtain a string of the form
given by Eq. (52). To prove that the set of all strings
equivalent to cx1,...,xk

is indeed an equivalence class,
we need to prove that the classes are distinct. It is
clear that any string is equivalent to itself (reflexive).
If x ∼ y and y ∼ cx1,...,xk

then x ∼ cx1,...,xk
(tran-

sitive). Lastly if x ∼ y, then y ∼ x because of the
reversibility of the local moves (symmetric). There-
fore indeed the set of strings equivalent to cx1,...,xk

form an equivalence class and it is an elementary fact
that equivalence classes are distinct and partition the
state space (i.e., the set of all strings) into disjoint
subsets.

Lemma 6. The uniform superposition of all strings
in an equivalence class (i.e., equivalent to the irre-
ducible string in Eq. (52)) is a (frustration free) zero
energy ground state of Hs

n.

Proof. The Hamiltonian Hs
n in Eq. (47) is a sum of lo-

cal projectors (Eq. (48)). If a ground state ψ vanishes
on each local projector, then for any m ∈ [s] it must
obey ⟨ψ♣0m⟩ = ⟨ψ♣m0⟩, ⟨ψ♣0(−m)⟩ = ⟨ψ♣(−m)0⟩ and
⟨ψ♣00⟩ = ⟨ψ♣m(−m)⟩. It follows that ψ has the same
amplitude on a pair of equivalent strings s ∼ t, which
means ⟨ψ♣s⟩ = ⟨ψ♣t⟩. It follows that the ground sub-
space of Hs

n is frustration free and is spanned by the
pairwise orthogonal states

♣cxk
⟩ ∝

∑

s∼cxk

♣s⟩ (53)

where to simplify the notation, we denoted xk =
(x1, . . . , xk). Clearly each distinct xk results in a dis-
tinct ground state ♣cxk

⟩.
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Figure 4: The new local integer spin-s Hamiltonian Hn.

The ground states can be highly entangled. How-
ever, among the many ground states there is a sub-
stantial subset that are all product states, i.e., k = n.
We will use these to construct quantum error correct-
ing codes. Before doing so let us answer: How many
product state ground states are there?

Let Tn be the set of all allowed 2s-ary strings t =
t1t2 . . . tn of length n deőned by

Tn ≡ ¶t ∈ Σn
∗ ♣ if tj = m,m ∈ [s], then tj+1 ̸= −m♢ .

(54)
Let ♣Tn♣ be the size of this set. Since T0 = ∅ and
T1 = Σ∗, we have that ♣T0♣ = 1 and ♣T1♣ = 2s.

Lemma 7. ♣Tn+2♣ = 2s♣Tn+1♣ − s♣Tn♣ , with ♣T0♣ = 1
and ♣T1♣ = 2s. We have

♣Tn♣ =
sn

{

(1 + s̄)
n+1 − (1− s̄)n+1

}

2
√

1− 1/s
, (55)

where s̄ =
√

1− 1/s. Asymptotically, for n ≫ 1, it
holds that

♣Tn♣ ≈
1 +

√

1− 1/s

2
√

1− 1/s

[

s(1 +
√

1− 1/s)
]n

. (56)

Proof. We prove this by induction, any t ∈ Tn is t =
t1 . . . tn, where tj ∈ Σ∗. Since t1 can be either a m or
−m for some m ∈ [s], t is either t = (−m)t′, where
the string t′ ∈ Tn−1 or t = mt′ where t′ denotes
the subset of strings in Tn−1 that do not start with
the letter −m, i.e., t′1 ̸= −m. The number of strings
t = (−m)t′ with t′ ∈ Tn−1 is clearly s♣Tn−1♣. Now
the set of all string t = mt′ with t′1 ̸= −m coincides
with the set that excludes the strings t = m(−m)t′′

where t′′ ∈ Tn−2. Since m takes on s different values,
we have that the number of strings t = mt′ with
t′1 ̸= (−m) is s (♣Tn−1♣ − ♣Tn−2♣).

