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Abstract: As the wealth of evidence grows as to the negative impact of indoor air quality on human
health, it has become increasingly urgent to investigate and characterise sources of air pollution
within the home. Fine particulate matter with a diameter of 2.5 µm or less (PM2.5) is a key cause
for concern, and cooking is known to be one of the most significant sources of domestic PM2.5.
In this study, the aim was to demonstrate the efficacy of combining experimental techniques and
cutting-edge High-Performance Computing (HPC) to characterise the dispersion of PM2.5 during
stir-frying within a kitchen laboratory. This was carried out using both experimental measurement
with low-cost sensors and high-fidelity Computational Fluid Dynamics (CFD) modelling, in which
Lagrangian Stochastic Methods were used to model particle dispersion. Experimental results showed
considerable spatio-temporal variation across the kitchen, with PM2.5 mass concentrations in some
regions elevated over 1000 µg m−3 above the baseline. This demonstrated both the impact that even
a short-term cooking event can have on indoor air quality and the need to factor in such strong
spatio-temporal variations when assessing exposure risk in such settings. The computational results
were promising, with a reasonable approximation of the experimental data shown at the majority of
monitoring points, and future improvements to and applications of the model are suggested.

Keywords: particulate matter; sensors; mass concentration; computational fluid dynamics

1. Introduction

It has long been understood that the air we breathe has an impact on our health,
but, for a large part of the 20th century, indoor air quality (IAQ), except in industrial
premises, was primarily measured by the metrics of thermal comfort and odour, rather than
pollutant concentration [1]. With the advent of ever more densely populated office premises,
the problem of the indoor environment was gradually brought to more widespread public
attention. A combination of the development of new cleaning products, new synthetic
materials for structural and furnishing purposes and the increase in mechanical ventilation
systems caused a spike in the reporting of ailments such as asthma, sinusitis and allergic
dermatitis by the affected workers. The term “Sick Building Syndrome” was eventually
coined in response to this outbreak, to describe all problems caused by a poor indoor
environment [1,2]. Since then, progress has been made in the field of IAQ research, but the
pace has been far from rapid. While the UK applies the advisory guidelines from several
bodies including the World Health Organization (WHO) [3] and the UK Health Security
Agency (formerly Public Health England) [4] to the control of indoor air pollutants, these
are only guidelines and not legislation. This problem is not limited to the UK as the lack
of legally binding regulations for IAQ is a global issue [5]. In the UK, the only legislated
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limits for indoor air pollutant exposure are in the workplace, not the home. This exposure
is calculated assuming the person exposed is a healthy adult, and is hence irrelevant for
a wide demographic of individuals in private housing, including children, the elderly
and those with existing health problems [6,7]. Because of this, developing new regulatory
standards for indoor air quality has been identified as a key priority in the UK [8]. The
recent report from the UK’s Department for Environment, Food and Rural Affairs also
identified current concentrations of indoor air pollutants in UK homes and their trends
over time as being “a major area of uncertainty” due to the dearth of data and, in particular,
the lack of multidecadal datasets of the type available for outdoor air quality [6]. That this
situation should be improved, and swiftly, is demonstrated by the fact that data from the
Global Burden of Disease study indicate that over 90 million global disability-adjusted life
years (DALYs) can be attributed to poor indoor air quality [9].

A major contributor to household air pollution (HAP) is PM2.5, particulate matter
with a diameter of 2.5 µm or less [10]. There is no strict definition for the composition
of PM2.5; it may be of primarily organic or inorganic composition, or a combination of
the two, depending on its origin [11]. This type of particulate matter is fine enough to
penetrate the lungs and circulate within the body via the bloodstream, causing chemical and
mechanical damage in the process. This makes it a causative or exacerbating factor for both
respiratory and cardiovascular diseases [12–15]. Cooking is a key source of PM2.5 within
households and, as an everyday activity, is responsible for both acute and chronic exposure
to PM2.5 [16,17]. In the UK, cooking is usually performed using a gas or electric cooker
rather than a solid-fuel stove [18]. It could thus be incorrectly assumed that, without a
solid-fuel source (which is known to be a high emitter of particles [19]), the contribution of
cooking to overall indoor PM2.5 concentrations is fairly limited. This is categorically not the
case. Local PM2.5 concentrations from cooking depend on a wide range of factors, including
cooking ingredients and technique, as well as the configuration of the individual kitchen
(the variation in these factors being one of the challenges in the characterisation of cooking-
related PM2.5 pollution in the home). Studies have shown that most forms of cooking give
temporary spikes in the concentration of PM2.5 in regions close to the cooking source that
are orders of magnitude above the WHO-recommended 24 h average concentration of
15 µg m−3 [20–23]. Further, global concentrations in the household may remain strongly
elevated for 1-10 h after the original emission event, again depending on the type and
location of ventilation available [23]. Exposure to PM2.5 during cooking procedures is,
therefore, a very tangible risk factor for respiratory and cardiovascular disease, even when
cleaner forms of fuel are used.

