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Dynamics of the blood plasma proteome
during hyperacute HIV-1 infection

Jamirah Nazziwa 1,2, Eva Freyhult3, Mun-Gwan Hong 4, Emil Johansson 1,2,
Filip Årman5, Jonathan Hare6,7,8, Kamini Gounder9,10,11, Melinda Rezeli5,12,
Tirthankar Mohanty 13, Sven Kjellström 5, Anatoli Kamali7,8, Etienne Karita14,
William Kilembe15, Matt A. Price7,8,16, Pontiano Kaleebu17, Susan Allen14,15,18,
Eric Hunter 14,15,18, Thumbi Ndung’u9,10,11,19, Jill Gilmour20,
Sarah L. Rowland-Jones 21, Eduard Sanders 22,23,24,
Amin S. Hassan 1,2,23,25,26 & Joakim Esbjörnsson 1,2,21,26

The complex dynamics of protein expression in plasma during hyperacute

HIV-1 infection and its relation to acute retroviral syndrome, viral control, and

disease progression are largely unknown. Here, we quantify 1293 blood plasma

proteins from 157 longitudinally linked plasma samples collected before,

during, and after hyperacute HIV-1 infection of 54 participants from four sub-

Saharan African countries. Six distinct longitudinal expression profiles are

identified, of which four demonstrate a consistent decrease in protein levels

following HIV-1 infection. Proteins involved in inflammatory responses,

immune regulation, and cell motility are significantly altered during the tran-

sition from pre-infection to one month post-infection. Specifically, decreased

ZYX and SCGB1A1 levels, and increased LILRA3 levels are associated with

increased risk of acute retroviral syndrome; increased NAPA and RAN levels,

and decreased ITIH4 levels with viral control; and increased HPN, PRKCB, and

ITGB3 levels with increased risk of disease progression. Overall, this study

provides insight into early host responses in hyperacute HIV-1 infection, and

present potential biomarkers and mechanisms linked to HIV-1 disease pro-

gression and viral load.

While the blood plasma proteome typically remains stable in healthy

individuals, perturbations have been documented in response to dif-

ferent infections, including severe acute respiratory syndrome cor-

onavirus 2, and bacterial and viral pneumonia1,2. Understanding the

differential expressionof plasmaproteomics in these infections played

a pivotal role in informing diagnostic, prophylactic, and therapeutic

interventions3,4. In HIV-1 infection, virus-host interactions during the

earliest stages of infection—the hyperacute HIV-1 infection (hAHI,

defined as the period fromonset of plasma viremia topeak viral load)—

trigger a complex network of cellular and tissue signaling events. This

results in rapid systemic immune activation and reorganization of

cellular microenvironments5–8. A notable aspect of this immune

response is the cytokine storm, which is often accompanied by acute

retroviral syndrome (ARS) in some individuals9–12. These inflammatory

events contribute to substantial CD4 + T-cells loss and germinal center

disruption, playing a critical role in shaping HIV-1 disease

pathogenesis6,8,13–15. Indeed, disease progression to AIDS in HIV-1

infected individuals varies greatly, from a few months to several dec-

ades, and events during hAHI have been suggested to significantly

influence the rate of disease progression16–18. In blood, HIV-1 viraemia

becomes detectable about a week after infection, reaching a peak viral

load (VL) of millions of virus particles per milliliter plasma 3–4 weeks

after infection5,6. After the peak VL, the viraemia gradually decreases

and stabilizes at a set-point level ~30–65 days after infection5,6.
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While pro-inflammatory and antiviral cytokines and chemokines

havebeen studied extensively, longitudinal studies investigatingblood

plasmaproteins during hAHI are lacking13,19,20. Recent advances in data-

independent acquisition mass spectrometry (DIA-MS) based pro-

teomics have made it possible to simultaneously identify and quantify

thousands of proteins in plasma across a large dynamic range, sig-

nificantly enhancing the discovery of potential biomarkers and reg-

ulators of disease21. Furthermore, the humanprotein atlas hasmapped

the cellular and tissue expression patterns of these proteins, facilitat-

ing analysis of proteome dynamics in response to infections22. In this

study,wequantify the dynamicsof the bloodplasmaproteomebefore,

during and after hAHI, and present multiple plasma proteins asso-

ciated with ARS, viral load responses, and HIV-1 disease progression.

Results
Study participants
Overall, 54 participants from Central and East Africa (International

AIDS Vaccine Initiative [IAVI] cohort, n = 39), and South Africa (Durban

cohort, n = 15) were included in the study (Fig. 1)23–26. The participants

contributed 157 longitudinally linked plasma samples from three time

points including Visit 0 (V0), collected at a median of 62 days prior to

HIV-1 infection (interquartile range [IQR] 28–106 days); V1, median

10 days after HIV-1 infection (IQR 10–14); and V2, median 31 days after

HIV-1 infection (IQR 28–37)27. Most participants were male (n = 34,

63%), aged below 25 years (n = 32, 59%), from Kenya (n = 32, 59%),

infected with HIV-1 sub-subtype A1 (n = 31, 57%), and identified as men

who have sex with men (MSM, n = 28, 52%, Table S1). Both age and sex

are well-known factors influencing HIV-1 progression, whereas cohort

and HIV-1 subtypemay reflect potential variability due to demographic

and virological differences28. Age, sex, cohort, and HIV-1 subtype were

therefore assessed as potential confounders. The assessment showed

that the IAVI cohort predominantly consisted of HIV-1 sub-subtype A1

infected male participants, whereas the Durban cohort exclusively was

composed of HIV-1 subtype C infected female participants (Table S1).

To avoid over-parameterization, all subsequent models were only

adjusted for age and cohort (except for protein expression associated

Fig. 1 | Characteristics of the study participants. The flowchart outlines the

longitudinal sampling and proteomic workflow employed in the study. Fifty-four

individuals from two distinct geographical regions provided three matched sam-

ples each. Plasma samples were prepared both with and without depletion of the

top 14 most abundant proteins. These samples were then analyzed using Data-

Independent Acquisition (DIA)/SWATH LC-MS/MS. Arrows indicate the flow of

samples through each stage of processing, including plasma preparation, mass

spectrometry analysis, and subsequent computational analyses, which were used

to explore protein dynamics over time. Abbreviations: V0 visit 0 (collected before

estimated date of infection), V1 visit 1 (collected 10–14 days post estimated date of

infection), V2 visit 2 (collected 15–42 days before estimated date of infection), IAVI

International AIDS Vaccine Initiative, SA South Africa, KE Kenya, DIA data-

independent acquisition, SWATH sequential window acquisition of all theoretical

mass spectra, MS mass spectrometry.
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with ARS that was only adjusted for age, since ARS data was only

available for the IAVI cohort). Eighteen of the 54 participants possessed

protective HIV-1 HLA I alleles including B*58:01, B*57:02, B*57:03, and

A*74:01, while 11 haddisease-susceptibleHLA I alleles includingB*58:02

andB*18:01 (Table S2).However, noassociationsbetweenHLAandHIV-

1 control (p >0.05) or disease progression were found (p >0.05).

