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Sexual size dimorphism (SSD) is highly prevalent in nature. Several
hypotheses aim to explainits evolution including sexual selection,

differential equilibrium and ecological niche divergence. Disentangling
the causal mechanism behind the evolution of SSD is challenging, as
selection arising from multiple pressures on fitness may act simultaneously
togenerate observed patterns. Here, we use phylogenetic comparative
methods to study the evolution of SSD across tetrapods globally. We
estimate directional changes in body size evolution, and compare the
number, phylogenetic position and magnitude of size changes between
sexes. We find evidence that directional changes in size associated with SSD
are typically more commonin males—evenin lineages where females are
larger. However, underlying mechanisms differ among lineages—whereas
SSD inamphibians becomes more male-biased with greater increasesin
male size and mammalian SSD becomes more female-biased with greater
decreases in male size. Thus, differing mechanisms of directional body size
evolution across sexes are essential to explain observed SSD patterns.

Selection on animal body size is often sex-specific, leading to the evolu-
tion of sexual size dimorphism (SSD)—the difference in size between
males and females of the same species’*. SSD is widespread across
the animal tree of life and varies extensively both in magnitude and
direction'". SSD can be either female- or male-biased (females or males
are the larger sex, respectively), whereas in other species both sexes
have similar sizes (sexual monomorphism). The strength of sex-specific
selection varies immensely across species, thus shaping a vast diver-
sity of levels of SSD, from species where sexes barely differ in size (for
example, in humans®), to species where one sex is extremely large
relative to the other (for example, inweb-building spiders of the genus
Argiope® where females can be up to five times the length of males orin
the cichlid fish Lamprologus callipterus where males are over 12 times
heavier than females™).

Such striking diversity in SSD across lineages has led to the for-
mulation of arange of hypotheses that invoke mechanisms as diverse
as competition over access to mates, differences in sex roles (for
example, fecundity and sexual conflict) and divergent natural selec-
tion that drives intersexual niche divergence to mitigate ecological
competition between the sexes' >, Some of the earliest, and most
common, hypotheses to explain the evolution of SSD relate to sexual
selection”. When access to female mates is enhanced by larger male size
(for example, under male-male competition or female preference for
larger males), sexual selectionis predicted tolead to asize increase in
males relative to females, resulting in male-biased SSD**''%, In contrast,
female-biased SSDis predicted when female-specific fitness correlates
positively with brood size, resulting in fecundity selection for larger
females relative to males™'®", These selection mechanisms are not
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mutually exclusive—they can act on both sexes simultaneously, and if
optimalssizes differ between the sexes SSD can evolve (the ‘differential
equilibrium’ model®®). Selection for smaller size of one sex can also
lead to SSD. For example, sexual selection can lead to female-biased
SSD if smaller males are selected for, as in acrobatic aerial displays
in shorebirds”. Likewise, selection for small size in female weasels
(Mustela spp.) may allow pregnant females to enter prey burrows, and
has been advocated as a cause of their male-biased SSD?.

More recently, intersexual divergent natural selection has been
invoked as a potentially widespread source of (ecological) sexual
dimorphism. This hypothesis predicts that, in populations where
ecological competition intensifies between males and females that
overlapinthe use of similar resource sets, sexual conflicts arise between
them'>%*7%_In these situations, intersexual ecological conflict is pre-
dicted to be mitigated via the emergence of sex-specific natural selec-
tion that drives females and males to diverge in the resources they
exploit**?. For example, on Garden Island, Western Australian rock
python (Morelia spilota) females weigh ten times as much as males, and
the sexes differintheir dietary niches accordingly—males feed mostly
onsmall preysuch aslizards, birds or mice, whereas females primarily
feed on large mammals such as possums and wallabies®. Similarly,
size divergence could be achieved when sex-specific fitness increases
at different phenotypic optima between males and females® —either
because the sexes differ in their ecological niches due to intrinsic dif-
ferences in energetic requirements (dimorphic niches) or because
more than one optimal trait value exists for both sexes to potentially
occupy (bimodal niches). Thus, natural selection can lead to the evolu-
tion of SSD without sexual conflict—as may be the case for pinnipeds®,
primates®® and artiodactyls®.

