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Abstract

Recent state-of-the-art recommender systems

predominantly rely on either implicit or ex-

plicit feedback from users to suggest new items.

While effective in recommending novel options,

many recommender systems often use unin-

terpretable embeddings to represent user pref-

erences. This lack of transparency not only

limits user understanding of why certain items

are suggested but also reduces the user’s abil-

ity to scrutinize and modify their preferences,

thereby affecting their ability to receive a list of

preferred recommendations. Given the recent

advances in Large Language Models (LLMs),

we investigate how a properly crafted prompt

can be used to summarize a user’s preferences

from past reviews and recommend items based

only on language-based preferences. In par-

ticular, we study how LLMs can be prompted

to generate a natural language (NL) user pro-

file that holistically describe a user’s prefer-

ences. These NL profiles can then be leveraged

to fine-tune a LLM using only NL profiles to

make transparent and scrutable recommenda-

tions. Furthermore, we validate the scrutabil-

ity of our user profile-based recommender by

investigating the impact on recommendation

changes after editing NL user profiles. Accord-

ing to our evaluations of the model’s rating

prediction performance on two benchmarking

rating prediction datasets, we observe that this

novel approach maintains a performance level

on par with established recommender systems

in a warm-start setting. With a systematic anal-

ysis into the effect of updating user profiles

and system prompts, we show the advantage

of our approach in easier adjustment of user

preferences and a greater autonomy over users’

received recommendations.

1 Introduction

Personalized recommender systems often rely on

building latent representations from past user inter-

actions to provide recommendations. These mod-

els, while effective, suffer from a lack of inter-

Figure 1: Overall architecture of UPR. In Step 1, we

identify and rank user preferences from user reviews.

Features are highlighted in bold. In Step 2, we use

an LLM to generate a personalized, scrutable natural

language (NL) profile based on the user’s top features.

In Step 3, we train a scrutable, NL-based recommender

system using the generated NL profile to predict the

user’s rating for a target item.

pretability on the learned users’ preferences, mak-

ing it challenging to provide intuitive explanations

for recommendations. For example, many Collab-

orative Filtering (CF) techniques learn latent em-

beddings (He et al., 2017; Salakhutdinov and Mnih,

2007) to represent information about every user

and item. These embeddings are complex, contin-

uous vectors that cannot be easily interpreted or

modified (Radlinski et al., 2022). In fact, since col-

laborative filtering builds embeddings via past in-

teractions, users would need to significantly change

their interaction history to receive new recommen-

dations that align with their current preferences.

Given the strong performance of Large Lan-

guage Models (LLMs) in a wide variety of NLP

tasks (Touvron et al., 2023; Jiang et al., 2023) as

well as the inherent scrutable nature of text-based

inputs, we explore how we can prompt LLMs with

a natural language (NL) description of a user’s

preferences (i.e., user profiles) to provide greater

transparency on how a model provides new recom-

mendations. Furthermore, by using NL preferences

rather than embeddings, a user can easily scrutinize

and update their preferences when needed.

For recommender systems, we define trans-
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parency as a faithful representation behind the

recommendation mechanism and scrutability as

a direct and meaningful way to inspect and mod-

ify a user representation (Zhang and Chen, 2020).

Addressing these issues is vital: if users receive

poor recommendations, they should understand

why and have the means to modify their represen-

tation for better results. Research has shown that

explanations that justify a recommendation help

users make better and faster decisions and promote

trust in the system (Zhang and Chen, 2020; Tintarev

and Masthoff, 2015).

Recent works in transparent recommendation

systems have explored using pre-defined tem-

plates (Li et al., 2020) and automatically generated

text (Li et al., 2021, 2023a; Xie et al., 2022) to

explain recommendations to users. However, these

works focused on explaining individual item rec-

ommendations rather than holistic, personalized

preferences. Another approach to transparent and

scrutable recommender systems is set-based pref-

erences, which aim to explain a user’s general pref-

erences for a particular domain (Radlinski et al.,

2022; Balog et al., 2019). Specifically, rather than

giving a rating for each individual item, a user

can categorize groups of items into sets, which are

then used to recommend new items. For example,

a user can state that they generally like ‘action’

movies and generally dislike ‘romance’ movies.

This transparency lets users understand the model’s

interpretation and adjust their profile accordingly,

leading to more aligned recommendations. Chang

et al. (Chang et al., 2015) have shown that set-based

preferences allow users to elicit preferences faster,

leading to higher satisfaction with the resulting rec-

ommended items. Sanner et al. (2023) found that

LLMs are competitive recommender systems in a

near cold-start setting. In particular, they collected

language-based user profiles from crowdsourced

workers and found that by using few-shot prompt-

ing with the PaLM model (Chowdhery et al., 2022),

they were able to achieve similar performance to

item-based collaborative filtering methods.

