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Multimorbidity is associated with
myocardialDNAdamage,nucleolarstress,
dysregulated energy metabolism, and
senescence in cardiovascular disease

Check for updates

Kristina Tomkova 1,6, Marius Roman1,6, Adewale S. Adebayo1, Sophia Sheikh1, Syabira Yusoff1,4,

Melanie Gulston2, Lathishia Joel-David1, Florence Y. Lai1, Antonio Murgia2, Bryony Eagle-Hemming1,

Hardeep Aujla 1, Tom Chad1, Gavin D. Richardson 3, Julian L. Griffin2,5, Gavin J. Murphy1 &

Marcin J. Woźniak 1

This study investigates why individuals with multimorbidity—two or more chronic conditions—are

more prone to adverse outcomes after surgery. In our cohort, ninety-eight of 144 participants had

multimorbidity. The myocardial transcriptome and metabolites involved in energy production were

measured in 53 and57 sequential participants, respectively. Untargetedanalysis of themetabolome in

blood and myocardium was performed in 30 sequential participants. Mitochondrial respiration in

circulating mononuclear cells was measured in 70 participants. Results highlighted four main

biological processes associated with multimorbidity: DNA damage with epigenetic changes,

mitochondrial energy disruption, cellular aging (senescence) and innate immune response. Histone

2B, its ubiquitination enzymes and AKT3 were upregulated in the multimorbid group. Plasma

senescence-associated proteins (IL-1β, GM-CSF) increased with more comorbidities. DNA damage

and nucleolar instability were specifically apparent in multimorbid myocardium. We conclude that

multimorbidity in cardiovascular patients accelerates biological aging, making them more vulnerable

to metabolic stress.

Multimorbidity, defined as the presence of two or more comorbid con-
ditions, affects over 50 million people in the European Union1. Multi-
morbidity is associated with frailty, increased susceptibility to stressors,
functional decline after acute illness, and increased use of healthcare
resources2. In the UK, multimorbidity is projected to affect two-thirds of
adults aged over 65 years by 20353. As research traditionally focuses on
diseases in isolation, the mechanisms underlying multimorbidity are
poorly understood2. Moreover, people with multimorbidity are often
excluded from clinical trials of interventions and are therefore managed
in the absence of high-quality evidence. Improving the lives of all people
with multimorbidity is considered a national and global health research
priority4.

Two-thirds of peoplewith cardiovascular disease havemultimorbidity.
They suffer from larger infarct sizes after acute coronary syndrome (ACS),
worse prognosis in heart failure, and attenuated effectiveness of organ
protection strategies5,6. In cardiac surgery, multimorbidity affects 86% of
people >65 years7, and is associated with a threefold increase in mortality8.
As the population ages, the health burden attributable to cardiovascular
disease in the setting ofmultimorbidity will increase. Recent reviews suggest
chronic inflammation as the major factor driving the increased suscept-
ibility to metabolic stress in multimorbidity9. It is likely responsible for
epigenetic changes, thedisruptionof energyproduction, oxidative stress and
senescence. The research into each of these processes usually involves iso-
lated cells and animal models. However, no cell-based or animal model can
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replicate multifactorial multimorbidity in humans. This study fills this gap.
Using untargeted transcriptomics and metabolomics in blood and myo-
cardial samples from people with cardiovascular disease we identified spe-
cific processes associated with multimorbidity. The identified processes
were further verified in targeted assays including direct measurement of
mitochondrial respiration in circulating mononuclear cells.

Results
Study cohort
Outof 1021people screened, 151were recruited for this study.The reasons for
exclusion are detailed in Fig. 1A. Six participants withdrew after the consent,
and one was excluded for protocol deviation. Samples from 144 participants
were analyzed. Analysis of the metabolome was performed in samples from

Fig. 1 | Cohort characteristics. A CONSORT

diagram; B Breakdown of samples between the

analyses. Black rectangles indicate that the analysis

was performed. Tissue sources for the analyses were

as follows: Metabolomics – blood plasma and

myocardial biopsies, Mitochondrial respiration –

blood mononuclear cells, Transcriptomics, targeted

metabolomics, rDNA, DNA damage, Nucleolin and

Fibrillarin – myocardial biopsies, SASP – blood

plasma. C Comorbidities distribution in partici-

pants without or with a specific number of comor-

bidities; D Comorbidities distribution in

participants without and with multimorbidity.

Colors in C and D indicate the system affected by a

comorbidity.
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30 sequential participants. Measurements of transcriptome and metabolites
involved in energy production were performed in 53 and 57 sequential par-
ticipants, respectively, as previously described10. Mitochondrial function in
circulating mononuclear cells was performed in 70 participants. Targeted
validation was performed in samples from 29–48 participants and included
analysis of senescence-associated secretory phenotype proteins in plasma, as
well as estimations of ribosomal DNA copy numbers, DNA damage and
nucleolar structure in the myocardium (Fig. 1A, B).

Multimorbiditywas defined as the presence of two ormore of nineteen
chronic conditions (Table 1).Ninety-eight participants (68%) suffered from
at least two comorbidities (Fig. 1A). The number of comorbidities per
patient ranged between none (11 participants) and seven (three partici-
pants) and peaked at two comorbidities per patient (N = 48, Fig. 1C, D).
Hypertension (12%vs 0%), angina or previousMI (49%vs 9%), heart failure
(12% vs 1%), extracardiac arteriopathy (8% vs 0%), diabetes (30% vs 3%),
obesity (24%vs 3%), chronic obstructive pulmonary disease (COPD; 15%vs
1%) and anemia (19% vs 1%) were enriched in the multimorbid group
(Table 1). Post-surgery, the multimorbid group experienced higher lactate
levels, lowermeanPiO2/FiO2 ratio indicative of lung injury (Fig. S1), and 11
out of 12 cases of Acute Kidney Injury (Table S1).

Metabolite analyses
Untargeted metabolomics was performed in myocardial biopsies and pre-
surgery plasma samples.Myocardial biopsies from four participantswere of
insufficient quantity (<30mg) and were not included in the analysis.

