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We study the backreaction of a quantum scalar field on anti–de Sitter (AdS) spacetime. The renormalized

expectation value of the stress-energy tensor operator for a massless, conformally coupled quantum scalar

field on global AdS spacetime in four space-time dimensions acts as a source term on the right-hand side of

the Einstein equations for the quantum-corrected metric. We solve the quantum-corrected Einstein

equations numerically and find deviations from pure AdS which increase as the temperature of the quantum

scalar field state increases. We interpret these quantum-corrected metrics as asymptotically AdS solitons,

and study the mass of these solitons as a function of the temperature of the quantum scalar field.

DOI: 10.1103/PhysRevD.110.125003

I. INTRODUCTION

The classical Einstein equations govern the interaction

between space-time geometry and matter (we use units in

which 8πG ¼ c ¼ 1)

Gμν þ Λgμν ¼ Tμν; ð1:1Þ

where Gμν is the Einstein tensor, gμν the metric tensor with

signature ð−;þ;þ;þÞ and Λ the cosmological constant.

The left-hand side of (1.1) describes the geometry of

spacetime. On the right-hand side, Tμν is the classical

stress-energy tensor (SET) of matter or classical fields

other than gravity. In a full theory of quantum gravity, both

the left- and right-hand sides of (1.1) would be quantized,

in other words, all matter fields, as well as the space-time

geometry on which the matter propagates, would be

quantum in nature.

Developing a full theory of quantum gravity is a rather

ambitious challenge, and a more modest undertaking is to

consider instead quantum field theory on curved space-

time. In this paradigm, spacetime [giving the quantities on

the left-hand side of (1.1)] continues to be classical but the

matter (and fields other than gravity) is quantized. This

means that the classical SETon the right-hand side of (1.1)

is replaced by the (renormalized) expectation value of a

quantum stress-energy tensor (RSET) operator hT̂μνi,
giving the semiclassical Einstein equations (SCEE).

In four space-time dimensions, the SCEE take the form

Gμν þ Λgμν þ αH
ð1Þ
μν þ βH

ð2Þ
μν ¼ hT̂μνi: ð1:2Þ

As a result of the renormalization prescription for the

RSET [1–3], the left-hand side includes two additional,

classical, conserved geometric tensors, H
ð1;2Þ
μν , given by

H
ð1Þ
μν ¼ 1

2
R2gμν − 2RRμν − 2gμν□Rþ 2∇μ∇νR;

H
ð2Þ
μν ¼ 1

2
RσλRσλgμν −□Rμν þ∇μ∇νR

−
1

2
gμν□R − 2RσλRσμλν; ð1:3Þ

where Rμνλσ is the Riemann tensor, Rμν the Ricci tensor and

R the Ricci scalar, and two additional constants α and β.

The tensorsH
ð1;2Þ
μν contain four derivatives of the space-time

metric.

A fully self-consistent solution of the SCEE would

involve the RSET on the right-hand side of (1.2) being

computed on the space-time background which gives the

geometric quantities on the left-hand side. This is, in

general, a very challenging problem, particularly when

the fourth-order terms H
ð1;2Þ
μν are included, and, further-

more, the equations (1.2) are known to possess runaway

solutions [4–6]. Nonetheless, rigorous work on solving the

SCEE consistently can be found, for example, for a

background Einstein static universe [7], cosmological

spacetimes [8–11] and static spacetimes [12,13].

Given the difficulties inherent in solving the SCEE, there

are various lines of attack in the literature to simplify the
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problem. First, one can take a perturbative (in ℏ) approach

(see, for example, [14,15]), in which the space-time metric

takes the form

gμν ¼ g0μν þ ℏg
ð1Þ
μν þOðℏ2Þ; ð1:4Þ

where g0μν is a given fixed background space-time metric

and g
ð1Þ
μν is the first-order correction to the metric.

Linearizing the SCEE (1.2) [with the assumption that

the constants α and β are OðℏÞ] yields a set of linear

equations for g
ð1Þ
μν which are second-order in time deriva-

tives [14,15], and which involve, as a source term, the

RSET computed on the fixed space-time metric g0μν. Even

with the recent development of efficient methods of

computing the RSET on black hole backgrounds (see,

for example, [16–19]), solving these reduced equations is

still difficult and often approximations to the RSET are

employed to make progress (see, for example, [15]).

An alternative approach is to employ an analytic approxi-

mation for the RSET which is valid on a general class of

space-time metrics, so that the right-hand side of (1.2) can

be written in closed form in terms of one or more unknown

metric functions. The aim is then to solve (1.2) exactly for

these unknown metric functions. For example, the Polyakov

approximation [20,21] results from an s-wave approxima-

tion to the RSET on static, spherically symmetric space-

times. This approximation has the advantage of involving

only second-order derivatives of the metric, and hence it is

possible to solve the SCEE (1.2) under the simplifying

assumption α ¼ β ¼ 0. This strategy been used to find

spherically symmetric semiclassical stars and black holes

(see, for example, [22–27] for a selection of recent works

using this approach).

In this paper we follow a third, even less ambitious,

approach.We fix a background spacetime having metric g0μν
and find the RSET on this background. This RSET is then

used as the source term in the SCEE (1.2), which are then

solved nonperturbatively to give the quantum corrected

(QC) metric g
QC
μν whose curvature tensors appear on the left-

hand side of (1.2). This approach has been applied in three

dimensions [where the additional curvature tensors H
ð1;2Þ
μν

are absent] to find the QC BTZ black holes and naked

singularities [28–30], and also more recently to three-

dimensional black holes in massive gravity [31]. In this

paper, we will only be concerned with quantum states for

which the constants α and β in (1.2) both vanish, so that the

Einstein equations we will be solving can be written as

G
QC
μν þ Λg

QC
μν ¼ hT̂μν½g0�i; ð1:5Þ

where the quantities on the left-hand side involve the QC

metric g
QC
μν while the RSET on the right-hand side is

computed on the fixed background metric g0μν. The terms

on the left-hand side of (1.5) are second order in derivatives

of the QC metric g
QC
μν , which facilitates finding solutions.

This approach is often referred to as the “backreaction”

problem.

In this paper we address the backreaction problem for a

simple toy model, taking the initial fixed background

metric g0μν to be that of four-dimensional global anti–de

Sitter (AdS) spacetime. Since AdS is a maximally sym-

metric spacetime, this is the simplest nontrivial example of

the backreaction problem (the backreaction on Minkowski

spacetime being trivial for a quantum field in the global

vacuum state). Quantum field theory on four-dimensional

global AdS was initiated many years ago [32,33] for a

massless, conformally coupled scalar field Φ satisfying the

Klein-Gordon equation

0 ¼
�

∇μ∇
μ −

1

6
R

�

Φ: ð1:6Þ

There are two key features which render the backreaction

problem on pure AdS nontrivial. First, since AdS is not

a globally hyperbolic spacetime, it is necessary to

apply boundary conditions to the quantum field at null

infinity in order to have a well-defined theory (see, for

example [32–36]). The application of the simplest possible

boundary conditions (namely Dirichlet and Neumann)

yields a vacuum state which replicates the maximal sym-

metry of the underlying spacetime [32,33,37,38], in which

case the RSET in that state is a multiple of the AdS metric.

However maximal symmetry is broken in the vacuum state

if more general boundary conditions are considered, such as

Robin boundary conditions [36,39,40]. Maximal symmetry

is also broken for thermal states [33], even when the

boundary conditions are such that the corresponding vac-

uum state is maximally symmetric. The backreaction

problem becomes nontrivial when the RSET on right-hand

side of the “quantum-corrected” Einstein equations (QCEE)

(1.5) is evaluated in a nonmaximally symmetric quantum

state, since then it is no longer the case that the RSET is

proportional to the space-time metric. Solving the back-

reaction problem to find the QC metric gQCμν in such a

scenario is the focus of the present work.

The outline of this paper is as follows. We begin, in

Sec. II by reviewing the (trivial) backreaction problem for

maximally symmetric quantum states on maximally sym-

metric spacetimes. In Sec. III we review the RSET for a

massless, conformally coupled scalar field in a thermal state

on pure AdS spacetime, as computed in [33]. Our analysis

of the QC metrics solving the QCEE (1.5) with the above

RSET as a source on the right-hand side begins in Sec. IV,

where we employ an ansatz for the QC metric which is

particularly useful for comparing with the pure AdS metric.

We derive the QCEE using this metric ansatz and outline our

numerical procedure for solving these equations. The results

of this numerical work are presented in Sec. V, where we
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consider the QC metrics resulting from applying Dirichlet,

Neumann and transparent boundary conditions to the

quantum scalar field. To aid the physical interpretation of

these QC metrics, in Sec. VI we use an alternative ansatz for

the QC metric, which enables us to interpret the QC metrics

as soliton-like spacetimes which are asymptotically AdS.

We compute the masses of these solitons and investigate the

dependence of the mass on the temperature of the quantum

field. Our conclusions are presented in Sec. VII.

