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Abstract: The successful progression of therapeutic antibodies and other biologics from the laboratory to 
the clinic depends on their possession of “drug-like” biophysical properties. The techniques and the 
resultant biophysical and biochemical parameters used to characterize their ease of manufacture can be 
broadly defined as developability. Focusing on antibodies, this review firstly discusses established and emerging biophysical 
techniques used to probe the early-stage developability of biologics, aimed towards those new to the field. Secondly, we describe 
the inter-relationships and redundancies amongst developability assays and how in silico methods aid the efficient deployment of 
developability to bring a new generation of cost-effective therapeutic proteins from bench to bedside more quickly and sustainably.
Keywords: developability, biophysics, protein, antibody, analytical techniques

Introduction: The “Biologics Era” and the Drug Discovery Pipeline
Therapeutic proteins, or biologics, interact with their targets with a different mechanism of action and often greater 
specificity than their small-molecule counterparts, giving rise to fewer side-effects.1 These features have thus made the 
development of proteins as therapies desirable over the past few decades. The advent of recombinant DNA technology in 
the 1970’s and 1980’s brought the biopharmaceutical industry into its modern era.2–5 Prior to this, therapeutic peptides 
and proteins derived from animal6 or donor sources (eg insulin7 and blood factors8) were used to treat patients deficient 
in these vital macromolecules.5 A further vital breakthrough was the development of hybridoma technology by Köhler 
and Milstein,9 and using this approach, the first monoclonal antibody (mAb) therapy (Orthoclone®) was approved by the 
Food and Drug Administration (FDA) in 1986.10 Since then, many technological breakthroughs have been made,11 

including a variety of display methods, (such as phage-4 and ribosome display12) that now allow the routine and efficient 
identification of highly avid mAbs.13,14 Additionally, mAbs have additional modes of action (effector function) afforded 
to them through their crystallizable fraction (Fc) region; the isotype of the antibody can modulate its interaction with 
different receptors, eg, neonatal receptor allows for “recycling” of the molecule from the serum giving a long half-life15 

or interaction with Fcγ receptor IIIa to trigger antibody-dependent cellular cytotoxicity.15,16 By contrast, peptide 
therapeutic agents lack such diverse modes of action nor a means of extending their half-life; unnatural amino acids 
or chemical modifications are necessary to improve this. For example, the blockbuster type-2 diabetes and anti-obesity 
drug, Ozempic® has two amino acid substitutions/modifications (Ala8 to α-aminoisobutyric acid and Lys34 to Arg) in 
addition to conjugating a C18 fatty acid via a hydrophilic linker to the ε-amino group of Lys26 in the semaglutide 
peptide. This increases its half-life by several days compared to the wild-type peptide.17,18

High target affinity, however, is only one feature that is required for a successful mAb therapeutic to transition from 
“bench to bedside” (Figure 1).19 These additional properties, identified over the last forty years include specificity, 
potency and manufacturability, and are probed using a “toolkit” of different techniques.20 The process of identifying 
whether any initial “hit molecules” possess the critical quality attributes required for the economic manufacture of an 
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efficacious and safe medicine (Figure 1b) is known as “developability”.21–23 The varied physicochemical profile of 
a molecule needs to be evaluated using multiple different methods, with each method probing (mainly) one specific 
feature, eg, hydrophobicity Figure 1. Technological advancements in instrumentation, computation and fundamental 
science have meant that this toolkit is always changing in terms of size and contents.20

In this review, we survey the array of biophysical techniques used in early-phase drug discovery to aid the selection of 
developable biopharmaceuticals. Focusing on antibody-based therapies, commonly used experimental and in silico 
methods are discussed, prefaced with a simple overview of how they work. New techniques are then highlighted 
together with the potential of machine learning and artificial intelligence to exploit the ever-increasing quantities of 
training data, which together may rationalize the developability framework. This is of increasing importance as a wide 
range of next-generation therapeutics based on mAb scaffolds with more challenging biophysical properties for 
manufacturing are entering development.24 This is a challenging yet exciting time, with biophysical characterization 
fundamental in the development of the next-generation of therapeutic proteins.

Folding and Functionality: From Conformational to Colloidal Stability
Before we look at the methods used to analyze therapeutic proteins, it is important to consider the species one needs to 
analyze in term of their size, abundance and stability (thermodynamic and kinetic); all of which can be modulated by 
their physico-chemical environment. We define the native state as the correctly folded three-dimensional structure of 
protein through which desirable biological function is achieved (Figure 2). Given its functional importance within the 
context of the biologics sphere, the characterization of this state, excursions from it and the parameters that affect it are 
a key part of drug developability screening.25,26 It should be noted that these principles apply to all globular proteins, not 
just therapeutic mAbs.