It is evident, therefore, that there is a pressing need to fill the data gap relating to HAP
in general and PM2.5 pollution from cooking in particular. To do so will require a broad
range of techniques. In the Chief Medical Officer for England’s 2022 Annual Report, a
key recommendation was that a "better understanding of how we can prevent and reduce
indoor air pollution" needs to be reached as soon as possible [24]. It further noted that, to be
most effective, indoor air quality research must be multi-disciplinary [25]. This is the aim
of the current study: to investigate the evolution of PM2.5 concentrations in the DOMESTIC
kitchen laboratory during stir-frying, using both experimental methods and cutting-edge
computational modelling. The layout of DOMESTIC, along with the modelled domain, can
be seen in Figure 1. Stir-frying is among the cooking procedures which generate the most
PM2.5 by mass, due to the amount of oils used in these dishes and the high temperatures at
which they are cooked [26,27]. This, coupled with the fact that the stir fry is a cheap and
popular dish, makes it an ideal subject for investigation. The computational modelling
technique used in this study is Computational Fluid Dynamics (CFD). CFD has a long
history of effective use in the modelling of indoor air quality problems in a wide range of
settings, including schools, aeroplanes, offices and hospitals, and has most recently been
prominent in modelling the dispersion of droplets containing the SARS-CoV-2 virus [28–31].
When modelling particulate matter dispersion using CFD, there are two main approaches
which can be taken: the Eulerian–Eulerian approach, in which both the fluid and the solid
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phases are modelled as a continuum, and the Eulerian–Lagrangian approach, where the
fluid phase is modelled as a continuum and the individual trajectories of the particles are
tracked by solving their equations of motion (this is known as Lagrangian Particle Tracking,
or LPT) [32]. A full discussion of LPT and its application to CFD modelling can be found
in [33,34]. There are benefits to both approaches, but Eulerian–Lagrangian methods are
known to perform well in unsteady cases, and provide easier access to data such as mass
concentrations [31,35]. For these reasons, the Eulerian–Lagrangian approach was selected
for this work. The accuracy of results from CFD simulations is greatly dependent on the
fineness of the mesh used to spatially discretise the computational domain, the time step
(the temporal increment between computational states) and the choice of model selected
for the fluid turbulence [36]. The rapid development of High-Performance Computing
(HPC) over the past decade has, however, offered the possibility to develop CFD models
which exploit the potential of these new resources. For the current study, both Reynolds-
Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES) turbulence models were
trialled to determine their relative performance as a function of the mesh resolution. The
experimental results of the study acted as validation data for these models. The usefulness
of fully validated numerical models of this type cannot be overemphasised, as they enable
the relatively simple testing of multiple scenarios, including ventilation, complementing
and extending the capabilities of practical experimentation to both investigate emission
events and prescribe mitigation strategies.

Figure 1. The DOMESTIC kitchen laboratory (left) and the modelled domain used for the computa-
tional studies (right).

2. Materials and Methods

2.1. Validation Experiments: The DOMESTIC Kitchen Laboratory

During February–March 2023, an experimental campaign was undertaken at the
Wolfson Atmospheric Chemistry Laboratories at the University of York to investigate
emissions from cooking and to obtain verification data for the computational model. The
experimental work was conducted in the DOMESTIC kitchen laboratory, which consists of
a full-scale kitchen/diner and a bathroom, housed in a heavily insulated crate. This facility
was initially based at the University of Chester [37], and was subsequently transferred to
its current location in 2022. The kitchen is equipped with an electric cooker—evidence
is currently mixed as to whether the use of a gas cooker has a material influence on the
mass of PM2.5 emitted (see [38,39])—and it was desired that, as far as possible, the only
source of PM2.5 was the food itself. Gas cookers are also a notable source of nitrogen
oxides (NOx) pollution in the home [40], and, though these emissions are not the focus
of the current work, this is topic to be investigated in future studies. DOMESTIC can be
ventilated using its window or an extractor fan, but, in this set of experiments, the window
was kept closed and the extractor fan was not used. DOMESTIC is also equipped with a
direct-exhausting cooker hood, but, again, this was not used in the present study as the aim
was to investigate an extremely-low-ventilation (“worst-case”) scenario first. However, this
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will certainly be utilised in future studies looking into mitigation approaches. According
to previous measurements taken using acetonitrile tracer releases, the Air Change Rate
(ACR) for DOMESTIC under these conditions is 0.77 h−1 (standard error 0.064 h−1) [37].
As the focus of the experimental work was the kitchen area, the connecting door between
the kitchen and the bathroom was kept closed during the experimentation, making the
dimensions of the facility 4.3 × 2.2 × 2.3 m (l × w × ht) (see Figure 2a).

(a) (b)

Figure 2. (a) Layout of DOMESTIC indicating the relative locations of the anemometers (A1 and A2)
and QuantAQ (QAQ) and NuWave (D1-6) sensors. PM sensors were placed at approximately head
height, with the exception of D5, which was at table height. Arrows indicate the x- and y-direction of
the anemometer measurements, with the positive z-direction being towards the reader. (b) Close-up
of anemometer locations.