The myocardial biopsy dataset comprises 919 compounds, 820 of
known identity and 99 of unknown structural identity. The plasma dataset
comprises 1316 compounds, 1046 of known identity and 270 of unknown
structural identity (Fig. S2A, B). All sampleswere comparable in numbers of
known, unknown and undetected metabolites (Fig. S2A). The most
numerous metabolites were lipids (376 in biopsies and 483 in plasma),
followed by amino acids (164 in biopsies and 216 in plasma, Fig. S2B). There
was no difference in the number of detected myocardial metabolites and
their average peak area between participants with multimorbidity and
without. The number of metabolites detected in plasma was significantly

higher in participantswithmultimorbidity, although their averagepeak area
was not different (Fig. S2C).

There was a clear separation between multimorbid and non-
multimorbid plasma samples in the principal component analysis. How-
ever, such distinction was not apparent for myocardial samples (Fig. 2A).
Differential expression analysis identified 29 upregulated and eight down-
regulated metabolites in myocardial biopsies. One hundred and nine
metabolites were upregulated and 15 downregulated in plasma (Fig. S2D).
Since none of these metabolites passed the false discovery rate adjustment
(Tables S2 and S3),we performedKEGGmetabolite set enrichment analysis
using the whole dataset. The analysis of myocardial biopsies did not return
any significant pathways. Plasma metabolites significantly (FDR < 0.01)
enrichedCaffeinemetabolism, Primary bile acid biosynthesis, Arginine and
ornithine metabolism, Aminoacyl-tRNA biosynthesis, Glutamine and
glutamate metabolism and Seleno compound metabolism (Fig. 2B). Caf-
feine metabolism, Aminoacyl-tRNA biosynthesis and Primary bile acid
biosynthesis were enriched with 9, 6 and 4 metabolites, respectively, that
differed (p < 0.05) between multimorbid and non-multimorbid groups.
Levels of caffeine and its breakdown products, as well as bile acid inter-
mediates, were higher in themultimorbid group, which indicates decreased
expression or activity of cytochrome p450 enzymes, methylxanthine N1-
demethylases, or choloylglycine hydrolase (Fig. S3A, B). Levels of amino
acids that enriched theother pathwayswere lower in themultimorbid group
(Fig. 2B and Table S3).

Sensitivity analyses to assess the influence of individual chronic
conditions on our results (Fig. 2C) showed that Caffeine metabolism
was affected by COPD, hypertension and Obesity; Primary bile acid
biosynthesis was also affected by extracardiac arteriopathy; and
Aminoacyl-tRNAbiosynthesis was in addition affected by asthma. Due
to the small sample size for metabolomics analyses we were not able to
compare multimorbidity versus non-multimorbidity after excluding
participants who had diabetes, anemia, or who were on diabetic
medications or statins. Groups of patients with or without complex
multimorbidity were identical to the primary multimorbidity
classification.

Table 1 | Distribution of comorbidities between the groups

Multimorbidity

Comorbidity No (n = 46) Yes (n = 98) p-value Missing data System

Cancer 0 (0%) 2 (1.39%) 1 0 Cancer

Stroke (CVA/TIA) 2 (1.39%) 10 (6.94%) 0.339 0 Cardiovascular

Hypertension 0 (0%) 17 (11.81%) 0.001 0 Cardiovascular

Angina/MI 13 (9.03%) 71 (49.31%) <0.001 0 Cardiovascular

Hyperlipidemia 2 (1.39%) 6 (4.17%) 1 0 Cardiovascular

Heart failure 1 (0.69%) 17 (11.81%) 0.013 0 Cardiovascular

Extracardiac arteriopathy 0 (0%) 11 (7.64%) 0.017 0 Cardiovascular

Pulmonary hypertension 0 (0%) 1 (0.69%) 1 0 Cardiovascular

Ulcerative colitis 0 (0%) 1 (0.69%) 1 0 Digestive

Liver disease 0 (0%) 2 (1.39%) 1 0 Digestive

Diabetes 4 (2.78%) 43 (29.86%) <0.001 0 Metabolic and endocrine

Obesity (BMI > 32) 4 (2.78%) 34 (23.61%) 0.001 0 Metabolic and endocrine

Arthritis 0 (0%) 4 (2.78%) 0.306 0 Musculoskeletal

Osteoporosis 0 (0%) 1 (0.69%) 1 0 Musculoskeletal

Neurological disease 0 (0%) 1 (0.69%) 1 0 Neurological

Chronic obstructive pulmonary disease 1 (0.69%) 21 (14.58%) 0.002 0 Respiratory

Asthma 0 (0%) 5 (3.47%) 0.177 0 Respiratory

Renal disease 0 (0%) 8 (5.56%) 0.055 0 Urogenital

Anaemia 2 (1.39%) 28 (19.44%) 0.001 0 Hematological
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Transcripts analysis
The transcriptomics analysis was performed on myocardial biopsies, and a
summaryof the dataset has beenpublishedpreviously10.Multimorbidity did
not have a major effect on global gene expression patterns, as indicated by
the principal component analysis (Fig. 3A). The differential expression
analysis detected 854 transcripts (Table S4). Most upregulated transcripts
encoded immunoglobulin chains.

None of the transcripts passed themultiple comparison adjustment, so
we first performed a weighted gene correlation analysis to identify sig-
nificantly changing groups of transcripts. The analysis identified one net-
work of transcripts thatwas significantly downregulated (blue in Fig. 3B and
Table S4) in the multimorbid myocardium and whose eigengene values
significantly correlated with the number of comorbidities. Three networks
were significantly upregulated and their eigengene values significantly
correlated with the number of comorbidities (brown, turquoise and yellow
in Fig. 3B and Table S4). The blue network included transcripts that enri-
ched pathways involved in mitochondrial oxidative phosphorylation,

mitochondrial biogenesis, mitophagy and amino acids metabolism. It
included, among others, NUDS1, NUDV2, PDHB andOGHD. The brown
network’s transcripts significantly enriched pathways involved in DNA
damage processing andpackaging, senescence, translation and regulation of
ribosomal RNA expression. The transcripts included in this network were
mainly ribosomal proteins, histone 2B and histone ubiquitin ligases. The
turquoise and yellow networks included transcripts that significantly enri-
ched innate immunity pathways. It included proteins required for neu-
trophil degranulation (LAMP1, PYCARD, FTL or RAB5C) but also
proteins modulating inflammatory responses like serpins (A1, B1, E2, F1
and H1) and anti-apoptotic proteins like S100 (A4, A8, A9 and A11) or
HMOX1. Transcript membership in each network is indicated in Table S4,
and pathway enrichment results are in Table S5.