The total size of the set is then ♣Tn♣ = 2s♣Tn−1♣ −
s♣Tn−2♣, which is a linear recursion of second order
with initial conditions ♣T0♣ = 1 and ♣T1♣ = 2s. Shift-
ing the indices to reflect ♣T0♣ and ♣T2♣ as the starting
values, we have

♣Tn+2♣ = 2s♣Tn+1♣ − s♣Tn♣.

The solution is elementary and of the form ♣Tn♣ =
Arn

+ + Brn
− , where the two roots r± are r± =

s(1±
√

1− 1/s) and A =
1+
√

1−1/s

2
√

1−1/s
, B =

−1+
√

1−1/s

2
√

1−1/s

are obtained from the initial conditions ♣T0♣ = 1 and
♣T1♣ = 2s. This proves Eq. (55) and the observa-
tion (1−

√

1− 1/s) < 1 proves the asymptotic for-
mula Eq. (56).

In the limit we have lims→1 ♣Tn♣ = n + 1, which
is the number of distinct product ground states
♣(−)1 . . . (−)p(+)p+1 . . . (+)n⟩ where p ∈ ¶0, 1, . . . , n♢
with p = 0 corresponding to ♣+ + · · ·+⟩.
Corollary 1. The dimension of the kernel of Hs

n

is
∑n

k=0 ♣Tk♣ =
(−2+rn+1

+
+rn+1

−
)

2(s−1) , where r± ≡ s(1 ±
√

1− 1/s). Asymptotically we have dim(ker(Hs
n)) ≈

rn+1
+ /[2(s− 1)].

Proof. The total number of equivalent classes is the
dimension of the kernel. For each k ∈ [n] there are
♣Tk♣ equivalent classes and we have

dim(ker(Hs
n)) =

n∑

k=0

♣Tk♣ =
rn+1

+ + rn+1
− − 2

2(s− 1)
.

Remark 3. The fraction of product state ground
states is a constant independent of n

♣Tn♣
∑n

k=0 ♣Tk♣
=

√

s− 1

s



1− (r−/r+)n+1

1 + (r−/r+)n+1 − 2r−n−1
+

]

≈
√

s− 1

s
, s > 1 ;

whereas for s = 1, lims→1 dim(ker(Hs
n)) = 1

2 (n +
1)(n+ 2) and the fraction vanishes with the system’s
size as 2/(n+ 2) ≈ 2/n.

We now return to the ground space of Hn.

Lemma 8. Ground space of H = Hs
n+HJ

n with J > 0
coincides with the span of the equivalent classes ♣cxn

⟩,
which are all product states. The ground space dimen-
sion is ♣Tn♣.
Proof. The set of FF ground states of Hs

n is given by
Eq. (53) in Lemma 6. The kernel of J

∑n
k=1(♣0⟩⟨0♣)k

is the span of all product states of weight n, i.e., states
♣t⟩ where t ∈ Σn

∗ . By Lemma 4 the intersection of the
two is ♣cxn

⟩, which we recall are the product states of
the irreducible strings of weight n and there are ♣Tn♣
of them (Eqs. (55) and (56)).
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2.2 Constructing good quantum codes in the

ground space

In this section we construct quantum codes that are
supported on a selected subset of computational basis
states that lie within the kernel of our 2-local Hamilto-
nian. We show that these quantum codes that encode
a single logical qubit can have a linear distance.

Recall that the standard local spin states are ♣j⟩,
with j ∈ Σ = ¶−s, . . . ,+s♢. We also deőne the non-
zero alphabet Σ∗ ≡ ¶−s, . . . ,−1,+1, . . . , s♢. Clearly
♣Σ♣ = 2s + 1 and ♣Σ∗♣ = 2s. Deőne the generalized
(non-Hermitian) Pauli operators in terms of these ba-
sis states as

X =
∑

j∈Σc

♣j⟩⟨j + 1♣ , Z =
∑

j∈Σc

ωj ♣j⟩⟨j♣ ,

where ω = exp(2πi/(2s+1)) is a root of unity, and by
Σc, we mean the set Σ with the cyclic property that
s+ 1 = −s and −s− 1 = +s. We denote by Xk and
Zk the generalized Pauli operators that act on the kth

spin (qudit) and act trivially on the rest.
Recall that ker(Hn) is spanned by certain product

states of weight n. We denote the basis of ker(Hn) by
Tn where

Tn = ¶♣t⟩ : t ∈ Tn♢
and Tn is deőned in Eq. (54).