2.1.1. Sensors and Instrumentation

Two Gill Instruments WindSonic M ultrasonic 2D anemometers [41] were placed in
the vicinity of the cooker to monitor airflow around the cooking source. This type of
anemometer is more commonly used outdoors but is robust and has a good time resolution
(0.25 s), and anemometers of this brand have been successfully used in similar environ-
ments previously [42,43]. The anemometers measured velocity in the x- and y-direction
only—these directions are illustrated in Figure 2a—and a close-up of the location of the
anemometers is shown in Figure 2b. For the locations of these and all sensors within the
DOMESTIC kitchen laboratory, see Figure 2a and Table 1.

Table 1. Locations of anemometers and PM sensors. x, y and z locations are relative to the back
right-hand corner of the room, as shown in Figure 2a.

Sensor Abbreviation/Full Title
x

Centrepoint
(m)

y
Centrepoint

(m)

z
Centrepoint

(m)

A1/WindSonic M Anemometer_1 3.55 0.16 1.1
A2/WindSonic M Anemometer_2 3.55 0.16 1.4

D1/NuWave AirSentric WB55 AR10-B-118-A_D1 1.55 1.55 1.92
D2/NuWave AirSentric WB55 AR10-B-118-A_D2 4.28 0.65 1.27
D3/NuWave AirSentric WB55 AR10-B-118-A_D3 0.76 0.81 2.25
D4/NuWave AirSentric WB55 AR10-B-118-A_D4 2.8 1.55 1.92
D5/NuWave AirSentric WB55 AR10-B-118-A_D5 4.08 2 0.74
D6/NuWave AirSentric WB55 AR10-B-118-A_D6 2.34 0.35 1.92

QAQ/QuantAQ MODULAIR-PM 2.5 1.55 1.92

A QuantAQ MODULAIR-PM low-cost sensor (QuantAQ, Somerville, MA, USA) was
placed on the exterior of the kitchen laboratory and an identical unit was placed within the
kitchen laboratory, for indoor–outdoor comparisons of PM concentrations. These sensors
consist of combination of a nephelometer (Plantower PMS5003, Plantower Technology,
Nanchang, China) and an optical particle counter (Alphasense OPC-N3, AlphaSense, New
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York, NY, USA). The spectra from these are combined to provide PM1, PM2.5 and PM10
mass concentrations. The time resolution of these sensors is 1 min, and the sensing range for
particulate matter is 0–2000 µg m−3 (concentrations above this point may register, but their
reliability is not guaranteed) [44]. The QuantAQ sensor was selected as it has performed
well in independent tests against high-cost sensors such as the Teledyne API T640 (Teledyne
API, San Diego, CA, USA) and the GRIMM 11-D aerosol spectrometer (GRIMM, DURAG
Group, Hamburg, Germany), with strong correlations between the sensors, although the
QuantAQ showed a tendency to overestimate PM2.5 concentrations by around a factor of
1.5–2 during sudden peaks [45]. Considering the differential cost of around GBP 16,000,
this was considered to be an acceptable trade-off.

Six low-cost NuWave AirSentric WB55 AR10-B-118-A wireless indoor air quality
monitors (AirSentric, Manchester, UK) were chosen and distributed to spatially discretise
the domain. These sensors measure CO2, PM1, PM2.5, PM10, temperature and humidity,
with a time resolution of 20 s [46]. These were also compared to the GRIMM in a recent study
and showed good correlation but some variability—they were found to be the best of the
five low-cost sensors tested in this study in terms of performance [47]. However, a limitation
of these sensors is their sensing range for particulate matter, which is 0–1000 µg m−3,
potentially below the expected concentrations near the source [46].

2.1.2. Cooking Protocol

A standardised stir-frying protocol was followed, based on the protocol developed
in recent studies [37,48,49] in which the weight, freshness and source of the ingredients
are tightly controlled, along with the movements of the experimenter during the cooking
process. The only alteration across the seven repeats which were performed was that, in
three of the repeats, the same weight of chicken was substituted for tofu, to investigate
the effect of this ingredient. The full protocols, including ingredient lists, can be found
at the STFC Research Data Depository [50]. For each repeat, the ingredients were pre-
pared separately, brought into the kitchen laboratory, placed into a pan heated to 180 ◦C
and cooked for 12 min on the back-right ring of the electric ceramic stove (KDC5422A,
Beko, Watford, UK) in a 24 cm Morphy Richards stainless-steel frying pan. Following the
12 min cooking period, the pan was covered with an airtight seal and immediately removed
from the kitchen laboratory. The container was then vented for a minimum of 2 h until the
background PM2.5 concentrations had returned to base level.

