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testing of a Hawk T1A aircraft: a new
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monitoring
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Robin Mills1, David J. Wagg1,2 and Timothy J. Rogers1

Abstract

The use of measured vibration data from structures has a long history of enabling the development of methods for inference
and monitoring. In particular, applications based on system identification and structural health monitoring have risen to pro-

minence over recent decades and promise significant benefits when implemented in practice. However, significant challenges

remain in the development of these methods. The introduction of realistic, full-scale datasets will be an important contribu-
tion to overcoming these challenges. This article presents a new benchmark dataset capturing the dynamic response of a

decommissioned BAE Systems Hawk T1A. The dataset reflects the behaviour of a complex structure with a history of ser-

vice that can still be tested in controlled laboratory conditions, using a variety of known loading and damage simulation con-
ditions. As such, it provides a key stepping stone between simple laboratory test structures and in-service structures. In this

article, the Hawk structure is described in detail, alongside a comprehensive summary of the experimental work undertaken.

Following this, key descriptive highlights of the dataset are presented, before a discussion of the research challenges that the
data present. Using the dataset, non-linearity in the structure is demonstrated, as well as the sensitivity of the structure to

damage of different types. The dataset is highly applicable to many academic enquiries and additional analysis techniques

which will enable further advancement of vibration-based engineering techniques.
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Introduction

The unexpected failure of many types of structures –

including bridges, buildings, aircraft, power infrastruc-

ture, and marine vessels – can be financially costly and

can also a present severe set of safety risks. The field of

structural health monitoring (SHM) aims to use data

collected from a structure to detect the presence of

damage, localise its position, categorise its type, assess

its extent and predict the future life of the structure.1–4

Vibration-based monitoring of structures is a highly

informative process for examining engineering struc-

tures, which are often used for SHM. Modal character-

istics are particularly useful for inferring structural

properties; this is due to their sensitivity to both the

global and local physics of the structure as well as their

relatively low dimensionality.4 In predominantly linear

systems, damage (in the form of cracks and material

failure) is often detectable as a local loss of stiffness,

leading to a shift in the natural frequencies of the sys-

tem. However, the presence of non-linearity can lead

to both false positives and false negatives in the dam-

age identification task.5 The additional difficulty of

discriminating between data from a structure in its nor-

mal condition – with potentially variable operating
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conditions6,7– or in the presence of structural damage,

is an ongoing challenge in SHM.

The development of robust methods for SHM

requires meaningful, high-quality, openly available

benchmark datasets. Furthermore, there is an urgent

need to bridge the gap between simple laboratory

structures and full-scale structures in service, since

many existing datasets are either highly complex or

overly simplistic: examples include civil structures

(such as the Z24 road bridge8 and LUMO lattice

mast9), individual components such as aerofoils,10,11 or

bench-top models with comparatively simple geome-

tries.12,13 Bridging the gap between these two levels of

complexity this will require datasets which

(1) Are sufficiently realistic to describe in-service engi-

neering structures.

(2) Are sufficiently complex that system identification

is not trivial using current methods.

(3) Contain data from a number of different condi-

tions (including operating conditions and damage

states).

In this article the authors present a new benchmark data-

set for the purposes of SHM and system identification

(SYSID). This dataset consists predominantly of force,

acceleration and strain data collected from dynamic test-

ing of a BAE Systems Hawk T1A aircraft. The work sig-

nificantly extends a previous dataset collected by

Haywood-Alexander et al.,11,14 which considered only

the starboard wing of the same aircraft. In addition to

extending vibration testing of the both the undamaged

and pseudo-damaged structure to the entire body of the

aircraft, the current dataset also builds on the previous

work by including data from multiple-input multiple-

output (MIMO) testing, multi-site pseudo-damage tests,

and data from actual damage induced by removing

panels from the skin of the structure (Table 1).

The dataset is freely provided with the intention that

it might be used by others to develop new algorithms

for structural dynamics. Access is facilitated via a

Python interface (https://github.com/MDCHAMP/

hawk-data) developed by the authors for both this

dataset and the previous dataset by Haywood-

Alexander et al.11,14

The remainder of this article is structured as follows:

first, the Hawk structure is described in detail. Second,

the experimental work is described, including discus-

sions of the testing regime, setup and hardware and

acquisition and control. A further section describes the

dataset itself. Finally, the challenges presented by this

new dataset are explored, including SYSID and SHM.