II. QC MAXIMALLY SYMMETRIC SPACETIMES

We now review some simple examples of QC space-

times, for which the RSET is known exactly in closed form

for a massless, conformally coupled, scalar field. These

examples involve background spacetimes which are max-

imally symmetric. We first show that in this situation the

constants α and β in the SCEE (1.2) can be set to zero if the

RSET preserves the maximal symmetry of the background

spacetime.

A. RSET for maximally symmetric states

Consider a background spacetime which is maximally

symmetric. In this case the Riemann tensor is given in terms

of the space-time metric

Rμνλσ ¼ Kðgμλgνσ − gμσgνλÞ ð2:1Þ

where K is a constant. In four space-time dimensions, the

Ricci tensor and curvature scalar are then

Rμν ¼ 3Kgμν; R ¼ 12K: ð2:2Þ

The geometric tensors H
ð1;2Þ
μν (1.3) are therefore also

proportional to the metric tensor gμν when evaluated on

the background spacetime.

Now consider a maximally symmetric quantum state, for

example, a global vacuum state (assuming such a state

exists and is Hadamard). In such a state the two-point

function Gðx; x0Þ is a function only of the world function

σðx; x0Þ for the separated space-time points x, x0 [37].

Furthermore, the Hadamard parametrix GHðx; x0Þ (see, for
example, [3]), which must be subtracted from the two-point

function as part of the renormalization process, is also a

function only of σðx; x0Þ. The RSET is obtained from the

regularized two-point function

GRðx; x0Þ ¼ Gðx; x0Þ −GHðx; x0Þ ð2:3Þ

by applying a second-order differential operator T μν and

then taking the coincidence limit x0 → x. In other words,

the RSET in a maximally symmetric vacuum state j0i is

h0jT̂μνj0i ¼ lim
x0→x

fT μν½GRðx; x0Þ�g − gμνv1: ð2:4Þ

For a massless, conformally coupled scalar field, the

operator is [3]

T μν ¼
2

3
gν

ν0∇μ∇ν0 þ
1

6
gμνg

ρσ0∇ρ∇σ0

−
1

3
gμ

μ0gν
ν0∇μ0∇ν0 þ

1

3
gμν∇ρ∇

ρ þ 1

6
Gμν; ð2:5Þ

where gν
ν0 is the bivector of parallel transport and a prime 0

denotes derivatives with respect to the space-time point x0.
The quantity v1 in the final term in (2.4) is the coincidence

limit of a state-independent, geometric biscalar which is

necessary in order for the RSET to be conserved [3].

For a maximally symmetric spacetime, v1 is a position-

independent constant.

The singular terms T μν½GHðx; x0Þ� are purely geometric

and give rise to a renormalization of the constants 8πG
(which we have already set equal to unity),Λ, α and β in the

SCEE (1.2). Since GHðx; x0Þ is a function only of σðx; x0Þ,
using the form of the operator (2.5) and the expansions of

gν
ν0∇μ∇ν0σ and ∇μ∇νσ given in [41], it is straightforward

to show that T μν½GHðx; x0Þ� is proportional to the metric

tensor gμν. Therefore, it is sufficient to renormalize the

cosmological constant Λ in the SCEE (1.2) and to set the

constants α ¼ 0 ¼ β.

For the remainder of this paper, we will mostly be

concerned with a QC metric in the situation where the

original background spacetime is maximally symmetric

and possesses a maximally symmetric vacuum state. We

therefore set α ¼ 0 ¼ β in (1.2) and from here on will study

the solutions of the simplified SCEE

Gμ
ν þ Λδμ

ν ¼ hT̂μ
νi; ð2:6Þ

where we have raised the second index for later conven-

ience. Suppose that the RSET for the maximally symmetric

vacuum state is given by

h0jT̂μ
νj0i ¼ Cδμ

ν; ð2:7Þ

where C is a position-independent constant. Then, for any

other quantum state jψi (2.6) takes the form

Gμ
ν þ Λδμ

ν ¼ hψ jT̂μ
νjψi − h0jT̂μ

νj0i þ Cδμ
ν; ð2:8Þ

giving

Gμ
ν þ Λ̃δμ

ν ¼ hψ jT̂μ
νjψi − h0jT̂μ

νj0i; ð2:9Þ

where Λ̃ ¼ Λ − C is the renormalized cosmological con-

stant. From now on we shall refer to (2.9) as the “quantum-

corrected Einstein equations” (QCEE).
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B. Examples

Before we study solutions of (2.9) for a background

global AdS spacetime, we review some simple examples of

maximally symmetric states on maximally symmetric

spacetimes.

1. Minkowski spacetime

The simplest possible maximally symmetric spacetime

background is Minkowski spacetime, whose metric in

static, spherically symmetric coordinates ðt; r; θ;φÞ takes

the form

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð2:10Þ

where

dΩ2 ¼ dθ2 þ sin2 θdφ2 ð2:11Þ

is the metric on the two-sphere. In the global Minkowski

vacuum j0Mi, the RSET h0MjT̂μνj0Mi≡ 0. In this case there

are no quantum corrections to the space-time metric and the

backreaction problem is trivial.

2. De Sitter spacetime

De Sitter (dS) spacetime is maximally symmetric space-

time with positive scalar curvature. In global coordinates

ðτ; ρ; θ;φÞ the metric can be written as

ds2 ¼ a−2sec2τ½−dτ2 þ dρ2 þ sin2ρ dΩ2�; ð2:12Þ

where the cosmological constant is Λ ¼ 3a2 > 0 and a is

an inverse length scale. The preferred quantum state on dS

is the Bunch-Davies state [42,43], which is the unique

maximally symmetric Hadamard state for a massless,

conformally coupled, scalar field. The RSET in this state

is (setting ℏ ¼ 1 from henceforth) [42,44,45]

h0BDjT̂μ
νj0BDi ¼

a2

960π2
δμ

ν: ð2:13Þ

In this case the QCEE (2.9) give the QC metric to be dS

spacetime with a renormalized cosmological constant

Λ → Λ̃dS ¼ Λ −
a2

960π2
: ð2:14Þ

Solutions of the SCEE of dS form have been studied

extensively in the literature: see, for example, [10,11,46].

3. Anti–de Sitter spacetime

Anti–de Sitter (AdS), like dS, is a maximally symmetric

spacetime, the difference being that AdS has constant

negative scalar curvature. In global coordinates

ðτ; ρ; θ;φÞ the metric is written as

ds2 ¼ a−2sec2ρ½−dτ2 þ dρ2 þ sin2ρ dΩ2�; ð2:15Þ

where a is the inverse AdS length scale, related to

the cosmological constant by Λ ¼ −3a2 < 0. The coordi-

nate ranges are τ∈ ð−π; π�, ρ∈ ½0; π=2Þ, θ∈ ½0; π� and

ϕ∈ ½0; 2π�.
In order to have a well-defined quantum field theory on

AdS, it is necessary to impose boundary conditions on the

massless, conformally coupled, scalar field [32,34–36]. In

this work we consider Dirichlet, Neumann and transparent

boundary conditions [32]. In this case the vacuum state for

the scalar field preserves the underlying maximal symmetry

of the AdS spacetime [32,36,38] and the RSET in the

vacuum state, h0jT̂μ
νj0i, is proportional to the metric [33]

h0jT̂μ
νj0i ¼ −

a2

960π2
δμ

ν: ð2:16Þ

As in the de Sitter case, the QCEE give the QC metric in

this case to be AdS spacetime with a renormalized

cosmological constant

Λ → Λ̃adS ¼ Λþ a2

960π2
: ð2:17Þ

The corrections to the cosmological constant due to the

vacuum RSET are very small in both the dS (2.14) and

AdS (2.17) cases and are such that the magnitude of the

cosmological constant is reduced.

III. RSET FOR THERMAL STATES ON ADS

In the previous section, we have considered only

maximally symmetric states, namely the vacuum state on

Minkowski spacetime, the Bunch-Davies state on dS, and

the vacuum state on global AdS with either transparent,

Dirichlet or Neumann boundary conditions. We now switch

our focus to nonmaximally symmetric states, in particular

thermal states for a massless, conformally coupled, scalar

field. The global thermal state on Minkowski spacetime is

spatially homogeneous and isotropic, so the solution of the

QCEE (2.9) is not particularly interesting in this case. Due

to the presence of the cosmological horizon, there is a

preferred temperature on the static patch of dS. The Bunch-

Davies state corresponds, on the static patch of dS, to a state

at this preferred temperature, and therefore the solution of

the QCEE (2.9) is trivial in this case. For the remainder of

this paper we therefore focus on thermal states on AdS.

In this section we review the thermal RSET as computed

in [33]. Two aspects make this interesting for our purposes:

first, AdS has no preferred temperature so we can consider

the effect of varying the temperature; and second, the

thermal RSET is not maximally symmetric.