2.2. Numerical Models

2.2.1. The Code_Saturne Lagrangian Particle Tracking (LPT) Module

While code_saturne offers the option to include turbulent dispersion in the LPT model,
this has historically caused overprediction of particle deposition [29,51], and, during initial
tests, this proved to be the case for the current simulations. Therefore, particle turbulent
dispersion was omitted here. This should not have a material effect on the accuracy of
the results, due to the small size of the particles considered here [31]. It should be noted,
however, that pending updates to the particle trajectory algorithm are likely to improve
its performance in this area [52]. Thus, when using one-way fluid–particle coupling,
the equation for particle position is as follows:

dxp,i = Up,idt

where xp,i is the fluid particle displacement over the time step dt and Up,i is the particle
velocity. The equation to update particle velocity is as follows:

dUp,i = −
1
ρ

∂⟨P⟩

∂xi
dt −

1
TL

(Ui − ⟨Ui⟩)dt +
√

C0⟨ε⟩dWi

where ρ is the fluid density, P is the fluid pressure, TL is the Lagrangian timescale of
the fluid particle velocities, C0 is a constant, ⟨ε⟩ is the dissipation rate of the turbulent
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kinetic energy and dWj is a Wiener process, which represents the turbulence-induced
random fluctuations. This is the simplified Langevin model [34,51]. The code_saturne
LPT module is designed for both structured and unstructured meshes, and the complete
numerical approach covering the fluid and particle phases can be described as a hybrid
Eulerian–Lagrangian approach, although the authors of the model note that a more accurate
description would be a Moment/Probability Density Function hybrid approach [53].

2.2.2. CFD Model of DOMESTIC

A block-structured grid of either c. 40 or c. 170 million cells was generated using the
meshing software SALOME, version 9.9.0 [54]. For the solution of the Navier–Stokes (NS)
equations in their unsteady, incompressible form, the finite volume solver code_saturne
(version 8.0.3) was used [55,56]. Full details of the numerical approach used by this solver
can be found in the code_saturne Theory Guide [57]. As, in this case, density variations were
expected to be due primarily to natural convection, the Boussinesq approximation was used,
in which density variations are represented only via the buoyancy term in the momentum
equation [58]. Due to the shortness of duration of the experiment, and the low ACR seen
in the kitchen laboratory, no air leakage was included in the model. The convective terms
were discretised in space using a centred (second-order accurate) approach, and the Semi-
Implicit Method for Pressure-Linked Equations—Consistent (SIMPLEC) algorithm was
used for pressure–velocity coupling. A temperature of 11.4 ◦C was used for the initial
temperature of the air, the floor was given an initial temperature of 8.8 ◦C, the ceiling was
given an initial temperature of 11.4 ◦C and the adiabatic condition was applied to the side
walls. The no-slip condition was used for all solid walls. To represent the frying pan,
a cylinder was defined in the computational domain, and the surface temperature of this
was maintained at 180 ◦C via a heat source term. To represent the effects of the steam from
cooking, an additional momentum source term in the z-direction (directly upwards towards
the ceiling) was applied in the region surrounding the frying pan. For the RANS approach,
the EBRSM turbulence model [59] with a two-scale wall function model, along with the
Daly Harlow method for the turbulent diffusion term, was used. For the LES approach, the
Dynamic Smagorinsky [60] and WALE [61] sub-grid-scale models were tested. Turbulent
heat fluxes were modelled using the Simple Gradient Diffusion Hypothesis (SGDH). A
constant time step of 0.01 s was used for both the 40 and 170 million cell cases, except the
170 million cell WALE case, where a constant time step of 0.005 s was used. For a discussion
of the reasoning behind this decision, see Appendix A.

2.2.3. Particle Emission Modelling

Particles with an initial velocity and temperature of the local fluid were injected at the
location of the frying pan. Particles were rigid and spherical, with a density of 1.0 g cm−3,
representative of a generic organic aerosol [20]. Particle composition was assumed to
be homogenous. Following a 2 min tapered increase to represent the increase in the
emission rate seen at the start of cooking, the emission rate for PM2.5 was held constant at
3.2 mg min−1. This rate was derived from the experimental data and a recent experiment
using a similar recipe in which emission rates were calculated [48]. Based on the range of
mass concentrations observed by Farmer et al. [20], this rate was subdivided into three
categories of particles: those with a diameter of 0.5 ± 0.001 µm, those with a diameter of
1.0 ± 0.001 µm and those with a diameter of 2.5 ± 0.7 µm. The respective emission rates
were 0.8, 0.8 and 1.6 mg min−1. Considering the rate of particle emission and the duration
of the study, statistical weighting was used to reduce the computational intensity, with each
injected computational particle representing approximately 265 actual particles. As the
particle flow was relatively dilute in relation to the bulk phase, one-way fluid–particle
coupling was used. The stochastic differential equations were integrated using a first-
order scheme. To account for dry deposition, on contact with any surface, the particles
were assumed to deposit on that surface using the “deposition and elimination” condition
available in code_saturne. Particle concentrations were averaged across a 20 cm3 box
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surrounding the midpoint of each sensor. As in the experimental cases, the computational
cases were run for 12 min in-simulation time, plus an additional initial minute to allow
the frying pan to reach 180 ◦C. Computations were performed on ARCHER2 and on the
Scientific Computing Application Resource for Facilities (SCARF). Postprocessing of results
was carried out using ParaView [62] for 3D images and Matplotlib for graphical images.