Plasma proteome dynamics during hyperacute HIV-1 infection
To maximize protein detection, each sample was analyzed both in its

neat form and following the depletion of the 14 most abundant pro-

teins (Fig. 1, Supplementary Information)29. In total, 1549 protein pro-

files were detected, with 213 excluded due to absence in more than

80% of the samples (Fig. S1). Of the remaining 1336 proteins, 379 were

detected in neat plasma samples, and 957 in depleted plasma. Among

1028 identified proteins with uniqueUniProt IDs and canonical protein

form, 242 proteins had been previously classified as secreted proteins

actively released into blood plasma, while 618 proteins were categor-

ized as intracellular or tissue leakage proteins originating from tissues

or dying cells. The remaining proteins were either secreted to other

locations or represented immunoglobulin genes22,30. To determine the

longitudinal within-host dynamics across V0, V1, and V2 for eachof the

1336 identified plasma proteins, kmeans and hierarchical clustering

were used. The analysis suggested sixdifferent longitudinal expression

profiles (Fig. 2a). Of these, two demonstrated a significant decline

during hAHI with a rebound to pre-infection levels after hAHI (referred

to as “Rapid decrease-rapid increase”, and “Slight decrease-rapid

increase”); twodemonstrated a decreased levels during and after hAHI

(“Gradual decrease”, and “Rapid decrease-slight increase”); one

demonstrated an increase during hAHI followed with a decline to pre-

infection levels after hAHI (“Rapid increase-rapid decrease”); and one

demonstrated a sustained increase during and after hAHI (“Persistent

increase”). Population-basedproteindynamics, basedonmeanprotein

intensities, were analyzed and revealed distinct functional groupings.

Proteins in “Rapid decrease-rapid increase” group, accounting for 7%

of the determined proteins, were primarily involved in cell adhesion

and extracellular structure organization. In the “Gradual decrease”

group, which comprised 32%, proteins were typically involved in acti-

vation of immune response, cytoskeleton organization, protein

transport and regulation of apoptosis. The “persistent” category,

representing 18%, included proteins associated with epithelial devel-

opment, complement activation, cellular extravasation, and viral entry

into host cell (Fig. S2).

Next, significantly differentially expressed proteins between the

study visits at the individual level were identified. An explorative

principal component analysis showed distinct protein expression

patterns by cohort and visit, with Durban participants clustering

separately from IAVI participants (Fig. S3). To account for thispotential

confounder, we applied a linear mixed-effects model that included

age, cohort, visit, and the interaction between cohort and visit, while

also adjusting for principal components (PC1 and PC2) and patient-

specific randomeffects. Using thismodel,we identified97, 168 and 149

differentially expressed proteins between visits V1–V0, V2–V0, and

V2–V1, respectively (Fig. 2b). Of these, two (V1–V0), 18 (V2–V0), and

eight (V2–V1) proteins exhibited substantial changes with a log2 fold

change (Log2FC) > ±1 (Fig. 2c; Table S3).

Among the 97 differentially expressed proteins at V1–V0, 51 pro-

teins were upregulated, including 28 classified as secreted to blood

and 23 as leakage proteins based on human protein atlas. Upregulated

proteins at V1 were overrepresented for gene ontology biological

process (GO-BP) terms, related to innate immune responses, stress

responses, adaptive immune responses, transport, proteinmaturation,

and regulation of vesicle-mediated transport (Fig. 2d). Of the 46

downregulated proteins at V0, 18 (40%) were classified as proteins

secreted to blood. Over-representation analysis showed that 13 pro-

teins were linked to GO-BP terms such as regulation of hydrolase/

peptidase activity and establishment of endothelial barrier (Fig. 2e).

Furthermore, tissue-specific transcriptional signatures in V1–V0 indi-

cated significant activation of tissue damage markers associated with

esophagus mucosa and heart (Fig. S4)31.

When comparing V2 with V0, 77 proteins were upregulated,

whereof 58 (75%) were classified as leakage proteins and 39 upregu-

lated were linked with various GO-BP terms, including blood coagu-

lation, fibrin clot formation, proteinmaturation, positive regulation of

cell-substrate adhesion, metal ion responses, positive regulation of

substrate adhesion-dependent cell spreading, and cell adhesion

(Fig. 2d). Of the 95 downregulated proteins at V2, 48 (51%) were clas-

sified as leakage proteins, and 53 were associated with GO-BP terms

related to regulation of peptidase activity, inflammatory responses,

stress responses, wound healing, immune responses, cytokine pro-

duction of the Tumor necrosis factor superfamily, and neutrophil

chemotaxis. Moreover, analysis of tissue-specific transcriptional sig-

natures indicated that damage markers were activated in muscle ske-

letal tissues and lungs, and at the same time suppressed in whole

blood, suggesting substantial tissue damage and cellular stress

responses between V0 and V2 (Fig. S4).

Finally, 149 proteins were differentially expressed between V1 and

V2, whereof 86 were upregulated. Based on over-representation ana-

lysis, 28 of these proteins (33%) related to gene expression, protein

maturation, and macromolecule biosynthetic process. Of the 86

downregulated proteins, 53 were associatedwith inflammatory, stress,

and innate immune responses, as well as detoxification, responses to

biotic stimulus, complement activation, and neutrophil chemotaxis

(Fig. 2e). Further analysis showed that proteins upregulated between

V2-V1 associated with damage signatures in adipose, cervical, muscle

skeletal, and lung tissue; whereas downregulated proteins were asso-

ciated with tissue damage in skin and whole blood (Fig. S4). Overall,

these findings indicate that HIV-1 infection induces a myriad of

dynamic changes in protein expression that go beyond immune

responses, influencing various biological processes such as cell

mobility, metabolic function, and apoptosis.

ZYX, SCGB1A1, and LILRA3 levels are associated with ARS
Data on AHI symptoms in the Durban cohort were missing. Hence,

associations between protein dynamics and ARS were only conducted

for participants from the IAVI cohort (n = 33, Fig. 3a). ARS was deter-

mined by latent class analysis based on the 11 symptoms including

fever, headache, myalgia, fatigue, anorexia, pharyngitis, diarrhea,

night sweats, skin rash, lymphadenopathy, and oral ulcers, as pre-

viously described9. The analysis suggested that 20 of the 33 partici-

pants (61%) had ARS. Participants with ARS had significantly higher

prevalence in nine of the eleven symptoms than those without ARS

(p < 0.05; Fisher exact test, Fig. 3b). Partial Least-Squares Discriminant

Analysis (PLS-DA) was used to identify proteins collectively associated

with ARS. The PLS-DA model that considered differences between

V1–V0 and V2–V0 demonstrated the highest average performance

measures in predicting ARS across 50 test sets (Table S4). This model

had an average accuracy of 78% (as assessed through cross-validation),

an AreaUnder the ReceiverOperatingCharacteristic Curve of 82%, and

a misclassification error of 20% (Fig. 3c). The PLS-DA analysis sug-

gested 20 differentially expressed proteins, with variance importance

scores >2, aspotential indicators ofARS (Fig. 3d, e). Approximately half

of these proteins at V1–V0 have been shown to be actively secreted

into plasma, and primarily involved in regulation of inflammatory

responses, immunity, andhost-virus interactions. Proteins identified at

V2–V0 were predominantly classified as tissue leakage proteins asso-

ciated with cell motility and signaling (Table S5).