The principal contributions of this work are as follows:

� A full-scale MIMO vibration test of the BAE

Systems Hawk T1A aircraft is presented as a new

benchmark dataset.
� The dataset includes broadband excitation data

from five locations on the Hawk, which was instru-

mented with over 140 sensors.
� The dataset comprises over 200 test conditions includ-

ing different excitation signals and amplitudes, as well

as comprehensive damage simulations.
� The entire dataset is made freely available alongside

with a convenient Python interface that enables

users to work with a subset of the data as required.

Structure

The structure presented in this article is a BAE Systems

Hawk T1A (‘the Hawk’) that was donated to the

University of Sheffield by the Defence Science and

Technology Laboratory. The Hawk is housed at the

Laboratory for Verification and Validation (LVV)

within the university; it is a decommissioned aircraft

previously used for advanced training by the British

Royal Air Force. Structurally, the airframe of the air-

craft is largely complete; however, the engine, certain

wing flaps, the cockpit canopy and various other com-

ponents have been removed. The aircraft is positioned

resting on its wheels on the ground. A full set of techni-

cal drawings is not available.

Table 1. A summary of comparable, openly available, data sets.

Dataset Structure Environment Damage type Excitation type

Hawk20 Aircraft Laboratory Mass addition, panel removal Multiple shakers
Hawk wing11,14 Aircraft wing Laboratory Mass addition Single shaker
F-1615 Aircraft Laboratory None Single shaker
KW5116 Bridge (rail) In situ Mass addition Environmental
Z248,17 Bridge (road) In situ Multiple conditions (see Refs. 8 and, 17) Environmental, multiple shaker
LUMO9,18 Lattice mast In situ Bolt loosening Environmental
Sonkyo10,19 Wind turbine blade Laboratory Mass addition, cracks Single shaker

2 Structural Health Monitoring 00(0)



Experimental work

Details of the experimental work are presented in this

section. First, the experimental setup and hardware are

described, followed by details of the testing regime.

Finally, the acquisition and control of the input force

are discussed. A full set of schematic diagrams sum-

marising the placement of accelerometers, shakers,

fibre-Bragg grating (FBG) strain gauges and damage

locations are given in Figures 2 to 6 to complement this

section.

Setup and hardware

Five types of sensor were used in these tests: acceler-

ometers, FBG strain gauges, force transducers, a resis-

tance temperature detector (RTD) and a microphone.

The force transducers measured the excitation forces

from the shakers, the accelerometers recorded the

acceleration response and the strain gauges recorded

the strain. The ambient temperatures were recorded

using the RTD and a triaxial accelerometer recorded

ground vibrations. All of these measurements were

recorded in the time domain. Ambient noise was also

recorded using a microphone; for privacy reasons this

was not recorded in the time domain – a Fourier trans-

form of these data was recorded instead. An image of

the Hawk during instrumentation is shown in Figure 7.

The electrodynamic shakers were positioned to

excite each wing, each stabiliser and the rudder. This

was to ensure that a strong dynamic response could be

recorded across the whole structure. Their exact loca-

tions were guided by limitations of the structure (such

as the need to avoid exciting near the landing gear).

Tira TV 51140-MOSP modal shakers were used in con-

junction with BAA 1000 amplifiers. The force

transducers were PCB Piezotronics 208C02s, with a

nominal sensitivity of 11,241 mV/kN.

To measure the structural response, PCB

Piezotronics accelerometers were used with a nominal

sensitivity of 10 mV/g. When converting voltage read-

ings to acceleration values, the sensor-specific sensitiv-

ities (contained within the metadata20) were used. A set

of triaxial accelerometers were placed at the nose, cock-

pit and tail of the Hawk fuselage; PCB Piezotronics

accelerometers were used with a nominal sensitivity of

100 mV/g. A set of four uniaxial PCB Piezotronics

accelerometers, also with a nominal sensitivity of

100 mV/g, were placed on the fuselage midpoint on the

top, bottom, port and starboard sides. Pairs of these

sensors were also placed on each landing gear; one

above the hydraulic suspension and one on the axle of

the wheel. A total of 85 accelerometers were placed on

the Hawk.