The quantum scalar field Φ̂ is taken to be in a thermal

state at inverse temperature β and for the remainder of this

paper we set kB ¼ 1. The difference in the RSET between
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the thermal jβi and vacuum j0i states is [33] (with a minor

typographical error corrected)

T̃μ
ν ¼ hβjT̂μ

νjβi − h0jT̂μ
νj0i

¼ a2

8π2
fF 1ðρÞδμν þ F 2ðρÞτμτν þ F 3ðρÞρμρνg ð3:1aÞ

where

τ• ¼ ða−1 secρ;0;0;0Þ; ρ• ¼ ð0;a−1 secρ;0;0Þ; ð3:1bÞ

are unit length timelike and radial vectors, respectively. The

functions F 1ðρÞ, F 2ðρÞ and F 3ðρÞ are given by

F 1ðρÞ ¼
4

3
cos4ρ f3ðaβÞ þ λ cot ρ

�

−
1

6
csc2ρ cosð2ρÞS0ðaβ; ρÞ þ

1

3
cot ρC1ðaβ; ρÞ þ

2

3
cos2ρ S2ðaβ; ρÞ

�

;

F 2ðρÞ ¼
16

3
cos4ρ f3ðaβÞ þ λ cot ρ

�

1

6
ð3 − cot2ρÞS0ðaβ; ρÞ þ cot ρ

�

1 −
2

3
cos2ρ

�

C1ðaβ; ρÞþ2cos2ρ S2ðaβ; ρÞ
�

;

F 3ðρÞ ¼ λ cot ρ

�

1

6
ð3csc2ρ − 4ÞS0ðaβ; ρÞ þ cot ρ

�

2

3
sin2ρ − 1

�

C1ðaβ; ρÞ −
2

3
cos2ρ S2ðaβ; ρÞ

�

; ð3:1cÞ

where we have defined

fmðxÞ ¼
X

∞

n¼1

nmðenx − 1Þ−1; ð3:1dÞ

f̃mðxÞ ¼
X

∞

n¼1

nmð−1Þnðenx − 1Þ−1; ð3:1eÞ

Smðx; ρÞ ¼
X

∞

n¼1

nmð−1Þnðenx − 1Þ−1 sinð2nρÞ; ð3:1fÞ

Cmðx; ρÞ ¼
X

∞

n¼1

nmð−1Þnðenx − 1Þ−1 cosð2nρÞ; ð3:1gÞ

and the second quantity f̃mðxÞ has been defined for later

convenience. In (3.1c), the constant λ depends on the

boundary conditions imposed

λ ¼

8

>

<

>

:

1 Dirichlet boundary conditions;

−1 Neumann boundary conditions;

0 transparent boundary conditions:

ð3:1hÞ

When λ ¼ 0 and we consider transparent boundary con-

ditions, we have F 3ðρÞ ¼ 0 and the functions F 1;2ðρÞ
simplify considerably

F 1ðρÞ ¼
4

3
cos4ρ f3ðaβÞ;

F 2ðρÞ ¼
16

3
cos4ρ f3ðaβÞ: ð3:2Þ

In the limit β → ∞, the functions fmðaβÞ, Smðaβ; ρÞ and
Cmðaβ; ρÞ all tend to zero and the difference in RSET

expectation values (3.1) vanishes.

From the form of the RSET (3.1), we have T̃θ
θ ¼ T̃φ

φ

and therefore it suffices to consider the three components

T̃τ
τ, T̃ρ

ρ and T̃θ
θ. If we define

EβðρÞ ¼ −T̃τ
τ; ð3:3aÞ

PβðρÞ ¼
1

3
½T̃ρ

ρ þ 2T̃θ
θ�; ð3:3bÞ

ΠβðρÞ ¼
2

3
½T̃ρ

ρ − T̃θ
θ�; ð3:3cÞ

these are the (local) energy density, pressure and pressure

deviator respectively [47].

In Fig. 1, we show the energy density, pressure and

pressure deviator when Dirichlet boundary conditions are

applied. All three quantities (energy density, pressure and

pressure deviator) tend toward zero as the temperature is

decreased. This corresponds to the thermal RSET tending

toward the vacuum expectation value of the RSET in the

low-temperature limit, as expected. The energy density and

pressure for Neumann or transparent boundary conditions

are qualitatively extremely similar to those shown in Fig. 1.

In Fig. 2, we show the ratio of the energy density E
ðNÞ
β ðρÞ

when Neumann boundary conditions are applied to the

scalar field to the energy density E
ðDÞ
β ðρÞ when Dirichlet

boundary conditions are applied. This ratio is appreciably

different from unity close to the boundary. While both

E
ðNÞ
β ðρÞ and E

ðDÞ
β ðρÞ tend to zero as ρ →

π
2
, we see from

Fig. 2 that the energy density for Neumann boundary

conditions is tending to zero more slowly than the energy

density for Dirichlet boundary conditions. It is notable from

Fig. 2 that the ratio E
ðNÞ
β ðρÞ=EðDÞ

β ðρÞ increases as the

temperature decreases.
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Similar behavior is observed for the ratio of the

energy density E
ðTÞ
β ðρÞ for transparent boundary conditions

to the Dirichlet energy density E
ðDÞ
β ðρÞ, except that

E
ðTÞ
β ðρÞ=EðDÞ

β ðρÞ is approximately half E
ðNÞ
β ðρÞ=EðDÞ

β ðρÞ.
The corresponding pressure ratios P

ðNÞ
β ðρÞ=PðDÞ

β ðρÞ and

P
ðTÞ
β ðρÞ=PðDÞ

β ðρÞ have similar properties. The pressure

deviator for the case of Neumann boundary conditions is

exactly minus the pressure deviator in the case of Dirichlet

boundary conditions, that is, Π
ðDÞ
β ðρÞ ¼ −Π

ðNÞ
β ðρÞ. In the

case of transparent boundary conditions the pressure

deviator is identically zero.

Unlike the RSET in the vacuum state, we see from Fig. 1

that the thermal RSET is not maximally symmetric. A

maximally symmetric state has constant energy density

which equals the pressure, and vanishing pressure deviator.

The energy density and pressure distributions shown in

Fig. 1 tend to “clump” toward the origin at ρ ¼ 0 and tend

to zero as the space-time boundary at ρ ¼ π=2 is

approached [47]. In contrast to the situations discussed

in Sec. II B, we therefore expect that the QC metric

resulting from the thermal RSET will not be maximally

symmetric. Finding this QC metric is the focus of the

remainder of the paper.

IV. QC EINSTEIN EQUATIONS

In this section we derive the explicit form of the QCEE

(2.9) governing QC AdS spacetimes and outline our

numerical method for solving these equations.

A. QCEE for QC AdS

We start with our ansatz for the QC metric, which takes

the form

ds2QC ¼ −AðρÞdτ2 þ BðρÞdρ2 þ CðρÞdΩ2 ð4:1Þ

where AðρÞ, BðρÞ and CðρÞ are functions of ρ, to be

determined by the QCEE (2.9)

Gμ
ν þ Λ̃δμ

ν ¼ T̃μ
ν; ð4:2Þ

where T̃μ
ν is the difference between the thermal and

vacuum RSET (3.1) and Λ̃ ¼ Λ̃AdS is the renormalized

cosmological constant given by (2.17). With the metric

ansatz (4.1), the QCEE (4.2) take the form

FIG. 2. Ratio of the energy density E
ðNÞ
β ðρÞ with

Neumann boundary conditions applied to the energy density

E
ðDÞ
β ðρÞ with Dirichlet boundary conditions applied. The

inverse AdS length scale is fixed to be a ¼ 1 and the inverse

temperature β∈ ð π
12
; 11π
24
Þ.

FIG. 1. Energy density E
ðDÞ
β ðρÞ (a), pressure P

ðDÞ
β ðρÞ (b), and

(c) pressure deviator Π
ðDÞ
β ðρÞ (3.3) for a massless, conformally

coupled, scalar field on global AdS with Dirichlet boundary

conditions applied, for varying inverse temperature β∈ ð π
12
; 11π
24
Þ

and fixed inverse AdS length scale a ¼ 1.
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T̃τ
τ ¼ 4B2CðΛ̃C−1Þ−2B0CC0−BðC02−4CC00Þ

4B2C2
; ð4:3aÞ

T̃ρ
ρ ¼ 2A0CC0 þ Að4BC½Λ̃C − 1� þ C02Þ

4ABC2
; ð4:3bÞ

T̃θ
θ ¼ −

1

4A2B2C2
½A02BC2

− ACðA0BC0 þCf2A00B−A0B0gÞ
−A2ð4Λ̃B2C2 −B0CC0 −BfC02 − 2CC00gÞ�; ð4:3cÞ

where a prime denotes differentiation with respect to ρ, and

the φ component has been omitted as T̃θ
θ ¼ T̃φ

φ.