We also performed gene set enrichment analysis using the whole gene
expression dataset (Table S6). The bar plot in Fig. 3C shows pathways
specific to multimorbidity that passed false discovery rate adjustment.
Diagrams in the left panel show transcripts annotated to and linked by joint
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Fig. 3 |Myocardial transcripts analysis. APrincipal component (1and2)plots for the

myocardial transcriptomics profiles. B Network eigengene values distribution between

the groups. Genes constituting each network were subjected to pathway enrichment

analysis, and the summary is shown below the plots. Font colors indicate pathways

enriched by genes in each of four networks. The full list of pathways is in Table S6. The

numbers in each plot show a correlation estimate (p-value) between network eigengene

values and the number of comorbidities. C Outcome of gene set enrichment analysis.

The bar plot shows significantly regulated pathways (adjusted p-value < 0.05) specifi-

cally in multimorbidity but not the comorbidities The full list is in Table S7. The

diagrams show transcripts sharing membership in at least one pathway. The node fill

color shows transcripts’ log fold change with positive numbers indicating upregulation

in multimorbidity. The colors in the node border indicate a number of pathways the

transcript participates in. Box colors in the diagram and corresponding colors of

pathway names indicate pathways sharing genes.

https://doi.org/10.1038/s41514-024-00183-z Article

npj Aging |           (2024) 10:58 5

www.nature.com/npjamd


pathway membership. The significant transcripts involved in the enriched
pathways mainly encode proteins regulating chromatin condensation and
DNA repair: Ubiquitin-60S ribosomal protein L40 (UBA52), E3 ubiquitin-
protein ligases RNF40, RNF8 and ANAPC15, Protein arginine
N-methyltransferase 1 (PRMT1), Bromodomain-containing protein 8
(BRD8) and Serine/threonine-protein kinase greatwall (MASTL), Repres-
sor methyl-CpG-binding domain protein 2 (MBD2), Chromobox protein
homolog 3 (CBX3), Structural maintenance of chromosomes protein 2
(SMC2),Mastermind-like protein 1 (MAML1); transcripts involved in gene
transcription and polymerase I-interacting proteins: DNA-directed RNA
polymerase I subunit RPA1 (POLR1A), Homeodomain-containing DNA
binding protein 3 (HOXB3); and transcripts encoding nuclear export and
cytoskeletal proteins: Exportin-5 (XPO5), Myosin-14 (MYH14), Myosin
light polypeptide 6 (MYL6), Nesprin-1 (SYNE1). The only downregulated
pathway was the utilization of ketone bodies with two significantly down-
regulated transcripts: Succinyl-CoA:3-ketoacid coenzyme A transferase 1
(OXCT1) and D-β-hydroxybutyrate dehydrogenase (BDH1).

Inflammation-related pathways were upregulated in multimorbidity
and all comorbidities but stroke. Mitochondrial electron transport chain,
translation, protein import and biogenesis were also non-specific to mul-
timorbidity and were downregulated in all comorbidities (Table S6).

Sensitivity analyses to assess the influence of individual long-term
conditions on our results showed that upregulated and downregulated
pathways were similar across all comparisons of multimorbidity versus no
multimorbidity after the exclusion of individual comorbidities. Removing
patients with angina or previous MI had the strongest effect on the affected
pathways (37% pathway overlap with the full dataset Fig. S4). However, it
also considerably reduced the number of samples (13 multimorbid and 6
non-multimorbid). The results of the analysis without patients receiving
anti-diabetic medications showed 91% overlap with the analysis of the full
dataset. The analysis of datawithoutpatients receiving statins identifiedonly
one significantly enriched pathway. However, the reduced dataset included
only four patients with multimorbidity and three without, making the
analysis inconclusive.Using the complexmultimorbidity definition affected
DNA damage repair, nucleosome assembly, rRNA expression and trans-
lation (60% pathway overlap with the full dataset).

Respiration in circulating mononuclear cells
To assess the influence of multimorbidity on mitochondrial function, we
measured respiration in blood mononuclear cells, which are considered a
good sensor for metabolic stressors11.

The analysis of oxygen consumption rate (OCR) identified pre-
operative basal (without any drugs) andmaximal (in the presence of FCCP)
respiratory control ratios (RCR) as significantly downregulated in the
multimorbid samples (Fig. 4A, B). The RCR is a measure of mitochondrial
coupling (see theMethods section for definitions),which links respiration to
ATP synthesis. However, the RCR component measurements were not
different between the groups. Therefore, we analyzed correlations of the
number of comorbidities with OCRmeasurements. Significant correlations
were found with baseline OCR and basal RCR (Fig. 4C).

The analysis of extracellular acidification rate (ECAR), which is a
measure proportional to glycolysis, did not find any significant differences.
To further test the role of glycolysis, wemeasured the difference inmaximal
OCR in the presence of glucose (glycolysis substrate) and pyruvate (glyco-
lysis product). There was no difference in that measure, as well (Fig. 4A,
MaximalPyr-MaximalGlucose).

Sensitivity analyses to assess the influence of individual long-term
conditions on our results demonstrated that anemia, arthritis, heart failure,
and renal disease made the most significant contributions to reductions in
Basal andMaximal RCR inmultimorbidity versus nomultimorbidity since
removing these patients removed the significant difference we observed in
the full dataset. Removing patients with angina from the dataset resulted in
an increased difference in the maximal RCR between patients with multi-
morbidity and those without. In addition, the reserve mitochondrial capa-
city became significantly different between multimorbidity groups.

However, it also considerably reduced the dataset (multimorbid n = 4, non-
multimorbid n = 7). Participants not receiving anti-diabetic medications
had lower maximal RCR. Analysis of the data without patients receiving
statins was impossible due to the insufficient number of samples. Patients
with complexmultimorbidity versus no complexmultimorbidity had lower
basal RCR (Fig. 4D).