3. Results and Discussion

3.1. Indoor–Outdoor PM2.5 Ratios During Experimentation

Tracking the indoor and outdoor PM2.5 data from the QuantAQ sensors demonstrated
that the outdoor PM2.5 concentrations were not elevated during the cooking period. This
confirmed that outdoor sources made a minimal contribution to the indoor concentrations,
meaning that the observed elevated indoor concentrations can be reasonably attributed to
the indoor source (see Figure 3).

Figure 3. QuantAQ indoor–outdoor ratios during the 12 min stir-frying experiments in DOMESTIC.
Dotted lines indicate outdoor readings, solid lines indoor readings.

3.2. NuWave PM2.5 Data

As Figure 4 shows, although rigorous standardisation was applied across all exper-
imental runs, there was noticeable variation in the PM2.5 readings between certain runs,
particularly at sensor D2 (Figure 4b), the sensor closest to the source. This was expected,
as previous tests demonstrated that the stir-frying process is not only one of the higher-
emitting cooking processes, but also gives considerably variable results [63]. One reason
for this is likely the technique required, which involves rapidly shaking the pan at in-
tervals. The total mass of particles emitted is, therefore, at least in part, dependent on
experimenter technique. The volume of steam generated can also have an impact on sensor
readings. In the experimental cooks, humidity within the kitchen laboratory was often high,
over 60% Relative Humidity (RH) even before cooking commenced, and the stir-frying
process generated a large volume of steam. RH readings at the end of the experimental
period were, with the exception of at the D5 sensor, regularly between 80 and 90%. RH
readings at D2 showed rapid, broad fluctuations, indicating that clouds of steam likely
passed the sensor (all humidity data for all runs can be found at the STFC Research Data
Depository [50]). Dependent on the hydrophobicity of the particles, particle-bound water
can distort low-cost sensor readings by increasing light scattering [63,64] and this may
have acted to artificially inflate the readings of mass concentrations of PM2.5 at this sensor.
The measured mode particle diameters were consistently the largest at this sensor (see
Figure A3), which correlates with the higher PM2.5 concentrations seen at this sensor. This
may, again, indicate that particle size is being inflated by local humidity. The variation
between the runs does not seem to correlate with differences in the cooking material. For
example, the readings for D1 Run 7 (using chicken as the protein component of the stir fry)
are comparable to the readings for D1 Run 4 (using tofu) (see Figure 4a), with a similar
pattern being observable at the D3 sensor (see Figure 4c). For this reason, all experimental
runs were included in the calculation of the mean concentration used for comparison with
the simulated results. Note that, for Runs 2, 3 and 4, the sensor D5 was moved to floor
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level to test PM2.5 concentrations at this level (see Figure 4e). These readings have therefore
been excluded from the calculation of mean concentrations at this sensor used later in these
results. In terms of the concentrations observed at each sensor, it is clear that there was a
noticeable difference in the readings dependent on the placement of the sensor. The D5
sensor, which was placed either at table height or on the floor, showed the lowest readings
(with a maximum of around 120 µg m−3), while D3, the ceiling sensor closest to the kitchen
laboratory exit (and furthest from the cooking source), had the highest readings after D2,
with peaks in concentration of up to 5000 µg m−3. This is likely because it was situated in
the corner of the room, which allowed clouds of particle-laden air to gather and stagnate
rather than dispersing as they did for the more centrally positioned sensors.

Figure 4. NuWave readings at sensors D1–6 (a–f) for the seven 12 min stir-frying experiments.
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The guaranteed sensing range of the NuWave sensors should be borne in mind when
interpreting these peaks; however, even making an allowance for a reduction in accuracy
above concentrations of 1000 µg m−3, it is clear that the 12 min stir fry increased PM2.5
within the breathing zone of the kitchen laboratory by several orders of magnitude. This is
further borne out by the results from the QuantAQ sensor, positioned in the centre of the
kitchen laboratory, which showed rather more standardised readings across the seven runs,
with peaks of around 800 µg m−3 (see Figure 3). These concentrations align with those
observed by O’Leary et al. for a similar cook [48], albeit at a greater ACR (around 3 h−1

vs. 0.77 h−1). They are, however, considerably higher than the maximum of 400 µg m−3

reported by Farmer et al. in the HOMEChem study [20] when stir-frying a similar recipe.
In the latter study, an HVAC system was used, which would have mitigated the indoor
concentration levels. As most interior room doors were left open in the 250 m3 UTest house
during the HOMEChem cooking experiments, the mixing volume in the HOMEChem study
was also much greater than that in DOMESTIC, which, again, likely reduced the observed
concentrations. The difference seen in the DOMESTIC PM2.5 readings dependent on sensor
position in this study indicates the importance of using a multi-point sensor approach
when assessing the impact of an indoor pollutant source on the surrounding environment.
Clearly there is the potential for considerable spatial variation in concentrations even in
a relatively small space. Of course, in a real-life kitchen, there is likely to be considerably
more mixing, due to additional human movement and ventilation sources. However, even
accounting for this, the existence of localised zones of higher PM2.5 concentration should
be considered.