Next, we used linearmixed-effects models to assess how ARS was

associatedwithprotein expression over time. The analysis showed that

three of the seven V1–V0 proteins that were determined as strong

potential indicators of ARS in the PLS-DA analysis were also
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individually associated with ARS (Fig. 3e, f). More specifically, the

average protein intensities of Zyxin (ZYX, a cytoskeleton protein,

modulates inflammatory response in endothelial cells) and Secre-

toglobin family 1A member 1 (SCGB1A1, a pulmonary surfactant anti-

inflammatory protein, plays an anti-inflammatory role in the lungs)

were both ~8 times lower (p <0.005) in participants with ARS com-

pared to thosewithout ARS (SupplementaryData 1)32,33. In contrast, the

Leukocyte immunoglobulin-like receptor subfamily A member 3

(LILRA3, a soluble protein secreted by monocytes and macrophages

and serves as an immunoregulatory receptor, balancing immune

response/inflammation during infection)was approximately two times

higher in participants with ARS compared to those without ARS34.

Moreover, previous studies have indicated that ZYX can influence HIV-

1 replication35,36. Collectively, these findings highlight a strong con-

nection between inflammation, innate immunity, and cell motility with

the manifestation of ARS.

NAPA, RAN, and ITIH4 levels are associated with HIV-1 control
The period during which the VL was monitored varied between study

participants. The median follow-up time was 4 years after the
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estimated date of infection (EDI). To identify plasma proteins asso-

ciated with HIV-1 control, 9 study participants that either initiated

antiretroviral treatment (ART)within the first year of infection, or were

followed for less than 1 year were excluded from the analysis (Fig. 4a).

The remaining 45 study participants typically showed high levels of

viremia following HIV-1 infection, which then subsequently decreased

and reached a viral load set-point after ~50 days post-EDI (Fig. 4b). The

medianpeakVLwas6.0 (IQR 5.2–6.4) log10 copies/ml at amedianof 19

(IQR 15-31) days post EDI, and the median nadir VL was 4.5 log10

copies/ml at a median of 64 (IQR 43–73) days post EDI. Hierarchical

clustering was used to group the 45 study participants into two clus-

tersbasedon theirVLprofiles during thefirst year of infection (Fig. 4c).

The clusters were defined as viral controllers (VL generally below

10,000 copies/ml for 12 months without ART, n = 15), and non-

controllers (VL generally above 10,000 copies/ml for 12 months

without ART, n = 30, Fig. 4d). No clinical parameters, or ARS were

associated with viral control (Fig. 4e, Table S6).

Next, linear mixed-effects models were used to determine how

viral load influence protein expression over time. The Alpha-soluble N-

ethylmaleimide-sensitive factor attachment protein (NAPA, a protein

involved in membrane fusion and vesicle trafficking within cells, and

viral release in HIV by interacting with the HIV Gag protein to promote

budding and efficient viral particle assembly) was more than twice as

high among VL controllers compared with non-controllers at both V1-

V0 and V2-V0 (p <0.005, Fig. 4f, Table S7)37. Moreover, the GTP-

binding nuclear protein Ran (RAN, a small GTP-binding protein pri-

marily involved in the regulation of nucleocytoplasmic transport,

mitotic spindle assembly, and nuclear envelope formation, that has

been shown to be essential for the nuclear import of the HIV-1 pre-

integration complex and integration of viral DNA into the host gen-

ome) was approximately three times as high among VL controllers

compared with non-controllers at V2-V0 and V2-V1 (Supplementary

Data 2)38–40. Finally, the Inter-alpha-trypsin inhibitor heavy chain H4

(ITIH4, an acute-phase protein involved in the stabilization of the

extracellular matrix and regulation of inflammation that has be sug-

gested to contribute to immune activation, tissue damage and disease

progression in HIV-1 infected individuals) was approximately four

times lower among VL controllers compared with non-controllers at

V2–V041,42. Collectively, these results indicate a strong relationship

between viral control and virus-host interactions, particularly related

to membrane fusion and nuclear import.

HPN, PRKCB, and ITGB3 levels are associated with HIV-1 disease
progression
Disease progression was defined using CD4+ T-cell responses. Parti-

cipants contributed a median of 13 (IQR: 10-18) CD4 +T-cell count

observations during the 12 months of follow-up after EDI (median

CD4 + T-cell count 520, IQR: 404–657 cells/mm3). Fast progressors

were defined as participants that reached a CD4 + T-cell count

<500 cells/mm3 within 12 months from EDI (excluding measurements

within the first 6 weeks), whereas slow progressors were defined as

participants who maintained CD4 +T-cell counts >500 during the

same period. Among the 54 participants, 12 (22%) were classified as

slow progressors and 42 (78%) as fast progressors (Fig. S5a). Study

participants from Durban had a higher likelihood of slower disease

progression comparedwith IAVI study participants (p = 0.08, Log-rank

test, Fig. S5b). A Cox regressionmodel, controlling for age and cohort,

was used to compare changes in protein levels between visits. Seven,

six, and 14 proteins were associated with faster HIV-1 disease pro-

gression at V1-V0, V2-V0, and V2-V1, respectively (p < 0.005, Fig. 5c,

Table S8). Specifically, increased levels of Hepsin (HPN, HR = 1.4,

CI = 1.1–1.7), Protein Kinase C Beta (PRKCB) (hazard ratio (HR) 1.3,

CI = 1.1–1.6), Corticotropin Releasing Hormone Binding Protein

(CRHBP, HR = 1.2, CI = 1.1–1.3), Proteasome subunit beta type-6

(PSMB6, HR = 1.3, CI = 1.1–1.5), Thioredoxin domain-containing pro-

tein 5 (TXNDC5, HR = 1.2, CI = 1.1–1.4), and Apolipoprotein C4 (APOC4,

HR = 1.3, CI = 1.0–1.2) at V1–V0 were associated with an increased risk

of HIV-1 disease progression. Decreased levels of Glutathione

S-Transferase Mu 2 (GSTM2) at V1-V0 was associated with a faster

disease progression (HR =0.9, CI = 0.8-1.0). For clarity, an HR of 1.3

indicates that a doubling of the protein level (a 1-unit increase on

log2 scale) from V0 to V1 was associated with a 30% increased risk that

CD4 + T-cell counts drops below 500 cells/μl blood within 1 year from

EDI. Interestingly, according to the HIV-1 interaction database, all the

identified proteins have been shown to interact with the HIV-1 envel-

ope (Supplementary Data 3)35. Moreover, increased levels of Integrin

subunit beta 3 (ITGB3, HR = 1.3, CI = 1.1–1.5), Heat shock 70 kDa protein

8 (HSPA8, HR = 1.1, CI = 1.0–1.2), D-dopachrome tautomerase like pro-

tein (DDTL, HR= 1.2, CI = 1.1–1.4) and Ubiquitin B (UBB, HR = 1.1,

CI = 1.0–1.2) at V2-V0 were associated with an increased risk of disease

progression. Decreased levels of CD84 (HR =0.9, CI = 0.8–0.9) and

Latent-transforming growth factor beta-binding protein 1 (LTBP1,

HR =0.7, CI = 0.6–0.9) were associated with decreased risk of disease

progression. Notably, all these proteins interact with different HIV-1

proteins to mediate (Supplementary Data 3).