Energy metabolism in multimorbidity
Since we could not directly measure respiration in myocardial biopsies, we
analyzed a set of metabolites involved in energy metabolism using targeted
metabolomics. Out of 144 measured metabolites, α-ketoglutarate, ATP,
UTP, long-chain acyl-carnitines and formyl-valine significantly increased in
multimorbidity, and NADH/NAD+ ratio decreased (Fig. 5A). Further
correlation analysis confirmed the role of α-ketoglutarate, ATP, UTP and
formyl-valine, whose levels decreased with the number of comorbidities.
Conversely, the NADH/NAD+ ratio increased with the number of
comorbidities. In addition, the analysis identified cytosine, cytidine, and
hydroxylated stearoylcarnitine (C18-OH) as positively correlated and
asymmetric dimethylarginine (ADMA) as negatively correlated with the
number of comorbidities (Fig. 5B).

The metabolites, which were significant in group-wise comparisons
and correlation analysis, were combined with paired transcriptomics in
weighted gene correlation analysis using correlation cutoffs above and
below0.6 and -0.6, respectively.The three long-chain acyl-carnitines (C18:1,
C18:2 and C16:1) positively correlated mainly with transcripts involved in
the citric acid cycle and respiratory electron transport chain: NUDS1
NUDV2, PDHB, OGHD, COQ10A, ACO2, SUCLA2, NNT, PDHX,
SDHA, VDAC1 but also with solute carrier SLC2A4 and heart-specific
ribosomal protein RPL3L. A negative correlation was found between
Guanine nucleotide-binding protein subunit gamma-12 (GNG12),
Microfibril-associated glycoprotein 4 (MFAP4) and Transmembrane pro-
tein 176 A (TMEM176A). ATP and UTP correlated negatively with
TMEM176A and Collagen α-1 (XXIII) chain (Fig. 5C).

Sensitivity analyses to assess the influence of individual long-term
conditions on our results (Fig. 5D) showed that reductions inATP,UTP, α-
ketoglutarate, and long-chain acyl-carnitines were consistently observed
across most of the analyses. That was also true for the cohort without
patients on anti-diabetic medications. The analysis of the dataset without
patients receiving statins identified choline, adenine, C3-carnitine and
phosphoglucuronic acid. As before, removing patients receiving statins
significantly reduced the dataset (4 multimorbid and 3 non-multimorbid).
Patients with complex multimorbidity had decreased levels of ATP, UTP,
long-chain acyl-carnitines and ADMA versus those without complex
multimorbidity.

Senescence-associated secretory phenotype
Decreased levels of energy substrates and nucleoside triphosphates can
indicate higher levels of senescence. This is supported by changes in
senescence-associated processes and pathways, including downregulation
of mitochondrial oxidative respiration and mitochondrial biogenesis and
upregulation of inflammation or DNA damage response. Transcripts like
IGFBP7 (Fig. 3D), TIMP1, collagen, laminin, CCL13 and C-C/C-X-C
chemokines receptors (Table S4), showing differential regulation in the
multimorbid myocardial samples, encode proteins whose expression
changes in senescence and are part of the senescence-associated secretory
phenotype (SASP)12,13. Therefore, we tested whether cytokines previously
described as SASP proteins were upregulated in the pre-operative plasma
samples. To do this, we analyzed a panel of 71 cytokines and chemokines in
samples from 48 participants. The panel includes cytokines that are regu-
lated by NF-κB or IL-1/NLRP3, which are major modulators and initiators
of SASP expression14,15.

Groupwise comparison indicated that fractalkine and IL-22 were sig-
nificantly upregulated in the multimorbid samples (Fig. 6A). Further cor-
relation analysis with the number of comorbidities added GM-CSF, IL-1β,
IL-1RAand IL-3 to the list (Fig. 6B).Downregulationof both fractalkine and
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IL-22 was not affected by any comorbidity or anti-diabetic medications, as
indicated by the analysis in reduced datasets. Analysis of patients without
statins was impossible due to the insufficient number of samples. Both
proteins were also downregulated in complex multimorbidity (Fig. 6C).

DNA damage and nucleolar assembly
Transcriptomics data suggested that the primary driver of senescence,DNA
damage, is upregulated in multimorbidity. In addition, several transcripts
encoding ribosomal proteins and others involved in polymerase I tran-
scriptionand ribosomalRNAprocessingwere affected (Fig. 3C,D).This can
indicate changes in the expression of ribosomal RNA and dysregulation of
nucleolar assembly, which can result in free ribosomal proteins, increased
senescence levels and, consequently, changes inmitochondrial respiration16.

We first tested ribosomal DNA (rDNA) copy numbers, as it was
previously linked with mitochondrial abundance17. We analyzed rDNA in
myocardial biopsies with qRT-PCR and specific primers, and as shown in
Fig. 7A, we did not detect any difference in rDNA copy numbers between

the groups. DNA damage was detected with antibodies against the phos-
phorylated form of histone 2AX (γH2AX) in myocardial cryo-slices. Mul-
timorbid samples had significantly more nuclei positive for γH2AX (Fig.
7B, C). Next, nucleolar stress was assessed with antibodies against nucleolin
and fibrillarin. Although fibrillarin staining patterns were not different in
multimorbid samples (Fig. 7D), nucleolin labeling suggested higher levels of
nucleolar stress as indicated by a larger fraction of nuclear area positive for
nucleolin (Fig. 7E, F).