3.3. Mode Particle Diameter and Contribution of PM1 to PM2.5 Mass Concentrations

Number size distributions—that is, the contribution of particles of various diameters
to the total particle count—are of interest when conducting air quality investigations.
This is because particles in the accumulation mode, around 0.01–1 µm diameter, remain
airborne and stable for considerably longer than those that are either smaller (which tend
to agglomerate to accumulation mode size) or larger (which normally deposit at a faster
rate, dependent on respective densities) [65]. This then has implications for longer-term
exposure. Figure A3 shows the mode particle diameter measured by the NuWave sensors
during the seven stir fry cooking experiments. This was around 0.575 µm, that is, in the
accumulation mode. The mode diameter increased over the course of the experiment,
peaking for all sensors except D5 soon after the chicken/tofu was added to the pan (with
the highest reading being at the D2 sensor, around 1.1 µm, before decreasing again). It
is likely that the addition of the cold protein source to the hot oil generated the rapid
production of larger particles via the ejection of oil droplets from the pan, and this effect
was then reduced once the mixed vegetables, noodles, etc., were added. The full data on
particle counts for PM0.5, PM1, PM2.5, PM4, and PM10 for all experimental runs can be found
at the STFC Research Data Depository [50]. In terms of the relative contribution of PM1
to PM2.5 concentrations, there is some disagreement between the NuWave and QuantAQ
sensors. According to the NuWave readings (except for D2, the sensor closest to the source),
the majority of the mass of PM2.5 was made up of particles of under 1.0 µm in diameter,
while the QuantAQ sensor indicated that around 50% of the mass concentration was made
up of PM1 (see Figure A4). The QuantAQ sensor was relatively near NuWave sensors D1
and D4, and along the same plane in the kitchen laboratory, so it seems unlikely that this
was a regional variation. While the NuWave readings are in the majority, the QuantAQ
ratios agree with Farmer, 2019 [20], and, hence, for the modelling, these are the data that
informed the particle size range chosen for the computational model. The disparity does,
however, illustrate another challenge of using low-cost sensors, which is that calibration
processes may vary quite considerably, and the particles used for calibration are often
chemically and physically dissimilar to the type of particulate matter commonly generated
by cooking [48]. It is likely that at least part of the disparity seen here between the sensor
types can be attributed to different calibration protocols.
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3.4. Experimental Velocities

The experimentally measured velocities for both anemometers in all directions were
low, with the maximum range being around ±0.3 m s−1. This was as expected for this
environment without natural or artificial ventilation, as the air currents were driven by
human movement and the heat from the cooking experiment only. As Figure 5 shows,
there was a perceptible increase in the velocities registered at the anemometers as soon as a
member of the experimental team entered DOMESTIC. The example given is for Run 1,
but the same pattern was observed for all experimental runs. This shows that, despite the
low measurements, the anemometers were registering actual changes in the local velocities
rather than these readings representing instrumental noise. One challenge with these data
is that the contribution of human movement to the overall observed velocities cannot be
easily isolated. As Figure 5 shows, there was an increase in the velocity measurements just
before and immediately after the pan reached 180 ◦C. However, this coincided with the
experimenter stepping closer to the anemometers to begin cooking, and so the heat source
may not have been the only cause of this increase. As discussed below, this added some
difficulties in the comparison with the computational model.

Figure 5. WindSonic M readings for Run 1 (tofu), showing the 10 min period before DOMESTIC was
entered and the experimental period.

3.5. Experimental vs. Simulated Velocities

Figure 6 shows the differences between the experimental and computational velocities
over the course of the experiment. The 170 million cell WALE results are presented here, as
these are representative of the results from all six cases, which were relatively homogeneous.
For anemometer 1, the x-direction computational velocities showed a difference of around
±0.05 m s−1 for the first 4 min, after which the experimental results became progressively
more negative than the computational results (Figure 6a). In the y-direction, the difference
was around ±0.05 m s−1 with occasional peaks to 0.1 m s−1(Figure 6b). The largest differ-
ences (up to −0.3 m s−1) were seen in the x-direction velocities for anemometer 2. Here, the
computational model predicted positive velocities, while those measured experimentally
were uniformly negative (see Figure 6c). As Figure 7a shows, the computational model
did predict regions of negative x velocities of up to −0.25 m s−1 around the frying pan,
but not at the specific point at which the anemometer 2 monitoring point was set. The
y-direction velocities for anemometer 2 showed a range of difference around ±0.12 m s−1,
although most differences were around ±0.05 m s−1 (Figure 6d). Figure 7b visualises these
velocities across a plane intersecting the pan. These discrepancies could stem from a variety
of sources. Experimenter movement may have been a substantial contributing factor to the
experimental velocities, and this movement did not appear in the model. The stir-frying
process also generated a large amount of steam. In the computational model, some of the
effects of this were represented by a momentum source term in the z-direction, but this is
still a simplification of the actual effects. Lastly, the structure of WindSonic M anemometers
is fairly bulky, and there is a risk that this structure may distort the fluid velocities around
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them. This is an issue with using these larger anemometers, where there is a trade-off
between the increased sensitivity that they provide and their increased size.

