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Abstract
As transistor size continues to scale down, process variation

has become an essential factor determining semiconductor

yield and economic return. The Liberty Variation Format

(LVF) is the current industrial standard that expresses sta-

tistical timing behaviors based on single Gaussian model.

However, it loses accuracy when the timing distribution is

non-Gaussian due to growing process variations. This pa-

per proposes a novel LVF2 distribution model that combines

two weighted skewed-normal (SN) distributions, which bet-

ter captures the multi-Gaussian timing distribution while

maintaining backward compatibility with LVF. Experiments

using TSMC 22nm standard cells show that, compared to

LVF, LVF2 reduces binning error by 7.74× in delay and 9.56×
in transition time, and reduces 3𝜎-yield error by 4.79× and

7.18× in delay and transition time, respectively. The error

reduction for path delay is diminished due to Central Limit

Theorem (CLT). But it is still 2× for a typical circuit path

with 8 Fanout-of-4 (FO4) inverter delays.

Keywords: Speed binning, yield estimation, statistical tim-

ing modeling, process variation, LVF

1 Introduction
As transistor size continues to scale down, process varia-

tion has led to significant uncertainties in the performance

evaluation of integrated circuits (ICs). Due to device param-

eter fluctuations, fabricated ICs vary from each other in per-

formance. As significant spreads are observed in the delay

due to process variation, speed binning has become essential

during manufacturing tests for maximizing economic return

[1]. The speed binning process sorts ICs into different bins

according to the highest permissible operation frequency.
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Figure 1. Timing distribution modeling by LVF2.
The working ICs are then priced based on respective bins.

Accurate statistical static timing analysis (SSTA) at the de-

sign stage provides a good insight into yield estimation and

speed binning prediction, providing an early indicator for

pricing strategy development.

Several works have focused on statistical models that quan-

tify the probability density function (PDF) of delay distri-

butions. The cell delay distribution was initially modeled

by a Gaussian distribution, assuming a linear relationship

between process variations and cell delays at normal supply

range in [2]. Shown in bottom of Figure 1, as the technology

node and supply voltage scale down, the non-linear process

variation effect turns the delay distribution non-Gaussian. To

model the asymmetry of the distribution, the SN model adds

a parameter to shift the Gaussian density function to one

side to match the actual delay distribution [3]. Eventually,

the SN model is widely used in industry LVF [4], which con-

siders skewness and uses a moment-based model to define

timing distribution. To factor in the exponential effects of

threshold voltage on the delay distribution, log-normal (LN)

and log-skew-normal (LSN) models were proposed in [5]

and [6]. In the near-threshold region, the delay distribution

becomes asymmetric and has a long tail. By matching the

kurtosis, the fourth moment of the cell delay distribution,
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[7] proposed the log-extended-skew-normal (LESN) model

that enhanced the accuracy of the +/−3𝜎 delay in either the

sub-threshold or the near-threshold voltage region.

While previous works and the industrial standard mainly

focus on fitting each statistical moment, there is mounting

evidence of multiple Gaussian components in the timing

distributions. One straightforward example is the multiple

peaks in a PDF, which was shown in the experimental results

of [8], but the work did not explore the phenomenon further.

In other cases, although the multi-peak distribution is not sig-

nificant, using multiple Gaussians can describe PDFs better

than conventional single-peak-based models. Gaussian Mix-

ture Model (GMM) is a probabilistic distribution model that

represents normally distributed subpopulations within an

overall population, which is widely used in natural science

research [9] . A statistical timing model based on GMM was

proposed as part of the SSTA algorithm in [10]. The work

demonstrated that GMM effectively reduced the 𝜇 + 3𝜎 er-

ror compared with the canonical Gaussian model. However,

the model did not consider the skewness of the Gaussian

components. On the other hand, without comprehensively

verifying the timing distributions at the standard-cell level,

the proposed SSTA method did not become a widely used

industrial solution.