In this paper, we propose User Profile

Recommendation (UPR) depicted in Fig. 1, a

language-based approach to set-based, transparent

recommendations in a warm-start setting. Unlike

a cold-start setting, a warm-start setting contains

significantly more user-item interactions and could

further improve the performance of collaborative

filtering methods (He et al., 2017). In lieu of a

real-world dataset of NL profiles, which is both ex-

pensive and challenging to collect, we instead sim-

ulate users writing and modifying NL profiles by

prompting instruction-tuned LLMs to generate pro-

files based on past user reviews. We first exemplify

that these machine-generated NL profiles qualita-

tively summarize a user’s preferences concisely

while maintaining a scrutable format. Furthermore,

according to the conducted experiments on two

benchmark datasets, Amazon Review (Movies and

TV) and TripAdvisor , we show how NL user pro-

files can be used to train a transparent, NL-based

recommendation system based on scrutable NL pro-

files rather than uninterpretable user embeddings.

We observe that our NL-based approach has com-

petitive recommendation performance to popular

baseline recommender systems while also being

transparent and scrutable.

Our model enables a transparent and scrutinized

recommendation process with competitive recom-

mendation accuracy. In addition, past work sug-

gests that a transparent and scrutable model is pre-

ferred because it allows users to understand the rea-

soning behind the model’s recommendations and

easily modify their preferences to receive new rec-

ommendations (Radlinski et al., 2022; Balog et al.,

2019). To validate the advanced transparency and

scrutability of our UPR model, we investigate how

editing user profiles affects recommendation per-

formance. For reproducibility, we publicly release

all data and code1.

Our key contributions include:

• A novel method to simulate NL user prefer-

ence profiles from user feedback by prompt-

ing instruction-tuned LLMs, which are shown

to be fluent, informative, concise, and relevant

through a user study.

• A unique recommendation technique that pri-

oritizes language-based input over learned

embeddings, maintaining performance levels

comparable to non-transparent baseline rec-

ommenders.

• An analysis of how editing a user profile im-

pacts the downstream recommendation task.

1https://github.com/jeromeramos70/user-profile-
recommendation
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2 Related Works

2.1 Explainable Recommendation

Explainable recommendation aims to both generate

relevant recommendations and provide a justifica-

tion for why those items are being recommended.

One of the two main perspectives of explainable

recommendation research is explainable machine

learning (Li et al., 2023a). Explainable machine

learning uses various computational techniques to

understand and convey why a model returns a par-

ticular explanation. Examples of machine-learning-

based explainable recommender systems include

using pre-defined templates (Li et al., 2020; Ba-

log et al., 2019), counterfactual explanations (Tran

et al., 2021), visualization (Geng et al., 2022), and

natural language generation for an item-level rec-

ommendation, meaning that the explanation is for

a target user-item pair (Li et al., 2023a, 2021). No-

tably, these works (Li et al., 2023a, 2021, 2020)

often make use of user and item identifiers to create

uninterpretable embeddings, meaning that a user

would need to dramatically change their interac-

tion history in order to update their recommenda-

tions. Rather than focusing on explaining a sin-

gle recommendation (i.e., output) for a given user,

we focus on making the input of the model fully

transparent and scrutable. By focusing on natural

language as the input of the model, the user has

full transparency on what data is used to generate

recommendations and can seamlessly update the

input as necessary. This approach can be seen as

more similar to content filtering methods (Aggar-

wal, 2016; Deshpande and Karypis, 2004), which

matches the attributes of items with the interests

or preferences indicated in a user’s profile. How-

ever, by leveraging LLMs, we are able to use the

pretrained knowledge that an LLM has on the item

set and fine-tune a user’s NL profile to increase

performance on the recommendation task.

2.2 Set-Based Preferences

Many papers investigate the scenario where pref-

erences are expressed over sets, which are then

used to recommend individual items (Sharma et al.,

2019; Balog et al., 2019; Chang et al., 2015). These

set-based preferences are then used to generate rec-

ommendations for individual items. One example

of set-based preferences is tagging, where a user

selects keyword(s) for each item. Examples of tags

include “superhero”, “action”, etc. These tags help

users indicate their preferences in their own person-

alized language. Similarly, Mysore et al. (2023a)

generates a transparent user profile by selecting a

small set of human-readable concepts from a global

inventory of keywords to enable controllable rec-

ommendations. Past research has shown that users

are able to elicit preferences over sets faster than

rating each item individually (Chang et al., 2015).