Relatively harsh conditions (eg extremes of pH,27–29 temperature30–32 or in the presence of chaotropic denaturants 
such as urea,33,34 guanidine hydrochloride34,35 or organic solvents)36,37 will bring about the global unfolding of a protein 
(Figure 2). Unfolded proteins can self-associate and aggregate due to exposure of previously buried hydrophobic residues 
to the solvent. There is a consensus in the literature25,38,39 that for biopharmaceuticals, most aggregation takes place from 

Figure 1 Overview of the drug development pipeline. (a) Screening libraries of molecules to identify hits against the target(s) of interest will whittle the number of 
molecules down from several thousand to tens of molecules. An array of developability assays will be employed to interrogate these hits, with the most successful 
undergoing further tests to ascertain if they will progress to the clinic. These clinical leads have their sequence locked at this point, with late-stage formulation deciding the 
dosage and delivery method. Low quantities of material are produced (tens of milligrams from tens–hundreds of mL of cell culture) for early development, increasing to gram 
and kilogram scale (from thousands of liters of cells) at the clinical end. The cost of clinical trials (both financially and in terms of patient benefit) means that increased risk is 
attached to molecules that reach the clinic, thus developability assays and the data they generate are so important. The blue region represents the scope of this review. (b) 
Ultimately, one aims to use developability assays to find potent molecules, with no off-target interactions that can be made easily, at scale and administered safely into 
patients.
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a misfolded state, brought about by perturbations to the native state by physical, chemical or mechanical means. For this 
review, we define an aggregate as a proteinaceous entity comprising two or more mis- or un-folded species.40

Colloidal stability refers to the dispersity of the sample, ie, a low dispersity sample contains species of mainly one 
size, eg, monomers, whereas a highly disperse sample would contain monomers and aggregates over a broad range of 
size/length scales.41,42 While it is established that under certain conditions, proteins can self-associate into a solid-state 
crystal lattice (ie native state aggregation),43 many have shown that proteins can self-associate and undergo liquid–liquid 
phase separation (Figure 2).44–46 While crystallization is being explored as an alternative means of purifying proteins at 
scale,47 both of these aggregation phenomena are generally deleterious for mAbs during production.

In-Silico Analysis of Therapeutic Protein Sequences: Identifying Risks and Liabilities
A plethora of computational methods have been developed to aid the development of therapeutic proteins (Figure 3).48–50 

Generally, these algorithms use a sliding window of primary sequence to compute an output score describing a certain 
biophysical property such as net charge or hydrophobicity on a “per residue” basis or averaged over the entire protein.51 

Experimentally relevant conditions can often be fed into the algorithms to tune the output, eg, changing pH or ionic 
strength, which are known to influence aggregation kinetics by affecting electrostatic interactions between proteins.25 

These algorithms can be applied to either the primary sequence or higher-order protein structures, allowing the structural 
context of problematic sequences to be taken into account with structures derived either experimentally or from 
homology models using programs such as MODELLER,52 and ABodyBuilder.53 Sequences or regions of protein, 
which promote aggregation or have low solubility, for example, can thus be identified, aiding the redesign of protein 
sequences or the selection of more developable candidates. Most algorithms developed to probe this have been trained on 
intrinsically disordered amyloidogenic peptides, eg, TANGO54 and AGGRESCAN;55 however, some of these have been 
adapted or developed specifically to look at therapeutic proteins, including antibodies.56–60

The TANGO algorithm was developed twenty years ago and uses a statistical mechanics approach to predict the β- 
sheet aggregation propensity of a given protein/peptide sequence.54 While amyloid aggregates consist of a cross-β 
architecture,61,62 thus the excellent prediction of amyloidogenic sequences with this algorithm, non-amyloidogenic 
aggregates can still contain β-sheet rich aggregates (binding dyes such as Thioflavin T).63 Antibodies contain multiple 