Using (4.3a), (4.3b), we find that (4.3c) can be written as

ðT̃θ
θ − T̃ρ

ρÞ − C

C0 T̃ρ
ρ0 þ A0C

2AC0 ðT̃τ
τ − T̃ρ

ρÞ ¼ 0: ð4:4Þ

Taking the covariant derivative of the RSET gives

∇μT̃ρ
μ ¼ 1

2B

�

2C0

C
ðT̃ρ

ρ − T̃θ
θÞ þ 2T̃ρ

ρ0 þ A0

A
ðT̃ρ

ρ − T̃τ
τÞ
�

;

ð4:5Þ

which is precisely (4.4) multiplied by − C0

BC
. Hence, pro-

vided the QCEE (4.3a)–(4.3c) hold, conservation of the

RSET follows, as is expected. Thus the QCEE and RSET

conservation give three independent equations for three

unknown functions AðρÞ, BðρÞ and CðρÞ.
To simplify these, we first rearrange (4.3a), (4.3b), (4.4)

to give

0 ¼ Λ̃ − T̃τ
τ −

C02

4BC2
þ 2BC00 − 2B2 − B0C0

2B2C
; ð4:6aÞ

0 ¼ Λ̃ − T̃ρ
ρ þ C02

4BC2
þ A0C0 − 2AB

2ABC
; ð4:6bÞ

0 ¼ A0CðT̃ρ
ρ − T̃τ

τÞ þ 2AðCT̃ρ
ρÞ0 − 2AC0T̃θ

θ: ð4:6cÞ

Equation (4.6c) can be rearranged to give A0ðρÞ=AðρÞ in

terms of CðρÞ and RSET components

A0

A
¼ 2

ðCT̃ρ
ρÞ0 − C0T̃θ

θ

CðT̃τ
τ − T̃ρ

ρÞ : ð4:7Þ

We use this equation to eliminate A0=A from (4.6b), to give

0 ¼ Λ̃ − T̃ρ
ρ −

1

C
þ C02

4BC2
−
C0ðCT̃ρ

ρ0 þ C0T̃ρ
ρ − C0T̃θ

θÞ
BC2ðT̃ρ

ρ − T̃τ
τÞ :

ð4:8Þ

We can now rearrange (4.8) to give an expression for BðρÞ
in terms of CðρÞ (and its derivatives) and RSET compo-

nents (and derivatives thereof)

B¼C02ðT̃ρ
ρ− T̃τ

τÞ− 4C0ðCT̃ρ
ρ0þC0T̃ρ

ρ −C0T̃θ
θÞ

4CðT̃ρ
ρ− T̃τ

τÞð1−CΛ̃þCT̃ρ
ρÞ

: ð4:9Þ

We then substitute for BðρÞ and B0ðρÞ from (4.9) into (4.6a)

to yield a single equation for C

0 ¼ 1

CC0 ð2CC00 þ C02Þ ðT̃ρ
ρ − T̃τ

τÞΞρ

ϒ

þ 2
d

dρ

�ðT̃ρ
ρ − T̃τ

τÞΞρ

ϒ

�

þ Ξτ

C
; ð4:10aÞ

where we have defined

ϒ ¼ C0ðT̃τ
τ þ 3T̃ρ

ρ − 4T̃θ
θÞ þ 4CT̃ρ

ρ0 ð4:10bÞ

and

Ξ• ¼ CðΛ̃ − T̃•
•Þ − 1: ð4:10cÞ

We have therefore reduced the QCEE to a single, second

order, nonlinear ODE (ordinary differential equation) for

the metric function CðρÞ. Once CðρÞ is known, we can then
use (4.9) to give the metric function BðρÞ and also solve the
first order ODE (4.7) to give the remaining metric function

AðρÞ. To solve these ODEs, we require boundary con-

ditions on the metric functions, which are described next.

B. Solving the QC Einstein equations

The QCEE (4.7), (4.9), (4.10) are sufficiently compli-

cated that proceeding numerically is required to find the

QCmetric functions AðρÞ, BðρÞ andCðρÞ. Our assumptions

about the form of CðρÞ [see (4.13) below] mean that these

equations are singular at ρ ¼ 0. We will start our numerical

integration at ρ ¼ ϵ for some positive constant ϵ ≪ 1 and

integrate for increasing ρ toward the space-time boundary

at ρ ¼ π
2
. For this procedure, we require boundary con-

ditions on the QC metric functions at ρ ¼ ϵ.

We first perform a Taylor series expansion near ρ ¼ 0 of

the three functions F i, i ¼ 1; 2; 3 (3.1c), which take the

form
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F 1ðρÞ ¼
4

9
½λf̃1ðaβÞ þ 3f3ðaβÞ þ 2λf̃3ðaβÞ� −

8

45
½λf̃1ðaβÞ þ 15f3ðaβÞ þ 10λf̃3ðaβÞ þ 4λf̃5ðaβÞ�ρ2 þOðρ4Þ;

F 2ðρÞ ¼
16

9
½λf̃1ðaβÞ þ 3f3ðaβÞ þ 2λf̃3ðaβÞ� −

16

45
½3λf̃1ðaβÞ þ 30f3ðaβÞ þ 20λf̃3ðaβÞ þ 7λf̃5ðaβÞ�ρ2 þOðρ4Þ;

F 3ðρÞ ¼ −
16λ

45
½f̃1ðaβÞ − f̃5ðaβÞ�ρ2 þOðρ4Þ; ð4:11Þ

where fmðaβÞ and f̃mðaβÞ are given in (3.1d) and (3.1e).

Due to the form of the functions in (3.1c), the above series

expansions for small ρ involve only even powers of ρ.

Substituting the series (4.11) into the expression for the

RSET (3.1a), the RSET components have the following

series expansions for small ρ:

T̃τ
τðρÞ ¼ Tτ0 þ Tτ2ρ

2 þOðρ4Þ;
T̃ρ

ρðρÞ ¼ Tρ0 þ Tρ2ρ
2 þOðρ4Þ;

T̃θ
θðρÞ ¼ Tθ0 þ Tθ2ρ

2 þOðρ4Þ; ð4:12aÞ

where

Tτ0 ¼ −
a4

6π2
½λf̃1ðaβÞ þ 3f3ðaβÞ þ 2λf̃3ðaβÞ�;

Tτ2 ¼
a4

9π2
½λf̃1ðaβÞ þ 9f3ðaβÞ þ 6λf̃3ðaβÞ þ 2λf̃5ðaβÞ�;

Tρ0 ¼
a4

18π2
½λf̃1ðaβÞ þ 3f3ðaβÞ þ 2λf̃3ðaβÞ�;

Tρ2 ¼ −
a4

45π2
½3λf̃1ðaβÞ þ 15f3ðaβÞ þ 10λf̃3ðaβÞ þ 2λf̃5ðaβÞ�;

Tθ0 ¼ Tρ0 ¼
a4

18π2
½λf̃1ðaβÞ þ 3f3ðaβÞ þ 2λf̃3ðaβÞ�;

Tθ2 ¼ −
a4

45π2
½λf̃1ðaβÞ þ 15f3ðaβÞ þ 10λf̃3ðaβÞ þ 4λf̃5ðaβÞ�: ð4:12bÞ

Since the components of the RSET have Taylor series

expansions (4.12) for small ρ which contain only even

powers of ρ, we assume that the same is true of the QC

metric functions AðρÞ, BðρÞ and CðρÞ

AðρÞ ¼ A0 þ A2ρ
2 þOðρ4Þ; ð4:13aÞ

BðρÞ ¼ B0 þ B2ρ
2 þOðρ4Þ; ð4:13bÞ

CðρÞ ¼ C2ρ
2 þ C4ρ

4 þOðρ6Þ; ð4:13cÞ

where Ai, Bi, Ci are constant coefficients. In (4.13), we

have assumed that the QC metric function CðρÞ isOðρ2Þ as
ρ → 0, which is the same behavior as in the original AdS

metric (2.15).

We additionally assume that the metric (4.1) has a

regular origin at ρ ¼ 0. In order to avoid a curvature

singularity at ρ ¼ 0, it must be the case that

B0 ¼ C2: ð4:14Þ

Since we have assumed that the QC metric (4.1) is static,

we can rescale the time coordinate τ, which leads to a

rescaling of the metric function AðρÞ. For this reason

the coefficient A0 in (4.13a) is not determined by the

QCEE (4.7). We can therefore set

A0 ¼ 1 ð4:15Þ

without loss of generality. All the remaining constants

in (4.13) can be fixed by substituting the series (4.12),

(4.13) into the QCEE (4.7), (4.9), (4.10a) and ensuring that

these equations are satisfied order-by-order in ρ. The lowest

order term in (4.7) gives

A2 ¼
2ð2Tρ2 − Tθ2Þ
Tτ0 − Tθ0

; ð4:16Þ

which is finite since, from (4.12), we have Tτ0 ≠ Tθ0. From

the lowest-order term in (4.10a), we find
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C2 ¼
12ð2Tθ2 − Tρ2Þ

ðTτ0 − Tθ0ÞðTτ0 − 3Tθ0 þ 2Λ̃Þ
; ð4:17Þ

where both terms in the denominator are nonvanishing.

Following the above procedure, we can find series

expansions of the RSET and QC metric functions to any

desired order in ρ, although the algebraic expressions for

the coefficients in the QC metric functions rapidly become

extremely complicated.

Our numerical method begins by integrating the non-

linear equation for CðρÞ (4.10), using Mathematica’s

inbuilt NDSolveValue command. We begin the numeri-

cal integration at ρ ¼ ϵ ¼ 10−3. Initial conditions for the

numerical integration are given by the series expansion

(4.13c). We perform a series expansion in the RSET

components up to Oðρ8Þ, which is sufficient to give series

in AðρÞ and BðρÞ up toOðρ6Þ and in CðρÞ up toOðρ8Þ. The
coefficients in the series expansions of the RSET compo-

nents (4.12) involve infinite sums which converge

extremely rapidly; we included just the first 100 terms

in each sum, which was sufficient for our purposes. With

series expansions up to the orders given above, and taking ϵ

in the range 10−2 − 10−3 we estimate the relative error in

the solutions of the QCEE to be approximately 10−8.