This paper proposes a novel statistical timing model based

on GMM, denoted by LVF2. As shown at the top of Figure 1,

LVF2 combines two weighted SN distributions, and can bet-

ter address the multi-Gaussian and asymmetry in the timing

distributions. At the same time, LVF2 can reflect the kur-

tosis of PDFs. Regarding library definition, LVF2 preserves

backward compatibility with the conventional LVF library.

Experiments using TSMC 22nm standard cells show that,

compared to LVF, LVF2 reduces binning error by 7.74× in

delay and 9.56× in transition, and reduces 3𝜎-yield error by

4.79× and 7.18× in delay and transition, respectively. The

error reduction is reduced for path delay due to CLT. But it

still improves 2× for a typical circuit path with 8-FO4 delay.

The rest of this paper is structured as follows. Section

2 introduces background. Section 3 describes LVF2 model-

ing methodology. Section 4 presents experimental results.

Finally, Section 5 concludes the paper.

2 Preliminary

2.1 Speed Binning

Figure 2 illustrates the concept of speed binning. Chips in the

bin with a delay smaller than 𝑇𝑚𝑖𝑛 suffer from an increased

subthreshold leakage and are considered faulty. 𝑇𝑚𝑎𝑥 is the

target design delay that chips must satisfy. Only chips with a

delaywithin𝑇𝑚𝑖𝑛 and𝑇𝑚𝑎𝑥 are considered usable. Each tested

chip is classified into one of the bins based on its maximum

operating frequency and will be priced accordingly. 𝑃1, 𝑃2,

and 𝑃3 in the figure represent the price for 𝐵𝑖𝑛1, 𝐵𝑖𝑛2, and

𝐵𝑖𝑛3, respectively. Faster chips will be sold higher, and profile

decreases as the performance drops.
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Figure 2. Illustration of binning and the chip price profile

Assume a binning process that has 𝑇1, 𝑇2, ..., 𝑇𝑛 as the

boundaries of bins. The total number of bins in the PDF is

𝑛 + 1. The probability of bin 𝑖 is given by

𝑃 (𝐵𝑖𝑛𝑖 ) =




𝑃 (𝑡 < 𝑇1) 𝑖 = 1

𝑃 (𝑡 < 𝑇𝑖 ) − 𝑃 (𝑡 ≤ 𝑇𝑖−1) 2 ≤ 𝑖 ≤ 𝑛

1 − 𝑃 (𝑡 ≤ 𝑇𝑛) 𝑖 = 𝑛 + 1

(1)

where 𝑃 (𝑡 < 𝑇𝑖 ) represents the probability of the circuit

delay 𝑡 less than 𝑇𝑖 .

2.2 Liberty Variation Format

Liberty Format is an industrial standard to define timing,

power, and noise of standard cells. LVF [4] characterizes the

statistical circuit behaviors considering on-chip variations.

It is required for technology nodes of 22nm and below.

In LVF, each slew-load pair is associated with a delay dis-

tribution and a transition distribution. LVF uses four lookup

tables (LUTs) to characterize the timing distributions, which

include the nominal values and three statistical moments,

mean 𝜇, sigma 𝜎 , and skewness 𝛾 . There exist a bijection

𝑔 between statistical moments vector 𝜃𝜃𝜃 = (𝜇, 𝜎,𝛾) and SN

parameters vectorΘΘΘ = (𝜉, 𝜔, 𝛼) [11]:
𝑔 : 𝜃𝜃𝜃 ↔ ΘΘΘ (2)

in most applications, the statistical moments vector 𝜃𝜃𝜃 of LVF

defines a SN distribution whose PDF is

𝑓𝐿𝑉 𝐹 (𝑥 |𝜃𝜃𝜃 ) = 𝑓𝑆𝑁 (𝑥 |ΘΘΘ) = 2

𝜔
𝜙 (𝑥 − 𝜉

𝜔
)Φ(𝛼 𝑥 − 𝜉

𝜔
), (3)

where 𝜙 is the PDF of normal distribution and Φ is the cu-

mulative distribution function (CDF) of normal distribution.

Take cell_rise as an instance, the definition attributes are:

• cell_rise: the LUT of the nominal values.