Longitudinal protein dynamics in hyperacute HIV-1 infection
Finally, a sliding window approach was used to generate spline curves

reflecting the population-based average dynamics of identified key

proteins in blood plasma during hAHI (Fig. 6, Supplementary Data 4).

The protein levels were plotted relative to pre-infection levels for each

study participant on the day of sample collection post EDI. Key pro-

teins associated with ARS, viral control, and disease progression were

selected based on the above analyses. For clarity, proteins with similar

Fig. 2 | Acute HIV-1 infection alters the human plasma proteome. Longitudinal

protein expression profiles were investigated during hAHI. A comprehensive ana-

lysis of 83,643 protein combination values from all three-time points was con-

ducted across 54 study participants, resulting in a total of 1336 profiles. a To

identify the optimal clusters representing the longitudinal expression profiles for

different groups, the elbow method was employed, leading to identification of six

distinct clusters. These clusters were color-coded and plotted, with the x-axis

denoting the visit number and the y-axis representing the scaled log-intensity per

patient. b Bar plot illustrating the comparison in the number of differentially

expressed proteins across visit differences. The height of each bar corresponds to

the number of proteins while the bar color varies depending on the visit difference.

c Forest plots indicating effect sizes (log2 fold change) and 95% confidence inter-

vals for proteins significantly differentially expressed at 2 weeks and 1 month post

estimated date of infection (EDI), relative to pre-infection levels (V1-V0 and V2-V0,

respectively), as well as the difference between 2 weeks and 1 month post EDI (V2-

V1). Effect sizes are shown in red for the Durban cohort, and blue for the IAVI

cohort. Circles and triangles indicate depleted (depl) and neat plasma, respectively.

The statistical analysis was conducted using linear mixed-effects models with a

random intercept for each patient, treating visit number as a categorical variable.

The differential protein expression was assessed using a global ANOVA, with post

hoc tests identifying specific visit comparisons (e.g., V0 vs. V1, V0 vs. V2, and V1 vs

V2). The Benjamini-Hochberg’s FDR method with a 5% FDR threshold was used to

correct for multiple testing, with a fixed p-value cut-off of 0.005. d, e Circos plots

visualizing the differentially expressed proteins from different visit differences in a

circular layout. The lower ring represents the GO-biological processes associated

with the proteins belong to, with each process color-coded for easy identification.

The upper rings depict specific classification of these proteins, with proteins

secreted in blood shown in orange and the tissue leakage proteins shown in gray.

Abbreviations: V0 visit 0 (collected before estimated date of infection); V1 visit 1

(collected 10–14 days post estimated date of infection); V2 visit 2 (collected

15–42 days before estimated date of infection); V1–V0 difference between visit V1

and V0; V2–V0 difference between visit V2 and V0; V2–V1 difference between visit

V2 and V1; Log2FC log 2-fold change. Source data are provided as a SourceData file.
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dynamics in the group comparisons were excluded from this analysis.

The analysis showed an exceptional variability in the trajectory of the

different proteins over time and indicated that both the dynamics of

overexpressed proteins (defined as stormers) and underexpressed

proteins (defined as slumpers) were common during hAHI.

Discussion
Our study represents the largest andmost comprehensive longitudinal

MS-based studyof protein dynamics in hAHI.Moreover, determination

of pre-infection protein levels for each study participant enabled

analysis of relative changes in protein expression close to the HIV-1

transmission event. The analyses showed significant alterations of the

plasmaproteomeduring hAHI, andmost changeswere transient as the

infection progressed. Specifically, elevated expression of SCGB1A1 and

ZYX during hAHI and decreased levels of LILRA3 were associated with

the absence of ARS; increased levels of NAPA and RAN during hAHI,

and decreased levels of ITIH4 after hAHI were associated with lower

viremia; and increased levels of HPN and PRKCB during hAHI, and

ITGB3 and DDTL after hAHI, were associated with faster disease

progression. These findings are particularly interesting since they

represent host factors altered during hAHI that to the best of our

knowledge have not been linked to ARS and HIV-1 pathogenesis in the

past. Previous longitudinal studies in hAHI have focused on the

dynamics of pro-inflammatory and antiviral cytokines and chemo-

kines, particularly those immunemarkers that exhibit increased levels

and thereby part of the well-described cytokine storm9,19,20. Strikingly,

our large-scale analysis of the blood plasma dynamics in hAHI indi-

cated that the differentially expressed proteins associated with ARS,

VL, and disease progression was overexpressed (here defined as stor-

mers, in analogy with the cytokine storm) to a similar extent as being

underexpressed (here defined as slumpers). This warrants further

studies, and it is possible that potential biomarkers and treatment

targets will be identified among slumpers to a similar extent as among

stormers (which have been the focus so far). Moreover, our study

expands beyond studies of acute phase and inflammatoryproteins and

includes proteins involved in antigen presentation, cell transport,

proteolysis, and cytoskeleton modulation during hAHI. For example,

vWF and FN1were themost significantly elevated proteins during hAHI
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(at peak viremia) and were both persistently elevated after hAHI. vWF

reflects persistent endothelial cell activation due to activation of the

inflammation/coagulation pathway, whereas FN1 is involved in cell

adhesion, cell motility, opsonization, wound healing, andmaintenance

of cell shape43. FN1 also binds to HIV-1 gp120, which has been shown to

enhance complement interaction and infection of primary CD4 +T-

cells44. Moreover, HIV-1 has been shown to modulate the host cytos-

keleton dynamics45. For example, TTN, a protein that has been impli-

cated in HIV-1 Gag subcellular trafficking, showed increased levels 1

month after infection, whereas FGL1 levels, a marker of T-cell activa-

tion/exhaustion, decreased at the onset of peak viremia, coinciding

with the depletion of CD4 +T-cells 3–4 weeks post-infection46,47. Fur-

thermore, HNRNPA2B1 levels at 4 weeks after infection have been

associated with HIV-1 set-point levels, and previous studies have sug-

gested that HNRNPA2B1 can interact with viral components, have a

critical role in regulating the viral life cycle, and function as a viral DNA

sensor initiating IFN production48,49.