The actual evolutionary history of SSD can be complex and dif-
ficult to reconstruct. Sexual selection and ecological niche differen-
tiation can act in synergy, and the evolution of SSD can predate, and
even lead to, the evolution of mating systems, taking advantage of
pre-existing differences in size”. Similarly, if, for example, selection
actstoincrease male size due to male-male combat, different selection
pressures cansimultaneously act to decrease female size for ecological
reasons. Conversely, selection canlead toanincrease or decreaseinsize
in both sexes but differ in magnitude. Additionally, even if the size of
only one sexis under selection the other sex may show a similar trend
of size evolution, because of genetic correlations, but the magnitude
of such change may be lower®. SSD can thus evolve as the change insize
in one sex outpaces the other®. Therefore, despite the longstanding
interestin elucidating the mechanisms underlying SSD across lineages,
whether adominant mechanismis generally involved across the major-
ity of cases of SSD or even which of the sexes is subject to selection for
SSD remain prevailing challenges in evolutionary biology.

Here, we use a phylogenetic comparative approach to study the
drivers behind the evolution of SSD. We use the largest number of
species thathave been usedin SSD studies to date (11,236 tetrapod spe-
cies),encompassinglarge variation in SSD from extremely male-biased
(for example, southern elephant seal, Mirounga leonina, where males
are 5.3 times heavier than females) to extremely female-biased (for
example, helmeted water toad, Calyptocephalella gayi, with females
21times heavier than males). We estimate evolutionary changein male
and femalebody sizes using arecently developed trait evolutionmodel,
the Fabric model**, which incorporates variation in evolvability (the
rate of trait evolution) and directional evolution (Methods). Briefly, the
model can distinguish between directional changes (an increase or a
decreaseinthemeantrait valueinadescendant clade) and changes in
evolvability (anincrease or adecrease in the variance of the trait valuein
the descendant clade). We then test whether the observed distribution
of SSD can be explained in the absence of directional evolution on male
and female size, thatis by variationin evolvability alone. Finally, we test
whether the frequencies, magnitudes and directions of change in size
of males and females are correlated with the magnitude and direction

(male versus female bias) of SSD. Taken together, we use this combina-
tion of phylogenetic comparative methods and macroevolutionary
models to explore three broad questions about the evolution of SSD:

(1) How important is directional evolution in generating SSD? We
expect that many of the observed SSD values result from direc-
tional evolution in the size of one sex causing intersexual diver-
gence in body size, which is otherwise strongly correlated.

(2) How did the frequency of directional evolution vary among
and between the sexes in different SSD classes (female- or
male-biased) throughout the evolutionary history of tetrapods?
Previous studies suggest that SSD may be, on average, biased
towards males or females in large clades®*. Using the Fabric
model and binomial tests we assess whether dominant modes of
SSD are the result of biases in the frequency of sex-specific direc-
tional shifts throughout the evolutionary history of tetrapods.

(3) Does sex-specific directional evolution tend to act more strong-
ly in one of the sexes to drive the diversity of SSD? While SSD
can be generated by selection acting on only one sex, it may
also arise by selection operating on both sexes at different rates,
magnitudes or directions (increasing or decreasing size)®. Pre-
vious research has suggested that selection may be stronger on
males than on females*>%. However, this might be the opposite
in female-biased clades, such as amphibians, where females are
usually the larger sex”. We expect the magnitude and direction
of evolution to be correlated with SSD: for example, stronger di-
rectional trends for larger male size or for smaller female size,
would be correlated with more male-biased SSD, and vice versa
for female-biased SSD.

Results and discussion

Variation in SSD among tetrapods

SSDis extremely commonintetrapods. Roughly two-thirds of species
inour sample are sexually dimorphic (given an arbitrary definition of
dimorphicsexes being >10% divergentinmass), yet these species are not
randomly placed onthe tetrapod tree of life. Some clades have strongly
male-or female-biased SSD (Fig.1and Extended Data Fig.1). Mammals
are,onaverage, male-biased (mean SSD = -0.12; males ~13% heavier than
females; 44.8% of species male-biased, 15.1% of species female-biased—
similar to previous estimates®). Amphibians are, on average, strongly
female-biased (mean SSD = 0.56; females ~75% heavier than males; 6.2%
of species male-biased, 85.9% of species female-biased). Birds are, on
average, monomorphic (meanSSD = -0.04; males ~4% larger; 29.2% of
species male-biased, 11.8% of species female-biased). A recent study*®
did not use a cut-off for monomorphic species, but similarly found
more than twice as many male-biased bird species as female-biased
ones. Squamates (mean SSD = -0.01; males -1% larger; 37.3% of species
male-biased, 38.5% of species female-biased) are also monomorphic
on average. However, both amphibians and squamates have higher
variance in SSD (Fig. 1b; V=0.25 and 0.15, respectively) than either
mammals (V= 0.06) or birds (V= 0.02). Thus, birds are the only clade
where most species are monomorphic (59% versus 40%, 24% and 8% of
mammals, squamates and amphibians, respectively), while squamates
areusually dimorphic, but similar proportions of species have female-
and male-biased dimorphism. The most dimorphic species are usually
either amphibians (93% of the top decile of female-biased species) or
squamates (59% of the top decile of male-biased species; Fig. 1¢).