• ocv_mean_shift_cell_rise: the LUT of the offset

values from the mean to the nominal, and mean = nominal

+ mean_shift.

• ocv_std_dev_cell_rise: the LUT of the standard

deviation.

• ocv_skewness_cell_rise: the LUT of the skewness.

3 LVF2 Statistical Timing Model

This section presents the proposed statistical timing model,

LVF2, which inherits the conventional LVF model introduced

in Section 2.2 and equips it with GMM to address multi-

Gaussian and other non-Gaussian phenomena.



LVF2: A Statistical Timing Model based on Gaussian Mixture for Yield Estimation and Speed Binning DAC ’24, June 23ś27, 2024, San Francisco, CA, USA

3.1 Statistical Definition of LVF2

As shown at the top of Figure 1, LVF2 combines two SN

distributions to address the multiple Gaussian components;

(4) is its PDF expression, where 𝜃𝜃𝜃 1 = (𝜇1, 𝜎1, 𝛾1) and 𝜃𝜃𝜃 2 =

(𝜇2, 𝜎2, 𝛾2) are the parameters of the two SN distributions,

and 𝜆 is the weight coefficient.

𝑓𝐿𝑉 𝐹2 (𝑥 |𝜆,𝜃𝜃𝜃1,𝜃𝜃𝜃2) =(1 − 𝜆) 𝑓𝐿𝑉 𝐹 (𝑥 |𝜃𝜃𝜃 1) + 𝜆𝑓𝐿𝑉 𝐹 (𝑥 |𝜃𝜃𝜃 2) (4)

3.2 LVF2 Model Fitting

To stay consistent with the industry standard, we use point

estimation for the model parameters 𝜃𝜃𝜃 = (𝜆,𝜃𝜃𝜃 1,𝜃𝜃𝜃 2) (instead
of the Bayesian approach that derives the posterior distri-

bution of the parameters). However, even point estimation

using maximum likelihood estimation is challenging due

to the complexity of the mixture of two SN distributions.

Specifically, the log-likelihood function for LVF2 is

log𝑝 (𝜃𝜃𝜃 ;𝑋 ) =
𝑛∑︁

𝑖=1

log [(1 − 𝜆) 𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃1) + 𝜆𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃2)] , (5)

where 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} is the observed data. Due to the

complex interaction between these parameters, the optimiza-

tion is non-convex with multiple local maxima.

To simplify the optimization, the expectationśmaximization

(EM) algorithm [12] introduces latent variables𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑛},
with each 𝑧𝑖 indicating the likelihood of data point 𝑥𝑖 belong-

ing to a particular component of the mixture. The computa-

tion of 𝑧𝑖 is based on the current estimates of the parameters

𝜃𝜃𝜃 (𝑜𝑙𝑑 ) , and is given by the posterior probability of each com-

ponent for a given data point:

𝑧𝑖 =
(1 − 𝜆) 𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃 (𝑜𝑙𝑑 )1 )

(1 − 𝜆) 𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃 (𝑜𝑙𝑑 )1 ) + 𝜆𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃 (𝑜𝑙𝑑 )2 )
(6)

The complete-data log-likelihood is:

log𝐿𝑐 (𝜃𝜃𝜃 ;𝑋,𝑍 ) =
𝑛∑︁

𝑖=1

[𝑧𝑖 log((1 − 𝜆) 𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃 1))

+(1 − 𝑧𝑖 ) log(𝜆𝑓𝐿𝑉 𝐹 (𝑥𝑖 |𝜃𝜃𝜃 2))] .
(7)

The initial values𝜃𝜃𝜃 are obtained by the combination of the K-

means clustering algorithm [13] and the method of moments

[14]. Initially, we partition the observed data 𝑋 into two

groups using the K-means algorithm. Subsequently, for each

group, we derive the initial values for 𝜃𝜃𝜃 1 and 𝜃𝜃𝜃 2 utilizing

moments estimators.