Discussion
Using untargeted approaches, we identified processes specific to multi-
morbidity in people with cardiovascular disease that are characteristic of
biological ageing. In the myocardium, these include changes at the tran-
scriptomics level in chromatin organization pathways,DNAdamage repair,
nucleolar function and ketone bodies’ utilization in mitochondria. At the
metabolite level, we observed decreased levels of products and substrates of
mitochondrial oxidative phosphorylation. Mitochondrial function was also

Fig. 4 | Mitochondrial respiration in circulating mononuclear cells. A The assays

were performed in mononuclear cells isolated from blood samples without or with

mitochondrial toxins: oligomycin (ATPase synthase inhibitor), FCCP (drug

uncoupling ATP synthesis and electron transport), antimycin A (complex III

inhibitor) and rotenone (complex I inhibitor). The summary of the measured OCR

parameters is shown in the left panel. The right panel shows the oxygen consumption

rate inmononuclear cells before and after surgery. MaximalPyr-MaximalGlucose is the

difference betweenmaximal respiration (in the presence of FCCP) in the presence of

pyruvate or glucose. Significant parameters are in red.BBox plots of the significantly

different mitochondrial parameters between multimorbid and non-multimorbid

samples. C Plots of mitochondrial parameters significantly correlating with the

number of comorbidities. D Analysis of OCR parameters in complex multi-

morbidity and in reduced datasets to test the influence of each comorbidity and anti-

diabetic medications. Color scale shows log fold change, where positive numbers

indicate higher levels in multimorbidity. Numbers in square brackets indicate the

number of non-multimorbid/multimorbid patients.
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Fig. 5 | Myocardial metabolites involved in energy metabolism. A Targeted

metabolites significantly different in multimorbid myocardium. B Targeted meta-

bolites significantly correlating with the number of comorbidities.CTranscripts and

targetted metabolites measured in paired samples were combined using sparse

Partial Least Squaresmodels with 0.6 cutoff. Node color indicates expression log fold

change in the multimorbid group. Red edges show positive and blue edges show a

negative correlation between nodes. D Analysis of targeted metabolites in complex

multimorbidity and in reduced datasets to test the influence of each comorbidity and

anti-diabetic medications. Color scale shows log fold change, where positive num-

bers indicate higher levels in multimorbidity. Numbers in square brackets indicate

the number of non-multimorbid/multimorbid patients.
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affected at the systemic level, as indicated by basal respiration that increased
with the number of comorbidities. Patients with multimorbidity also had
increased levels of caffeine, its breakdownproducts and intermediates of bile
acid biosynthesis. Further validation experiments confirmed that senes-
cence is associated with multimorbidity, as levels of several proteins of
senescence-associated secretory phenotype increased with the number of
comorbidities. We also confirmed that increased DNA damage and
nucleolar instability play a role in multimorbidity.

The specifically enriched epigenetic pathways include histones and
enzymes mediating post-translational histone modifications. The expres-
sion of histone 2B (H2B) and its E3 ubiquitin ligase (RNF40) and several
other ubiquitin ligases were increased in the multimorbid group. H2B
ubiquitination on K120 stimulates rapid changes in chromatin remodeling
and transcriptional activitymediated by p53, a transcription factor involved
in senescence18. Although we did not observe upregulation of CDKN1A
(human p21 orthologue), several genes regulated by TP53 (human p53
orthologue) were affected. These include IGFBP7, TAB3 (TGF-β-activated
kinase 1), AKT3 (RAC-gamma serine/threonine-protein kinase),
ANAPC15, GNG12 (G protein subunit gamma 12)19, all of which are
implicated in senescence. Dysregulation of the epigenetic regulation is also
known to destabilize nucleolar function and ribosomal assembly, resulting

in free ribosomal proteins that trigger senescence and alter DNA repair16.
For example, free cytoplasmic ribosomal proteins L23, L29, S3 and S15
(upregulated in our dataset) bindMDM2, a TP53 ubiquitin ligase, enabling
senescence-specific gene expression16. Free nuclear RPS3 binds to oxidative
lesions inDNAand inhibitsDNA repair20, andRPL3 upregulates CDKN1A
inducing mitochondrial-driven apoptosis21.

Transcriptional changes demonstrated enrichment of senescence-
linked pathways, which was confirmed by analysis of cytokines and che-
mokines in plasma. Severalmembers of the senescence-associated secretory
phenotype (IL-1β, IL-1RA and GM-CSF12) correlated positively with the
number of comorbidities. Fractalkine, a chemokine whose levels increased
in themultimorbid group and correlatedwith the number of comorbidities,
was previously reported to decrease in a mouse model after senolytic
treatments13. Levels of IL-22 showed a similar pattern to fractalkine. IL-22 is
released by T cells as part of the tissue repair response22, and its over-
expression in hepatic cells induced senescence in a p53 and p21-dependent
manner23.

Caffeine and its breakdown products accumulated in the heart tissue
and plasma before and after surgery. It is normally broken down in the
liver’s endoplasmic reticulum by cytochrome p450 enzymes, followed by
furtherprocessing in lysosomes before secretion inurine. The effect could be

Fig. 6 | Senescence-associated secretory phenotype. A Box plots of circulating

analytes significantly different in multimorbidity. B Plots of analytes correlating

significantly with the number of comorbidities. C Analysis of the analyte panel in

complex multimorbidity and in reduced datasets to test the influence of each

comorbidity and anti-diabetic medications. The color indicates log fold change in

multimorbidity. Numbers in square brackets indicate the number of non-multi-

morbid/multimorbid patients.
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a consequence of a changed NADH/NAD+ ratio, which influences the
activity of cytochrome p450 enzymes and, consequently, oxidation of fatty
acids and steroids, whose expression changes were also observed in plasma.
Cytochrome p450 enzymes are often affected in polypharmacy and are
closely associatedwith aging24. Several of themshoweddecreased expression
in the myocardium in the multimorbid group.

Biological ageing, a cluster of cellular changes implicated in the
pathogenesis of age-related diseases25, is associated with increased

susceptibility tometabolic stress in experimentalmodels. In cardiac surgery,
people with multimorbidity demonstrate increased susceptibility to the
metabolic stress of surgery. Our observations lead us to hypothesize that
biological ageing in humanmyocardium at baseline is a critical determinant
of post-surgery susceptibility to organ dysfunction andmorbidity. It follows
that therapeutic interventions that target cellular ageing, or that prevent or
reverse DNA damage, may have organ protection effects in surgery. This is
entirely novel and has translational relevance given that existing organ

Fig. 7 | DNA damage and nucleolar stress in

myocardium. A Ribosomal DNA copy numbers

were analyzed by qRT-PCR with specific primers to

genes encoding ribosomal DNA. The CT values

were normalized against β-2-Microglobulin.

B γH2AX was detected in cryosections of myo-

cardial biopsies, and the numbers indicating the

percentage of γH2AX-positive cells were plotted.

C Representative images of cryosections labeled

with γH2AX. D Nucleolin was detected in cryosec-

tion, and the plots show the percentage of nuclear

area occupied by the nucleolin staining.