Observed patterns of SSD require directional evolution

To estimate how directional evolution onbody size generates observed
patterns of SSD, we used the directional random-walk Fabric** model.
This recent macroevolutionary model allows the inference of direc-
tional evolution acting on a trait by estimating whether increases or
decreasesinmean trait value occurred along eachbranchina phylog-
eny, while accommodating variability in the rate of trait evolution.
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Fig. 1| Distribution of SSD across tetrapod clades. a, SSD mapped onto the
phylogenies of mammals, birds, squamates and amphibians. Surrounding the
phylogenies, female-biased species in blue, male-biased species in red and
monomorphicspecies (10% difference in size) in white. Along the branches,
stronger colours denote higher values of SSD. b, Estimated kernel density plots
ofthe distribution of SSD values in each of the four clades. Red dotted lines
represent SSD = 0, grey dotted lines SSD values of 10% or less difference in size.

SSD

Thick dashed lines represent the mean values for each clade. ¢, Density plot
showing the relative proportion of species from the four clades for each value of
SSD. Dotted grey lines represent 10% or less difference in size. Dotted blue and
red lines represent the top deciles of female-biased and male-biased species,
respectively. Icons from PhyloPic.org under a CCO1.0 license: Panthera leo,
Margot Michaud; Turdus pillaris, Sharon Wegner-Larsen; Varanus komodoensis,
Steven Traver; Hyla versicolor, Will Booker.

We fitted Fabric models to estimate the number, magnitude (change
inlog units compared to the ancestral state) and direction (increas-
ing or decreasing) of directional changes in body size for males and
females in each clade, and the reconstructed ancestral states of male

andfemalebodysizeineachinternal nodein the phylogenies. Our mod-
elsunequivocally rejected the Brownian motion, Ornstein-Uhlenbeck,
accelerating-decelerating (delta) and evolvability (with and without
trend) models for both male- and female-size evolutionin all clades. The
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Table 1| Parameter estimates for the best-fitting Fabric and global trend models

Clade Sex Number of directional shifts Number of Global trend Brownian variance Root state estimate Inferred
(% of total branchesintree) evolvability shifts (95% HPD) (95% HPD) (95% HPD) ancestral SSD

Female 299 (9.2%) 149 1.009 (1.001-1.017) 0.024 (0.013-0.044)  168.5(18.5-701.1)

Mammals -0.065
Male 302 (9.3%) 148 1.007 (0.999-1.011) 0.019 (0.009-0.025)  179.9 (17.7-729.6)

’ Female  571(7.0%) 324 1.005 (1.002-1.007)  0.007 (0.005-0.008) 302 (80.3-584.2)

Birds 0.262
Male 581 (7.1%) 304 1.006 (1.001-1.009)  0.008 (0.005-0.009) 232.4(48.7-510.4)
Female 530 (8.5%) 232 1.002 (1.001-1.003)  0.007 (0.004-0.008) 5.1(1.6-11.7)

Squamates 0.101
Male 547 (8.7%) 250 1.003 (1.001-1.004)  0.009 (0.006-0.010) 4.6 (1.5-10.2)
Female 470 (9.9%) 186 1.003 (0.997-1.005)  0.019 (0.012-0.021) 8(1.5-31.7)

Amphibians 0175
Male 474 (10.0%) 227 1.003 (0.999-1.005)  0.015 (0.011-0.019) 6.7 (1.3-22.7)

The numbers of directional and evolvability shifts are taken as the numbers of shifts identified as significant in all four runs of BayesTraits. The median and highest posterior density (HPD) for
the global trend parameter is represented as the inferred fold-change over the history of each clade from their respective common ancestor. Ancestral state estimates of body size in grams
(median and HPD) for the root are shown, along with the inferred degree of SSD based on the ancestral state estimates.

strongest support was always for the Fabric model with aglobal trend
(Supplementary Table 1), albeit with only marginally higher support for
aglobal trend in some cases (for example, female size in amphibians).
Directional shifts occurred more frequently than evolvability shiftsin
all clades. This means that directional changes in body size were the
normacrossall clades, implying net directional change inbody size over
macroevolutionary timescales throughout the evolutionary history of
tetrapods. The number of directional shifts ranged from 299 (female
mammal size) to 581 (male bird size) and global trends were consistently
weak (Table 1). On the basis of estimated root states from the Fabric
model we were also able to infer (with considerable uncertainty) that
the common ancestor of mammals was approximately monomor-
phic, and that of birds, amphibians and squamates was slightly female-
biased (Table1).