In the E-step, the expected value of the complete-data log-

likelihood is computed with respect to the distribution of 𝑍

given the current parameter estimates 𝜃𝜃𝜃 (𝑜𝑙𝑑 ) :

𝑄 (𝜃𝜃𝜃 ;𝜃𝜃𝜃 (𝑜𝑙𝑑 ) ) = 𝐸𝑍 |𝑋,𝜃𝜃𝜃 (𝑜𝑙𝑑 ) [log𝐿𝑐 (𝜃𝜃𝜃 ;𝑋,𝑍 )] (8)

In the M-step, the parameters are updated by maximizing

the expected log-likelihood:

𝜃𝜃𝜃 (𝑛𝑒𝑤 )
= argmax

𝜃𝜃𝜃
𝑄 (𝜃𝜃𝜃 ;𝜃𝜃𝜃 (𝑜𝑙𝑑 ) ) (9)

The EM algorithm iterates between the E-Step andM-Step,

gradually updating the parameter estimates. This iterative

process is suitable for finding a global maximum, avoiding

the complexities of the original log-likelihood function.

3.3 Backward Compatibility

Compatibility with an existing industry standard is critical

when introducing incremental features. We propose the Lib-

erty Format of LVF2 that ensures backward compatibility

with LVF, i.e., SSTA tools that support LVF2 can recognize

LVF without additional effort, and library files can support

LVF and LVF2 simultaneously without conflicts.

Based on the parameters given in (4), seven new attributes

are introduced to define LVF2 in library. Take cell_rise as

an instance, the definition is as follows:

• ocv_mean_shfit1_cell_rise: The LUT provides the

mean of the first Gaussian (𝜇1) - nominal. The default
table values inherit from ocv_mean_shift_cell_rise.

• ocv_std_dev1_cell_rise (𝜎1): The LUT specifies the

standard deviation of the first Gaussian. The de-

fault values inherit from ocv_std_dev_cell_rise.

• ocv_skewness1_cell_rise (𝛾1): The LUT specifies

the skewness of the first Gaussian. The default table

values inherit from ocv_skewness_cell_rise.

• ocv_weight2_cell_rise (𝜆): The LUT specifies the

weight of the second Gaussian, with a range of [0, 1].
The default values are all zeros.

• ocv_mean_shift2_cell_rise: The LUT provides the

mean of the second Gaussian (𝜇2) - nominal.
• ocv_std_dev2_cell_rise (𝜎2): The LUT provides the

standard deviation of the second Gaussian.

• ocv_skewness2_cell_rise (𝛾2): The LUT provides

the skewness of the second Gaussian.

The above definition ensures that when an LVF2-capable

SSTA tool processes a conventional LVF library, it automati-

cally recognizes the SN distribution of LVF as the first compo-

nent of LVF2 in the approach of (10). Although LVF2 assumes

only two Gaussian components, one can easily extend the

library to support more components by following similar

attribute naming conventions.

𝑓𝐿𝑉 𝐹2 (𝑥 |𝜃𝜃𝜃𝐿𝑉 𝐹 ) =𝑓𝐿𝑉 𝐹2 (𝑥 |𝜆 = 0,𝜃𝜃𝜃 1 = 𝜃𝜃𝜃𝐿𝑉 𝐹 ,𝜃𝜃𝜃 2 = ∅)
=𝑓𝐿𝑉 𝐹 (𝑥 |𝜃𝜃𝜃𝐿𝑉 𝐹 ) (10)

3.4 Under the Law of The Central Limit Theorem
It is worth investigating the benefit and limitation of LVF2

in practice, particularly in SSTA, where the random timing

delays are accumulated, i.e., the sum of random variables.

The CLT states that the sum of a large number of independent

random variables, each with finite mean and variance, will

be approximately normally distributed [15].

To give a more quantitative analysis, let us consider the

sum of 𝑛 independent random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 (not

necessarily Gaussian) with finite mean 𝜇𝑖 and variance 𝜎2
𝑖

to represent the timing delay of an 𝑛-stage circuit. We first

normalize each distribution by subtracting the mean and

dividing by the standard deviation, i.e., 𝑌𝑖 = (𝑋𝑖 − 𝜇𝑖 )/𝜎𝑖 .
Theorem 1 (Berry-Esseen Theorem [16]). Let 𝑌1, 𝑌2, . . . , 𝑌𝑛
be i.i.d. with zero mean, variance 𝜎2

= 1, and finite third

absolute moment 𝜌 = E[|𝑋𝑖 |3]. Then, for all 𝑛, the CDF of
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Figure 3. Fitting results of LVF, LESN, Norm2, LVF2 (above); and the decomposition of LVF2 (bottom) for typical scenarios.