The quantum code that we construct will be a two-
dimensional subspace of Tn. In general, the logical
codewords can be supported on an exponential num-
ber of basis states in Tn. However, we select a sub-
set of computational basis states labels C ⊂ Tn such
that the minimum Hamming distance of C is at least
2t + 1, where t is the designed maximum number of
correctable errors. The set of labels C has the inter-
pretation as a classical code, and we denote its dis-
tance by dist(C):

dist(C) ≡ min ¶dist(t, t′) ♣ t, t′ ∈ Tn , t ̸= t′♢ ,

and
dist(t, t′) = ♣¶t′i ̸= ti : i ∈ [n]♢♣

is the usual Hamming distance between codewords
t, t′ ∈ Σn

∗ . The logical codewords of our quantum
code will be supported only on the set of basis sets
labeled by the classical code C.

Since the basis are product states, őnding the sub-
set C with the desired distance can be seen as a prob-
lem in classical coding theory. For example, when
s = 2 one can map the elements of Tn to F

n
4 and use

the properties of quartenary codes over F
n
4 to derive

a classical code with the prescribed distance. For in-
stance, one can apply the mapping

φ(1) = 0 , φ(−1) = 1 , φ(2) = a , φ(−2) = b ,
(57)

where F4 = ¶0, 1, a, b♢, b = a + 1 and a3 − 1 = 0,
and for every t = t1 . . . tn ∈ Tn, deőne φ(t1 . . . tn) =
(φ(t1), . . . , φ(tn)).

Our strategy is to construct a code C over F
n
4 that

has a guaranteed minimum distance and delete all
codewords in it that have the forbidden substrings
(01) and (ab) to obtain a code C ′. Then we let
C = φ−1(C ′), which will be the strings that deőne
the computational (product) basis states.

Here, we prove that there are quantum codes within
ker(Hn) that have linear distance in n. We leverage
on the existence of good binary codes. The relative
distance of a code is the ratio of its distance to its
length. Good binary codes are deőned as binary codes
with positive relative distance. To use the results from
binary codes, we deőne a map β from the binary sym-
bols 0 and 1 to 2 and 1 respectively. It is then easy to
see that given any binary code C, β(C) is guaranteed
to be a feasible subset of Tn, and hence we may use
β(C) to construct our quantum code.

Our main theorem is:

Theorem 2. Let 0 < τ ≤ 1/4 be a real and positive
constant. There exist quantum codes in ker(Hn) that
encode one logical qubit and have the distance of 2τn
whenever

Ent2(2τ) + Ent2s+1(2τ) log2(2s+ 1) + o(1) ≤ 1.
(58)

Second, there are explicit quantum codes which encode
one logical qubit with a distance of 2τn whenever

1/2− τ/0.11 ≥ log2(2s+ 1)Ent2s+1(2τ). (59)

Remark 4. We call the constructions given by op-
timizing (58) and (59) as the Gilbert-Varshamov
(GV) [16, Chpt. 1] and Justesen construct [16,
Chpt. 10, Thm. 11] respectively. The GV construct
arises from choosing a random C, while the Justesen
construct uses the classical Justesen code to define C.

Proof. To prove the first result, we use random coding
arguments. Namely, we turn our attention to random
binary codes. By the Gilbert-Varshamov bound [16,
Chapter 1], we know that such binary codes are al-
most surely good binary codes. Moreover we know
that for any positive integer t, there exists a classical
binary code C that corrects 2t+ 1 errors where

♣C♣ ≥ 2n/V2(2t). (60)

Using Lemma 2, by setting C = β(C), this implies
that if

2n/V2(2t) ≥ 2V2s+1(2t), (61)

then there exists some quantum code encoding a sin-
gle qubit in ker(Hn) that also corrects t = τn errors.
Since the inequality (61) is equivalent to the (58), the
first result of our theorem follows.