FBG strain gauges were mounted along the length

of each wing, as well as along each stabiliser and up

the rudder. Ten measurement locations were placed on

each wing, and on the port stabiliser. A single FBG

strain gauge was shared between the rudder and the

starboard stabiliser, meaning that five measurement

locations were available on each of these substructures.

The precision of the strain gauges was 1me and their

measurement length was 10 mm; on a large surface

such as the Hawk skin these can effectively be consid-

ered as point measurements.

One PCB piezotronics triaxial accelerometer, with a

nominal sensitivity of 100 mV/g, was placed on the

ground. A microphone was placed under the fuselage

of the Hawk to record any significant ambient noise.

The microphone was a GRAS 46AE with a precision

of 0.08 dB. The RTD used was an RS PRO PT100 sen-

sor and was accurate to 0.1�C. Exact sensitivities of all

sensors are available as part of the dataset record at

Wilson et al.20

The coordinate locations for the sensors were mea-

sured on the structure itself where possible; these were

measured from local reference points on each surface.

Despite some difficulties in measuring distances across

curved surfaces, the location of these points is consid-

ered sufficiently accurate for SYSID. The global datum

was taken from the tip of the nose (labelled ‘A’ in

Figure 6) of the Hawk. The global measurements,

including the coordinates of the various reference

points, were measured from drawings of the Hawk,

which was scaled to a particular reference length on

the real structure. The coordinates shared as part of

the dataset are intended for use in visualisation of the

structure only; more advanced measurement tech-

niques would be required to derive a set of fully accu-

rate coordinates. Most sensors on the structure were

Figure 1. The Hawk at the laboratory for verification and

validation.

Wilson et al. 3



aligned along a particular coordinate axis. Wherever

there was a significant deviation in this direction, this

is noted in the data record. All sensor coordinate data

are available in Wilson et al.20

The landing gear tyres were inflated to a pressure of

nine bar prior to testing. Following a period of down-

time in the LVV from 10th to 25th August 2023, the

tyres were repressurised to this value on 29th August

2023.

Testing regime

The experimental work was carried in five phases. The

first phase concerned the acquisition of data to fully

describe the normal, undamaged condition of the

Hawk. The aircraft was excited by signals with a range

of amplitudes, enabling the identification of any

amplitude-dependent non-linearities. Input excitation

signals were designed as white noise and pink noise

Figure 2. Summary sensor placement sketch for the Hawk, showing the locations of the nearside, farside and triaxial

accelerometers on the main chassis. Also shown are the locations of the datums (SW, SS, PS, and PW) relative to the global datum,

A. The substructures highlighted in magenta are detailed in Figures 3 to 6. The diagram is not shown to scale – for precise locations,

refer to the dataset.20
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signals. For all tests, the excitation bandwidth was 5–

256 Hz and the sampling rate was 2048 Hz.

Following the undamaged tests, the Hawk was

tested in a range of single-site damage scenarios. The

damage scenarios considered in these tests were limited

to interventions that would not permanently affect the

integrity of the structure. Other conditions, such as

bolt loosening or the introduction of cracks were there-

fore not investigated. Pseudo-damage was introduced

to the structure by the addition of weights of varying

mass at a range of locations; mass addition has a simi-

lar impact on the dynamic response of a system to loss

of stiffness caused by true damage, and can therefore

be used in non-destructive demonstrations such as

these.21 The masses were attached to the surface of the

Hawk by suction cup. Details of the masses used are

given in Table 2. Damage locations are presented in

the schematic diagrams shown in Figures 3 to 6. White

noise excitation was used for these tests, where the

excitation bandwidth was 5–256 Hz and the sampling

rate was 2048 Hz. A range of excitation amplitudes

were used, corresponding to those used in the first test-

ing phase.