𝑌𝑛 , denoted by 𝐹𝑛 (𝑥), and the CDF of the standard normal

distribution, Φ(𝑥), satisfy
sup
𝑥∈R

|𝐹𝑛 (𝑥) − Φ(𝑥) | ≤ 𝐶𝜌
√
𝑛
, (11)

where 𝐶 is an absolute constant and 𝜌 is the third moment.

Corollary 2. For the SSTA propagation, the convergence rate

of the accumulated delay to be normal is 𝑂 (1/
√
𝑛).

Corollary 3. For the SSTA propagation, where 𝑋𝑖 is close to

Gaussian distribution, the third moment 𝜌 will dominate the

convergence rate.

What we can learn from the CLT and Berry-Esseen Theo-

rem is that for SSTA problems, LVF2’s advantage will be less

significant if the stage delay is close to Gaussian distribution

or when the logic depth is deep. This gives us an insight of

when to switch from LVF2 to the compatible LVF in order to

save storage space and computational time.

4 Experiments and Discussions
To assess LVF2, we performed experiments using the TSMC

22nm standard cells at the TTGlobal_LocalMC corner. The

supply voltage is 0.8V and the temperature is 25◦𝐶 . For each
timing distribution, 50k process variation samples were gen-

erated by Latin Hypercube Sampling (LHS) SPICE Monte

Carlo (MC) simulation with all variations turned on.

The experiments compared four timing models: LVF2,

Norm2 [10], LESN [7], and LVF [4]. Norm2 is the combi-

nation of two weighted normal distributions that can be

defined by five parameters (𝜆, 𝜇1, 𝜎1, 𝜇2, 𝜎2). The difference
between Norm2 and LVF2 is that Norm2 does not consider

the skewness of the Gaussian components. LESN is a state-

of-art statistical moments-based model. LVF is the current

industry standard based on SN, which serves as the baseline.

In this section, we assess LVF2 with cells in Section 4.1, 4.2,

and 4.3. Section 4.4 evaluates the improvement of LVF2 with

circuit paths. To evaluate the accuracy of binning prediction,

the binning boundaries are set to 𝜇 ± 3𝜎 , 𝜇 ± 2𝜎 , 𝜇 ± 𝜎 , and

𝜇, which lead to eight speed bins. To facilitate a thorough

discussion, we use three evaluation metrics in the following

experiments: bin probability, 3𝜎 yield, and root mean square

Table 1. Scenarios Assessment among Models.

Scenarios
Binning Error Reduction (×)
LVF2 Norm2 LESN LVF

2 Peaks 12.65 1.01 1.02 1
Multi-Peaks 29.65 7.67 10.68 1

Saddle 9.62 5.06 1.88 1
Minor Saddle 16.27 10.58 0.84 1

Kurtosis 8.63 8.16 3.43 1

error (RMSE) of CDF. Error reduction is used to normalize

each metric in a unified way (12), where baseline is the result

of LVF and golden is from SPICE MC simulations.

Error Reduction =

|𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑔𝑜𝑙𝑑𝑒𝑛 |
|𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑔𝑜𝑙𝑑𝑒𝑛 | (12)

4.1 PDF Fitting Assessment For Cells
From the distributions generated from cells, we select five

representative non-Gaussian scenarios. Although not all the

non-Gaussian distributions can be categorized into one of

these scenarios, it is commonly found that a real distribution

is the mixture of them. As shown in Figure 3, LVF2 fits these

scenarios better than the other models. Table 1 summary the

binning error reduction. Below, we discuss these scenarios

case by case. All the quantitative synthesis is assumed for

cells, but the conclusion is valid for circuit paths as well.