The NDSolveValue command gives CðρÞ as an

interpolating function. From this, the QC metric function

BðρÞ is given directly by (4.9), without any further

integration. To find the remaining QC metric function

AðρÞ, we again apply the NDSolveValue command to

numerically integrate (4.7) from ρ ¼ ϵ, using the series

(4.13a) up to Oðρ6Þ as the initial condition. In all our

numerical integration, we end the integration at ρ ¼ π
2
− ϵ

since the QC metric functions AðρÞ, BðρÞ and CðρÞ all

diverge as ρ →
π
2
[as is the case for the original AdS metric

functions (2.15)]. In all our numerical computations we

have set the original inverse AdS length scale a to be equal

to unity; this means the renormalized inverse AdS length

scale is

ã ¼

ffiffiffiffiffiffiffiffi

−
Λ̃

3

s

¼ 0.9999824 to 7 significant figures; ð4:18Þ

where the renormalized cosmological constant Λ̃ is given

by (2.17).

V. QC ADS METRICS

In this section we present our results for the QC AdS

metrics found by solving the QC Einstein equations, as

discussed in the previous section. We first consider the

solutions when Dirichlet or Neumann boundary conditions

have been applied to the quantum scalar field, before turning

to the case of transparent boundary conditions. Our main

interest in this section is to explore the deviation of the QC

metrics from pure AdS spacetime, as well as considering the

effect the boundary conditions have on the QC metrics.

A. Dirichlet and Neumann boundary conditions

In Fig. 3 we show a typical QC metric solution. We have

fixed the inverse temperature in the RSET to be β ¼ π
4
and

applied Neumann boundary conditions to the quantum

field. We see that the metric function AðNÞðρÞ is indistin-

guishable from that in pure AdS when plotted on this scale,

while the metric functions BðNÞðρÞ and CðNÞðρÞ are sig-

nificantly different from the corresponding functions in

pure AdS. At the origin ρ ¼ 0, we have fixed AðNÞðρÞ ¼ 1

as seen in Fig. 3, and we also see that BðNÞðρÞ= sec2 ρ and

CðNÞðρÞ= tan2 ρ have the same value, in accordance with the

series expansions (4.13b), (4.13c), (4.14). The function

BðNÞðρÞ= sec2 ρ is monotonically increasing from the origin

toward the boundary at ρ ¼ π=2, except for a small region

close to the boundary where it is monotonically decreasing.

In contrast, the function CðNÞðρÞ= tan2 ρ is decreasing close

to the origin, has a local minimum and then increases close

to the boundary. Typical solutions for Dirichlet boundary

conditions show similar behavior.

We now study how the QC metrics change as we vary

the inverse temperature β in the RSET. In Fig. 4 we plot the

ratios AðDÞðρÞ= sec2 ρ (top plot), BðDÞðρÞ= sec2 ρ (middle

plot) and CðDÞðρÞ= tan2ðρÞ (bottom plot) for Dirichlet

boundary conditions. We have found QC metrics for a

range of inverse temperatures, with β ¼ π
12

corresponding

to the highest temperature studied. The zero-temperature

limit corresponds to β → ∞; in this case the QC metric is

just pure AdS with a renormalized cosmological con-

stant (2.17).

First consider the ratio AðDÞðρÞ= sec2 ρ (top plot in

Fig. 4). Looking at the vertical scale, it can be seen that

this ratio is very close to unity for all values of the

temperature considered and all ρ∈ ½0; π
2
Þ. The only signifi-

cant deviation from unity is close to the boundary as ρ →
π
2
,

with the deviations from unity increasing as the temper-

ature increases.

FIG. 3. Ratios between the components of the QC metric (4.1)

and the pure AdS metric (2.15) for Neumann boundary con-

ditions. We have fixed the (unrenormalized) inverse AdS length

scale a ¼ 1 and the inverse temperature β ¼ π
4
.

QUANTUM-CORRECTED ANTI–DE SITTER SPACETIME PHYS. REV. D 110, 125003 (2024)

125003-9



Turning now to the ratio BðDÞðρÞ= sec2 ρ (middle plot in

Fig. 4), we find much more significant variations compared

to the pure AdS case. At the origin, the value of the ratio

BðDÞðρÞ= sec2 ρ decreases rapidly as the temperature β−1

increases, and is close to zero for the large temperature

β−1 ¼ 12

π
. For all values of the inverse temperature studied,

we find that the ratio BðDÞðρÞ= sec2 ρ initially increases as ρ
increases from zero. The ratio BðDÞðρÞ= sec2 ρ then has a

maximum for ρ close to the boundary. For sufficiently high

temperature, the maximum value of the ratio BðDÞðρÞ=sec2ρ
is greater than unity. To within the accuracy of our

numerical integration, it appears to be the case that

BðDÞðρÞ= sec2 ρ approaches unity as ρ →
π
2
and the space-

time boundary is approached.

Finally we consider the ratio CðDÞðρÞ= tan2 ρ (bottom

plot in Fig. 4). Like the ratio BðDÞðρÞ= sec2 ρ, at the origin
ρ ¼ 0 the ratio CðDÞðρÞ= tan2 ρ decreases rapidly as the

temperature increases, and is close to zero for the highest

temperature studied (corresponding to β ¼ π
12
). Unlike the

ratio BðDÞðρÞ= sec2 ρ, we see that CðDÞðρÞ= tan2 ρ does not

change greatly as the radial coordinate ρ increases. The

ratio generally has a local minimum for some value of ρ and

is slightly increasing close to the space-time boundary. The

value that the ratio CðDÞðρÞ= tan2 ρ approaches as ρ →
π
2

decreases with increasing temperature.

When Neumann boundary conditions are applied to the

scalar field, the plots of the ratios of the QC metric

components to the AdS metric components BðNÞðρÞ=
sec2ρ and CðNÞðρÞ= tan2ðρÞ are virtually indistinguishable

by eye from the corresponding plots for Dirichlet boundary

conditions, shown in Fig. 4. In Fig. 5 we therefore show the

ratios of the QC metric components when Neumann

boundary conditions are applied to the corresponding QC

metric components when Dirichlet boundary conditions are

applied. From these ratios, we see that the difference

between the QC metric functions for the different boundary

conditions is very small, typically less than one percent.

When we examine the data for the ratio AðNÞðρÞ= sec2ðρÞ,
while this is less than unity close to the boundary when

Dirichlet boundary conditions are applied, it is greater than

unity for Neumann boundary conditions. Furthermore, the

deviations from unity are larger for Neumann boundary

conditions compared with Dirichlet boundary conditions,

and become significant at smaller values of ρ for Neumann

boundary conditions compared with Dirichlet.

From the plots of the ratios of the QC metric functions

BðρÞ and CðρÞ shown in Fig. 5, close to the origin at ρ ¼ 0

these ratios are closer to unity for higher temperatures.

Thus the effect of the boundary conditions on the QC

metric is less significant at higher temperatures. This is in

accordance with the properties of the RSET [40], whose

components at high temperature show little dependence on

the boundary conditions applied to the scalar field. Close to

the space-time boundary, the QC metric ratios in Fig. 5 are

significantly greater than unity, and increase with increas-

ing temperature, mimicking the behavior of the RSET close

to the boundary in Fig. 2.

B. Transparent boundary conditions

When transparent boundary conditions are applied to the

quantum scalar field, the RSET (3.1) simplifies consid-

erably

T̃μ
ν ¼ a2

6π2
cos4ρ f3ðaβÞDiagf−3; 1; 1; 1g; ð5:1Þ

FIG. 4. Ratios between the components of the QC metric (4.1)

and the pure AdS metric (2.15) for Dirichlet boundary condi-

tions. The top plot shows AðDÞðρÞ= sec2 ρ, the middle plot

BðDÞðρÞ= sec2 ρ and the bottom plot CðDÞðρÞ= tan2 ρ. Keeping

the inverse AdS length scale a ¼ 1 fixed, the inverse temperature

lies in the range β∈ ð π
12
; 11π
24
Þ.

JACOB C. THOMPSON and ELIZABETH WINSTANLEY PHYS. REV. D 110, 125003 (2024)

125003-10



where f3ðaβÞ is given in (3.1d). In this case the equation for
AðρÞ (4.7) reduces to

A0

A
¼ 2 tan ρ; ð5:2Þ

which can be directly integrated to give

AðρÞ ¼ sec2 ρ; ð5:3Þ

where we have chosen a constant of integration such that

Að0Þ ¼ 1, as in (4.15). Therefore the QC metric function

AðTÞðρÞ takes exactly the same form as in pure AdS.