Figure 2 Overview of the aggregation pathways of biopharmaceuticals. Most therapeutic proteins are folded into a defined 3D-structure (green circles). The native protein’s 
surface charge, dynamics, amenability to cleavage by proteases (for example) are all important for it to maintain this structure. Extremes of pH or temperature may bring 
about the complete unfolding of a protein, leading to aggregation via its exposed aggregation-prone regions (in red) via pathway 1. Along pathway 2 (purple route), partial 
unfolding of the native state (or misfolding from 1) results in an aggregation-prone misfolded state, with these species able to multimerize and eventually precipitate from 
solution. Finally, it is increasingly clear that some proteins can reversibly self-associate into crystalline precipitates or a liquid-like phase (colloidal aggregation, blue circle). 
The length- and timescales of all of the above mean a wide range of assays are necessary to probe the states above and their interconversion.
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immunoglobulin domains, comprising two β-sheets cross-linked via a conserved disulfide bond.64,65 The algorithm can 
thus predict aggregation for a broad range of input sequences. As shown in Figure 2, aggregation of biopharmaceuticals 
is thought to mainly take place through the misfolded state,25 by exposing aggregation-prone regions (APRs) buried in 
the natively folded core, to the solvent. Here, APRs are defined as a window of five or more amino-acids with a high 
average TANGO score and while ordinarily buried in the native state, these APRs may become solvent-exposed upon 
environmental perturbation (eg38). The Solubis approach66,67 calculates both the aggregation propensity (using TANGO) 
and the contribution of a given APR towards a protein’s folding stability (ΔGcontrib) using the FoldX algorithm.68 Using 

Figure 3 Schematic depicting the “family tree” of developability assays, discussed in this review. The assay groups radiating from the center (going clockwise from the top) 
are discussed in this review: In-silico assays, Chromatography-based assays, Mass spectrometry-based approaches, Methods to probe colloidal stability, thermal stress assays 
and finally, assays to probe manufacturability. As developability assays from each branch probe different physicochemical features of a molecule, by “harvesting fruit” from 
different branches of this tree, one can gain a holistic understanding of a molecule’s developability profile, represented by the mAb colored by the branches above.
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this approach, variants with reduced aggregation propensity can then be designed which suppress the TANGO score but 
do not thermodynamically destabilize the protein. For example, placing a lysine residue, a known “gatekeeper” which 
disfavors β-sheet formation,69 into an APR would decrease its TANGO score, but would adversely affect the conforma
tional stability of a protein if the APR in question was found in the hydrophobic core of a protein.

Other algorithms have been developed to identify APRs formed from spatially proximal residues that may be distal in 
primary sequence. The Spatial Aggregation Propensity (SAP) algorithm has been developed to identify solvent-exposed 
APRs in antibodies using a molecular dynamics-based approach.70 Dynamics in the protein, an inherent property of 
monoclonal antibodies for their function,71 could expose these APRs to the solvent over time. This algorithm has been 
used to identify problematic APRs in antibodies, for example, the MEDI1912 protein, whose “WFL” residue patch 
causes notable developability issues such as self-association72 and poor manufacturability.73 This approach was expanded 
to create a “developability index” which also computes an antibody’s net charge,74 which is increasingly recognized as an 
important physicochemical parameter to consider for a developable biopharmaceutical.75–78

Solubility can be defined as the maximum quantity of a solute that can be dissolved in a given volume of solvent at 
equilibrium.79 When proteins aggregate, solvent-solute interactions between water and the protein are disrupted, allowing 
the APRs to self-associate (to yield a favorable protein–protein interaction).80 Solubility, while related to aggregation, 
can be treated slightly differently with respect to its prediction, as charge will greatly affect protein solubility in water (a 
polar solvent). Hydrophobicity is of course another key parameter related to solubility.77,81 A notable tool to predict 
protein solubility is the CamSol algorithm, developed by Sormanni et al.82 Based on physicochemical properties of 
amino acids in a protein, a seven-residue sliding window is used to predict the local solubility, which can then be 
averaged over the length of the sequence. As described above, CamSol scores can also be calculated to account for 
structural context (ie buried or solvent exposed). Similar to Solubis, rational design of mutants, which favor solubility 
can be performed with this program,82 as well as the identification of hotspots which disfavor solubility, such as the WFL 
example above.56

When employing these algorithms for antibody engineering, it is important that any amino-acid substitutions designed 
to reduce aggregation and or increase solubility do not affect binding affinity to the target,49,83 which is especially 
challenging as residues in the complementarity determining regions (CDRs) are the regions usually subjected to 
mutational scanning during discovery.84 To minimize this, the Therapeutic Antibody Profiler (TAP) has been developed 
to interrogate the CDRs for five developability liabilities including charge density and proximity, length and 
hydrophobicity.85 An ever-growing database of therapeutic antibodies is used to benchmark amber (warning) and red 
(danger) thresholds below/above which a given TAP parameter is deemed problematic. Recently, TAP has been expanded 
to account for differences in both the modelling of antibody structures (aided by machine-learning algorithms (eg 
ImmuneBuilder)),86 to distinguish between kappa and lambda light chains in therapeutic mAbs, with the latter trending 
towards poorer developability outcomes.87 Interestingly this observation concurs with the observation that lambda light 
chains are found relatively more commonly in patients with light-chain amyloidosis.88–90