E Representative images after the nucleolin labeling.

Scale bars in C and E are 50 µm. F Fibrillarin was

detected in cryosection, and plots show the number

of nuclear fibrillarin spots. All assays were per-

formed in mycardial samples.
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protection strategies targeting hematological activation, the systemic
inflammatory response to surgery, or tissue hypoxia, which have shown
consistently negative clinical results in trials26–28.

The analysis has several strengths. First, the hypothesis was tested a
priori using unbiased techniques. Second, the results of the untargeted
analyses were consistent between omics platforms and were reproduced
across different targeted assays. Our findings also agree with contemporary
reviews of the pathogenesismultimorbidity. Third, to our knowledge, this is
the first evaluation of mechanisms underlying multimorbidity in human
myocardium. Almost all of the existing evidence is derived from animal
studies or analyses of human blood.

Important limitations are: First, the small sample size and the breadth of
the data increase the likelihood of statistical error in our analyses. In addition,
myocardial biopsies may not have been uniform in cell content and included
fragmentsofbloodvesselsor fat tissue,which further adds to theheterogeneity
between samples. Due to the small sizes of the biopsies, it was impossible to
estimate the variation in the cell composition. Inmitigation,fluorescent image
analysis indicates that most cells were cardiomyocytes. However, we cannot
exclude the possibility that cells other than cardiomyocytes reduced differ-
ences in themultimorbidgroup, asdifferent cell typesdiffer ingeneexpression
in response to multimorbidity29. Further studies, taking advantage of single-
cell technologies, which can separate cells in silico, will help better define
differences in the multimorbid group depending on the cell type. Second, we
used awidely used consensus definition ofmultimorbidity30,31. This definition
is limited because it is likely that clusters of chronic conditions not reflected in
this definition lead to specific multimorbidity phenotypes. However, com-
parison to the complex multimorbidity, where two or more physiological
systems are affected, generally supported our initial findings. We also
addressed the potential confounding effects of drugs known to affect
inflammation and biogenesis in sensitivity analyses where participants
receiving these drugs were excluded and the analyses repeated. This did not
change the results in any of our analyses; transcriptomic, targeted metabo-
lomic, ormitochondrial function.This leads us to conclude, on thebasis of the
available evidence, that anti-diabeticdrugsdidnotconfoundouranalyses.The
sensitivity analyses without statins were mainly inconclusive because the
majority of patients in our cohort received these drugs. Statins are commonly
prescribed to cardiac surgery patients32, therefore our analysis reflect changes
caused by multimorbidity in this particular population.

Our findings are limited to multimorbid patients with cardiovascular
disease and may not apply to a wider population of people with multi-
morbidity. Moreover, the recruited cohort was at low risk even for cardiac
surgery; only 8% of participants developed acute kidney injury, whereas
>25% is commonly observed in unselected cardiac surgery populations33.
This resulted in only small differences in adverse outcomes post-surgery
between the multimorbid and non-multimorbid groups and was likely a
factor that prevented us fromdetecting significant changes at transcript and
metabolite levels in the untargeted analyses. A high-risk surgery cohort, or
multimorbidity in older, sicker patients presenting with ACS, may have
resulted in a stronger effect size. The fact that almost all changes observed in
the multimorbid group were positively associated with the number of
comorbid conditions supports this conjecture. Furthermore, the cardiac
surgery population is heterogeneous and larger epidemiological studies that
cluster patients into specificphenotypeswill better characterizemechanisms
of multimorbidity. Third, we excluded patients with pre-existing parox-
ysmal, persistent or chronic atrial fibrillation or pre-existing inflammatory
states. These arewell-defined conditionswith characteristic phenotypes and
a strong effect size that could introduce important heterogeneity in a small
sample. In mitigation, these comorbidities are extremely rare, and the
recruited cohort is typical of the normal adult cardiac surgery population.
Fourth, wewere not able to performall analyses on the same samples, which
could potentially influence the conclusions we drew from different experi-
ments. That is due to small biopsy sizes and their availability. However, the
outcomes were consistent across different experiments, pointing towards
increased DNA damage and affected mitochondrial nucleolar and mito-
chondrial function. Our paired transcriptomics and targetedmetabolomics

analysis indicated that long-chain acyl-carnitines correlate with several
mitochondrial genes, whichwas further supported by decreased respiratory
control ratios in unpaired analysis. However, the results of the correlation
analyses need to be taken with caution since none of the transcripts passed
false discovery rates. The transcriptomics identified sets of genes and
pathways that indicate senescence-like changes in gene expression.Thatwas
confirmed by increased DNA damage and potential dysregulation of the
nucleolar function inmyocardial biopsies. The possible role of senescence in
multimorbidity at the systemic level was also indicated by changes in cir-
culating levels of several SASPmembers, although their expression was not
affected in the heart tissue.

A prospective multi-omics analysis of human blood and myocardium
obtained from a cohort undergoing cardiac surgery has identified multiple
hallmarks of biological aging associated with multimorbidity, with epige-
netic changes and cellular senescence being specific. Many of these pro-
cesses, includingmitochondrial dysfunction, chronic inflammation, and cell
senescence, are modifiable by existing treatments.

Methods
Study design
A prospective observational case-control study to identify the role of epi-
genetic regulation of genes responsible for energy metabolism and mito-
chondrial function in theobesityparadox in cardiac surgery (ObCARD)was
approved by The East Midlands – Nottingham 1 Research Ethics Com-
mittee. All participants provided written informed consent. The study
protocol was registered at clinicaltrials.gov; NCT02908009. A primary
analysis of this data has been reported previously10. This report is a sec-
ondary analysis, pre-specified in the study protocol. The study is reported as
per the STrengthening the Reporting of Observational studies in Epide-
miology (STROBE) statement. The STROBE checklist is included in the
Supplementary Material (Table S7). The study adhered to the principles
outlined in the Declaration of Helsinki.