The strong support for the Fabric model over evolvability-only
models suggests that directional evolution is key to understanding the
evolution and distribution of body size and SSD in tetrapods.

However, studies of species with extreme SSD suggest that body
size divergence in the sexes can arise as a combination of strong
selection on one sex, but not the other. For example, extremely large
female-biased values of SSD in nephilid spiders may be driven by ran-
dom evolution of female size coupled with selection towards a small
optimalmalesize*°. Therefore, the presence of directional shifts alone
isnot enough to understand the evolutionary history of SSD—we also
need to know how many shifts occurred, and their locations and timing
on the tree of life. We explore the relative importance of differential
patterns of divergent evolution on sexesin the following two sections,
firstexamining how the frequency of instances of directional changes
in body size varies within and among sexes, and then assessing the
magnitude of directional effects on the evolution of SSD.

Directional shifts are more common in males
We tested for sex biases in the frequency of directional evolution by
summing the number of positive and negative changes for each sex
in each SSD category, across all terminal and internal nodes from the
fitted Fabric models®* excluding directional changes that were not
statistically supported (Methods). We found that, in all four tetrapod
clades, females and males experience similar frequencies of directional
changes in size (Fig. 2 and Extended Data Fig. 2)—we estimated 302
male versus 299 female changes in mammal size, 581 male versus 571
female changes in bird size, 547 male versus 530 female changes in
squamate size and 474 male versus 470 female changes in amphibian
size. None of these differencesis statistically significant (P= 0.51-0.52
in all binomial tests), which is perhaps unsurprising given that body
size in males and females is strongly positively correlated®.

We next assessed whether, despite occurring in similar overall
frequency, there were sex-specific patterns in directional changes.

SSD could ariseif there is a directional shiftin one sexand not the other
orifthere are directional shifts in opposite directions.

First, we examined whether there is a difference in the number
of increases or decreases in size; that is, whether body size was more
likely to become larger or smaller in one sex or the other. This allowed
ustotest whether, in each sex, there was an overall tendency for body
size to decrease or increase. We found that there were significantly
more increases than decreases in female size in monomorphic birds
(P=0.015). We found more increases than decreases in male size
in male-biased mammals (P < 0.001), birds (P=0.021), squamates
(P<0.001) and amphibians (P< 0.001). In female-biased taxa we found
strong evidence for more decreases than increases in male size in all
clades: mammals (P=0.003), birds (P=0.036), squamates (P < 0.001)
and amphibians (P=0.012).

Second, we examined whether directional changes of either
type (increases or decreases) were more common in one sex or the
other. This allowed us to test whether or not sexes diverged in their
overall shifts—that is, whether one sex or the other was more likely
to experience a particular type of directional shift. We found that
there were significantly more male than female decreases in size in
female-biased squamates (P = 0.021), more female than maleincreases
insizeinfemale-biased mammals (P= 0.039) and squamates (P=0.014),
more female than male decreases in size in male-biased squamates
(P<0.001),and more male than femaleincreases in sizein male-biased
squamates (P =0.001). All other comparisons were non-significant
(Supplementary Tables 2-5).

Sex-specific directional shifts are correlated with SSD
From the Fabric models we extracted species and sex-specific meas-
ures of the magnitude of directional change, that is, downstream fold
changes in mean mass of either sex. We then fitted phylogenetic gen-
eralized least squares (PGLS) models to estimate whether the magni-
tude of directional size changes estimated from the Fabric models was
correlated with the magnitude of SSD in different species. The PGLS
models show that SSD in mammals becomes more female-biased with
greater decreases in male size, and SSD in amphibians becomes more
male-biased with greater increases in male size (Fig. 3 and Table 2).
Perhaps surprisingly, all other relationships were non-significant.
We then fitted phylogenetic multivariate response models
(Fig. 4) to test the relative magnitude of body size changes of males
and females. This enabled us to test whether directional changes are
biased in favour of one sex or the other, depending on the overall
direction of sexual dimorphism (male-biased, female-biased or mono-
morphic). We found that mammal females (Pyope = 0 Where ROPE is
region of practical equivalence) and squamate (Pyope = 0) females tend
to increase more in size than do males in female-biased species, but
not in birds (Propr = 0.566) or amphibians (Pgope = 0.871). In all taxa
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Fig. 2| Numbers of directional changes in each sex, in each of four tetrapod
clades. Directional changes are divided into decreasing or increasing, and
counted in the three categories of SSD (blue for female-biased, red for male-
biased, white for monomorphic). Statistically significant comparisons from
two-sided binomial tests with a Benjamini-Hochberg FDR correction for Pvalues

are marked with horizontal lines and asterisks (*P < 0.05; **P < 0.01; ***P < 0.001).
Icons from PhyloPic.org under a CCO1.0 license: Panthera leo, Margot Michaud;
Turdus pillaris, Sharon Wegner-Larsen; Varanus komodoensis, Steven Traver;
Hyla versicolor, Will Booker.