Most similar to our work is the transparent model

presented by Sanner et al. (Sanner et al., 2023),

which studies how NL profiles can be used as

input for LLMs in near-cold start settings to ob-

tain competitive performance with baseline recom-

mender models. The main novelty of our work

is that we compare the performance of language-

based preferences in a warm start scenario, where

recommender systems have access to significantly

more user-item interactions. Furthermore, rather

than collecting human written NL profiles like San-

ner et al. (2023), we instead use LLMs to auto-

matically generate an NL profile based on past

reviews. Mysore et al. (2023b) has previously

shown that historical user reviews can be used to

generate synthetic narrative queries with LLMs for

narrative-driven recommendation. Not only does

this approach allow us to explore how LLMs can be

used to summarize user preferences in a scrutable

and editable format, but it also mitigates the time-

intensive, costly task of crowdsourcing high-quality

NL profiles written by users. These NL profiles

serve as an automated way to generate set-based

preferences from past reviews, which users can

modify and edit as needed. Lastly, we are the first

work that we are aware of that evaluates how NL

profiles can be updated to receive new recommen-

dations from an LLM-based recommender system

in a warm-start setting.

3 Methodology

3.1 Goal of User Profiles

Currently, there is no open-source, large-scale

dataset of language-based preferences for recom-

mendation. Furthermore, collecting such a dataset

is both challenging and expensive because of the

amount of data and quality needed to effectively

fine-tune and benchmark a model. Instead, we

leverage user text reviews and explicit ratings to in-

fer a user’s preferences and generate a correspond-

ing NL profile. Not only do these reviews give

us insight into which features the user likes and

dislikes, but they also allow us to generate person-

alized profiles written with the user’s own terminol-
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ogy. In addition, by generating NL profiles, users

can automatically receive both their NL profiles

and corresponding recommendations. The user

can then adjust and modify the profile accordingly,

which can save time versus manually crafting a

prompt that provides accurate recommendations.

Balog et al. (Balog et al., 2019) explored using

tags, user-written keywords to describe an item, to

generate template-based profiles. Although tags

have been commonly used for recommendation

tasks (Bogers, 2018; Chen et al., 2020), past re-

search has pointed out issues with tag quality (Sen

et al., 2007). In addition, tags may not provide suf-

ficient granularity of preferences (Radlinski et al.,

2022). We argue that text-based profiles are closer

to how a user naturally describes their personalized

preferences versus a set of tags.

3.2 Identifying and Ranking User Preferences

Let I be the set of all items with respect to target

user u. Each item i ∈ I has a (normalized) rating

r ∈ [−1, 1], where ratings lower than 0 mean the

user disliked an item and ratings higher than 0 mean

the user liked the item. Additionally, each item con-

tains an explanation e, which is a sentence written

by the user in their review that best describes their

feedback for that item. Using a phrase-level senti-

ment analysis toolkit (Zhang et al., 2014), we can

also extract a feature word f from e, where f is

the important keyword of the explanation. For ex-

ample, in the explanation, “the swimming pool is

fantastic”, pool is the extracted feature. We can

then infer a user’s set-based preference for a partic-

ular feature f by calculating the average rating of

If , the set of all items whose feature is f :

rf =
∑

i∈If

ri, (1)

where rf < 0 means that the user dislikes feature

f in general and rf > 0 means the user generally

likes f . We then calculate a utility score U(f) for

a given feature f to take into account how often a

user uses a particular feature in reviews and sub-

tract a discount statement based on its statistical

strength. We define U(f) as:

U(f) = |r(f)| × cov(f)× sig(f), (2)

where cov(f) and sig(f) are the coverage and sig-

nificance scores for a particular feature f . We de-

fine the coverage score as the ratio of items whose

feature is f over the entire item set.

cov(f) =
|If |

|I|
. (3)

Additionally, we define the significance score as a

discount statement where the statistical strength is

less than two standard errors, that is:

sig(f) = min

(

2, |rf |/
σt

√

|If |

)

, (4)

where σf is the variance of Rf , which is defined

as the set of all ratings r ∈ R with feature f . To re-

duce the noise in the ranking process, we grouped

features by their stems, which were extracted using

the NLTK Porter stemmer (Bird et al., 2009). By

doing so, we can treat features such as “pool” and

“pools” as a single entity rather than two separate

features. We manually inspect the preprocessed

data to ensure that the grouped entities are similar

and remove features that are overly generic (e.g.,

the feature ‘film’ in the movie domain). Once the

utility scores for the entire dataset have been calcu-

lated, we use the features with the highest scores to

describe a user’s preferences. Since we calculate

significance scores using absolute values, features

that are disliked by the user may also be included

in the profile.

Note that our user preference identification and

ranking algorithm is similar to what was devel-

oped by Balog et al. (Balog et al., 2019) for the

MovieLens-20M (ML-20M) dataset (Harper and

Konstan, 2015). However, there are a few key dif-

ferences in our method, which mainly stem from

how the user feedback data is structured. For exam-

ple, our user review data contains only one feature

per item rather than multiple tags per item. Thus,

our coverage score rewards features that appear

more in the dataset rather than adding a penalty

if they are overused. In our scenario, we argue

that this is beneficial because if a user writes a re-

view with a certain feature often, it means that this

feature is important to them.