The second result follows from using Justesen’s
concatenated construction, which gives binary codes
of with asymptotically linear distance and positive
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Figure 5: The vertical axis is equal to dim(ker(log
n

(|A|))),
which gives a lower bound on the size of the kernel of the
A matrix in log-scale. The horizontal axis is τ = t/n, where
t denotes the number of correctable errors for our quantum
code in the ground space of ker(Hn). The length n is taken
to be asymptotically large. This demonstrates that there are
linear distance quantum codes in the ground space of the
frustration-free 2-local Hamiltonian Hn.

rate [16][Chapter 10, Theorem 11]. More specifically,
a binary Justesen code CJustesen is a concatenated
code, with a Reed-Solomon outer code on the finite
field of dimension 2m as the outer code, and distinct
inner codes each encoding m bits into 2m bits. When
CJustesen has a length of n, the length of the Reed-
Solomon outer code is n/(2m). Each inner code is a
binary code and has rate 1, and is a distinct mapping
from F2m to F

2m
2 . The relative distance δ = d/n of

this family of Justesen codes is given by

δ ≥ 0.110(1− 2 log2 ♣CJustesen♣/n) + o(1). (62)

Rearranging this inequality and using τ = δ/2, we get

log2 ♣CJustesen♣ ≥ n(1/2− τ/0.11 + o(1)). (63)

Hence the number of codewords of a Justesen code
with distance 2t + 1 is asymptotically at least
2n(1/2−9.1τ+o(1)). Now we set C = β(CJustesen), and
use Lemma 2 to find that a quantum code in the
ground space of ker(Hn) that corrects asymptotically
τn errors exists whenever τ < (2s)/(2s + 1) and the
inequality (59) holds.

Using (59) and (63), we plot the attainable values
of τ for different values of spins in Fig. 5.

In the next two sections we illustrate explicit quan-
tum codes on 8 and 6 qudits respectively. These quan-
tum code were obtained from punctured variants of
the classical ternary Golay code, where by punctured
we mean that the őrst three symbols of the code were
ignored for the 8 qudit code, and őve symbols were
ignored for the 6 qudit code.

We furthermore use (59) and (63) to plot the frac-
tion of correctible errors attainable for spin chains of
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Figure 6: The vertical axis is τ = t/n, where t denotes the
number of correctable errors for our quantum code in the
ground space of ker(Hn). The horizontal axis is the spin
number our spin-chain.

different spin if we use QEC codes constructed using
either random classical codes or Justesen codes.

2.2.1 A ground subspace Steane code that corrects a
single error

By slightly modifying the 7-qubit Steane code, we can
embed it in the ground space of H7. Namely, on the
set of computational basis vectors, we can apply the
map ♣0⟩ → ♣1⟩ and ♣1⟩ → ♣2⟩. This also corresponds
to the quantum code with logical codewords

♣0L⟩ =
1√
8

(♣1, 1, 1, 1, 1, 1, 1⟩+ ♣1, 1, 1, 2, 2, 2, 2⟩

+♣1, 2, 2, 1, 2, 2, 1⟩+ ♣1, 2, 2, 2, 1, 1, 2⟩
+♣2, 1, 2, 1, 2, 1, 2⟩+ ♣2, 1, 2, 2, 1, 2, 1⟩
+♣2, 2, 1, 1, 1, 2, 2⟩+ ♣2, 2, 1, 2, 2, 1, 1⟩) (64)

and

♣1L⟩ =
1√
8

(♣1, 1, 2, 1, 1, 2, 2⟩+ ♣1, 1, 2, 2, 2, 1, 1⟩

+♣1, 2, 1, 1, 2, 1, 2⟩+ ♣1, 2, 1, 2, 1, 2, 1⟩
+♣2, 1, 1, 1, 2, 2, 1⟩+ ♣2, 1, 1, 2, 1, 1, 2⟩
+♣2, 2, 2, 1, 1, 1, 1⟩+ ♣2, 2, 2, 2, 2, 2, 2⟩) . (65)

Using the KL criteria, we can verify that this quantum
code corrects any single error.