• 2 Peaks: In Figure 3(a), two prominent peaks exist due

to the considerable distance between their locations

and the minor standard deviations. LVF2 perfectly fits

this case with two peaks. A sharp edge indicates a sig-

nificant skewness. As a result, Table 1 suggests that

skewness is an indispensable parameter as LVF2 out-

performs Norm2 by 12.5× binning error reduction.

• Multi-Peaks: The case in 3(b) is similar to 3(a), in

which both peaks have significant skewness. LVF2

successfully identifies the two dominant peaks and

shows the highest binning error reduction, 29.65×.
• Saddle: The case in Figure 3(c) is characterized by two

similar peaks with slight skewness and comparable

standard deviations. A small standard deviation usu-

ally indicates a higher peak. LVF2 can perfectly fit the

distribution with an error reduction of 9.62×.
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Table 2. Standard Cell Library Assessment among Models.
Std. Cell

Type

Test Arcs

Number∗
Delay Binning Error Reduction† Transition Binning Error Reduction† Delay 3𝜎-Yield Error Reduction† Transition 3𝜎-Yield Error Reduction†

LVF2 Norm2 LESN LVF LVF2 Norm2 LESN LVF LVF2 Norm2 LESN LVF LVF2 Norm2 LESN LVF

INV 24 11.87 4.95 3.76 1 16.98 7.30 4.02 1 12.32 4.28 3.60 1 8.68 8.09 4.38 1

BUFF 21 7.62 4.64 3.61 1 5.25 4.14 5.49 1 8.25 4.15 3.99 1 5.72 3.70 5.76 1

NAND2 57 11.87 4.06 5.19 1 14.43 5.91 5.73 1 4.50 4.45 4.52 1 10.19 8.64 6.19 1

NAND3 39 6.01 3.33 6.38 1 16.77 5.54 4.57 1 4.18 4.43 4.56 1 18.17 8.30 5.23 1

NAND4 28 5.67 3.36 3.79 1 12.72 4.62 5.88 1 6.13 7.41 3.30 1 11.43 7.07 6.00 1

AND2 20 10.06 3.14 4.28 1 6.33 3.06 5.56 1 11.35 3.39 5.10 1 3.36 2.73 3.21 1

AND3 22 4.08 3.53 4.37 1 6.58 2.72 5.86 1 3.81 5.32 3.59 1 4.56 5.70 5.75 1

AND4 11 10.23 2.99 3.38 1 6.39 2.41 5.34 1 3.94 3.18 2.70 1 5.94 3.57 5.87 1

NOR2 14 5.79 2.86 3.11 1 12.61 5.47 5.82 1 3.06 2.91 2.83 1 9.26 6.29 6.48 1

NOR3 13 9.82 3.11 5.43 1 10.43 5.14 4.93 1 6.85 4.15 4.82 1 8.03 5.84 4.93 1

NOR4 25 5.50 3.53 4.25 1 10.85 5.53 5.21 1 2.78 3.75 3.12 1 6.79 3.95 4.29 1

OR2 17 5.54 3.08 7.31 1 8.16 2.94 4.94 1 3.42 3.54 3.11 1 7.72 6.56 10.37 1

OR3 12 13.56 5.05 5.72 1 8.10 4.35 6.01 1 1.77 8.44 3.73 1 4.01 4.65 8.00 1

OR4 23 8.10 4.06 5.04 1 8.98 3.91 5.34 1 4.85 7.71 2.36 1 14.06 7.35 5.07 1

XOR2 32 6.41 3.61 4.21 1 8.88 2.48 5.01 1 3.75 3.10 7.87 1 3.57 5.11 7.04 1

XOR3 49 5.80 4.14 4.28 1 7.64 3.30 5.32 1 3.62 3.02 4.31 1 4.74 5.30 5.40 1

XOR4 74 6.04 4.24 4.88 1 7.57 2.40 5.80 1 3.32 6.07 3.79 1 3.51 3.49 6.09 1

XNOR2 30 7.68 3.40 4.74 1 11.38 3.88 5.22 1 4.05 3.54 3.16 1 5.21 6.09 7.54 1

XNOR3 48 5.99 7.42 3.69 1 10.60 2.92 5.69 1 5.83 2.50 4.64 1 11.30 3.25 7.38 1

XNOR4 45 12.06 5.42 4.59 1 8.46 2.63 6.03 1 3.28 3.46 4.98 1 7.18 7.72 7.50 1

MUX2 31 6.39 4.91 6.07 1 7.72 4.18 5.04 1 2.70 3.34 3.02 1 5.96 5.52 4.63 1

MUX3 40 5.19 2.90 3.75 1 10.39 3.54 5.93 1 3.40 3.63 3.90 1 6.22 3.41 6.46 1

MUX4 40 8.58 3.27 3.88 1 9.23 3.40 5.68 1 4.06 3.60 4.88 1 6.44 3.11 6.44 1