We have previously shown that a generally stronger innate

immune response, and an IP-10 activation in particular, is associated

with the manifestation of ARS9. In the current study, decreasing levels

of ZYX, and SCGB1A1 during hAHI were associated with ARS. It is

possible that decreased levels of SCGB1A1, a pulmonary surfactant

protein that influences alveolar macrophage-mediated inflammation,

may be linked to lung inflammation and epithelial integrity in partici-

pantswithARS33,50,51. Moreover, the associations between SCGB1A1 and

ZYX expression and ARS supports previous suggestions of these pro-

teins’ involvement in regulating innate immune responses triggeredby

viruses52,53. Specifically, ZYX binds to the mitochondrial antiviral sig-

naling protein following recognition of cytoplasmic double-stranded

RNA by Retinoic acid-inducible gene I-like receptors. This latter inter-

action triggers the induction of type I interferon (IFN) expression,

which constitute the predominant immune responseduring hAHI. Like

SGB1A1, LILRA3 plays a role in modulating inflammatory immune

responses and it is possible that the decreased expression in partici-

pants without ARS reflects a dampened inflammatory response34,54. In

addition, the absence of ARS in participants with these protein

expression patterns suggest a more regulated immune response dur-

ing hAHI, and proteins like Zyxin could serve as early indicators,

allowing for prompt diagnosis and treatment initiation.

Previous studies have suggested that certain cytokines, such as

interleukin (IL)-15, IL-7, IL-12p40, IL-12p70, and IFN-γ, can predict 66%

of the variation in viral set-point 12 months after infection55. In this

study, viral controllers had increased levels of NAPA and RAN during

hAHI and decreased levels of ITIH4 in hAHI. Assembly and release of

virus-like particles are promoted by a variety of host factors, for

example RAN has been suggested to be a crucial protein involved in

host interactions with the HIV-1 Rev protein38. More specifically, RAN

facilitates the release of the Rev cargo, which is a prerequisite for

binding of cargoproteins by nuclear export factors.Moreover,NAPA is

involved in membrane fusion and vesicle trafficking, playing a critical

role in intracellular transport. HIV-1 relies on host cellular machinery

for viral assembly and budding, and it is possible that elevated

expression of proteins like NAPA and RAN plays a role in maintaining

the integrity of cellular processes that may inhibit viral release or

replication in HIV-1 infected participants with lower viral load. Fur-

thermore, ITIH4 is a plasmaprotein primarily involved in inflammatory

responses and tissue repair, functioning as an acute-phase protein56.

The lower ITIH4 expression in participants with low viral load may

reflect a reduced systemic inflammatory state, which is often seen in

individuals with better viral control57.

The association between increased PRKCB expression and faster

CD4 + T-cell decline may be related to PRKCB-induced Nuclear Factor-

Fig. 3 | Zyxin, Secretoglobin family 1A member 1, and Leukocyte

immunoglobulin-like receptor subfamily Amember 3 are associatedwith ARS.

a Flow chart representing the total number of samples used in ARS classification

and the exclusion criteria.bBar graphcomparing the distributionof AHI symptoms

between participants that were defined to be with and without ARS (N = 33). ARS

was defined based on 11 AHI symptoms, and unobserved linkages between symp-

tomsusing Latent Class Analysis. Incremental latent groupmodels were assessed to

predict the goodness of fit. The model with two latent groups was the best fit, with

the lowest BIC value (660.5) compared to three (678.6), four (699.2), or five (714.7)

groups. Study participants were grouped based on their predicted posterior

probabilities into those with ARS (N = 20/33 (60%)) and those without ARS (13/33

(40%)). c Box plots displaying the results of the cross-validated performance

measure (accuracy) for the ARS PLS-DA models based on the following datasets:

V0+ V1 + V2; V0+ V1-V0+ V2-V0; V1 + V2; V1-V0 + V2-V0; V1-V0; and V2-V0. The

models were trained to predict ARS “Yes” or “No” and evaluated in 10 5-fold cross-

validations, resulting in 50 individual accuracy values from 50 test sets. Each box-

plot shows the distribution of accuracy values across 50 cross-validation models.

The center line within the box represents the median, the box bounds the inter-

quartile range, and the whiskers the minimum and maximum values of 1.5 × IQR

beyond the box. Any data points beyond these are considered outliers, and shown

as individual points. d Score plot based on the V1-V0+ V2-V0 dataset (with the

highest accuracy value) from (c), indicating the groupmembership of each sample.

There was clear discrimination between the ARS-No (orange) and the ARS-Yes

(green) samples on the first (x-axis) and second components (y-axis). Axis labels

indicate the percentage of variation explained per component. e Boxplot showing

the variable importance inprojection (VIP) scores in the PLS-DAmodel basedonV1-

V0or V2-V0 for each protein. The VIP score summarizes the contribution a variable

(protein) makes to the model. This plot identifies the most important proteins for

the classification of ARS “Yes” or “No”. Proteins with high VIPs are more important

in providing class separation. Black points represent the full model, and the box-

plots indicate the distributions of 10 cross-validation models. The sample size

corresponds to the 50 VIP scores computed for each protein across the 50 cross-

validation models. The center line within the box represents the median, the box

bounds the interquartile range, and the whiskers the minimum and maximum

values of 1.5 × IQR beyond the box. Any data points beyond these are considered

outliers, and shown as individual points. Red dots represent the VIP scores for the

full PLS-DAmodel, capturing the importance of each protein feature in themodel’s

ability to discriminate between groups. These points reflect the average or specific

metric of the VIP values used to build the full model. f Forest plots indicating effect

sizes (log2 fold change) and 95% confidence intervals for proteins significantly

differentially expressed at 2 weeks and 1 month post estimated date of infection

(EDI), relative to pre-infection levels (V1-V0 and V2-V0, respectively). Only indivi-

duals from the IAVI cohort were included since ARS data are only available for this

cohort. Circles and triangles indicate depleted (depl) and neat plasma, respectively.

The statistical analysis was conducted using linear mixed-effects models with a

random intercept for each patient, treating visit number as a categorical variable.