3.3 Transforming Preferences to NL Profiles

After identifying a user’s top features, we can trans-

form the list of relevant reviews into an NL profile

that captures a user’s general preferences for the

target domain. Using an instruction-tuned LLM,

we can prompt the model to summarise the list of

reviews to create a holistic profile that explains the

user’s general preferences for a particular domain
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(shown in Appendix A.1). After several iterations

of prompt engineering, we provide 5 reviews per

feature in the prompt, which fits within the max

token constraint during experimentation. Since

user-written reviews are used in the prompt, the

resulting NL profile is generated with each user’s

personalized semantics. Since there is no ground

truth for NL profiles, we instead analyze the quality

of the profiles in Section 5.3 and the utility of the

generated profiles by evaluating the performance

of a transparent recommender system trained on

the NL profiles.

3.4 Recommendation Task

Similar to the P5 prompts for LLM-based recom-

mendation (Geng et al., 2022), we complete the

rating prediction task by adding the NL profile to a

prompt (shown in Appendix A.2) and fine-tuning

an LLM to complete a regression task. One key

difference from traditional approaches is that no

user identifiers or item identifiers are used during

the NL profile generation or recommendation tasks.

Thus, users can easily scrutinize the recommen-

dation pipeline at any stage because all inputs are

natural language-based rather than identifier-based.

We further explore scrutability in Section 5.4.

4 Experimental Setup

4.1 Datasets

We conduct our experiments on two publicly avail-

able explainable recommender datasets, Amazon

Movies and TV (Amazon-MT) (He and McAuley,

2016) and TripAdvisor2 (hotels), which focus on

generating explanations for a user-item pair (Li

et al., 2020). Each dataset consists of a user identi-

fier, an item identifier, a rating from 1 to 5, and an

explanation extracted from user reviews. We use an

8:1:1 train/validation/test split. The datasets were

preprocessed to exclude any records where the ti-

tle of the item is missing. To ensure a warm-start

setting, every user and item appear at least once in

each split, and there are at least 5 reviews per user

in the training set. For reproducibility, we save all

profiles generated for recommendation.

4.2 Evaluation Metrics

To measure recommendation accuracy, we use Root

Mean Squared Error (RMSE) and Mean Absolute

Error (MAE), two common metrics in the rating

prediction task for these datasets (Li et al., 2020,

2
https://www.tripadvisor.com

Table 1: Statistics of the Amazon-MT and TripAdvisor

datasets.

Amazon-MT TripAdvisor

#users 4,811 9,765

#items 5,459 6,280

#records 288,693 320,023

#features 5,114 5,069

#records per user 60.01 32.77

#records per item 52.88 50.96

#words per explanation 14.14 13.01

2023a). MAP with a relevance threshold of 4.0 and

nDCG are calculated using condensed lists, follow-

ing the evaluation strategy outlined by Sakai (Sakai,

2007); that is, we only consider items that are ex-

plicitly rated in the test set.

4.3 Baselines

We compare our model with the following baseline

recommender systems. All baseline models are

implemented using the Cornac library with default

parameters (Truong et al., 2021).

• Most Popular: An algorithm that recom-

mends items with the most ratings.

• UserKNN-BM25 (Aggarwal, 2016): A col-

laborative filtering method that uses K-

Nearest Neighbors to calculate distance be-

tween users with BM25 re-weighting.

• Item-KNN-cosine (Deshpande and Karypis,

2004): A collaborative filtering method that

uses K-Nearest Neighbors to calculate cosine

distance between items.

• MF (Koren et al., 2009): Matrix Factoriza-

tion learns latent user and item embeddings to

provide recommendations.

• NeuMF (He et al., 2017): a hybrid recommen-

dation model that combines matrix factoriza-

tion with multi-layer perceptrons.

In addition, we compare our model with two

item-level explainable recommender models that

describe why a user might like a target item. For ex-

ample, given “user A” and “item 123” as input, the

model might return a rating of 4.0 with the follow-

ing explanation: “the swimming pool is fantastic”.

Note that both of these models are considered col-

laborative filtering, meaning that they mainly rely
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on user and item identifiers to generate recommen-

dations. While not directly analogous due to our

task of generating explainable NL profiles as input

to a recommender model, this comparison yields in-

sights into the performance of explainable models

trained for rating prediction.

• PETER+ (Li et al., 2021): a small trans-

former designed for rating prediction and ex-

planation generation using context prediction.

• PEPLER-MLP (Li et al., 2023a) An item-

level explainable model that fine-tunes GPT-2

for rating prediction and explanation genera-

tion for a user-item pair.

4.4 Implementation Details

For NL profile generation, we use the features de-

fined in the datasets to identify and rank a user’s set-

based preferences. We then use a custom prompt

for each user to generate an NL profile. We ex-

periment with generating NL profiles using the

7B instruction-tuned versions of Llama2 (Touvron

et al., 2023) and Mistral (Jiang et al., 2023). We

generate each NL profile with a maximum of 200

tokens, a number of features set to 5, and a temper-

ature of 0.7. For reproducibility, we save all gener-

ated user profiles used to fine-tune our model3.