FA 25 6.01 4.27 3.50 1 6.30 3.38 7.70 1 5.91 2.80 4.02 1 3.62 3.51 7.56 1

HA 7 7.63 2.96 4.77 1 6.34 2.13 6.63 1 2.73 2.67 5.44 1 3.80 7.16 11.02 1

∗ Each timing arc contains 8×8 delay and 8×8 transition distributions, and each distribution contains 50k samples; † In the unit of improvement multiples (×).
Overall 747 7.74 3.93 4.56 1 9.56 3.89 5.55 1 4.79 4.19 4.05 1 7.18 5.44 6.34 1

• Minor Saddle: The case in Figure 3(d) features one

Gaussian dominating another, and the two Gaussians

having deviated standard deviations. In this case, LVF2

also significantly improves the fitting result, reducing

the binning error by 16.27×.
• Kurtosis: This case occurs when the distribution ex-

hibits a high level of kurtosis. In 3(e), LVF2 considers

two peaks with similar centers but different weights

and deviations. This leads to a high kurtosis. We can

see that both LVF2 and Norm2 significantly improve

the binning error. It is worth noting that even without

considering the skewness, the Norm2 model can still

accurately fit distributions with large kurtosis.

4.2 Standard Cell Characterization
Our benchmark encompasses 25 distinct standard combi-

national cells, exploring different driving strengths and dif-

ferent timing arcs among each cell type. Considering 8×8
slew-load pairs, each timing arc has 64 conditions to simu-

late and is characterized into 64 transition time and 64 delay

distributions. We employed LVF2, Norm2, LESN, and LVF

models to fit the distributions and evaluated the results with

binning and 3𝜎-yield error reduction.

Table 2 summarizes the experimental results. LVF2, Norm2,

and LESN demonstrate great improvements in binning and

3𝜎-yield prediction, compared to LVF. Since LESN focuses

more on the tail fitting, the results show its advantages in

estimating the 3𝜎-yield. Norm2 address non-Gaussian distri-

butions with two Gaussians, which is more observed in the

PDF of transition times. Hence, we see a more significant

improvement by Norm2 in transition than delay.

In most cases, LVF2 performs the best. To summarize,

LVF2 demonstrates its strengths and robustness across all

ranks, with improvements of 7.74× and 9.56× in delay and

transition binning predictions, and 4.79× and 7.18× in the

3𝜎-yield estimations of delay and transition, respectively.
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Figure 4. Accuracy Pattern: LVF2 CDF RMSE Reduction in

8×8 Timing Tables.

4.3 Accuracy Patterns For LVF2

We explored the patterns of multi-Gaussian distributions oc-

curring in the transition and the delay. Each table is indexed

with the input slew (ns) and output load (pf), which increase

non-linearly and combine into 8×8 table entries. We use

LVF2’s CDF RMSE reduction as an indicator. The score re-

flects the merit of LVF2 fitting, which can quantify the degree

of multi-Gaussian phenomenon of a timing distribution.

Figure 4 illustrates a well-characterized accuracy pattern,

which was found to be a general case in our experiments.