2.2.2 A ground subspace code on eight spins that cor-
rects a single error

Here, we give an example of a quantum code that lies
in the kernel of Hs

n for n = 8 and s = 2. This quan-
tum code encodes a single logical qubit, corrects an
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arbitrary one-qubit error, and has logical codewords

♣0L⟩ =(♣ϕ0⟩♣θ0⟩+ ♣ϕ1⟩♣θ1⟩+ ♣ϕ2⟩♣θ2⟩
+ ♣ϕ3⟩♣θ3⟩+ ♣ϕ4⟩♣θ4⟩+ ♣ϕ5⟩♣θ5⟩)/

√
6

♣1L⟩ =(♣ϕ1⟩♣θ4⟩+ ♣ϕ0⟩♣θ3⟩+ ♣ϕ3⟩♣θ0⟩
+ ♣ϕ2⟩♣θ5⟩+ ♣ϕ5⟩♣θ2⟩+ ♣ϕ4⟩♣θ1⟩)/

√
6, (66)

where

♣ϕ0⟩ = ♣1, 1, 1,−2⟩,
♣ϕ1⟩ = ♣1,−2,−1,−1⟩,
♣ϕ2⟩ = ♣−1,−2,−2,−1⟩,
♣ϕ3⟩ = ♣−1,−1, 1, 1⟩,
♣ϕ4⟩ = ♣2,−1,−1, 1⟩,
♣ϕ5⟩ = ♣2, 1,−2,−2⟩, (67)

and

♣θ0⟩ = ♣−2, 2, 2, 1⟩,
♣θ1⟩ = ♣1,−2,−2,−2⟩,
♣θ2⟩ = ♣−1, 2, 2, 1⟩,
♣θ3⟩ = ♣−2,−2,−2,−2⟩,
♣θ4⟩ = ♣1, 2, 2, 1⟩,
♣θ5⟩ = ♣−1,−2,−2,−2⟩. (68)

The KL criteria for correcting a single error using this
quantum code are satisőed. Also this code is not a
CWS code. To see this, note that for any stabilizer
state made using qudits of dimension 5 (a prime num-
ber), the number of computational basis states over
which they are superposition over must be a power
of 5. However the logical codewords the 8-qudit code
are superpositions over 6 computational basis states,
and 6 is not a power of 5. Hence there does not exist
any Pauli that takes either of logical codewords to a
stabilizer state. Hence, the 8-qudit code is not a CWS
code. Therefore, we have an example of a quantum
code that falls outside of the CWS, stabilizer and CSS
quantum coding formalisms.

Next we point out that the quantum code in (66)
has a concatenated structure. The logical codewords
of the outer code, given in (66) are simply maximally
entangled states on two six-level systems.

From the structure of the inner codes, it is clear
that to perform a logical bit-ŕip on our quantum code,
it suffices to induce the transition ♣−2,−2,−2⟩ ↔
♣2, 2, 1⟩ on the last three spins. Performing other logi-
cal computation operations is signiőcantly more com-
plicated and we leave this for future work.

2.2.3 A ground subspace code that detects a single
error

We also construct an error detecting quantum code
(distance equal to 2) on six spins with s = 2 using the

logical operators

♣0L⟩ =
♣1, 1, 2, 1,−2, 1⟩ + ♣ − 2, 1,−2,−2, 2, 2⟩√

2
(69)

♣1L⟩ =
♣1, 1,−2,−2, 2, 1⟩ + ♣ − 2, 1, 2, 1,−2, 2⟩√

2
.

(70)

Such a construction is not unique, and we have many
other error detecting codes on six spins.
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