The differential protein expression was assessed using a global ANOVA, with post

hoc tests identifying specific visit comparisons (e.g., V0 vs. V1, V0 vs. V2, and V1 vs

V2). The Benjamini-Hochberg’s FDR method with a 5% FDR threshold was used to

correct for multiple testing, with a fixed p-value cut-off of 0.005. g Heatmap of

proteins associated with ARS based on hierarchical clustering of the V1-V0 and V2-

V0 expression of the selected proteins. The heatmap provides a visual repre-

sentation of coordinated changes of the proteins identified through PLS-DA and

linear regression in relation to ARS status. h Pirate plots showing the V1–V0protein

expression for the top proteins between those with and without ARS. i Table

representing the longitudinal protein expression profiles for the top proteins

associated with ARS. For each profile and protein, the number (%) of patients with

or without ARS were recorded. Abbreviations: ARS acute retroviral syndrome, PLS-

DA Partial Least Squares Discriminant Analysis, V0 visit 0 (collected before esti-

mated date of infection), V1 visit 1 (collected 10–14 days post estimated date of

infection), V2 visit 2 (collected 15–42 days before estimated date of infection), V1-

V0 difference between visit V1 and V0, V2–V0 difference between visit V2 and V0,

V2–V1 difference between visit V2 and V1, VIP variable importance in projection,

Log2FC log 2-fold change. The asterisk (*) appended to the end of certain protein

names indicates proteins detected in neat plasma, while proteins without an

asterisk were identified in depleted plasma samples. Source data are provided as a

Source Data file.
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kappa-B (NF-κB) activation, which regulates B-cell activation and binds

to theHIV-1 promoter resulting in enhanced viral transcription. PRKCB

is also involved in cytoskeletal rearrangements necessary for virus

entry, further implicating its importance in HIV-1 replication and the

potential exacerbation of CD4 +T-cell decline. Finally, increased levels

of the host protease Hepsin were associated with a faster disease

progression. This is in line with previous observations that Hepsin

suppresses the induction of type I interferons (one of the major

defense mechanisms of the human innate immune system towards

virus infections)58. Understanding the proteomic differences between

fast and slow progressors can provide insights into the mechanisms

drivingHIV-1 diseaseprogression.Ultimately, and if verified in targeted

studies, these proteins have potential as future targets for therapeutic

interventions.

The main strength of this study is the unique and well-

characterized samples collected before, during and after hAHI. This

enabled a large-scale assessment of how HIV-1 ARS, viral load and

disease progression is associated with the plasma proteome dynamics

in hyperacute HIV-1 infection at both population and individual levels

relative to pre-infection levels. Still, this study is not without

Fig. 4 | Alpha-soluble NSF attachment protein, GTP-binding nuclear protein

Ran, and Inter-alpha-trypsin inhibitor heavy chain are associated with HIV-1

control. a Flow chart illustrating the total number of samples used in viral control

classification, along with the exclusion criteria. b Longitudinal viral load measures

against the number of days post the estimated date of infection (EDI) for all 54

participants. The color-coded boxplots represent the distribution of peak viral

load, nadir viral load, days to peak viral load, and days to nadir viral load across the

54 individuals. The center line within the box represents the median, the box

bounds the interquartile range, and the whiskers the minimum and maximum

values of 1.5× IQR beyond the box. c Dendrogram showcasing complete linkage

hierarchical clustering of viral load profiles. Euclidean distances computed from

the cubic spline predicted viral load at evenly spread (on transformed scale) time

points were used for clustering. The optimal number of clusters was determined

using the Silhouette value, and the clustering significance was calculated using

multiscale bootstrap resampling. Viral load clusters were based on time

1–12months (30–364 days). Two distinct groupswere classified:No viral control (in

green) and sustained viral control (in brown). d Plot representing the cubic spline

predicted viral load at evenly spread time points. The differentiation between the

two viral control groups occurred at a viral load threshold of 10,000 copies/ml.

eHeatmap illustrating associations between viral control and various demographic

parameters and ARS symptoms. f Forest plots indicating effect sizes (log2 fold

change) and 95% confidence intervals for proteins significantly differentially

expressed at 2 weeks and 1month post estimated date of infection (EDI), relative to

pre-infection levels (V1-V0 and V2-V0, respectively), as well as the difference

between 2 weeks and 1 month post EDI (V2-V1). Circles and triangles indicate

depleted (depl) and neat plasma, respectively. The statistical analysis was con-

ducted using linearmixed-effectsmodels with a random intercept for each patient,

treating visit number as a categorical variable. The differential protein expression

was assessed using a global ANOVA, with post hoc tests identifying specific visit

comparisons (e.g., V0 vs. V1, V0 vs. V2, and V1 vs V2). The Benjamini-Hochberg’s

FDRmethodwith a 5% FDR threshold was used to correct for multiple testing, with

a fixed p-value cut-off of 0.005. Abbreviations: ART antiretroviral treatment, EDI

estimated date of infection, ARS acute retroviral syndrome, DC discordant couple,

HET heterosexual, MSM men who have sex with men, V0 visit 0 (collected before

estimated date of infection), V1 visit 1 (collected 10–14 days post estimated date of

infection), V2 visit 2 (collected 15–42 days before estimated date of infection),

V1–V0 difference between visit V1 and V0, V2–V0 difference between visit V2 and

V0, V2–V1 difference between visit V2 and V1, Log2FC log 2-fold change. The

asterisk (*) appended to the end of certain protein names indicates proteins

detected in neat plasma, while proteins without an asterisk were identified in

depleted plasma samples. Source data are provided as a Source Data file.
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limitations. First, platelet contamination during plasma separation has

been proposed as a potential bias in proteomic studies59. Although

consistent protocols were employed between cohort sites, the possi-

bility of human error affecting sample collection and handling cannot

be fully excluded. Second, cohort differences, such as genetic,

demographic (e.g. the study population was skewed towards MSM),

geographic, and pathogenic burden between IAVI and Durban parti-

cipants, may have influenced protein expression patterns between

cohorts, as well as the generalizability of our findings. Third, technical

variability in sample processing, measurement techniques and batch

effects in proteomics analysis can introduce bias, despite our efforts to

normalize and control for such factors. It is also possible that the

depletion process inadvertently removed some untargeted proteins.

Still, the overall quantification of proteins increased threefold by this

approach, and importantly, the majority of proteins that were detec-

ted in both the neat and depleted approaches showed similar results.

Future studies with larger, more diverse cohorts and additional time

points are needed to validate and further explore the findings in

this study.

In summary, we provide insights into plasma protein dynamics

associatedwith the complex virus-host interactions and responses that

take place when HIV-1 establishes infection in the human host, and

highlight a similar role of both protein stormers and slumpers during

hAHI. Several predictive and prognostic biomarkers associated with

ARS, VL responses, and disease progression were identified. The

potential implications of these findings are substantial and pave the

way for future investigations of diagnostic and prognostic utilities of

these biomarkers. Furthermore, our study underscores the need for

continued basic research of HIV-1 infection, and other virus infections,

to identify biomarkers with potential for both early diagnosis, and

improved treatment strategies of viruses.

Methods
Study participants and ethical considerations
This study includes data and samples from sub-Saharan African (sSA)

adults (≥18 years old), recruited in two distinct acute and early HIV-1

infection cohorts: The IAVI cohort and Durban cohort. The IAVI cohort

comprises African participants enrolled in Kenya, Rwanda, and Zambia

between 2006 and 2011 under IAVI’s protocols B and C, while Durban

cohort consists of South African participants enrolled in Durban

between 2007 and 2014 under the FRESH (Females Rising through

Education Support and Health) and HIV Pathogenesis Programme

acute infection cohorts23–26. Baseline variables such as date of birth,

sex, HIV-1 RNA, HIV-1 p24 antigen, and antibody test results, date of

HIV-1 diagnosis, transmission risk group, antiretroviral treatment start

date, CD4+ and CD8 +T-cell dynamics were collected from both

cohorts. ARS data was only available for the IAVI cohort.