(mammals, Pyopr = 0; birds, Propr = 0.002; squamates, Pyope = 0;
amphibians, Pyope = 0) males increase more in size than females in
male-biased species. In monomorphic amphibians only (Pygpe = 0)
male size increases more than female size (Pyop = 0.267,0.898,0.772
in mammals, birds and squamates, respectively). Thus, in almost all
tetrapod clades, females tend to increase in size relative to males
when species have female-biased SSD and males tend to increase
in size relative to females in male-biased species (Fig. 4). In other
words, female-biased species tend to be more female-biased than their
ancestors and male-biased species tend to be more male-biased
than their ancestors. However, this need not always be driven by an
increase in size of the larger sex. For example, if selection on female
body size decreasesis accompanied by stronger selectionon decreases
in male size”, the net result would still be female-biased SSD—and
indeed our modelsinfer this to be the case in some female-biased taxa,
such as emballonurid bats (Supplementary Information 2).

Inferring mechanisms of SSD evolution

We find evidence that the evolution of SSD is more often driven by
directional changesin male size, consistent with theidea that selection
on body size is stronger in males®”**. Not only are directional changes
in size more common in males (Fig. 2), but the magnitude of SSD is
also mostly correlated with changes in male body sizes (Fig. 3 and
Table 2). The exact relationships differ—in mammals, SSD becomes
more positive (female-biased) in species where male size decreases,
whereas in amphibians SSD becomes more negative (male-biased)
in species where male size increases. Surprisingly, the pattern of the
magnitude of SSD being driven more by changes in male size holds even
for amphibians, despite females being larger in nearly all amphibian
species (Fig.1). These results seemingly contradict previous research
that has suggested that the evolution of amphibian SSD is driven mostly
by fecundity selection on females®*. Strong selection pressures on

malebody size inamphibians may arise from the physical constraints
size enacts on mating calls*. However, we must stress that, while our
results suggest that directional evolution resulting from female-specific
selection is not a driver of SSD variation in amphibians, fecundity
selection might still be a strong driver of the strongly female-biased
ancestral SSD of amphibians. Thus, fecundity selection might maintain
the class-wide pattern of female-biased SSD and strong male-specific
selection (rather than relaxation of female-specific selection) might
drive the few instances of male-biased SSD or monomorphism. Many
anamniote taxa (including fishes and many invertebrate clades***)
are also predominantly female-biased. We suspect that the evolution
of amniote modes of reproduction (for example, their overall lower
brood sizes*) may have relaxed fecundity selection and led amniotes
tobeeither more variable or lean towards male-biased SSD compared
to anamniotes (Fig. 1).

We suggest that the evolution of SSD is thus often driven by
sex-specific selection, with lineages differing in which sex is under
stronger selection, based ontheinterpretation of directional changes
as being indicative of selection®. Often, but not always, sex-specific
directional trends (indicating which sex is under stronger selection)
are correlated with the prevalent direction of SSD in that clade
(onaverage male- or female-biased).

Our analysesreveal that extant patterns in SSD were shaped by
different sex-specific directional changes in size among and within
tetrapod clades. These could be indicative of divergent agents of
sex-specific selection throughout tetrapod evolutionary history. By
estimating the amount of change in body size for females and males
separately, we were able to identify that males typically experienced
more frequent evolutionary changesinbody size, whichis indicative
of stronger selection on males. However, selection on both female
and male size has probably contributed to extant patterns of SSD
intetrapods.
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sizes). Positive values (above the yellow line) represent species where females are
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where males are larger than females. Icons from PhyloPic.org undera CC01.0
license: Panthera leo, Margot Michaud; Turdus pillaris, Sharon Wegner-Larsen;
Varanus komodoensis, Steven Traver; Hyla versicolor, Will Booker.

Table 2 | Summary of PGLS models of SSD regressed against
absolute value of directional change in body size in each
sex for four tetrapod clades

Clade Sex Directional n Slope A P
change
Decrease 61 -0.153 0.729 0.065
Female
Increase 81 -0.003 0717 0.962
Mammals
Decrease 77 -0.263 0.480 <0.001
Male
Increase 75 0.012 0.407 0.851
Decrease 97 -0.492 0.545 0.251
Female
Increase 143 -0.018 0.863 0.6M
Birds
Decrease 101 -0.043 0.870 0.210
Male
Increase 140 -0.053 0.858 [OXLK]
Decrease 152 0.066 0.181 0.292
Female
Increase 150 -0.005 0.227 0.943
Squamates
Decrease 138 0.101 0187 0.125
Male
Increase 166 -0.096 0179 0112
Decrease 144 0.01 0.518 0134
Female
Increase 129 0.076 0.843 0.422
Amphibians
Decrease 139 0.035 0.439 0.582
Male
Increase 147 -0.235 -0.014 0.003

The columns show the sample sizes, estimated slopes, A values and the P values of the slope.
Statistically significant slopes are in bold.