The QC metric functions BðTÞðρÞ and CðTÞðρÞ are,

however, not the same as for pure AdS. The equations

governing these (4.9), (4.10a) do however simplify, giving

the following equation for CðρÞ:

0¼Ξτ

C
þ 4

CC0 ð2CC00þC02ÞΞρT̃ρ
ρ

ϒ
þ8

d

dρ

�

ΞρT̃ρ
ρ

ϒ

�

; ð5:4aÞ

where ϒ (4.10b) is now

ϒ ¼ 4ðCT̃ρ
ρ0 − C0T̃ρ

ρÞ; ð5:4bÞ

and Ξ• (4.10c) is unchanged. The equation for BðρÞ in

terms of CðρÞ (4.9) also simplifies considerably

BðρÞ ¼ −
C0

4CΞρ

ðC0 þ 4C tan ρÞ: ð5:5Þ

Although the equations governing CðρÞ (5.4) and BðρÞ
(5.5) are much simpler than for either Dirchlet or Neumann

boundary conditions, the resulting metric functions BðTÞðρÞ
and CðTÞðρÞ are very similar to those shown in Fig. 4. In

particular, we find that BðTÞðρÞ and CðTÞðρÞ for transparent
boundary conditions are not the same as for pure AdS, even

though the metric function AðTÞðρÞ (5.3) does take the AdS
form. Figure 6 shows the ratios of the QC metric functions

when transparent boundary conditions are applied to those

for Dirichlet boundary conditions, namely BðTÞðρÞ=BðDÞðρÞ
(upper plot) and CðTÞðρÞ=CðDÞðρÞ (lower plot). At low

temperatures, the QC metric functions BðTÞðρÞ and CðTÞðρÞ
for transparent boundary conditions are indistinguishable

from the corresponding QC metric functions for Dirichlet

boundary conditions. At higher temperatures, the ratios

BðTÞðρÞ=BðDÞðρÞ and CðTÞðρÞ=CðDÞðρÞ are significantly diff-
erent from unity [more so than the ratios BðNÞðρÞ=BðDÞðρÞ
and CðNÞðρÞ=CðDÞðρÞ shown in Fig. 5].

To derive the vacuum (and hence thermal) Green’s

function with transparent boundary conditions applied to

the conformally coupled scalar field on AdS, we first make

a conformal transformation to the Einstein static universe

(ESU) with metric

ds̃2 ¼ a−2½−dτ2 þ dρ2 þ sin2ρ dΩ2�: ð5:6Þ

Since ESU is a globally hyperbolic spacetime, it is not

necessary to apply boundary conditions to the field on

ESU. Having found the vacuum Green’s function on ESU,

the corresponding Green’s function on AdS will satisfy

transparent boundary conditions [32]. The resulting vac-

uum Green’s function on AdS is then used to construct the

corresponding thermal Green’s function on AdS, from

which the RSET (5.1) is then obtained [33]. It is therefore

informative to compare our results in this section for the

QC AdS metric with the corresponding QC ESU metric.

FIG. 5. Ratios between the components of the QC metric (4.1)

when Neumann boundary conditions are applied to the scalar

field and the corresponding QC metric components when

Dirichlet boundary conditions are applied. The top plot shows

AðNÞðρÞ=AðDÞðρÞ, the middle plot BðNÞðρÞ=BðDÞðρÞ and the bottom
plot CðNÞðρÞ=CðDÞðρÞ. Keeping the inverse AdS length scale

a ¼ 1 fixed, the inverse temperature lies in the range β∈ ð π
12
; 11π
24
Þ.
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ESU solutions of the SCEE (1.2) are studied in detail in [7].

Our analysis below is rather simpler, as we are considering

a massless, conformally coupled scalar field and are

only interested in the QC metric rather than solving the

full SCEE.

Unlike AdS, the ESU is not a maximally symmetric

spacetime, and so the general approach in Sec. II is not

immediately applicable. The ESU is a solution of the

classical Einstein equations (1.1) with a cosmological

constant Λ ¼ a2 and a nonzero classical stress-energy

tensor

dustTμ
ν ¼ −2a2Diagf1; 0; 0; 0g; ð5:7Þ

corresponding to pressureless dust. Following [7], for the

rest of this section only we reinstate Newton’s constant and

consider the modified QCEE

Gμ
ν þ Λδμ

ν ¼ 8πG½dustTμ
ν þ hT̂μ

νiESU� ð5:8Þ

where hT̂μ
νiESU is the RSET for the quantum scalar field on

ESU and we have raised the second index for later

convenience. In (5.8), we have also set the constants α

and β in (1.2) equal to zero; this will be justified a posteriori

later in this section.

The RSET for a massless, conformally coupled scalar

field on ESU hT̂μ
νiESU is related to that on AdS hT̂μ

νiAdS in
the corresponding state by [2]

hT̂μ
νiAdS ¼ hT̂μ

νiESU
ffiffiffiffiffiffi

−g̃
p
ffiffiffiffiffiffi

−g
p −

1

2880π2
H

ð3Þν
μ ; ð5:9Þ

where g, g̃ are, respectively, the determinants of the metrics

(2.15), (5.6), and

H
ð3Þ
μν ¼ 1

3
∇μ∇νR −

1

3
gμν∇σ∇

σR −
1

6
gμνR

2 þ 1

3
RRμν

þ RρσRρμσν: ð5:10Þ

Since the second term in (5.9) is independent of the

quantum state, we have

AdST̃μ
ν ¼ ESUT̃μ

νcos4ρ; ð5:11Þ

where AdST̃μ
ν is the difference between the thermal and

vacuum expectation values on AdS with transparent boun-

dary conditions (5.1) and

ESUT̃μ
ν ¼ hβjT̂μ

νjβiESU − h0jT̂μ
νj0iESU: ð5:12Þ

Therefore the difference between the thermal and vacuum

expectation values of the RSETon ESU takes a particularly

simple form

ESUT̃μ
ν ¼ a2

6π2
f3ðaβÞDiagf−3; 1; 1; 1g: ð5:13Þ

It is striking that (5.13) is proportional to the RSET in the

vacuum state on ESU [48]

h0ESUjT̂μ
νj0ESUi ¼

a2

480π2
Diagf−3; 1; 1; 1g: ð5:14Þ

Hence, to find the QC ESU metric, we consider the RSET

hT̂μ
νiESU ¼ a2P Diagf−3; 1; 1; 1g; ð5:15Þ

where the constant P is given by

P ¼ 1

480π2
½1þ 80f3ðaβÞ�: ð5:16Þ

To solve (5.8) with (5.15) on the right-hand side, we first

define a renormalized cosmological constant Λ̃ (and hence

a renormalized inverse length scale ã) using the spatial

parts of the total RSET

Λ̃ ¼ ã2 ¼ Λ − 8πGa2P ¼ a2ð1 − 8πGPÞ: ð5:17Þ

FIG. 6. Ratios between the components of the QC metric (4.1)

when transparent boundary conditions are applied to the scalar

field and the corresponding QC metric components when

Dirichlet boundary conditions are applied. The upper plot shows

BðTÞðρÞ=BðDÞðρÞ and the lower plot CðTÞðρÞ=CðDÞðρÞ. Keeping the
inverse AdS length scale a ¼ 1 fixed, the inverse temperature lies

in the range β∈ ð π
12
; 11π
24
Þ.
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The modified SCEE (5.8) now read

Gμ
ν þ Λ̃δμ

ν ¼ −16πGa2 Diagf1þ 2P; 0; 0; 0g: ð5:18Þ

The right-hand side of (5.18) now has the pressure dust

form (5.7) with renormalized inverse length scale ã if we

also define a renormalized Newton constant G̃ (as in [7]) by

8πG̃¼8πG
a2

ã2
ð1þ2PÞ¼8πGð1þ2PÞ

1−8πGP
¼1þ2P

1−P
; ð5:19Þ

where in the last equality we have set 8πG ¼ 1, as

elsewhere in this paper. We therefore obtain the QCEE

G
QC
μν þ Λ̃g

QC
μν ¼ −2ã2Diagf1; 0; 0; 0g; ð5:20Þ

and hence the QC metric takes the ESU form (5.6), with

renormalized inverse length scale ã.
Therefore, providing we renormalize both the cosmo-

logical constant Λ̃ and Newton’s constant G̃, we are

justified in setting the constants α and β equal to zero in

(5.8). While the AdS and ESU spacetimes are conformally

related, and we are dealing with a conformal quantum field,

it is not the case that the resulting QC metrics are also

conformally related, due to the nonlinearity of the QCEE. If

the scalar field is in a thermal state on ESU, the resulting

QC metric has ESU form, but the QC metric sourced by the

corresponding thermal state on AdS is not of the AdS form.

VI. QC ADS SOLITONS

In the previous section we have constructed the QC AdS

metrics by integrating the QCEE (2.9). We have found that,

in the low-temperature limit, the QC AdS metrics approach

pure AdS spacetime, with deviations from AdS increasing

as the temperature of the thermal quantum state increases.

In this section we consider an alternative metric ansatz for

the QC AdS metrics, which will aid their interpretation as

solitons sourced by the quantum scalar field.