Study cohort
Adults (>16 years) undergoing coronary artery bypass grafting with or
without valve surgery. Exclusions included pre-existing paroxysmal, per-
sistent or chronic atrial fibrillation, pre-existing states likely to have
hyperinflammatory phenotypes (sepsis undergoing treatment, acute kidney
injury within five days, autoimmune diseases, chronic infection, congestive
heart failure), ejection fraction <30%, pregnancy and in a critical pre-
operative state (stage 3 AKI34 or requiring inotropes, ventilation or an intra-
aortic balloon pump). Emergency or salvage procedures were also excluded.
The studywas designed to behypothesis-generating, andno sample sizewas
specified.

Multimorbidity was defined as per the Academy of Medical Sciences
definitionof twoormore long-term(>1year duration) conditions30.Obesity
was defined as BMI > 32, based on our previous analysis10. Angina/MI was
defined asCanadianCardiovascular Society (CCS) angina grade II or higher
or previous myocardial infarction. Recruitment was determined by the
simultaneous availability of a consentedpatient undergoing surgery, clinical
research staff, and laboratory research staff available to undertake analyses
of fresh tissue and cells. Patients were recruited consecutively based on this
availability.

Sampling
Right atrial biopsies were collected in a standardizedmanner from the right
auriculum before cannulation for cardiopulmonary bypass and were
immediately snap-frozen in liquid nitrogen. Blood samples were processed
within two hours of collection for the respiration analysis. The remaining
plasma samples were frozen and stored at−80C.

Measures taken to reduce bias
Selection bias was mitigated by the recruitment of sequential patients.
Detectionbiaswasmitigatedbyblinding laboratory staffwhoanalyzed atrial
biopsies and blood samples.
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RNA isolation and sequencing
RNA was isolated from 20mg of tissue using Isolate II RNA mini kit
(Bioline, London, UK). Sample quality was assessed using the RNA
Screentape assay on the Agilent TapeStation 4200. Only samples with RNA
integrity numbers equal to or greater than eight were sequenced.

Library preparation and sequencingwere carried out in two batches by
Source BioScience (Nottingham, UK). The stranded total RNA libraries
were prepared in accordance with the Illumina TruSeq stranded total RNA
sample preparation guide with Ribo-Zero human/mouse/rat for Illumina
paired-end multiplexed sequencing. The libraries were validated on the
Agilent Bioanalyzer 2100 to check the size distribution of the libraries and
on the Qubit high sensitivity to check the concentration of the libraries.
Sequencing was performed using 75 bp paired-end chemistry on HiSeq
4000 with the TruSeq stranded total RNA human kit.

Metabolomics. Untargeted metabolomics was performed by Metabo-
lon, Inc. (USA). All samples passed appropriate quality controls.

For targetedmetabolomics, a panel of 144 cellularmetabolites involved
in mitochondrial function and energy metabolism were analyzed on a
ThermoQunativa interfaced with a Vanquish LC as previously described35.
In brief, tissue was extracted using a modified Folch extraction into
chloroform/methanol (2:1 600 ul per 50mg of tissue, followed by 200 ul of
water, 200 ul of chloroform, repeated once). For nucleotides and acyl-CoA
derivatives, one-half of the aqueous extract was dissolved in 150 µl of 70:30
acetonitrile:water containing 20 µM deoxy-glucose 6 phosphate and 20 µM
[U–13 C, 15 N] glutamate. The resulting solution was vortexed, sonicated
and centrifuged. Chromatography consisted of a strong mobile phase (A)
was 100mM ammonium acetate, and the weak mobile phase was acet-
onitrile (B) and the LC column used was the ZIC-HILIC column from
Sequant (100mm × 2.1mm, 5 µm).

For amino acids and TCA cycle intermediates, aqueous extracts were
reconstituted in 50 μl of 10mmol/l ammonium acetate inwater before TCA
cycle intermediates were separated using reversed-phase liquid chromato-
graphy on a C18-PFP column (150mm × 2.1mm, 2.0 μm; ACE). For
chromatography on the UHPLC system, mobile phase A was 0.1% formic
acid inwater, andmobile phase Bwas 0.1% formic acid in acetonitrile.Mass
transitions of each species were as follows (precursor > product): D5-L-
proline 121.2 > 74.2; D8-L-valine 126.1 > 80.2; D10-L-leucine 142.0 > 96.2;
L-glutamate [M] 148.0 > 84.2; L-glutamate [M+ 1] 149.0 > 85.2;
L-glutamate [M+ 6] 154.1 > 89.1; citrate 191.0 > 111.0; citrate [M+ 1]
192.0 > 112.0; citrate [M+ 2] 193.0 > 113.0; citrate [M+ 3] 194.0 > 114.0;
citrate [M+ 4] 195.0 > 114.0; citrate [M+ 5] 196.0 > 115.0; citrate [M+ 6]
197.0 > 116.0. Collision energies and radio frequency (RF) lens voltages
were generated for each species using the TSQ Quantiva optimization
function.

Mitochondrial respiration measurements were performed in
mononuclear cells isolated from pre-operative blood samples using the
Histopaquemethod.Whole blood (5ml) was spun throuth 5mlHistopaque
1077 for 20min at 1,600 rpm in an analytical centriguge. The cells were
collected fromthe interfacebetweenplasmaandHistopaqie 1077andwashed
with PBS. Oxygen consumption (OCR) and extracellular acidification rates
(ECAR)weremeasured in the absence or presence of 4 µMoligomycin, 2 µM
FCCP or 2 µM rotenone and 2 µM antimycin A (Merck, UK) with Seahorse
XFe24 analyzer (Agilent Technologies, USA) in 200,000 cells/well. To assess
the effect ofmultimorbidity on glycolysis,OCRwasmeasured in the presence
of glucose or pyruvate as substrates. The respiratory control ratio was cal-
culated as described in Hill et al. : RCRmax = (FCCP-Antimycin)/(Oligomy-
cin-Antimycin);RCRbasal = (Basal-Antimycin)/(Basal-Antimycin)36For each
sample at least three parallel measurements were performed. Samples with
poor background respiration or insufficient measurements were removed
from the analysis. Samples were analysed on the day of collection and nor-
malized against negative controls (no cells).

Cytokine andchemokinesweremeasured inplasma samples collected
before and 24 h after surgery using a panel of 71 cytokines/chemokines (Eve
Technologies, Canada). All included samples passed quality control.