All study participants provided written informed consent for the

use of their samples for biomedical research. All sites received

approvals from respective country-specific ethics review boards. For

the IAVI cohort: Kenya Medical Research Institute Ethical Review

Committee; the Kenyatta National Hospital Ethical Review Committee

of the University of Nairobi; the Rwanda National Ethics Committee,

theUgandaVirusResearch Institute Science and Ethics Committee; the

Uganda National Council of Science and Technology; the University of

Zambia Research Ethics Committee; and the Emory University Insti-

tutional Review Board23,24. For the Durban cohort: The University of

Cape Town Health Science Research and Ethics Committee; the Bio-

Medical Research Ethics Committee at the University of KwaZulu

Natal; and the institutional review board of Massachusetts General

Hospital25,26. Compensation was not provided to patients for partici-

pation in this study. All data and samples were de-identified and

anonymised to protect the privacy of the participants.

Eligibility for the study included hyperacute HIV-1 infection

(hAHI), defined as HIV-1 antibody negative and RNA positive (Fiebig

stage I), or p24 antigen-positive (Fiebig stage II), corresponding to the

period from onset of plasma viremia to peak viral load5–8. Estimated

date of infection (EDI) was defined either as the midpoint between the

date of the last negative and first positive HIV antibody test, 14 days

before the date of the first positive p24 antigen test (with a negative

antibody test), or 10 days before the date of the first PCR-positive test

(with a negative antibody or p24 antigen detection). Matched

Fig. 5 |Hepsin, Protein kinaseCbeta, and Integrin subunit beta 3 are associated

with an increased risk of disease progression. Forest plots indicating hazard

ratios (HR) and 95% confidence intervals for proteins differentially expressed at

2weeks and 1month post estimateddate of infection (EDI), relative to pre-infection

levels (V1-V0 and V2-V0, respectively), as well as the difference between 2 weeks

and 1 month post EDI (V2-V1). The Cox proportional hazards model was used to

determine the association between plasma protein expression (independent vari-

able) and the risk of disease progression. The event outcome was defined as

CD4+ T-cell counts of 500 cells/µl from 6 weeks post the estimated date of infec-

tion. Covariates included age, sex, and cohort. Circles and triangles indicate

depleted (depl) and neat plasma, respectively. Abbreviations: V0 visit 0 (collected

before estimated date of infection), V1 visit 1 (collected 10–14 days post estimated

date of infection), V2 visit 2 (collected 15–42 days before estimated date of infec-

tion), V1–V0 difference between visit V1 and V0, V2–V0 difference between visit V2

and V0, V2–V1 difference between visit V2 and V1. Source data are provided as a

Source Data file.
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longitudinal plasma samples were collected at three different visits: (i)

visit 0 (V0), 22 and 120 days before EDI; (ii) visit 1 (V1), 10–14 days post

EDI; and (iii) visit 2 (V2), 15–42 days post EDI.

Sample preparation for LC-MS/MS analysis
One-hundred and fifty-seven blood plasma samples archived at −80 °C

were obtained for liquid chromatography with tandem mass spectro-

metry (LC-MS/MS). Each sample was analyzed both neat and depleted

to increase the number of detected proteins. Depletion refers to the

removal of the top 14 highly abundant proteins before protein quan-

tification. Due to system migration, neat plasma samples from the

Durban cohortwereprocessed byQ ExactiveHF-Xmass spectrometer,

and samples from the IAVI cohort were processed by Exploris 480

mass spectrometer with FAIMS. Importantly, this did not affect the

number/intensity of proteins quantitated. Details of the specific

plasma preparation, LC-MS/MS run conditions, instrumentation, and

spectral library are presented in Supplementary methods.

DIA/SWATH-MS targeted data extraction
DIA data files were analyzed against the spectral library using the BGS

factory default settings in Spectronaut 15.1 (Biognosys, Schlieren,

Switzerland). The identifications were filtered at a false discovery rate

(FDR) of 1% at both peptide and protein levels. Spectronaut used

retention time prediction based on iRT, the m/z dimension in the

SWATH-MS data,mass accuracy, and isotopic distribution of fragment

ions to identify peptides. All available transitions were extracted for

Fig. 6 | Longitudinal dynamics during hyperacute HIV-1 infection of key dif-

ferentially expressed proteins associated with ARS, viral load, and disease

progression. This schematic illustrates the temporal changes in expression for

proteins associated with ARS, viral load, and disease progression during acute

phase of HIV-1 infection. Protein expression levels were assessed both before

infection, and within the two to 6 weeks following infection in the 54 study parti-

cipants. Participants were categorized into subgroups based on various outcomes,

including ARS (presence or absence), viral control status (controllers or non-con-

trollers), and the rate of disease progression (fast or slow). The x-axis of the graph

represents the time in days following infection when plasma samples were col-

lected,while the y-axis represents themeanprotein expression levels relative to the

pre-infection baseline. Key proteins associated with ARS, viral control and disease

progression are depicted using smoothed lines generated through local regression

plotting with a span of 1.5. The selected proteins represented the top proteins

associated with ARS, viral load, and disease progression. To enhance clarity and

highlight distinctive patterns, proteins with similar dynamics in the group com-

parisons were excluded. Abbreviations: ARS acute retroviral syndrome.
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each targeted peptide together with their corresponding decoy-

transition groups generated by pseudo-reversing the sequence of the

targeted peptides.

Protein quantification and data pre-processing
To derive protein abundances, peptide precursor and fragment ion

intensities were used together with the MaxLFQ algorithm (imple-

mented in iq R Package). This algorithm combined multiple peptide

ratios to derive optimal protein ratios between pairs of samples,

ensuring the accuracy and reliability of the data60,61. The global dis-

tribution of protein signals was assessed to identify poor-quality or

low-intensity data. Proteins with >80% missing values across samples

were removed, and factors such as time of sample collection, date of

infection, anddate ofMSdata acquisitionwereassessed to identify any

correlations with missingness. Missing values were imputed by repla-

cing them with a randomly chosen value between one and the mini-

mum global raw intensity value of the protein. The data matrix was

then analyzed by NormalyzerDE to identify the normalization method

with the least variance in the data, and the normalization was per-

formed based on the results obtained from NormalyzerDE62.

Data analysis
Differential expression analysis. To identify factors contributing to

technical variation in the data, Principal ComponentAnalysis wasused.

This analysis was conducted to test the impact of variables such as site

of collection, HIV-1 subtype, age, date of processing, and visit number.