The third phase of testing entailed excitation of the

structure in its undamaged condition using odd

random-phase multisine (ORPM) excitation. This is a

popular input design method to enable non-linear

SYSID in the frequency domain. The excitation profile

contains a random selection of odd-frequency sine

waves; leakage into the response of other frequency

content can then be treated as an indicator of non-

linearity in the structure.22 The ORPM tests were car-

ried out with the Hawk in its undamaged condition,

and also with some single-site mass additions. Initial

ORPM tests were conducted in a single-input multiple-

output (SIMO) configuration, considering each input

location separately, with following tests carried out as

previously in a MIMO configuration.

The fourth phase of testing investigated the response

of the Hawk to multisite damage. The structure was

excited using white noise signals in the range 5–256 Hz,

and the sampling rate was again 2048 Hz. The same

masses and locations as were used in the single-site

damage tests were employed here. Up to three masses

were positioned on the structure at any one time.

The final phase of testing involved a series of actual

damage-state tests where surface panels were removed

from the port wing of the Hawk. The panels were

arranged in a line along the length of the wing; five

panels were identified for the tests and were labelled

PW1–PW5. The panel removal tests were carried out

at the end of the testing to avoid the impact that the

removal and reattachment of any panels may have on

the response of the structure in other tests. Only one

Figure 3. Schematic diagram for the starboard wing, showing the location of the accelerometers, FBGs, shakers, and pseudo-

damage. Not to scale.
FBG: fibre-Bragg grating.

Wilson et al. 5



panel was removed at a time, and for each scenario,

the structure was excited with white noise signals at

three different amplitude levels.

The full experimental campaign comprised 216 indi-

vidual tests. For the sake of brevity, the full list is not

tabulated here. The interested reader is directed to the

Figure 4. Schematic diagram for the port wing, showing the location of the accelerometers, FBGs, shakers, pseudo-damage and

removed panels. Not to scale.
FBG: fibre-Bragg grating.

Figure 5. Schematic diagram for the stabilisers, showing the location of the accelerometers, FBGs, shakers and pseudo-damage.

Not to scale.
FBG: fibre-Bragg grating.
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dataset at20 for the full downloadable tabular record of

test conditions; a hierarchy of the test structure is also

illustrated in Figure 8.

Acquisition and control

The majority of testing on the Hawk was carried out

using random excitation, with white noise and pink

noise signals used. The spectral densities of the input

signals were pre-determined using ‘breakpoint’ tables.

These tables define a rectangular or trapezoidal spec-

tral density profile (for white and pink noise respec-

tively) in the frequency domain for each shaker. The

highest input amplitude was limited by the maximum

safe level of excitation that could be applied to the

Hawk via stinger, and the testing amplitudes were

reduced linearly from these upper bounds. In total, five

excitation levels are defined for both white and pink

noise excitations.

Sample breakpoint tables for white noise and pink

noise excitation are given in Tables 3 and 4. The break-

point tables were resampled 8192 times to generate an

amplitude ‘mask’ across the full bandwidth (up to

2048 Hz). For a full description of all breakpoint tables

and input signal metadata, the reader is directed to the

dataset record.20

It should be noted here that the signals used are

generally lower in amplitude than those used for the

starboard-wing tests by Haywood-Alexander et al.11

This is due to the MIMO nature of this testing cam-

paign; overall, a greater total excitation energy is sup-

plied compared to a single-shaker setup. Furthermore,

excitation was additionally applied to substructures of

the Hawk tailplane (stabilisers, rudder) that are likely

to have a dramatically lower stiffness than the wings,

requiring less input energy for a similar signal-to-noise

ratio.

The time-domain drive signals for each input shaker

were generated by an iterative procedure. For each of the

five shakers, a unique drive signal was created by generat-

ing a random summation of sine waves, each of which

was assigned a random phase. The initial amplitude mask

(in the frequency domain) could then be generated by

multiplying the breakpoint table by an initial value of

Figure 6. Schematic diagram for the rudder, showing the location of the accelerometers, FBGs, shaker and pseudo-damage. Not

to scale.
FBG: fibre-Bragg grating.

Table 2. Details of the masses used for approximating damage

in the Hawk.

Name Mass (g)

M1 254.3
M2 616.8
M3 916.8
M6 350.3
M7 64.4

Figure 7. The port wing of the Hawk during instrumentation.