For the recommendation task, we train each

model on the training set, tune hyperparameters

on the validation set, and report the performance

on the test set. The models are trained using ei-

ther the Llama2 or Mistral-based profiles. We use

GPT-2 (Radford et al., 2019) as our pre-trained lan-

guage model and train with a batch size of 8 and

the AdamW optimizer (Kingma and Ba, 2015) with

a learning rate of 3e-4. For full implementation de-

tails, including prompts used and hyperparameter

tuning, refer to Appendix A.

5 Results and Analysis

5.1 Recommendation Performance

We report the performance of our model compared

to baseline models in Table 2. We observe that

UPR performs comparatively well with our base-

line models and is consistently competitive across

all metrics. Importantly, all compared models learn

user preferences from all interactions by taking

advantage of the efficiency of embeddings. In con-

trast, UPR is limited to the information provided

3https://github.com/jeromeramos70/user-profile-
recommendation

in the profile, which has a maximum length of

200 tokens. Consequently, UPR can only learn

from a fraction of the interactions in the dataset.

Nevertheless, UPR performs fairly well under the

aforementioned constraints, meaning that LLMs

can identify relevant items using only interaction

data distilled into a short amount of text.

Even though the NL profile comparatively con-

tains fewer features about the user, we observe that

scrutable NL profiles can be used as a substitute

for uninterpretable user embeddings without sac-

rificing much in performance. Given that newer

models such as GPT-3 (Brown et al., 2020) have

shown better performance than GPT-2 (Radford

et al., 2019) and are trained on more data and natu-

ral language tasks, we anticipate that our model’s

performance will improve with larger-scale models.

However, SOTA models contain significantly more

parameters, meaning that more powerful hardware

is needed to train them.

Given the competitive performance of UPR, we

argue that an explainable model may be useful in

real-life scenarios where human users value the

transparency and scrutability of a set-based pref-

erence model. For example, if a user wanted to

change their profile preferences in the collaborative

filtering model, they would need to make many

changes to their interaction history to see a sub-

stantial difference in their recommended items. For

future work, we plan to study how human users

interact with UPR and investigate the tradeoffs

between traditional recommender methods and a

transparent, scrutable recommender model.

5.2 Effects of Number of Features on

Recommendation Performance

Figure 2: RMSE and MAE over a varying number of

features in NL profile for the Amazon-MT dataset.

To examine the impact that the number of fea-

tures contained in an NL profile has on recommen-

dation performance, we run an ablation study that

studies how changing k, the number of features

used to generate the NL profile affects the down-
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Table 2: Recommendation Performance on the Amazon-MT and TripAdvisor datasets. The best-performing values

are highlighted in bold.

Amazon-MT TripAdvisor

Model RMSE MAE nDCG@10 MAP RMSE MAE nDCG@10 MAP

MostPop 1.505 0.962 0.896 0.815 1.277 0.902 0.932 0.857

UserKNN 0.960 0.707 0.935 0.864 0.836 0.634 0.952 0.883

Item-KNN 1.045 0.790 0.897 0.823 0.890 0.683 0.953 0.852

MF 0.925 0.686 0.941 0.870 0.786 0.599 0.960 0.891

NeuMF 0.943 0.694 0.936 0.866 0.819 0.634 0.955 0.886

PETER+ 0.924 0.685 0.941 0.870 0.803 0.621 0.958 0.889

PEPLER-MLP 0.925 0.672 0.941 0.869 0.793 0.606 0.959 0.889

UPR (Llama2) 0.944 0.678 0.938 0.866 0.804 0.616 0.955 0.885

UPR (Mistral) 0.941 0.679 0.940 0.870 0.804 0.610 0.952 0.887

stream recommendation task. In particular, we

prompt LLama2 to generate NL profiles but only

use reviews from the top-k feature for each user,

where k ∈ {1, 2, 3, 4, 5}. Each set of NL profiles

is then used to fine-tune UPR.

Observing the changes in RMSE and MAE in

Figure 2, a discernible trend emerges: augment-

ing the count of features reduces the loss, but the

improvement in performance sees diminishing re-

turns as additional features are incorporated. This

observed trend is rationalized by the arrangement

of features in order of significance, implying that

subsequently added features hold lesser relevance

for the user. Furthermore, the diminishing returns

of adding features provides empirical evidence that

the feature ranking methodology in Section 3.2

helps select the best features to use in the profile.

An important point to note is that the incorpora-

tion of an excessive number of lower-ranked fea-

tures may potentially introduce noise into the user

profile. Given that a user profile can only accom-

modate a finite amount of text, this noise might, in

turn, compromise the efficacy of the recommenda-

tions provided. As a follow-up study, we plan to

research how to strategically select the number of

features and reviews that best capture a user’s holis-

tic preferences and optimize the recommendation

performance. Furthermore, we set the max token

limit of an NL profile to 200 tokens. We found

that this was qualitatively a reasonable max length

for a profile. However, more research is needed to

study the tradeoffs between the length of the profile

with regard to recommendation performance and

cognitive load for users.