Ourapproach could further research on the evolutionary drivers
of SSD. Rather than using proxies to infer specific mechanisms, we
directly test the evolutionary trajectories of body size through fitting

complex trait evolution models and comparison to null models toinfer
the existence and direction of selection. Thus, we can narrow the field
of potential mechanisms to test for. As an example, pinnipeds (seals,
walruses and sealions) display some of the most extreme male-biased
SSD in our dataset. Pinnipeds also have polygynous mating systems,
with intense male-male combat for territories. Much research has
focused on examining the evolution of SSD in pinnipeds under the
selective pressure of male-male combat, but evidence to support this
idea has often beenlacking®*". Using our approach we find that varia-
tionin pinniped SSD does not appear to be driven by increasing male
size, as would be expected if male-male combat drove the evolution
of SSD—rather, both male and female sizesincreased early in the evolu-
tionof pinnipeds and even earlier, before their lineage split frombears
(Ursidae; also with strongly male-biased SSD; Supplementary Informa-
tion 2). The only evidence for male-specific changes to have occurredin
pinnipedsis forincreasein male size in the ancestor of the (extremely
male-biased) elephant seals (Mirounga) and in the male-biased grey seal
(Halichoerusgrypus). These are among the most dimorphicspeciesin
their family—and in mammals in general. We also detected evidence
for reductionin malesizein the ancestor of the genus Pusa, among the
smallest and least dimorphic species of pinnipeds. Male-biased SSD
therefore appearstobe ancestralin pinnipeds. Thus, we lend support
tothe suggestion that male-biased SSD in pinnipeds evolved before the
evolution of their characteristic mating systems®’, and instead may be
driven by other processes, and perhaps even asequential combination
of multiple forms of selection*®.

Conclusions

Insummary, we have shown that SSD shows great variationintetrapods
notonlyinits directionand magnitude, butalsoinitsdrivers. Greater
and more frequent evolutionary changes in male sizes appear to be
the norm among tetrapods—yet the exact mechanisms in which SSD
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Fig. 4 | Posterior distributions of contrasts in directional changes

(female change - male change) for speciesin the three SSD categories for
four tetrapod clades. Positive values indicate females increase in size compared
to males and negative values indicate the opposite (although both sexes might
experience increase or decrease in size compared to the ancestral value).

Thered shaded arearepresents the ROPE, where contrasts cannot be
distinguished from zero. Darker grey regions of each posterior distribution
represent areas that overlap the ROPE. Icons from PhyloPic.org undera CC01.0
license: Panthera leo, Margot Michaud; Turdus pillaris, Sharon Wegner-Larsen;
Varanus komodoensis, Steven Traver; Hyla versicolor, Will Booker.

evolves can differ between clades. The lack of universal mechanisms
generating SSD is perhaps unsurprising and may prove acomplex chal-
lenge for future research into the evolution of SSD. We posit that our
approach offers away forward by directly inferring directional changes
inbody size in each sex, offering insight on when and where selection
onbodysize occurred. Thus, we may be more informed when devising
andtesting our hypotheses on the selection pressures underlying the
evolution of SSD on a case-by-case basis.

Methods

Data collection

We compiled aglobal-scale database on mean male and female body
sizes for four tetrapod clades (amphibians, squamate reptiles, birds
and mammals) from published sources and museum specimens*~!,
We supplemented these with newly collected data for snakes and
some lizard, bird and mammal species. SSD data were usually calcu-
lated from sex-specific mean size of adults and occasionally from the
midpoint of the adult size range (Supplementary Information 1). To
make the datasets comparable, we used mass (g) as our proxy for body
size’>%, We transformed newly collected snout-vent length (SVL)

data for squamates from SVL to mass using clade-specific allometric
equations®’. We used recently published time-calibrated phylogenies
(using trees thatonly included species with genetic dataand not spe-
cies placed via taxonomy-based polytomy resolvers) for each of the
four major tetrapod clades we examined®*~” and pruned them to only
include sampled species. We used the published consensus trees for
amphibians®*, mammals* and squamates®. For birds*’, we downloaded
the full 10,000 tree posterior generated using the Hackett backbone
for species with genetic data (6,670 species) and constructed a maxi-
mum clade credibility consensus tree using TreeAnnotator v.1.8.4
(ref. 58). Our final dataset comprised 2,369 species of amphibians,
4,098 species of birds, 1,633 species of mammals and 3,136 species
of squamates: total 11,236 tetrapod species, that is, roughly a third of
all tetrapod species.