Immunohistochemistry was performed on cardiac biopsies. Tissue
sampleswere frozen inOCT (Cell Path,UK) and sliced using LeicaCM1520
cryostat (Leica Microsystems, UK) at 10-micron thickness. The slices were
fixed in 10% neutral buffered formalin (Merck, UK) and permeabilized in
ethanol (50%, 70%, and 100% EtOH). Unspecific binding was blocked with
1%BSA (Merck,UK). Sampleswere labeledwithprimary antibodies against
nucleolin (rabbit polyclonal, abcam, UK), fibrillarin (rabbit polyclonal,
abcam, UK), γH2AX (rabbit polyclonal, abcam, UK) or cardiac troponin T
(mouse clone 1C11, abcam, UK). All primary antibodies were used at 1:300
dilution in Co-Detection Antibody Diluent (Advanced Cell Diagnostics,
USA). The primary antibodies were detected with secondary Alexa Fluor
568 goat-anti-rabbit (Invitrogen,UK) andAlexa Fluor 488 goat-anti-mouse
(Invitrogen, UK) antibodies at 1:200 dilution. Nuclei were labeled with
DAPI (Thermo Fisher Scientific, UK). The sections were treated with
Prolong Gold Anti-fade media (Invitrogen, UK), and visualized using an
inverted Zeiss Axio Observer Z1 microscope equipped with Colibri 2 LED
illumination, Plan-Apochromat 63x/1.40 oil objective and ORCA-Flash4.0
CMOS camera (Hamamatsu Photonics, Japan). For each patient’s sample,
three slices were prepared, and approximately 20 images were collected per
slice (400 – 500 cells). Images were analyzed using FIJI ImageJ distribution.
Only the nuclear fraction of nucleolin staining and nuclear fibrillarin-
positive particles were considered in the analysis.

Quantitative real-time PCR was used to estimate ribosomal DNA
(rDNA) copy numbers. The genomic DNA was extracted from cardiac
biopsies using a commercial kit following the manufacturer’s instructions
(Genomic-tip 20/G and Genomic DNA Buffer Set, QIAGEN, UK). Specific
primers for amplification of 5S, 5.8S, 18S, and 28S rDNAs were designed
using NIH Primer-BLAST tool37 and synthesized by Merck (UK). As an
endogenous PCR control, primers for the β-2-Microglobulin (B2M) gene
were used. Primer sequences: rDNA 5S forward TCGTCTGATCTCG-
GAAGCTAA, reverse AAGCCTACAGCACCCGGTAT; rDNA 5.8S for-
ward GAGGCAACCCCCTCTCCTCTT, reverse: GAGCCGAGTGATCC
ACCGCTA; rDNA 18S forward: AGCCTGAGAAACGGCTACCA,
reverse:GGTCGGGAGTGGGTAATTTGC; rDNA28S forward:CTCCGA
GACGCGACCTCAGAT, reverse: CGGGTCTTCCGTACGCCACAT;

B2M forward primer TGCTGTCTCCATGTTTGATGTATCT,
reverse primer TCTCTGCTCCCCACCTCTAAGT. For each 20 μl PCR
reaction, 6 ng of genomicDNAwas combinedwith 10 μl of PowerUp SYBR
GreenMasterMix (ThermoFisher Scientific,UK), 1 μl of specific primers at
10 μM, and nuclease-free water. All reactions were set up in triplicates and
measured using a Rotor-Gene Q qPCRmachine (Qiagen, UK).Melt curves
were produced for allmeasurements to confirm the presence of a singlePCR
product. The data were analyzed using the Rotor-Gene Q 2.1.0.9 software
(Qiagen, UK).

Data processing and statistical analysis. Unless indicated otherwise,
data analysis was performed with R Statistical Computing software
version 4.2.2, and plots were prepared with the ggplot2 R package38,39.

Transcriptomics Sequencing data were quality-checked with FastQC
v0.11.5, quantified with Salmon v1.2140 after indexing with a decoy and
annotated with Ensembl v100. Gene quantities were normalized to length-
scaled transcripts per million and filtered for low quantities before down-
stream analysis using the limma-voom model41 with empirical Bayes
moderation. Sample groupswere analyzedwith the sequencing batch added
to themodel as a variable. The false discovery ratewas set at 5%. Interactions
within networks were visualized with Cytoscape42.

Weighted gene correlation network analysis43 was carried out to
cluster differential genes into smaller modules with the soft r-squared
set at >0.8 and gray modules excluded. Each module formed was sub-
setted from the adjacency matrix and exported as edge files for visua-
lization in Cytoscape.

To directly analyze the well-known signaling pathways in the data, a
gene-set analysis was carried out on the filtered transcriptome data using
camera44withReactomeandGeneOntology annotations for transcripts and
non-coding RNA, respectively, with false discovery rate set at 5%.
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Metabolomics
Untargeted metabolomic profiles were processed by Metabolome Inc. For
targetedmetabolite analysis, the peak area ratio ofmetabolites was obtained
by integration within vendor software (Xcalibur QuanBrowser, Thermo
Scientific, Hemel Hempstead, UK) and compared with isotopically labeled
standards for quantification. Data were pre-processed by removing
constant-value features, replacing zeros and missing values with half the
smallest value in the entire dataset and removing extremely low relative
standard deviation usingMetaboanalyst v5.045. The processed data was log-
transformed and mean-normalized. Pairwise comparisons of sample
groups were carried out using a t-test. Metabolite set enrichment analysis
was performed with Metaboanalyst v5.0.

Multiomics analyses of RNA and metabolite were combined using
sparse Partial Least Squares (sPLS)models usingmixOmics version 6.22.046.
Canonical correlation patterns and association networks derived from the
components were then used to infer the relationship between genes and
metabolites. The network analysis was visualized with Cytoscape.

Sensitivity analyses considered the effects of individual chronic con-
ditions, effects of medications known to affect inflammation and biogenesis
(statins or diabetes drugs including metformin) on the results by repeating
each analysis after exclusion of single conditions or participants receiving
these drugs. In addition, primary analyses were repeated using a more
restrictive complex multimorbidity definition where two or more physiolo-
gical systems are affected47.

Data availability
Sequencing data are available via NCBI Gene Expression Omnibus
(GSE159612). Metabolomics data are available through EMBL-EBI
(MTBLS7259).
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