Table 3: User study measuring the quality of the gen-

erated NL profiles. We report the average number of

satisfactory samples out of 50 samples per domain.

Metric Amazon-MT TripAdvisor

Fluency 95% 92%

Informativeness 86% 82%

Conciseness 75% 72%

Relevance 90% 87%

5.3 Qualitative Case Study on NL Profiles

As there is no ground-truth data available for the

NL profile generation task, we instead assess the

quality of our generated NL profiles by conducting

a qualitative case study with users. Five partici-

pants, all of whom are master’s students at a univer-

sity, were shown 50 NL profiles from each dataset

and were tasked with answering whether each NL

profile met each of the following criteria:

1. Fluency: Is the NL profile both syntactically

and semantically correct?

2. Informativeness: Does the NL profile pro-

vide important information for a user profile?

3. Conciseness: Is the NL profile written in a

concise manner?

4. Relevance: Given the list of reviews, is the

NL profile relevant to the user?

Participants were shown positive and negative ex-

amples per criteria in order to improve annotation

quality. Each question is answered with a “yes” or

“no”. We show the results of the user study in Table
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Figure 3: Change in Coverage@10 between edited pro-

file versus original profiles when adding a new prefer-

ence for a target feature.

3. The Fleiss’ kappa coefficient among annotators

was 0.82, suggesting a very high level of agree-

ment. Overall, annotators were highly satisfied

with the quality of our generated NL profiles. Both

Amazon-MT and TripAdvisor scored well on flu-

ency, informativeness, and relevance but lower on

conciseness. During follow-up discussions, annota-

tors felt that the profiles contained few grammatical

errors and were generally relevant and informative.

However, they also pointed out that profiles could

be excessively long at times and contain redundant

information. Given that we used a zero-shot ap-

proach to generate profiles, we anticipate that NL

profiles can be improved through either additional

prompt engineering or fine-tuning on the NL profile

generation task.

From manual inspection of the NL profiles for

Amazon-MT, we noticed that Llama2 and Mistral

were sometimes able to infer actors and characters

of a film based on the review, even when not ex-

plicitly mentioned. Although this capability can

potentially improve the downstream recommenda-

tion task, the ability to infer information can also

lead to hallucinations. Consequently, the model

can also generate inaccurate facts and negatively

impact performance. Further research is needed to

ensure that the NL profile generated is factual and

aligns with the user’s interests.

5.4 Scrutinising NL Profile Preferences

To evaluate the scrutability capabilities of UPR, we

simulate a user adding a new preference to their NL

profile. In particular, we select 200 random users

from the original profiles O that do not express any

preference towards target feature t. We then prompt

Mistral-Instruct-7B to edit the profile such that the

user likes t (shown in Appendix A.5) to obtain

the edited profile set C. We randomly sample 100

items from the test set where feature f = t and

100 items where f ̸= t. Finally, we run the model

at inference time and calculate the Coverage@10,

which is defined as the number of items in the top-

10 recommendations where f = t, divided by 10.

We repeat this sampling process five times on both

datasets and use different seeds for robustness. We

report the change in Coverage@10 between O and

C in Figure 3, defined as Ct −Ot.

We observe that the Coverage@10 for all t in-

creases across all samples when using C, meaning

that a user can simply add a preference towards

t to the NL profile, and the model will update

the recommendations accordingly. In addition, the

variance of the change in coverage shows that the

recommendations can be correctly altered consis-

tently.

Importantly, UPR does not require further fine-

tuning when adding new preferences because the

model learned how to interpret NL profiles effec-

tively during the training phase. Furthermore, the

features of each item were not explicitly passed to

the model during fine-tuning or inference, mean-

ing that the model has learned the features of each

item from the NL profiles and its own pre-trained

knowledge.

Overall, we show that UPR is able to learn the

features of each item during training, meaning that

a user can scrutinize and edit their profile to in-

stantly receive updated recommendations. In con-

trast, there is no simple way to update user pref-

erences in traditional collaborative filtering meth-

ods. Consequently, a user would need to drastically

change their interaction history to align the recom-

mendations with their current interests.

It is important to note that the reviews used to

determine the features during the sampling process

may be written by an arbitrary user A in Amazon-

MT rather than the target user B. Thus, user A
might consider the item a ‘comedy’ movie, but

user B may not use the same terminology because

preferences are subjective. Furthermore, user B
still expresses preferences on other features. This

means that they may highly rate non-target items

in both O and C, which can lead to a decreased

change in coverage.
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6 Conclusion and Future Work

In this work, we propose a novel recommendation

model that replaces uninterpretable user embed-

dings with transparent, natural language profiles

that holistically describe a user’s preferences. We

show that instruction prompting can be used with

large language models to create fluent, informative,

and personalized user profiles based on user re-

views. By encoding user preferences using natural

language, we are able to develop a recommender

system that is both transparent and scrutable. Ex-

perimental results show that our method has compa-

rable performance to popular recommender models.