Efforts have also been made to predict aberrant post-translational modifications in proteins (eg deamidation) based on 
known sequence motifs, which are linked to these.91 Recently, these sequence features have been identified in germline 
and therapeutic antibodies, based on mining large sequence databases to generate the Liability Antibody Profiler (LAP).92 

Based on their location in the protein (eg solvent exposure) as well as the frequency of these liabilities in germline (ie 
natural) and therapeutic proteins, a particular liability is ranked in terms of its real risk. For example, identification of 
a solvent-exposed Met residue which does not exist in the same position in any marketed mAbs may indicate that this is 
a prime candidate for substitution to minimize the risk of oxidation.92

In summary, computation characterization of the physicochemical characteristics of stretches of amino acids in 
proteins, corrected based on their structural context, has allowed various algorithms to be developed which identify 
APRs, regions of poor solubility and other developability liabilities in proteins. The prevalence of these tools in the 
development of therapeutics will continue to increase as the use of artificial intelligence/machine learning models and the 
availability of large volumes of sequence data becomes more ubiquitous in the 21st century.93
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Chromatography-Based Methods: The Analytical Workhorses of the 
Biopharmaceutical Industry
The high-throughput (HTP), robust and versatile nature of high-performance liquid chromatography (HPLC) methods 
means they are employed routinely in the analysis of biopharmaceuticals.94 The chemistry of the stationary phase (the 
column resin) and the mobile phase (the solvent) work in tandem to resolve different analyte(s) within a sample that can 
be quantified by a variety of (usually) spectroscopic methods. Proteins and peptides can either be analyzed in their native 
state using aqueous buffers at near neutral pH or in a denatured form by using non-polar resin and polar solvents at low 
pH in reversed-phase methods95 with the latter method often prior to analysis by mass spectrometry (MS, see next 
section). As the characterization of the native state is often the principal aim of developability assessment (see above), 
this section will focus on normal-phase chromatographic methods.

Size-exclusion chromatography (SEC) has been described as the workhorse method to characterize therapeutic 
proteins.96,97 Molecules are fractionated by the resin according to their mass and shape.98 Detection of the species as 
they elute from the column, most frequently by in-line UV-Vis absorbance spectroscopy, allows for the separation and 
simultaneous quantification of aggregates, monomeric protein, and fragments.97 By measuring samples stored over 
a period of time, this method is routinely employed to track changes in monomer/fragment/aggregate content in a sample 
over time at a defined temperature, setting its shelf-life.99,100 The guidelines from the International Council for 
Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) mandate this method for ther
apeutic proteins, based on its power in this regard.101,102 However, SEC does have some caveats. Samples are often 
diluted prior to analysis or dilute during resolution on the column, which may favor the dissociation of some aggregates 
back to monomer (thus masking the true aggregate content of the original sample).11,103

Furthermore, some proteins will interact with the column resin (often silica-based for HP-SEC), leading to longer 
retention times72 erroneously suggesting,98 a much smaller apparent molecular weight. In the absence of changes in mass 
(verified by MS, for example) longer retention times are usually indicative of “sticky” molecules.72,104 This property has 
been shown to correlate with other indicators of poor developability, such as poor growth in the presence of beta-lactam 
antibiotics (indicative of high aggregation propensity)105,106 in an in-vivo tripartite beta-lactamase assay (TPBLA) of 
antibody variants.83 Chromatography column vendors have developed SEC resins with a stand-up monolayer, which 
mimic the exterior of proteins.107 For these resins, long retention times (caused by aberrant adsorption to the resin) have 
been shown to correlate with unfavorable developability parameters, such as colloidal stability as measured using cross- 
interaction chromatography (CIC), a method, which functionalizes SEC resin with a different IgG sequence to that of the 
analyte.108

As both hydrophobicity and overall charge can dictate the aggregation and solubility of protein. Hydrophobicity can 
be probed directly using hydrophobic interaction chromatography (HIC), where a high ionic strength mobile phase (eg 2 
M ammonium sulfate) is used to “salt” proteins onto a hydrophobic resin. Dilution of the salt in the mobile phase results 
in the elution of proteins in order of increasing hydrophobicity (thus long retention times correlate with increased 
molecular hydrophobicity).104,109 Whether the adsorption process leads to increased exposure of previously buried 
hydrophobic residues (eg110–112) is a potential caveat of the technique.