For each species, we calculated SSD using the following equation:

SSD = In(massy/mass) 1)

such that positive values of SSD represent female-biased species
(females larger than males) and negative values of SSD represent
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male-biased species (males larger than females). This measure of SSD
has the benefits of being symmetric*® and, being on alog scale, allowing
easy visualization of large variation in SSD. We used an arbitrary cut-off
of 10% difference in mass (absolute SSD value ~0.09) to categorize
speciesas either monomorphic (at or below the cut-off) or dimorphic
(aboveit).

Inferring sex-specific evolution

For each of the four tetrapod clades, we used BayesTraits v.4.1.1
(ref. 60) to fit the Fabric model of continuous trait evolution with a
global trend* for log-transformed male and female size. The Fab-
ric model estimates two different types of changes in trait evolu-
tion dynamics along the phylogeny—directional changes (8), which
either increase or decrease a trait value along a branch and affect all
downstream descendants, and evolvability changes (v), which either
increase or decrease the variance of atraitin a clade, but do not affect
the mean trait values. Thus, directional changes can be inferred to
represent directional selection onatrait, whereas evolvability changes
represent differences inthe rate of trait evolution (different potential
to explore trait space). The Fabric model thus enables us to quantify
the phylogenetic positions and magnitude of directional changes in
the evolution of female and male body sizes—and therefore to infer
if observed SSD is driven by selection acting on one sex (for exam-
ple, female size increase coupled with no change in male size or vice
versa), both (for example, female size decrease coupled with male
sizeincrease) or neither (both sexes show no directional changes and
observed SSD derives from random walk).

The numbers, values and positions of both types of changes,
as well as parameters of Brownian motion variance, global trends in
trait evolution and ancestral trait estimates, were identified using an
MCMC sampling algorithm. For each clade we ran four MCMC chains for
10.5 x 107 generations, sampling every 10° generations and discarding
the first 5 x 10° generations as burn-in, under seven different models:
Brownian motion, Ornstein-Uhlenbeck, accelerating or decelerating
evolution (delta), evolvability (equivalent to Fabric without directional
trends), evolvability with aglobal trend, Fabric without aglobal trend
and Fabricwithaglobal trend. We then estimated marginal likelihood
for each model by using a stepping-stone sampler implemented in
BayesTraits using 1,000 stones. We selected the best model for each
sex of each clade with the highest mean marginal likelihood across
all four runs. In all four clades this was Fabric with global trend (Sup-
plementary Table1).

We followed recommendations in ref. 34 by setting a Weibull
prior (k=1.5and A=1.1) on 8 x t effects (directional changes along
a branch of length ¢), which was found to be an adequate prior for
body mass and a Gamma prior (a =1.2 and 8 =15) on evolvability
changes®'. We set Gamma priors on the ancestral trait estimates to
reflect reasonable estimates for each clade: a =25.6 and f = 0.25for
mammals and birds (centred on amean estimate of -601 g and rang-
ingbetween -7 gand 60 kg) and a =4.8 and 8 = 0.5 for squamates and
amphibians (centred onamean estimate of -11 gand ranging between
~0.1g and 1.1kg). We then ensured proper mixing of the chains and
ranalldownstream analyses in R v.4.1.0 (ref. 61). We visually assessed
trace plots from the four runs using the mcmc_trace functionin the
bayesplot package v.1.8.1 (ref. 62) to ensure convergence, combined
all runs using the combine.mcmc function from the runjags package
v.2.2.1.7 (ref. 63) and calculated effective sample sizes for the com-
bined runs using the effectiveSize function from the coda package
v.0.19.4 (ref. 64).

To determine where directional branches occurred along the
phylogenies, we selected the directional changes which exceeded the
2s.d.criteriondescribed inref. 34 inall four runs for each sex. We iden-
tified whether each change was positive (body mass increased along
the branch) or negative (body mass decreased along the branch). We
then ran several analyses to test if SSD evolution is likely to be driven

by sex-specific selection by addressing the frequency of shifts ((1) and
(2) below) and the magnitude of shifts ((3) and (4)):

(1) Toexamineifthe number of positive and negative directional
changes differed within sexes in each category of SSD (female-
or male-biased)—for example, are there more positive than
negative changes in male body size in male-biased species—we
performed binomial tests. For these tests we summed the num-
ber of positive and negative changes for each sex, in each cat-
egory of SSD, across all nodes in the phylogenies (n=601,1,152,
1,077 and 944 for mammals, birds, squamates and amphibians,
respectively), while discarding changes that did not exceed
the 2 s.d. criterion described above (n=2,664, 7,043, 5,194 and
3,793 for mammals, birds, squamates, and amphibians, respec-
tively). Pvalues were adjusted for multiple comparisons using a
Benjamini-Hochberg false discovery rate (FDR) correction.