In addition, we show that by adding new prefer-

ences to the NL profile, we can quickly provide

updated recommendations. For future work, we

plan to investigate multi-turn updates to NL pro-

files to simulate user updates over time and explore

how scrutability can be used to adjust recommen-

dations to be less biased.

7 Limitations

The performance of UPR is heavily dependent on

the quality of the user reviews in the dataset, mean-

ing that preferences that are not explicitly men-

tioned often in the review corpora will not be cap-

tured in the NL profile. Furthermore, the average

rating in both datasets is 4.0/5.0, meaning that the

vast majority of NL profiles contain only positive

preferences. Thus, the model does not have many

negative preferences to train on, making it difficult

to edit a negative preferences to the profile (shown

in Appendix A.6).

Another major limitation of using LLMs for

recommendation is that they are notably slower

than traditional recommender systems. Thus, users

would need to wait a significantly longer amount of

time to receive recommendations, which can lead

to lower levels of satisfaction.

Finally, the model is bottlenecked by the infor-

mation contained in the NL profile, meaning that

the length of the profile and the number of fea-

tures impacts recommendation performance. How-

ever, there is a concern that a verbose NL profile

increases cognitive load for users. In terms of prac-

tical utility, making the NL profile too long and

difficult to scrutinize negatively impacts usability

for users. Future work can explore the tradeoffs

between recommendation performance and human

preferences.

8 Ethical Considerations

There are several ethical considerations to consider

when using large language models for recommen-

dation. Firstly, LLMs may show bias towards more

popular items, which can lead to lesser-known

items being ignored. Since recommender systems

learn from user interactions, a bias amplification

loop can be created that causes a greater discrep-

ancy between popular and less-popular items (Chen

et al., 2023). Furthermore, LLMs have also been

criticized for unfairness with regards to underrepre-

sented demographics, highlighting the importance

of metrics that evaluate various social biases in

LLMs (Salutari et al., 2023). Finally, hallucina-

tions are a problematic issue in LLMs because the

model may generate plausible, but incorrect infor-

mation. In the case of recommender systems, the

model might create an NL profile with incorrect

information or recommend an item that does not

exist (Li et al., 2023b). Consequently, safeguards

must be added to ensure that any output from the

language model is truthful and accurate.
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A Appendix

A.1 NL Profile Generation

To generate the profiles, we use the top 5 features

calculated per user in Section 3.2. We then use 5

random reviews from each feature as input for the

prompt, shown in Table 5. We set the max tokens

generated to 200, temperature to 0.7, and seed to 0.

A.2 Recommendation Task

We encode and fine-tune our model using the

following prompt:

“{profile} Based on my user profile, from a scale of

1 to 5 (1 being the lowest and 5 being the highest),

i would give {title} a rating of”

where {profile} is the user profile and {title} is

the target item. In order to improve performance,

we scale ratings from 1-5 to 0-1 when updating

the loss per batch. Ratings are scaled back to their

original values during evaluation.

A.3 Implementation Details

For the recommendation task, we experiment with

the number of features k set between 1 to 5. For

hyperparameter tuning, we experiment with a learn-

ing rate of 1e-3, 3e-4, 1e-5, learning scheduler of

linear and cosine, and batch sizes of 8, 16, and 32.

In addition we train the model for 10 epochs, with

early stopping after 3 epochs of no improvement.

A.4 Qualitative Test Study

The participants are master’s students from the

United Kingdom who volunteered to participate

in the study. The study took about 30 minutes on

average. All participants agreed to allow the data

to reported for research purposes only. There is no

identifiable or sensitive information recorded in the

user study.

Before annotating the samples, the participants

were provided with both positive and negative ex-

amples for each of the four questions to help them

better understand the task. The participants were

then shown every sample from the randomly se-

lected pool of profiles and were asked to indicate

whether the profile fulfilled each of the four criteria.
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Figure 4: Change in Coverage@10 between counterfac-

tual profile versus original profiles for a target feature.

A.5 Adding New Preferences to NL Profile

When sampling users and items from the test set,

we use seeds={0, 42, 100, 200, 300}. To generate

the edited profile set C, we a few shot prompt,

shown in Table 5, with max token set to 300, tem-

perature of 0.7, and seed of 0.

During experimentation, we found that we

needed to increase the max token size of the pro-

files to yield a change in recommendations because

the profile needs more tokens to express a new

preference in the NL profile. To obtain recommen-

dations, we use the same prompt in Appendix A.2

using our fine-tuned model at inference time.

A.6 Editing Negative Preferences to NL

Profile

We experiment with editing an existing positive

preference towards target feature t in a NL profile

to a negative preference to see if a user can receive

less recommendations of t by scrutinizing the

profile. We repeat the same sampling method

in Section 5.4, but instead select 200 users that

positively mention target feature t in their profile.