Wilson et al. 7



0.01, which provided a conservative point at which to

begin iterating the drive signals. Each shaker was driven

with its corresponding drive signal and the output mea-

sured at the load cell was compared to the target power

spectral density (PSD) defined by the breakpoint table.

The quotient of the two was then used as a multiplier to

update the drive signal for the next iteration. This process

was iterated until the error between the measured and

target PSDs met a defined tolerance – set to 4% for these

tests – for all shakers, at which point, the spectral gain

mask was stored for each shaker.

The drive signals were then generated for each sha-

ker according to the spectral gain masks. The spectral

gain masks were resampled in the frequency domain to

differing lengths by linear interpolation to allow for

variable test periods to be specified. This would intro-

duce some error on the desired excitation, which could

be captured by interrogating the measured excitation

signals for each test. New spectral drive masks were

generated if the structure was modified between tests

(such as by adding a pseudo-damage mass) or at the

beginning of each test session to account for the effects

of any variations on the structure.

For the ORPM tests, a mask of ones and zeros was

generated to accept the odd spectral content and reject

the even content. This was used as an additional multi-

plier when generating the drive files. 50% of the odd

frequency content was retained for each iteration of the

ORPM tests.

Dataset

Overall, 216 tests were conducted during the campaign,

each comprised of 139 individual sensor channels with

an average of 10 repeats per test. The raw size of the

collected dataset exceeds 500 GB, far in excess of most

users’ capacity to load it into memory. A graphical

illustration of the structure of the dataset with respect

to the testing carried out is provided in Figure 8.

The Hawk full-structure dataset is packaged in the

widely used hierarchical data format (.hdf5). The .hdf5

format allows data and metadata to be stored

Figure 8. A graphical illustration of the structure of the dataset.

Table 3. The breakpoint table for the excitation signal

‘white_noise_1’.

Frequency (Hz) Power spectral density (N2/Hz)

0 0
4 0
5 0.02
256 0.02

Table 4. The breakpoint table for the excitation signal

‘pink_noise_1’.

Frequency (Hz) Power spectral density (N2/Hz)

0 0
4 0
5 0.12
256 0.02

8 Structural Health Monitoring 00(0)



concurrently and facilitates lossless data compression.

Many software packages are available for opening and

exploring .hdf5 files and programmatic access is imple-

mented in most popular programming languages.

In order to further facilitate simple and practical

access to the data, a simple interface has been created

in the Python language. The Python interface (available

at github.com/MDCHAMP/hawk-data) automatically

handles the downloading and storage of the Hawk data

from the centralised repository20 ensuring that the data

are up to date and avoiding generation loss by repeated

sharing. Data are accessed programmatically meaning

that only data that is required by the user is down-

loaded. The API first checks for local versions of the

files and, if they do not exist, accesses the data from the

central repository, comparing the MD5 hash to ensure

the data is up to date. Note that use of the Python

interface is not required in order to obtain the data, it

is only provided to simplify the process for users who

require such functionality.

In order to serve only the data that are required to

the user, the whole dataset is divided into discrete units.

This is achieved by leveraging the hierarchical nature of

the .hdf5 file format and using external links to connect

a number of separate .hdf5 files to a single .hdf5 header

file. Data files are atomised on a per-test basis, includ-

ing all repeats and metadata. Dividing the dataset in

this way allows it to be distributed in single-test files,

each around 1 GB in size (rather than a single com-

pressed record of around 250 GB). Packaging the data

in this way drastically lowers the required disk foot-

print for users who only require a subset of the test con-

ditions for benchmarking and analysis.

Additionally (as in Haywood-Alexander et al.11),

the dataset has been compiled in a self-describing for-

mat. Self-describing datasets package pertinent meta-

data alongside raw sensor output data in order to

create a data record that does not require the user to

have detailed knowledge of the test campaigns in order

to use the data. In the context of the Hawk, full struc-

ture test metadata (i.e., signal name, sensor, sensor

type, sensitivity, sensor location, units and test condi-

tions) are stored alongside each channel in a hierarchi-

cal format. For a more complete description of which

metadata are available, the interested reader is directed

to the usage examples on the data repository.20

Dataset challenges

In section ‘Introduction’, the authors argued that brid-

ging the gap between SHM of laboratory and full-scale

structures requires the use of realistic, complex datasets

with data from a number of different conditions. It is

hoped that the dataset presented in this article will be

of interest to a wide range of researchers with a shared

interest in understanding full-scale dynamic systems. In

this section, some open research challenges that the

dataset highlights are discussed. These challenges per-

tain to the practicalities of working with large datasets,

SYSID of a complex structure, and SHM. Following

each of these subsections, the key challenges are enum-

erated for ease of reference.