Resins of both negative or positive charge (for cation- and anion-exchange chromatography, respectively) are used in 
ion-exchange chromatography (IEX) to separate analytes based on their charge. The pH of the mobile phase can be used 
to tune adsorption to the resin, exploiting the isoelectric point (pI) of the analyte of interest, with high ionic strength 
typically used to elute species from the column.113 While generally employed during bioprocessing in polishing steps to 
remove nucleic acids or charge variants from the desired drug substance,114 both cation-115,116 and to a lesser-extent, 
anion-exchange chromatography117 have been used to identify molecules with aberrant charge profiles, often coupled to 
mass spectrometry113,116 (see below). So-called “mixed mode” resins have been developed which have characteristics 
encompassing both hydrophobic and charged (ie polar) character.118 Such resins have been used to separate different 
heavy- and light-chain combinations of bispecific antibodies when used in a SEC-resin, with multi-angle static light 
scattering used to corroborate the molecular weights of the species separated by these.119
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Whilst not a chromatographic method per se, capillary electrophoresis uses an electric field in a functionalized 
capillary120 or microfluidic chip121,122 to separate molecules based on their charge and mass (ie charge density). By 
varying the pH in the capillary, the device can be used to perform capillary isoelectric focusing (cIEF). This has been 
used to look at charge variants of antibodies, with such deviations stemming from aberrant post-translational modifica
tions (PTMs) caused by deamidation, glycosylation and other chemical changes to the higher order structure of the 
protein.122–124

The varied chemistry of chromatography resins, together with the precision of a HPLC autosampler, mean that 
HPLC-based methods have become routine for the analysis of therapeutic proteins. Aberrant biophysical behavior 
(namely fragmentation, aggregation, unwanted surface adsorption and charge variation) can be detected and quantified, 
depending on the combination of stationary and mobile phases employed. As alluded to above, MS is often employed 
downstream of these methods.

Mass Spectrometry (MS)- The Main MAM in Developability Assessment
Multi-attribute methods (or MAMs) are analytical methods capable of discerning multiple critical quality attributes (such 
as low aggregation propensity) from one sample, as described under the Quality-by-Design framework.125,126 MS is one 
such MAM which has found itself well-placed in the development of therapeutic proteins, due to the rapid advancement 
and commercialization of these instruments over the past decade,127 and in the software used to analyze the complex data 
these instruments generate.128 In its simplest application (the accurate mass determination of proteins or their peptide 
derivatives), most MS measurements of therapeutic proteins are prefaced by a HPLC-based separation of the analyte, 
often by reversed-phase (RP) liquid chromatography. An ion-pairing agent, such as formic acid or trifluoroacetic acid 
(TFA), is typically added to the mobile phase, making protein analytes more hydrophobic than usual, thus increasing their 
resolution from an RP column.95,129 The protein is eluted in a volatile organic solvent (typically acetonitrile), facilitating 
the transmission of the analyte from solution phase into the gas phase. For an in-depth discussion of different MS 
configurations, we direct the reader to more specialist reviews.130,131

Measured masses, obtained with a high degree of precision using MS (typically ± 0.01% of the protein’s molecular 
weight) that are different to the calculated mass of the primary sequence can indicate proteolysis of the sample or 
incorrect disulfide bonding.132 To look for residue-level evidence of PTMs, a “bottom-up” approach is often employed, 
whereby the protein will first be enzymatically digested by a protease (typically trypsin or a mixture of other proteases); 
if disulfide bonds are present, the sample is reduced and alkylated using standard protocols,133 with salts then removed 
prior to the LC-MS experiment.134 It is known that certain PTMs can adversely affect the chemical stability of a protein, 
namely: deamidation,135 incorrect disulfide bonding132,136 or glycosylation137,138 and oxidation.139–141 The primary 
sequence of a protein, particularly if this is an mAb, can be analyzed using algorithms to identify motifs, which are 
liable to these aberrant PTMs. For example, it is known that the dipeptide motifs of Asn followed by either Gly or Ser are 
liable to undergo deamidation at the Asn residue,135,142 decreasing the chemical and conformational stability of the mAb. 
These can be readily engineered out of the sequence (identified using the LAP algorithm described above)92 if they lie 
outside of functional regions of the mAb, eg, the paratope.

Glycosylation is another key attribute of antibodies, as N-linked glycosylation of a conserved Asn residue in the CH2 
domain of an IgG is important for both the thermal stability of an antibody137,138,143 and Fc-receptor binding.144 The so- 
called effector functions of an antibody can dictate half-life in vivo (due to binding to the neo-natal Fc receptor) or aid 
killing of target cells through, eg, antibody-dependent cellular cytotoxicity.15 Cell line engineering,145 as well as 
modifications to residues in the hinge,146,147 can affect the type of glycans formed in the endoplasmic reticulum (ER) 
during expression. mAbs can be deglycosylated to analyze the intact mass (of both mAb and glycan, the latter 
particularly important for the detection of different glycoforms) using enzymes such as PNGase F,148 using the HPLC 
to aid their separation.