We then use the following prompt with Llama2 to

counterfactually edit the profile such that the user

does not like t.

"Rewrite the user profile so that the user does

not like beach movies. Keep the profile as sim-

ilar as possible for all other preferences: {profile}."

To keep the counterfactual profiles as similar as

possible to the original profiles, excluding t, we

use the same hyperparameters in Appendix A.1.

We record the change in coverage for the top-

10 recommendations between the counterfactual

versus original profiles in Figure 4. We observe

that the coverage drops, as expected, but the over-

all change is minor across the three features we

tested. This can be attributed to the strong skew

towards positive reviews in the data, meaning that

vast majority of NL profiles used during training

do not contain any negative preferences. In future

work, we plan to train the model using more neg-

ative preferences in order to realize dislikes in the

updated recommendations.
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Table 4: We prompt an instruction-tuned LLM with the relevant reviews to generate cohesive and relevant NL

profiles. The result is one NL profile included in our dataset.

Instruction: Summarize in a single paragraph using the first person my general

movie and tv preferences based on my reviews. Do not mention the word

reviews.

Reviews:

- not the most brilliant actress even in the best of circumstances

- in the past 5 years or so i’ve watched close to 8 to 10 films about elizabeth i

...

- bergman & fellini ( tim burton in this century ) remain my all-time favorite

directors

Result:

I enjoy watching movies and TV shows, particularly those with strong per-

formances and well-crafted stories. I have a preference for classic films and

directors such as Bergman and Fellini, and I appreciate a good adaptation of a

play. I also enjoy watching actors take on complex roles and explore their craft.

While I have mixed opinions on some actresses, I generally enjoy watching a

talented performance. Recently, I have been drawn to films about Elizabeth I,

and I appreciate a good historical drama. Additionally, I find it refreshing when

a director can successfully weave together multiple storylines and timelines

into a cohesive and engaging film.
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Table 5: A few shot prompt example to add a new preference towards target feature t to the profile. For all few shot

prompts used for this experiment, refer to our repository.

Modify the user profile so that the user also likes comedy movies. Keep all the

profile as similar as possible for all other preferences.

Original Profile: I generally prefer action-packed movies and TV shows with

plenty of stunts and excitement, but I also appreciate subtle moments of quiet

subtlety and powerful performances. I prefer to watch DVDs instead of most

TV shows, and I have a special interest in the works of certain directors like

Steven Spielberg and Michael Mann. I have been impressed by the recent works

of directors like Steven Soderbergh, and I believe they are making great strides

in modern cinema.

New Profile: I generally prefer action-packed movies and TV shows with

plenty of stunts and excitement, and now I’ve found a liking for comedy movies

too, enjoying their humor alongside the subtle moments of quiet subtlety and

powerful performances that I appreciate. I prefer to watch DVDs over TV

shows, maintaining a special interest in directors like Steven Spielberg and

Michael Mann. The recent works of directors like Steven Soderbergh also

impress me, as I believe they contribute significantly to modern cinema.

Original Profile: As for my movie preferences, I tend to enjoy films that offer

a unique perspective and don’t rely too heavily on cliches. I appreciate when

there is a clear focus on character development and backstory, but I also enjoy

when filmmakers take risks and try something new. I have mixed feelings about

movies that try to tackle complex issues like bioterrorism, as they can often

feel overly sensationalized or heavy-handed. Ultimately, I’m drawn to movies

that offer a fresh take on familiar themes and have a strong sense of style and

pacing.

New Profile: As for my movie preferences, I tend to enjoy films that offer a

unique perspective, including comedy movies, and steer clear of relying too

heavily on cliches. I appreciate clear focus on character development and

backstory, and value when filmmakers take risks and introduce humor alongside

their innovation. My views on movies tackling complex issues like bioterrorism

are mixed, as they can feel sensationalized. Ultimately, I’m drawn to movies

with a fresh take on familiar themes, strong sense of style, pacing, and those

that blend genres effectively, including smart comedies that offer insightful

laughs.

Original Profile: I have a preference for movies and TV shows that showcase

talented actors, particularly those who can bring depth and nuance to their roles.

While I appreciate the performances of actors like John Malkovich and Danny

DeVito, I sometimes wish for a more convincing fit in certain roles. However, I

also enjoy a good story and will often watch movies and shows regardless of

the actors involved. I have a tendency to be critical in my reviews, but I also

believe in being honest and providing constructive feedback.
Result:

I have a preference for movies and TV shows that showcase talented actors,

including those who excel in comedy, and appreciate depth and nuance in their

roles. While I admire the performances of actors like John Malkovich and

Danny DeVito, I sometimes wish for a more convincing fit in certain roles.

However, I also enjoy a good story and will often watch movies and shows

regardless of the actors involved. I strive to be honest and constructive in my

reviews, providing valuable feedback for the benefit of both creators and fellow

viewers.

13984