In order to visualise some salient aspects of the

Hawk dataset, several frequency response functions

(FRFs) are computed here in Figures 9 to 14. However

even these simple analyses represent a non-trivial chal-

lenge for the Hawk dataset. Well-established methodol-

ogies can present challenges on large-scale datasets. In

the context of the Hawk aircraft, a natural way to char-

acterise the (predominantly) linear dynamics is through

the lens of modal analysis.23 In the MIMO setting, the

FRF matrix can be estimated from the measured

input-output data. For a linear system in the frequency

domain, one has

Y vð Þ=H vð ÞX vð Þ ð1Þ

where H is the MIMO FRF, and X and Y are the

Fourier transforms of the input and output data

respectively. Post-multiplying the above by the conju-

gate transpose of X and taking expectations gives

Sxy vð Þ=H vð ÞSxx vð Þ ð2Þ

where Sxy is the cross-spectral density of the input with

the output and Sxx is the auto-spectral density of the

output. The linear Equation (2) can thus be solved for

H at each frequency line. Attempting to solve the above

for many input and output channels is likely to be

poorly conditioned numerically and lead to corruption

and artefacts in the identified FRF. In the present

work, FRFs for visualisation are computed via a short-

time Fourier transform (STFT) with a Hann window, a

segment length of 16,384 and an overlap of 8192. The

resulting linear system is solved in the least-squares

sense by taking the inner product over the number of

segments in the STFT.

Large datasets

This dataset represents a comprehensive set of testing

which may be carried out on a structural dynamic sys-

tem. Inevitably, the testing of full-scale structures

across a range of conditions gives rise to relatively

large datasets, which may not be easily analysed on a

local computer due to limitations in memory. As data-

driven approaches to SHM become adopted more

widely in industrial settings, the necessity of handling

datasets of this scale will grow. In the context of an

Wilson et al. 9



academic research environment, it is worth highlight-

ing that as methodologies are developed, this context

should be taken into account. The practicality of using

already-established algorithms in the context of large

datasets also needs to be evaluated.

Additionally, as the size of these datasets increases,

reliance on ad hoc human interpretation of the data

becomes harder and the need for further levels of auto-

mation in analysis will increase. For example, inspect-

ing Figure 9, it is clear that the complexity of a

structure such as the Hawk aircraft is very high and

direct observations (even from a skilled operator) may

be limited. In order for these techniques to be practical

in industrial settings, operators need to be able to

check, in a realistic timescale, that the data are being

collected as expected. The development of practical

workflows and the implementation of automated

checks presents an open challenge. The key challenges

can thus be summarised:

Challenge 1. Using existing and new SYSID algorithms

on large datasets in realistic time frames.

Challenge 2. Aiding (or reducing the reliance on) oper-

ator interpretation when collecting large datasets.

System identification

It is envisioned that the Hawk dataset will provide a

meaningful testbed for identification algorithms in the

context of structural dynamics. For such dynamics

analyses, it is often necessary to determine the underly-

ing properties of the dynamic system (e.g., a

representative set of governing differential equations)

from the available data. This dataset presents a num-

ber of challenges to researchers in this area.

It is difficult to develop accurate models of large,

built-up structures (such as this aircraft) owing to the

richness of the dynamics involved. The dataset itself is

generated using MIMO tests, which only increase the

quantity of data in comparison to SIMO, and so can

require more care in the signal processing.

In dynamical systems theory, it is generally assumed

that a system is governed by a set of unknown partial

differential equations which cannot be directly deter-

mined, and that have complex and unknown boundary

conditions. The structure comprises components and

subsystems, each of which have varying dynamic prop-

erties. These parts are assembled into the full structure

in a manner which requires modelling of jointed inter-

actions – an open area of fundamental research.24–26

Figures 9 and 10 show the combined data recorded

from the structure to interrogate the form of the FRFs

for the acceleration and strain sensors, respectively.