To account for observed variation, adjustments for principal compo-

nents (PC1 and PC2) was done by the inclusion of the PCs in mixed

effects models. Linear mixedmodels with a random intercept for each

study participant at all time points and an interaction term between

visit and cohort were used to identify differentially expressed proteins

(DEPs) over time. This method is designed to handle large sample

sizes, and effectively accounts for continuous distributions of quanti-

tative response variables, and thereby reduces inflation of type I error

rates63. In themodels, the dependent variable was the normalized log2

protein intensities for each time point, with visit as fixed effect. Age,

sex, cohort, and HIV-1 subtype were assessed a priori as potential

confounders for all subsequent analyses based on existing literature

and biological relevance. Model parameters are summarized in

Table S9. A global analysis of variance (ANOVA)was then conducted to

identify proteins that changed between visits, and post hoc tests were

performed to determine when the changes occurred. Global p-values

were determined for each protein by likelihood ratio tests of the full

model with the effect in question against themodel without the effect.

The Benjamini-Hochberg’s FDR method with a significance threshold

of 5% FDR was used to correct for multiple testing. In addition, a fixed

p-value cut-off of p <0.005 for all tests was applied. The up and

downregulated DEPs at different visits were filtered using p < 0.005,

and plotted in Volcanoor Forest plotswith 95%CI for log2 fold change.

Enrichment or pathway analysis. Protein classifications and annota-

tions were based on subcellular location annotations from the uniProt

database, which denotes location and the topology of the mature

protein in the cell, and the human protein atlas22,30. To determine

whether a set of differentially expressed proteins and their gene

ontology (GO) biological processeswere statistically different between

two biological states (activated and suppressed), Clusterprofiler was

used to perform an enrichment analysis64. The statistical significance

of overrepresentation was determined by Fisher’s exact test and

Bonferroni’s FDR (p <0.05). The protein list from both neat and

depleted plasma was used as custom background. The top ten enri-

ched terms, along with their respective p values, were determined.

Tissue damage analysis. To evaluate tissue-specific protein expres-

sion, a previously established dataset of tissue-enriched

transcriptional signatures derived from the Genotype-Tissue Expres-

sion (GTEx) project was utilized31. The GTEx read counts were trans-

formed into trimmed values and normalized to z-scores for each gene

across tissues. Genes with a z-score exceeding three were classified as

tissue-enriched. Subsequently, the list of tissue-enriched proteins was

used as the reference database for an enrichment analysis with all

quantified proteins using Clusterprofiler.

Acute Retroviral Syndrome (ARS). Symptoms during acute HIV

infection (AHI) were recorded using a standardized questionnaire

2–6 weeks after the estimated date of infection (only for the IAVI

cohort since this was not part of the study protocol for the Durban

cohort)11. ARS was defined based on the 11 symptoms fever, headache,

myalgia, fatigue, anorexia, pharyngitis, diarrhea, night sweats, skin

rash, lymphadenopathy, and oral ulcers. Previous studies have used

different definitions for ARS, such as reporting any symptom,

≥2 symptoms, ≥3 symptoms, or a combination of fever with other

symptom(s)65. However, discrete classification methods may not

account for unobserved linkages between symptoms. To address this

limitation, latent class analysis (LCA), a structural equation modeling

approach, was used to group participants based on the number of AHI

symptoms and other unobserved linkages, as previously described9.

Partial Least-Squares Discriminant Analysis (PLS-DA) was used to

simultaneously identify a group of proteins associated with ARS. This

supervised dimensionality reduction method incorporates class labels

to find the direction of maximum class separation, making it well-

suited for classification (here, participants with and without ARS). The

response variable was the binary ARS status (presence or absence of

ARS). Predictor variables included the normalized expression levels of

proteins measured in plasma samples. A combination of cross-

validation and permutation testing to assess the models predictive

power and robustness. Moreover, the classification accuracy, sensi-

tivity, specificity, and the area under the receiver operating char-

acteristic (ROC) curve was used to assess the model’s discriminatory

ability. Variable importance in projection (VIP) scores were used to

identify the most influential proteins contributing to the discrimina-

tion between ARS-positive and ARS-negative participants. Proteins

with VIP scores >2 were considered significant contributors.

Following the identification of candidate proteins through PLS-

DA, linear mixed-effects models were used to evaluate the association

of each protein individually with ARS. Specifically, the model assessed

how ARS, time (visit), age, and their interaction (ARS*time) influence

logI, while also accounting for differences in baseline logI between

participants through the random intercept. Model parameters are

summarized in Table S9. This step provided detailed insights into how

the expression levels of specific proteins relate to ARS. Only partici-

pants with protein values from V0, V1, and V2 were included in the

analysis, with age as a covariate.

Disease progression. Disease progression was measured using two

endpoints: Viral control andCD4+ T-cell decline. For viral control, viral

load measurements were taken on various days for each study parti-

cipant. Curve fittings were used to compare viral loadprofiles between

participants. All VL measurements from EDI to the start of anti-

retroviral treatment (ART) were used. VL measurements were log10-

transformed, and an optimal smoothing parameter was calculated

using leave-one-out cross-validation. A cubic smoothing spline was

then fitted separately for each participant, and the Euclidean distance

between VL curves was calculated at evenly distributed time points.

Participantswith observations at the beginning and endof a given time

interval were clustered based on Euclidean distance using complete

linkage hierarchical clustering. The optimal number of clusters was

determined using the Silhouettemethod, and clusterswere based on a

period of 1–12months. Fisher’s exact, Chi-square, andMann-WhitneyU

tests were performed to assess the association between clinical
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parameters and VL clusters or disease progression group classifica-

tions. Linear mixed-effect models were used to assess how viral con-

trol, time (visit), age, cohort and the interaction termviral control*time

influence logI, while also accounting for differences in baseline logI

between participants through the random intercept. Model para-

meters are summarized in Table S9. In addition, Fisher’s exact tests

were performed to assess the association between HLA types and VL

clusters or disease progression group classifications.

For CD4 +T-cell decline, a time-to-event analysis was conducted

using an absolute CD4 +T-cell count <500 from 6 weeks after EDI as

the event. The log-rank test was used to evaluate differences in time to

event between cohorts (p <0.05 was considered statistically sig-

nificant). For clarity, the Cox proportional hazards model was used to

determine the association between plasma protein expression (inde-

pendent variable) at each visit or visit difference and the risk of disease

progression. Follow-up time was censored at the initiation of ART, or

the last observed time point (if ART was not initiated during the study

time). The resultswere presented asHazard ratioswith 95% confidence

intervals, and Kaplan-Meier time-to-event curves.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The proteomics data generated in this study have been deposited in

the ProteomeXchange Consortium via PRoteomics IDEntifications

(PRIDE) partner repository with the dataset identifier PXD042850.

Source data are provided as a Source Data file. All additional data are

available within the article, Supplementary Files. Source data are pro-

vided with this paper.

Code availability
All original code has been deposited and can be assessed at: https://

github.com/jnazziwa/AHI_Plasma_Proteomics.
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