Due to the development of commercially available automated systems,149 Hydrogen-Deuterium exchange (HDX) 
coupled to MS is being increasingly used to identify particularly dynamic regions in therapeutic proteins.150 Typically, 
experiments are performed where the (protiated) protein of interest is incubated in a D2O-based buffer. Under these 
conditions (a vast excess of deuterons versus protons) backbone amide protons exchange with deuterons,151 the rate of 
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which being dependent on pH, temperature, solvent accessibility and amino acid side chain.152 After incubation for 
variable time periods, exchange is quenched (through low pH and cold temperature), and the protein digested (typically 
with immobilized pepsin, which is most active at pH 2.5), then performing LC-MS. The peptide ions are often 
fragmented in the gas-phase to facilitate their sequencing (see134 for more detail). One can then piece together the 
peptide information and map this back onto the 3D structure (or model) of the protein, to identify dynamic regions from 
protected regions. This has been done to identify regions of proteins/amino acid substitutions which modulate 
aggregation.150,153–155

The structural mass spectrometry toolkit allows one to probe the HOS of a protein, with a growing body of literature 
linking these data to favorable/aberrant developability parameters.156–159 By introducing proteins (or other analytes) into 
the gas phase under much gentler conditions, using volatile additives such as ammonium acetate, native mass spectro
metry proteins and their higher-order species can analyzed in conditions that maintain tertiary and quaternary 
structure.160,161 A more novel use of MS for protein developability has recently been the use of collision-induced 
unfolding to probe the gas-phase stability of different therapeutic proteins.162,163 This involves incrementally increasing 
the energy of ions in the ion trap of mass spectrometer, then measuring their collisional cross-sectional (CCS) area using 
an ion-mobility cell. This acts like a “gas-phase chromatography column”, with compact ions interacting less with the 
buffer gas in the ion mobility cell than more expanded ones, thus the former arrive at the detector first.164,165 Increased 
collision energy thus results in the unfolding of a protein in the gas phase, detected by a later arrival time. This has been 
shown to be able to identify different glycoforms based on their gas-phase stability.166 Another approach to “gently” 
introduce proteins into the gas phase is to use capillary electrophoresis, as described above. This can be applied to both 
intact molecules (ie in a “top-down” fashion), as well as on peptides, in a bottom-up fashion167 analogous to the LC-MS 
/MS approach above.

From the perspective of early-stage developability assessment, while confirmation of the correct intact mass of 
a protein is routinely employed for hits, more in-depth analysis would only typically be performed as molecules progress 
through the development pipeline, due to the increased amount of analytical effort (in terms of time) required to perform 
these latter experiments. We envisage this becoming more routine over time, as suggested by the increasing amount of 
literature in this area (with over 200 papers a year published during this decade).131

Colloidal Stability Assessment: Probing Self- and Cross-Interactions in Therapeutic 
Protein Samples
The word “colloid” stems from the Greek, meaning “glue-like”. Protein solutions can be thought of as colloids based on 
their properties.168,169 In Figure 2, self-association between monomers, through native state aggregation, or non-native 
aggregation (leading to the formation of oligomers and eventually precipitates) pertains to the colloidal stability of 
a therapeutic protein solution. In addition to self-interaction, therapeutic proteins will encounter other biological 
macromolecules throughout their lifetime (expression, purification and after administration), where cross-interaction 
with other antibodies, antigens or other off-target biomolecules can lead to undesired manufacturing and therapeutic 
outcomes (see Aussewöger et al for more detail).170 A variety of methods have been developed to probe colloidal 
stability in its broadest sense.

Dynamic light scattering (DLS), which correlates the time-dependent fluctuations in the intensity of light scattered by 
solutes within a solution, is commonly employed to characterize colloidal stability.171 This allows one to infer the 
diffusion coefficient of solutes and by extension, their hydrodynamic radii (RH).42 Further analysis (using the regulariza
tion algorithm for example)172 allows the size-distribution of species within the sample to be determined. As the intensity 
of scattered light is proportional to RH