The figures give an idea of which resonances are pres-

ent in the majority of channels by plotting each indi-

vidual FRF with 50% transparency. Darker peaks

represent global resonances (where many sensors have

large responses) and more faint peaks correspond to

more localised resonances (only present in a small

number of sensors). While behaviour can be distin-

guished in the FRFs which may be attributed to global

modal behaviour in the low-frequency region, the full

picture is far more complicated. Since the structure

contains many thin panels, a global modal behaviour

is difficult to resolve. It can therefore be expected that

Figure 9. FRF magnitudes (from every accelerometer channel)

superimposed for the white noise healthy state test at

amplitude level 5.
FRF: frequency response function.

Figure 10. All FBG strain FRF magnitudes superimposed for

the white noise healthy state test at amplitude level 5.
FBG: fibre-Bragg grating.
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alternative methods that combine deterministic and

statistical analyses such as hybrid statistical energy

analysis (SEA),27 will be required.

Figure 11 depicts a subset of the frequency lines

from the FRF of the starboard wing shaker to the

lower section of the landing gear on the starboard

wing. Here, a further challenge becomes apparent. The

FRF in certain regions of the frequency range can be

seen to exhibit strong dependence on the excitation

amplitude. This dependence is one indicator that the

dynamics of the structure are not well approximated

by linear theory. The behaviour observed in 11 shows

some drift resonant peaks with increases in amplitude

which may be associated with non-linear hardening

behaviour in those resonances (and anti-resonances).

The presence of non-linear dynamics in aerospace

structures is well known in the literature, for example

see a previously published dataset28 where testing is

carried out on an F-16 aircraft. The identification of

non-linear systems with many degrees of freedom

remains a challenge and this dataset adds to the utility

of28 by providing a MIMO test case and an extended

sensor network covering the full structure. It should be

noted that the complexities previously discussed

regarding the mid-frequency region continue and may

require the utilisation of non-linear forms of SEA, for

example Spelman and Langley.29

One common purpose of system identification is to

update or validate existing physics-based models of the

structure of interest; model calibration and validation

are critical to ensuring the accuracy and reliability of a

predictive model and model updating is applicable as a

damage inference problem. Uncertainty quantification

for physics-based models, particularly in the face of

epistemic uncertainty as in this dataset,4,30 is a major

challenge. The lack of a high-quality numerical model,

as is common with legacy infrastructure, increases the

applicability of this challenge.

In the context of a built-up, multi-component struc-

ture such as the Hawk, the idea of hierarchical valida-

tion offers potential solutions to a range of issues

concerned with model validation,31,32 where relevant

challenges would include how to combine datasets col-

lected on components and subsystems of a more com-

plex overall object. There is an opportunity to

investigate model updating in this hierarchical context

by using this dataset in combination with the previ-

ously presented starboard wing data.11

The challenges relating to the Hawk dataset in

SYSID are summarised below:

Challenge 3. Developing accurate models of large, built

up structures using MIMO data.

Challenge 4. Modelling the dynamic properties of

structures with jointed subsystems.

Challenge 5. The identification of global modal

behaviour.

Challenge 6. The identification of non-linearities within

the system.

Challenge 7. Uncertainty quantification and physics-

based model updating in the face of epistemic

uncertainty.

Challenge 8. Hierarchical validation, in conjunction

with the previous dataset.

Structural health monitoring

As previously stated, the principal purpose of the

Hawk dataset is to provide a meaningful benchmark

for SHM in aerospace structures. It is intended that

the presented dataset is able to function as a useful tool

to bridge the gap between small-scale laboratory

experiments and complete operational systems. The

level of system complexity seen in this dataset greatly

complicates the application of many SHM approaches.