Figure 6. Differences between the mean experimental x and y velocities at anemometers 1 and
2 and the velocities predicted by the WALE 170 million cell mesh model (Exp. = experimental,
Comp. = computational). As the experimental velocities oscillated widely, velocities have been
averaged over 1-s intervals in order to better visualise trends.

(a) (b)

(c)

Figure 7. (a) X and (b) Y velocities across a plane intersecting with the frying pan within the
DOMESTIC model. (c) Temperatures across a plane intersecting with the frying pan within the
DOMESTIC model. All images are from the 170 million cell WALE case, and the results shown are
from the final minute of the 12 min cooking period.
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3.6. Experimental vs. Simulated Temperatures

Despite DOMESTIC having heavy insulation, due to the wide external fluctuations
between temperatures on different experimental days, it was not possible to standardise
the starting temperatures within the kitchen laboratory between each run. In every case,
however, a steady increase in temperature was observed, making a comparison of the ∆T
for each sensor and run feasible. As Figure 8 shows, certain trends are visible. As expected,
the sensor closest to the heat source, D2, consistently registered the highest increase in
temperature, normally of approximately 1.75 ◦C. Similarly, the sensor placed on the table
(D5) consistently registered the lowest increase in temperature, of under 0.3 ◦C. The other
sensors, all of which were hung from a gantry on the ceiling, showed reasonably similar ∆T
results, which is encouraging as it indicates the repeatability, and thus the reliability, of the
readings. For the 170M computational cases, the Dynamic Smagorinsky and WALE cases
both gave a similar performance, with a temperature increase at all simulated monitoring
points that overestimated the observed experimental results—except for at D2, the closest
sensor to the pan, where a good agreement was seen. A slightly lower overprediction
was seen for the EBRSM cases for all monitoring points except D5. One cause of these
overpredictions is likely that the heat-damping effect of adding ingredients to the pan was
not represented in the model, which assumed that the pan temperature remained constant
at 180 ◦C. Examining the simulated temperature distributions in the wider domain, they
appear feasible, with a typical thermal plume above the heat source and a gradual warming
of the circulating air which does not, at the end of the 12 min, reach the lower levels of the
room (see Figure 7c).

Figure 8. Comparison of mean experimental ∆T with those predicted by the Dynamic Smagorinsky,
WALE and EBRSM 170 million cell mesh models (t. s. = time step).

3.7. PM2.5 Simulated Results

Particle dispersion progressed as expected in the simulations, with a high-concentration
region forming directly around the cooking zone and spreading outwards through the
breathing zone over the 12 min cooking period (see Figure 9). For the 40M cell meshes (see
Figure 10), both LES cases showed a trend of underestimating PM2.5 concentrations, except
at the D5 sensor, where the lowest experimental concentrations were observed; here con-
centrations are, instead, overestimated, as shown in Figure 10e. It must be borne in mind,
however, that this is a comparison with a mean concentration from the experimental results.
These had a fairly wide range, with final concentrations of over 120 µg m−3 observed for
one of the tofu cooks (see Figure 4e). Higher concentrations at this point were, therefore,
evidently possible. The EBRSM 40M cell case seriously overpredicted the results (up to
triple the experimental readings) at all sensors except the D2 sensor, which, as for the LES
cases, was generally underestimated.
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Figure 9. Particle dispersion across two planes in the kitchen laboratory after (a) 1 min, (b) 4 min,
(c) 8 min and (d) 12 min. Results from the 170 million cell WALE case.