6 aggregates will scatter far more light than the native monomer.171 This makes 
DLS a particularly sensitive means of detecting aggregation within a sample but conversely makes precise quantification 
of the populations within polydisperse solutions extremely challenging.171,173 Nanoparticle tracking analysis (which 
visualizes and counts aggregates larger than 50 nm in diameter),173,174 mass photometry (an imaging-based method 
where the scattering footprint of a protein landing on the imaging surface is proportional to its mass)175,176 and 
microfluidic-based technologies (reviewed by Otzen et al recently177) can be used to circumvent these issues.
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DLS can now be performed on multiple samples in a plate-reader format.178 By measuring the DLS of protein 
samples across a concentration range (typically from sub-milligram/mL to 5 mg/mL), the diffusion coefficient can be 
determined and plotted as a function of concentration. The intercept of a straight-line graph fitted to these data (which 
will have either a negative (attractive), flat or positive (repulsive) gradient, yields the diffusion coefficient at infinite 
dilution for the sample. The gradient of the straight-line graph relates to the diffusion interaction parameter (kD, 
units mL/g).179 This parameter can give an indication of whether or not proteins interact (negative kD) or repel (positive 
kD) one another as a function of concentration, which is useful when screening molecules179 or different formulations.72 

Kingsbury et al’s determination of the kD values for a large panel of mAbs and correlation of these against 22 other 
properties showed that repulsive behavior between the molecules correlated with favorable pharmacokinetic properties, 
highlighting the importance of kD as a developability parameter.179 It should be noted that the sign of the kD value is 
a rule of thumb, as recently the opposite trend has been tied to unfavorable viscosity at elevated concentration.180

In contrast to DLS, static light scattering (SLS) measures the time-independent scattering of light by solutes in 
a sample.42,181 The intensity of the scattering is dependent on the concentration and mass of the sample.181 Using more 
sophisticated equipment, one can measure the SLS of protein solutions as a function of concentration in the same fashion 
as above. The second osmotic virial coefficient (commonly called B22 or A22) describes attractive (positive values) or 
repulsive interactions (negative values) between proteins as a function of concentration.182,183 It can be seen therefore 
that kD and B22 values are generally inversely correlated;182 (but note180 is an important exception). Both parameters are 
important as attractive interactions as a function of concentration are likely to impact the final drug product, which is 
increasingly formulated at concentrations exceeding 100 mg/mL if administered by sub-cutaneous injection via a pre- 
filled syringe.184–186

In addition to these sophisticated measurements, simple turbidity assays (such as the optical density of a protein 
sample at 350 nm) can be performed but is very sensitive to the size range and distribution of aggregates within the 
sample.187 The sizing and counting of subvisible and visible particles (spanning 10’s–1000’s microns in size) is 
critical,188 as aggregates in this range are linked to adverse immunogenic effects in vivo.189,190 Light obscuration and 
microflow imaging191,192 have traditionally been used to achieve this aim, with machine learning approaches being 
developed to aid discrimination of proteinaceous particles from other adventitious contaminants.193 More recently, 
background membrane imaging (which uses image processing to improve signal to noise) has been developed to look 
for these particles, using sub-mL volumes for analysis.194

Molecular crowding (see195 for physical basis) has been a commonly employed method to indirectly probe the 
colloidal stability of therapeutic proteins. Polyethylene glycol (PEG) has been used as a crowding agent to force proteins 
closer to one another (akin to their environment under high concentrations).196 By determining the concentration of 
protein remaining in solution (using a constant initial protein concentration) over a range of PEG concentrations, one can 
determine the colloidal stability of the protein,56,72 including the inference of its “concentratability” (ie a protein’s 
theoretical solubility limit).197

More sophisticated HTP methods have been developed to monitor self-association of proteins. Affinity-capture self- 
association nanoparticle spectroscopy (AC-SINS) was developed by the Tessier group, conjugating polyclonal human 
IgG-targeting antibodies onto gold nanoparticles (AuNPs).198,199 If a target mAb exhibits low dispersity (ie was 
monomeric), the AuNPs remain disperse in solution. Conversely, self-association of the target mAbs results in the 
agglomeration of the AuNPs, with the plasmon wavelength (absorbance) of the particles red-shifting as a result. This has 
been used to screen panels of antibody sequences,104,199 with trends being identified between net-positively charged 
CDRs and self-association by AC-SINS.200 Modification to the AuNP preparation protocol increases the diversity of 
formulation buffers compatible with the method.201,202

Cross-interaction (ie off-target binding to bio-molecules other than the epitope) is an important developability 
parameter as increased retention times on this resin have been linked to poor solubility at elevated protein 
concentrations.108 Methods have consequently been developed which conjugate or adsorb other proteins, including 
antibodies {Clonal self-interaction Biolayer Interferometry (CSI-BLI)203 and Cross-interaction chromatography108,204} 
and either specific antigens {Baculovirus particle (BVP) enzyme-linked immunosorbent assay (ELISA),205 or a broad 
range of antigens (Poly-specificity reagent (PSR))}206 to different stationary phases (chips, chromatography resin and 
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well-plates). Test proteins are then incubated with these functionalized species, with interaction yielding longer retention 
times/increased ELISA signals with rapid clearance of drugs in animal models when BVP scores are high.109 The reader 
is directed to Jain et al,104 Ausserwöger et al170 and Norden et al207 for more details of these methods.