We observed that the multi-Gaussian phenomenon appears

in a diagonal pattern. We assume that the confrontation of

different variations causes the regularity, and the variation

is influenced by the slew-load combination. With the as-

sumption, we see that when the multi-Gaussian is apparent

at position (𝑖, 𝑗) of the table, which means there are two

(or more) variations, denoted as A and B, evenly matched

against each other; the multi-Gaussian is weaker at (𝑖 ± 1, 𝑗)
and (𝑖, 𝑗 ± 1), which means one ofA and B dominates when

only one of slew and load changes and the other is fixed; and

themulti-Gaussian phenomenon appears again at (𝑖±1, 𝑗±1),
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Figure 5. Comparison of Binning Error Reduction along

Two Circuit Critical Path.

which reflects A and B are back to the confrontation state

when slew and load increase or decrease together.

The regularity of the diagonal patterns leads to the conclu-

sion that themulti-Gaussian phenomenon is not coincidental.

In many cases, it is imperative to upgrade LVF to LVF2. Fur-

thermore, LVF2 can serve as a helpful tool to quantify the

multi-Gaussian phenomenon, and then assist us in exploring

the reasons behind multi-Gaussian in timing distributions in

future research. Meanwhile, the accuracy pattern serves as

an excellent prediction of PDF shapes, which can be useful

for developing efficient methods to characterize statistical

timing behaviors across multiple slew-load pairs.

4.4 Validation For Paths

According to Section 3.4, timing distribution becomes Gauss-

ian along propagation, decaying the benefits of LVF2 and

other non-Gaussian models. However, modern VLSI design

usually adopts shallow logic depths to optimize energy ef-

ficiency, and an optimal path with delay can be as short as

6 to 8 FO4 [17]. We validated LVF2 for SSTA flow. The first

benchmark is a 16-bit carry adder with a typical structure

and a critical path delay of 30-FO4. The second is a 6-stage

H-tree with a delay of 95-FO4, in which each stage consists

of 2 buffer cells and metal wires described with the Π-model.

Although there are some formularized non-Gaussian SSTA

approaches [18] [19], to avoid losing generality, the block-

based SSTA [20] is used to calculate the propagation timing

distribution of each model along the critical path. The golden

is obtained based on MC simulation of timing critical paths.

The SSTA propagation result shown in Figure 5 agrees

with the CLT and 𝑂 (1/
√
𝑛) convergence rate discussed in

Section 3.4. LVF2 and Norm2 show their strengths in the

first few stages, but the improvements gradually converge

towards one as the stage increases. In the 16-bit carry adder

benchmark, LVF2 improves by 2× compared to LVF at 8-

FO4, and 1.15× at the last cell of the path. For the H-tree

benchmark, LVF2 improves 8× at 8-FO4, and 2.68× at the end.

The H-tree is deeper in path but slower in convergence. We

believe it is because the accumulation of random variables

slows down due to the simple structure of buffer cells com-

pared to the former. The results of LESN did not meet our

expectations. A possible reason is an error introduced during

moment matching, which accumulates during propagation

and eventually results in an inaccurate timing distribution.

5 Conclusions
This paper proposes a novel statistical timing model, LVF2,

to accurately address the multiple Gaussian components

and asymmetry in timing distributions. LVF2 combines two

weighted SN distributions and can be solved by the EM algo-

rithm. Experimental results based on TSMC 22nm standard

cells prove LVF2’s capability to significantly improve accu-

racy. Compared to the industry-standard LVF, LVF2 achieves

error reductions of 7.74× and 9.56× in delay and transition

binning, and 4.79× and 7.18× in the 3𝜎-yield of delay and

transition, respectively. With a real circuit, SSTA experi-

ments show a 2× binning error reduction with a typical path

of 8-FO4 delay. Finally, the paper discusses the accuracy

pattern of multi-Gaussian characteristics occurring in the

standard cell library. We anticipate that the accuracy pattern

will become an essential indicator in future research explor-

ing non-Gaussian timing distributions. Meanwhile, assuming

such an accuracy pattern can provide significant insight to

speed up the statistical characterization that includes MC

simulations across multiple slew-load pairs.
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