Increasing the mesh resolution to 170M cells generally improved the fit to the exper-
imental results. This was expected as (for LES) mesh refinement not only improves the
accuracy of the physics of the fluid flow via better resolution of the large eddies, but also
improves the accuracy of particle deposition mechanics [66,67]. The connection between
mesh resolution and accuracy is more complex for the RANS/EBRSM approach, but, again,
it should still improve particle deposition mechanics. Some overestimations were observed,
particularly at D1 and D6 (Figure 11a,f), and the overestimations at D5 seen in the 40 million
cell cases were also apparent (see Figure 11e). Readings at D2 were also still underesti-
mated (Figure 11b) although this underestimation decreased for the LES cases. All cases
demonstrated a relatively linear increase in PM2.5 concentrations at all sensors except D5.
This is in contrast to the experimental results, which showed specific peaks, most especially
at the point at which the noodles were added to pan and cooked, between minutes 6.5
and 9.5. The steady emission rate assumption used in the model appears to be insuffi-
cient to represent the experimental emission rates, which apparently varied significantly,
and not necessarily predictably (judging from the individual experimental results seen
in Figure 4). The model emission rate was based on the work of O’Leary et al. [48], who,
using six repeats, found the mean emission rate for a similar dish that ranged between
2.3 and 4.2 mg min−1 depending on the experimental run. It is likely that the use of a
variable emission rate within the model would more accurately capture the evolution of
concentrations, although establishing the appropriate timing and scale of these variations
in experimental conditions would be challenging due to the sheer intrinsic variability of
such experiments. In contrast, at sensor D2 (Figure 11b), while the 170 million cell cases
showed higher concentrations at this sensor than the 40M cases, they were still, at the
majority of points, many times lower than the experimental results. As discussed above,
it is possible that the PM2.5 concentration readings at the D2 sensor were distorted by the
steam generated during cooking, due to the proximity of this sensor to the cooking source.
The lower concentrations observed in the simulations are likely due to a combination of this
fact and the need for the gusting steam present in the experimental conditions to be better
represented in the model. In addition to a more in-depth consideration of the variability of
the source emission rate, the incorporation of non-spherical particles, and the exploration of
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the potential impact of particle coagulation, is also recommended for future research. Once
reliable results can be produced in sealed conditions, the model could then be expanded
to include ventilation scenarios, to investigate the most efficient mitigation strategies to
protect householders during cooking.

Figure 10. Results for the 40M Dynamic Smagorinsky, WALE and EBRSM cases for PM2.5 concentra-
tions during cooking compared with the experimental results. (Note that concentration data were col-
lected every 50 iterations, but have been smoothed to match the frequency of the NuWave readings).
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Figure 11. Mean experimental results compared against simulated results from 170M meshes for
PM2.5 concentrations during experiments. (Note that concentration data were collected every 50 iter-
ations, but have been smoothed to match the frequency of the NuWave readings).

4. Conclusions

The experimental results demonstrated the speed at which PM2.5 mass concentrations
can rise during this kind of cooking in unventilated areas, with concentrations at certain
points reaching nearly 100 times the WHO-recommended 24 h average maximum in under
8 min. This indicates both the importance of appropriate ventilation even for short episodes
of cooking and that multi-point monitoring for PM2.5 is key for assessing exposure risk.
The CFD models showed some agreement with experimental results, but discrepancies in
key variables were observable in both the RANS and LES cases. It was evident that results
were sensitive to both the fineness of the mesh and the time step relative to the mesh size,
with the EBRSM case being apparently the most vulnerable to the influence of these factors.
Going forward, the impact of temperature damping, steam and emission rate variability
should be investigated, and the addition of particle turbulent dispersion considered.
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Appendix A

There were two main criteria for the time step selection. Firstly, that the Courant
number (which represents the transport of information across a cell per unit time) remained
below one. This prevents information being propagated across multiple cells per time step,
causing numerical inaccuracies [68]. Secondly, that the selected time step gave reasonable
convergence on the computational data. For the LES 40 million cell cases, there was good
enough convergence between the PM2.5 data using a 0.02 s time step and a 0.01 s time
step to justify using the 0.02 s time step (see Figure A1). However, the EBRSM PM2.5
concentration readings were extremely different between the 0.02 s and 0.01 s time step
cases. Less discrepancy was seen between the 0.01 and 0.005 s EBRSM cases, but there
were still large differences at certain points, of up to around 550 µg cm−3 (see Figure A1).
Reducing the time step further would have considerably increased the computational
requirement and, for this reason, it was decided that a 0.01 s time step (while is likely
unnecessarily low for the LES cases) gave a better indication of the trend in the EBRSM
case. For the 170 million cell cases reasonable convergence was seen for the WALE case
between the 0.01 and 0.005 s time steps (see Figure A2), with maximum differences in
PM2.5 concentrations of up to 125 µg cm−3 excepting at sensor D3, where differences of
up to around 140 µg cm−3 were seen (see Figure A2. Given the computational intensity
of the lower time step, it was decided to use the larger time step for both the Dynamic
Smagorinsky and the EBRSM 170 million cell cases. However, it would be interesting to
investigate in the future if the EBRSM 170 million cell case is more sensitive to time step
reduction than the equivalent WALE case.
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Figure A1. Comparisons between computational results using different sizes of time steps for the
40 million cell mesh.
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Figure A2. Comparisons between the results for the 0.01 and 0.005 s time step cases for the WALE
170 million cell case.
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Appendix B

Figure A3. The mode particle diameter across the duration of the stir fry (averaged across the seven
runs), as measured at the NuWave sensors.
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Figure A4. Mean NuWave and QuantAQ PM2.5 and PM1 readings over the course of a 12 min stir
fry experiment.
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