A. Alternative QCEE form

To transform the QC AdS metric ansatz (4.1) into the

more familiar form for a static, spherically symmetric

spacetime, we first make a change of radial coordinate,

defining a new coordinate r by

r2 ¼ CðρÞ: ð6:1Þ

From the results of the previous section, we see that r → 0

as ρ → 0 from (4.13c). Since CðρÞ= tan2 ρ tends to a finite

nonzero limit as ρ → π=2 (see Fig. 4), we also have r → ∞

as ρ → π=2, so that the coordinate r has range r∈ ½0;∞Þ as
is usually the case for the radial coordinate in spherical

polars.

We then make the following metric ansatz

ds2 ¼ −fðrÞeψðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð6:2Þ

in terms of functions fðrÞ and ψðrÞ which are to be

determined from the QCEE. We also write fðrÞ as follows:

fðrÞ ¼ 1 −
2mðrÞ

r
−
Λ̃

3
r2; ð6:3Þ

where Λ̃ is the renormalized cosmological constant (2.17)

and mðrÞ is to be determined from the QCEE. Pure AdS

spacetime has mðrÞ≡ 0. Differentiating (6.1) and compar-

ing the two forms (4.1), (6.2) of the QC AdS metric,

we have

fðrÞ ¼ C0ðρÞ2
4BðρÞCðρÞ ;

mðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi

CðρÞ
p

2

�

1þ ã2CðρÞ − C0ðρÞ2
4BðρÞCðρÞ

�

;

eψðrÞ ¼ 4AðρÞBðρÞCðρÞ
C0ðρÞ2 ; ð6:4Þ

where ã is the renormalized inverse AdS length scale. If we

attempt to find fðrÞ, mðrÞ and ψðrÞ using the expressions

(6.4), we find that numerical errors in the metric functions

AðρÞ, BðρÞ and CðρÞ accumulate rapidly. To obtain numeri-

cally satisfactory results for fðrÞ,mðrÞ and ψðrÞwe instead
integrate the QCEE resulting from the metric ansatz (6.2).

The QCEE for the metric functionsmðrÞ and ψðrÞ take a
particularly simple form

dm

dr
¼ −

r2

2
T̃τ

τ; ð6:5aÞ

dψ

dr
¼ −

r

fðrÞ ðT̃τ
τ − T̃ρ

ρÞ: ð6:5bÞ

Our primary interest lies in the metric functionmðrÞ, which
we consider in the following subsection.

B. QC AdS soliton masses

In this subsection we study the metric function mðrÞ
(6.3). Its governing equation (6.5a) is readily integrated

numerically, by writing it in the form

dm

dρ
¼ −

1

4
C0ðρÞ

ffiffiffiffiffiffiffiffiffiffi

CðρÞ
p

T̃τ
τðρÞ; ð6:6Þ

where all the quantities on the right-hand side are now

functions of the original radial coordinate ρ. The derivative

(6.6) is shown in Fig. 7 for Dirichlet, Neumann and

transparent boundary conditions. We see that dm
dρ

vanishes

at the origin ρ ¼ 0 for all three boundary conditions. Since
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the energy density −T̃τ
τ is positive for all ρ (see, for

example, Fig. 1), it is also the case that dm
dρ

is positive for all

ρ and all boundary conditions. However, the behavior of dm
dρ

as ρ →
π
2
and the boundary is approached depends strongly

on the boundary conditions. For Dirichlet boundary con-

ditions (top), the derivative dm
dρ

has a maximum which lies

closer to the boundary as the temperature increases, and is

monotonically decreasing close to the boundary. This is not

the case for either Neumann (middle) or transparent

(bottom) boundary conditions, for which it appears that
dm
dρ

is monotonically increasing toward a finite nonzero

value as ρ →
π
2
, and the value on the boundary increases as

the temperature increases.

We also consider the derivative dm
dr

(6.5a), as shown in

Figs. 8 and 9. In Figs. 8 and 9 we have evaluated the right-

hand side of (6.5a) using (6.1) and transformed the

resulting function of ρ to a function of r, again using

(6.1). In Fig. 8 we present dm
dr

for Dirichlet boundary

conditions and a selection of values of the inverse temper-

ature β. As expected, dm
dr

is zero when r ¼ 0, and tends to

zero as r → ∞. The maximum ofm0ðrÞ occurs at a value of
r which is temperature-dependent, occurring at smaller

values of r for higher temperatures.

Qualitatively similar behavior is seen in dm
dr

for Neumann

and transparent boundary conditions, namely dm
dr

vanishes at

r ¼ 0 and tends to zero as r → ∞. We find that the rate at

which dm
dr

→ 0 as r → ∞ depends on the boundary con-

ditions, as can be seen in Fig. 9 for inverse temperature

β ¼ π
4
(we find similar behavior for other values of the

inverse temperature). For larger values of r, the derivative dm
dr

takes the smallest values for Dirichlet boundary conditions,
FIG. 7. Derivative dm

dρ
(6.6) for Dirichlet boundary conditions

(a), Neumann boundary conditions (b) and transparent boundary

conditions (c). The inverse temperature lies in the range

β∈ ð π
12
; 11π
24
Þ. The inverse AdS length scale is a ¼ 1.

FIG. 9. Derivative dm
dr

of the metric function mðrÞ for

Dirichlet, Neumann and transparent boundary conditions at a

fixed inverse temperature, β ¼ π
4
. The inverse AdS length scale is

fixed to be a ¼ 1.

FIG. 8. Derivative dm
dr

of the metric function mðrÞ for

Dirichlet boundary conditions. The inverse temperature lies in

the range β∈ ð π
12
; 11π
24
Þ, and the inverse AdS length scale is fixed to

be a ¼ 1.
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and the largest values for Neumann boundary conditions.

This is in accordance with the behavior of dm
dρ

in Fig. 7.

Using the form of the RSET (3.1), it is straightforward to

show that, for all boundary conditions,

T̃τ
τ ∼ −T λ

∞

�

π

2
− ρ

�

4

þO

�

π

2
− ρ

�

6

ð6:7aÞ

as ρ →
π
2
, where

T λ
∞ ¼ a2

2π2

X

∞

n¼1

�

n3 −
λ

9
nð1þ 8n2Þ

�

ðenaβ − 1Þ−1: ð6:7bÞ

From the plots in Sec. V, we see that CðρÞ= tan2 ρ
approaches a finite nonzero limit Cλ∞ðβÞ as ρ → ∞, so that

r2 ¼ CðρÞ ∼ Cλ∞ðβÞ
�

π

2
− ρ

�

−2

þO

�

π

2
− ρ

�

0

ð6:7cÞ

as ρ →
π
2
, where Cλ∞ðβÞ will depend on the boundary

conditions applied and the inverse temperature β.

Combining the results in (6.7), we have

dm

dr
∼
1

2
Cλ∞ðβÞT λ

∞

�

π

2
− ρ

�

2

∼Oðr−2Þ ð6:8Þ

as r → ∞ (ρ →
π
2
). From (6.7b), we have 0 < T 1

∞ < T 0
∞ <

T −1
∞ , which is in agreement with the results in Fig. 9, since

λ is given by (3.1h).

Integrating (6.6) using Mathematica’s inbuilt

NIntegrate command gives the metric function m as

a function of ρ, which can then be transformed to a function

of r using the relationship (6.1) and the previously

computed metric function CðρÞ. For a regular origin at

r ¼ 0, we must have mð0Þ ¼ 0, which fixes the constant of

integration. Similarly, we find the metric function ψðrÞ by
integrating the equation for dψ

dρ
derived from (6.5b)

dψ

dρ
¼ −

2BðρÞCðρÞ
C0ðρÞ ðT̃τ

τ − T̃ρ
ρÞ: ð6:9Þ

We fix ψð0Þ ¼ 0 without loss of generality, since changing

the value of ψð0Þ corresponds to a rescaling of the time

coordinate τ.

For all values of the temperature considered, we integrate

(6.6), (6.9) from ρ ¼ ϵ to ρ ¼ π=2 − ϵ, taking ϵ ¼ 10−3

(changing the value of ϵ in the range 10−3 < ϵ < 10−2

results in an estimated relative error of no more than 10−6 in

our results). At ρ ¼ ϵ, we use a series expansion for m
constructed using the corresponding expansions for the

metric function CðρÞ (4.13c) and the RSET component T̃τ
τ

(4.12), which give

m ¼ m3ρ
3 þm5ρ

5 þOðρ7Þ; ð6:10aÞ

where the mi are constants, the first of which is given by

m3 ¼ −
1

6
C

3

2

2
Tτ0; ð6:10bÞ

and the constants C2 and Tτ0 are given in (4.17) and (4.12b)

respectively. A similar expansion is used for the metric

function ψ

ψ ¼ ψ2ρ
2 þ ψ4ρ

4 þOðρ6Þ; ð6:11Þ

where the ψ i are constants and the lowest order term is

given by

ψ2 ¼ −
4

3
C2Tτ0: ð6:12Þ

Using (4.13c), (6.1), the initial value of ρ ¼ ϵ corre-

sponds to a very small value r ¼ ffiffiffiffiffiffi

C2

p
ϵ. The upper limit of

our numerical integration, ρ ¼ π
2
− ϵ, corresponds to

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðπ
2
− ϵÞ

p

. As can be seen from Fig. 4, the value

of CðρÞ= tan2 ρ as ρ →
π
2
decreases with increasing temper-

ature, and, accordingly, the largest value of r in our

numerical evaluation of the metric functions mðrÞ and

ψðrÞ also decreases as the temperature increases.