(2) Toexamine if the number of directional positive and negative
changes differed between sexes in each category of SSD
(for example, are there more positive changes in body size in
male than female size in male-biased species?), we ran bino-
mial tests. For these tests we summed the number of positive
and negative changes for each sex in each category of SSD
across terminal branches only as above.

(3) Toassess whether SSD increases proportionally with di-
rectional change (for example, does SSD become more
male-biased as males increase more in size?) we fitted PGLS
regressions of SSD against the value of directional change
(inlog units, that is, fold changes in mass) in each sex and each
type of change (negative or positive), using the gls function
from the nlme package v.3.1.152 (ref. 65), while estimating the
maximum likelihood value of A. For these tests we used only
the terminal branches in each phylogeny which exceeded the
2s.d. criterion described above and treated the change along
the terminal branch leading to each species as the response
value. In each analysis, we pruned the tree to include only
these species (n =139, 237,289 and 268 for female mammals,
birds, squamates and amphibians, respectively, and n =179,
302, 392 and 376 for male mammals, birds, squamates and
amphibians, respectively).

(4) Totest whether one sex experiences larger directional change
than the other in different SSD categories (for example, do
males, on average, increase in size more than females in
male-biased species?), we fitted phylogenetic multivariate
response models using the MCMCglmm package v.2.32
(ref. 66). For these analyses, we used all branches in the
phylogenies and treated the degree of directional change
along the branch leading to each species as the continuous
response value, after omitting changes that did not exceed
the 2 s.d. criterion described above. We used male and female
directional changes as multivariate Gaussian response values,
set all priors to their default values (nu=0, V=1, alpha.mu=0,
alpha.V=0), ran chains for 1 million generations sampling
every 1,000 generations and discarded the first 10% as burn-
in. We ascertained that acceptance ratios were >0.25, visually
assessed trace plots and calculated effective sample sizes to
ensure proper mixing and exploration of parameter space. We
then estimated the significance of contrasts between female
and male directional change by calculating the proportion of
the posterior distribution of contrasts that does not lie within
the ROPE (region of practical equivalence) using the p_rope
function from the bayestestR package v.0.11.5 (ref. 67).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Data used to run the analyses are available via Figshare at https://doi.
org/10.6084/m9.figshare.20416245 (ref. 68). Results from Bayes-
Traits runs are available via Figshare at https://doi.org/10.6084/
mo9.figshare.20416083 (ref. 69).

Code availability
Code to run the analyses are available via Figshare at https://doi.
org/10.6084/m9.figshare.20416245 (ref. 68).
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Extended Data Fig. 1| Distribution of SSD within tetrapod clades. Boxplots
showing the distributions of SSD in each order of mammals (n = 1,633 species
and 23 orders) and birds (n = 4,098 species and 34 orders) and family of
squamates (n = 3,136 species and 41 families) and amphibians (n = 2,369 species
and 48 families). The red dashed line represents SSD of 0, and the blue dotted
lines represent the cut-off between monomorphic and dimorphic species,
at10% difference in size (absolute SSD value - 0.09). Boxplot are coloured
according to the median SSD value in each clade - red for male-biased,

blue for female-biased, and white for monomorphic. Boxplots are centred on
the median value of each group, with the top and bottom bounds of the box
representing the 75" and 25" percentiles, respectively, and the top and bottom
whiskers representing the maximum and minimum values within 1.5 times

the interquartile range, respectively. Icons from PhyloPic.orgundera CC0 1.0
license: Panthera leo, Margot Michaud; Turdus pillaris, Sharon Wegner-Larsen;
Varanus komodoensis, Steven Traver; Hyla versicolor, Will Booker.
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1.0license: Panthera leo, Margot Michaud; Turdus pillaris, Sharon Wegner-Larsen;
Varanus komodoensis, Steven Traver; Hyla versicolor, Will Booker.

Extended DataFig. 2| Numbers of directional changes in body size throughout
the evolutionary history of tetrapods. Histograms showing the distributions of
directional changes (either increasing or decreasing) for each sex in each of four
tetrapod classes, in three different SSD categories. Dashed grey lines represent
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