Opportunities exist to extend existing and develop new

techniques spanning the all levels of Rytter’s hierarchy

barring remaining life prognosis.1

Various levels and types of (pseudo-)damage have

been simulated to provide a number of scenarios under

which methods may be tested. The addition of masses

has been conducted in the same manner as shown in

Haywood-Alexander et al.,11 this point is important as

it allows the evaluation of methods from a population-

based structural health monitoring viewpoint where

transfer learning may be applied between the two alter-

native sensing and excitation setups. The effects of

these added mass simulated damages are illustrated in

Figure 11. Cropped FRF magnitude from starboard wing

shaker (SW_LC) to lower starboard landing gear (LG_S2)

depicting non-linear hardening.
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Figures 12 and 13 for the cases where damage has been

simulated on the port wing and starboard stabiliser,

respectively. Both figures show pronounced effects at

higher levels of added mass (mass references in figure

legends refer to Table 2). It is expected that detection

of these damage scenarios should be achievable on the

basis of the response in the higher-frequency ranges.

Of particular interest is the effectiveness of methods

using only the strain data or methods which seek to

perform classification or estimation of damage extent.

It would be especially desirable if these quantities could

be transferred between this test dataset and that previ-

ously published on only a single wing.11

A further challenge is the case of panel removal.

Such a case is shown in Figure 14, where FRFs are

shown for panels removed from the port wing of the

aircraft. The effect of the panel removals is, at least

visually, significantly harder to detect than that of the

added masses and should be considered as a more

meaningful challenge with respect to the testing of any

SHM methodology.

If SHM technologies are to see widespread adop-

tion, they must consider whether it is practical to col-

lect required data for different algorithms during the

operational life of the structure. There exists a distinc-

tion between what data would be available in a labora-

tory or development setting and what could be

practically collected in service. Installing a comprehen-

sive network of accelerometers on an aircraft for use in

flight is a concept that presents many practical difficul-

ties. It is for this reason that FBG data were included

in this dataset, in addition to the accelerometer data.

Alternative sensing techniques, such as FBG sensors,

may provide more viable routes to in-service monitor-

ing of structural vibrations. However, each sensing

modality comes with its own restrictions and limita-

tions. For example, in the case of the FBG data, a

much lower signal-to-noise ratio is present, which may

be observed when comparing Figure 10 to Figure 9.

Performing SHM with this sparser, noisier data present

a greater challenge than with the accelerometer data.

Finally, an open question remains concerning the

change in available data between the ‘training’ phase

of an SHM algorithm and that which is used in ‘test-

ing’ (i.e., practical usage). This can be summarised as

‘Should ‘‘higher quality’’ data be used during algorith-

mic development with a view to adapt to the data

Figure 12. FRF magnitude from port wing shaker to PS_ULE5

in the presence of damage at PW_TLE (amplitude level 5).
Figure 14. FRF magnitude from port wing shaker (PW_LC) to

PW_ULE3 during the panel removal tests (amplitude level 5).

Figure 13. FRF magnitude from starboard stabiliser shaker

to SS_UTE3 in the presence of damage at SS_TTE (amplitude

level 5).
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available in use or should only operationally available

data be used?’. The picture is complicated even further

if a population-based approach33 is taken. It is hoped

that the data set presented here can be used to further

explore this question in the future.

Dataset challenges in SHM are summarised below.

Challenge 9. Detecting and classifying pseudo-damage

using the entirety of the available data.

Challenge 10. Detecting and classifying pseudo-damage

using subsets of the available data.

Challenge 11. Detecting and classifying panel removal

with any amount of the available data.

Challenge 12. Detecting and classifying pseudo-damage

with exclusively the FBG data.

Challenge 13. Establishing the extent to which higher-

quality data is useful in the training phase, when only

lower quality data is available during operation.

Conclusion

This article presents a new comprehensive dataset for

SHM, acquired from a BAE Systems Hawk T1A. The

intention of the dataset is to provide a benchmark for

the development of vibration-based SHM and SYSID

methods on a full-scale aerospace structure, with the

benefit of laboratory testing conditions.

The key details of the experimental work carried out

to acquire the data have been described. Representative

sections of data have been presented to highlight dam-

age sensitivity, non-linearity and strain responses of the

structure. These examples were presented to indicate

the potential applications and challenges of the dataset

in future research work.

The key challenges that are foreseen based on this

dataset relate primarily to SYSID and SHM. Here, the

large scale of the dataset, the significant complexity in

the dynamics (including non-linearity) and the use of

strain measurements were highlighted as future chal-

lenges for the research community to address.
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