Our main focus in this section is the metric function

mðrÞ, but we first present, in Fig. 10, some results for the

metric function ψðrÞwhen transparent boundary conditions
are applied (the corresponding results for Dirichlet and

Neumann boundary conditions are qualitatively very sim-

ilar). We see that ψðrÞ is a monontonically increasing

function of r, and that, as r increases, ψðrÞ very rapidly

converges to a finite limit. The magnitude of this limit

increases with increasing temperature. The rapid conver-

gence of ψðrÞ as r → ∞ is predicted by the behavior of dψ
dr

as r → ∞, from (6.3), (6.5b), (6.7)

FIG. 10. Metric function ψðrÞ for transparent boundary con-

ditions. The inverse temperature lies in the range β∈ ð π
12
; 11π
24
Þ and

the inverse AdS length scale is fixed to be a ¼ 1.
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dψ

dr
∼Oðr−5Þ; ð6:13Þ

where we have used the fact that T̃ρ
ρ, like T̃τ

τ, is Oðr−4Þ
as r → ∞.

We now turn to Fig. 11, where we show the metric

function mðrÞ as a function of the new radial coordinate r
when the boundary conditions satisfied by the quantum

scalar field are Dirichlet (top), Neumann (middle) or

transparent (bottom). Since the energy density −T̃τ
τ is

always positive, it follows from (6.5a) that mðrÞ is a

monotonically increasing function of r. From Fig. 11,

we also see that mðrÞ tends to a finite limit as r → ∞, as

expected from the behavior (6.8) of dm
dr
for large r. For fixed

temperature, convergence to this limit is quickest when

Dirichlet boundary conditions are considered. Increasing

the temperature results in the function mðrÞ converging

more slowly as r increases.

The finite limitM ¼ limr→∞ mðrÞ is the mass of the QC

solitons. To see how this depends on the temperature, in

Fig. 12 we show M as a function of the inverse temper-

ature β for Dirichlet (solid line), Neumann (dashed line)

and transparent (dotted line) boundary conditions. For all

fixed values of the temperature considered, we find that

the mass of the soliton is smallest when Dirichlet

boundary conditions are applied, and greatest when

Neumann boundary conditions are applied, with the mass

for transparent boundary conditions lying between the

Dirichlet and Neumann masses. At low temperatures

(larger values of β), the mass M increases as the temper-

ature increases (β decreases). However, this trend does not

continue for ever-increasing temperature. For all boundary

conditions, we find a maximum mass M at very similar

values of the inverse temperature β ∼ 0.5. For larger

temperatures, the mass of the QC solitons decreases as

the temperature increases further (β decreases further).

This result is somewhat unexpected. For all boundary

conditions, the energy density in the quantum field

increases with increasing temperature monotonically at

all values of ρ. The total energy in the quantum field

can be found by integrating the energy density with respect

to ρ. This gives a finite quantity which is monotonically

increasing with temperature for fixed boundary conditions.

Naively one would expect this to be proportional to the

mass of the resulting QC soliton. As a result, one would

anticipate that the QC soliton masses also increase mono-

tonically with increasing temperature, contrary to our

results in Fig. 12.

FIG. 11. Metric function mðrÞ for Dirichlet boundary condi-

tions (a), Neumann boundary conditions (b) and transparent

boundary conditions (c). The inverse temperature lies in the range

β∈ ð π
12
; 11π
24
Þ. The range of values of r shown decreases as the

temperature β−1 increases. The inverse AdS length scale is fixed

to be a ¼ 1.

FIG. 12. QC soliton mass M ¼ limr→∞ mðrÞ as a function of

the inverse temperature β, for Dirichlet (solid line), Neumann

(dashed line) and transparent (dotted line) boundary conditions.

The inverse AdS length scale is fixed to be a ¼ 1.
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To understand this, we write the mass M as follows:

M ¼ −
1

4

Z

π
2

ρ¼0

C0ðρÞ
ffiffiffiffiffiffiffiffiffiffi

CðρÞ
p

T̃τ
τðρÞdρ: ð6:14Þ

From this, we see that the behavior of the soliton massM as

the temperature increases depends on the behavior of both

the energy density −T̃τ
τ and the QC AdS metric function

CðρÞ with increasing temperature. While the former (the

energy density) monotonically increases with temperature,

it can be seen from Fig. 4 that for fixed ρ, the QC AdS

metric functionCðρÞ decreases monotonically with increas-

ing temperature. The behavior of the QC soliton massM as

a function of temperature is therefore the result of a

complicated interplay between the behaviors of the energy

density in the quantum field and the resulting QC AdS

metric.

VII. CONCLUSIONS

We have explored the backreaction effect of a quantum

scalar field on AdS spacetime. We considered a massless,

conformally coupled scalar field on a fixed, global AdS

space-time background. The RSET for this setup, with the

scalar field in either the global AdS vacuum or a global

thermal state, can be found in [33] when the field is subject

to either Dirichlet, Neumann or transparent boundary

conditions imposed at the space-time boundary.

We used the RSET from [33] as the source term on the

right-hand side of the QCEE (2.9). The left-hand side of the

QCEE is purely classical, and describes the QC metric.

When the quantum scalar field is in the global vacuum

state, the RSET is a multiple of the metric and the QCEE

are trivially solved by a renormalization of the cosmologi-

cal constant. In this case the QC metric is simply pure AdS

spacetime with the inverse AdS radius having a renormal-

ized value.

To find nontrivial QC metrics, we therefore considered

the scalar field to be in a global thermal state, with the right-

hand side of the QCEE being the difference between the

thermal and vacuum expectation values of the RSET. We

first solved the QCEE using a metric ansatz (4.1) which

facilitates comparison between the QC metric and pure AdS

spacetime. We find that the QC metrics deviate from pure

AdS spacetime, with the deviations increasing as the

temperature of the quantum scalar field state increases.

We then employ an alternative metric ansatz to aid the

interpretation of these QC metrics as asymptotically AdS

solitons. These solitons have a finite mass which depends on

the temperature of the quantum scalar field state. For low

temperatures, the soliton mass increases as the temperature

increases, but it then reaches a maximum. The value of the

temperature at which the soliton mass has a maximum is

very similar for the three boundary conditions studied. On

increasing the temperature further, the mass of the soliton

decreases. This surprising result arises from a complicated

interplay between the energy density of the quantum field

(which increases as the temperature increases) and the

behavior of one of the QC metric functions (which

decreases as the temperature increases).

We have taken a very simple approach in this paper.

Instead of attempting to solve the full SCEE (2.6), in which

the RSET on the right-hand side is computed on the same

background space-time metric which gives the geometric

quantities on the left-hand side, we have fixed the back-

ground metric for the RSET, while allowing the QC metric

on the left-hand side to vary [giving the QCEE (2.9)]. We

have however solved the full nonlinear QCEE, rather than

considering linear perturbations about the initial fixed

background metric (which, in our case, was pure AdS

spacetime), following the approach in [28–30]. The QCEE

can be considered as an approximation to the SCEE, which

will be valid when quantum corrections to the spacetime are

small. In our situation, this corresponds to low temperatures

for the quantum scalar field state. As the temperature of the

quantum scalar field increases, we find that quantum

corrections to the spacetime also increase, and therefore

for sufficiently large temperature the approximation used in

this work will breakdown. A full nonlinear solution of the

SCEE would be required to quantitively estimate the

temperature at which this breakdown occurs. However,

one may speculate that this may be at a temperature below

that at which the QC solitons we find have a maximum

mass. If this were the case, then our result that the QC

soliton mass is a decreasing function of temperature for

sufficiently large temperature may not persist for solutions

of the full SCEE. Furthermore, one would expect that for

sufficiently high temperatures (above the Hawking-Page

phase transition [49]) a black hole would form. We are

unable to model such a scenario using the methods in this

paper (in Sec. IV we assume that the QC metric has a

regular origin). We anticipate that the full SCEE would

need to be solved to explore this possibility.

In this work we have considered only a massless,

conformally coupled scalar field and have worked in

four space-time dimensions, applying either Dirichlet,

Neumann or transparent boundary conditions to the

quantum field. The advantage of this is that we have been

able to use the simple expressions in [33] for the RSET

expectation values. It would be interesting to explore the

properties of the QC metric resulting from a quantum

scalar field with different mass or coupling to the scalar

curvature, with different boundary conditions applied, or

in dimensions other than four. For example, the back-

reaction effect on three-dimensional AdS has been studied

in [50,51] for the lowest one-particle state, and it would be

interesting to extend that analysis to a thermal state.

Returning to a massless, conformally coupled scalar field

on global AdS in four dimensions, but instead applying

Robin boundary conditions, results in a vacuum state

which is no longer maximally symmetric [36,40], and
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hence we anticipate that the QC metric even for the

vacuum state will not be pure AdS. Varying the mass,

coupling or boundary conditions gives RSET expectation

values which are more complicated to compute numeri-

cally (see, for example, [40,52]). We therefore leave these

investigations for future work.
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