In summary, the examination of the colloidal stability of a therapeutic protein is important with respect to its 
pharmacology and eventual formulation as a medicine. Aggregates have also been shown to cause illicit immunological 
effects in vivo, including neutralization of drugs (Anti-drug antibodies)208 or anaphylaxis. Thus, the characterization and 
mitigation of aggregation and off-target interaction is pivotal in early-phase drug development.

Thermal Stress: Turning Up the Heat on Biopharmaceuticals
It is well-known that heating proteins can trigger their unfolding and aggregtion. From the perspective of biopharma
ceutical development, the final drug product is often formulated to be kinetically stable at refrigerated temperatures for 
typically two years or more.101,186,209 It would be impractical to subject all early-stage candidates to a real-time stability 
screen based on both the long timescales and shallow amplitude of the degradation kinetics under real-time storage 
conditions.99,100,210–212 Instead, samples are often incubated at elevated temperatures to increase their rate of degradation. 
Typical “accelerated stability” (AS) conditions for early-phase biologics are incubation at 40°C for 2–4 weeks.210,213–215 

The regulatory agencies mandate such testing as part of the development of new drugs.216

Can one use the rates of degradation at elevated temperatures to infer what happens at lower (refrigerator) 
temperature? Classically, the temperature dependence of reaction rate follows Arrhenius kinetics, whereby the rate of 
a reaction increases as a function of temperature (a 10 K increase in temperature typically doubles the observed reaction 
rate). Recently, several Arrhenius-based kinetic models have been developed which can exploit protein-degradation 
kinetics at elevated temperatures (and short time frames) and use the data to directly predict the long-term storage 
stability of molecules.99,100,212,217,218 Others in the field, however, have shown that not all proteins obey this kinetic 
regime,210,211,219,220 meaning AS serves as a “rule of thumb” test to identify particularly thermally labile molecules or 
formulations from a panel.104,209

Reasons for deviation from an Arrhenius regime may depend on the distinct aggregation mechanism of the protein in 
question. AS conditions are typically below the apparent melting temperature (Tm,app) of a protein (the temperature at 
which 50% of the molecules are unfolded). Tm,app can be deduced in a HTP fashion using differential scanning 
fluorimetry (DSF). If a protein contains a Trp residue (conveniently, Ab-based therapies contain several Trp residues 
as they are conserved as part of the immunoglobulin fold),221 then the intrinsic fluorescence can be followed as a function 
of temperature. Protein unfolding will result in a red-shift in the fluorescence emission maximum of the Trp residues. 
Plotting the ratio of the emission at 350 nm (Trp exposed suggestive of an unfolded protein) versus 330 nm (Trp buried 
and suggestive of a folded protein) allows a sigmoidal curve to be fitted to the data and the Tm,app extracted from the mid- 
point.222–224 Furthermore, the inflection point of this curve represents Tonset. As well as setting the upper limit for an AS 
study (typically 10 K below the Tm,app to prevent aggregation taking place predominantly from the unfolded state, not the 
misfolded state), this method can identify thermally labile molecules and formulations.213 Some instruments which 
monitor intrinsic fluorescence can also use SLS simultaneously to infer the apparent temperature of aggregation (Tagg) 
based on an increase in scattering intensity as a function of temperature.224,225 Such instruments fit into the MAM 
framework by allowing one to obtain multiple developability parameters from one sample, maximizing characterization 
from the smaller quantities of material available in early drug development.

The “gold standard” method for obtaining Tm,app is differential scanning calorimetry (DSC). This is because 
cooperativity of unfolding observed by DSF can often mean that the unfolding transitions of different domains in the 
protein are poorly resolved.226 DSC involves heating up a sample and measuring the difference in temperature between 
the reference cell and sample cell upon unfolding of different domains in the protein (ie release of heat, due to bond 
breaking, being exothermic). The transition midpoint yields the Tm,app, whereas the peak area would yield change in heat 
capacity.227 The sensitivity of the method means multiple transitions can be observed for Ab domains.227 Blech et al have 
recently shown that multiple thermodynamic parameters can be obtained from DSC measurements (eg enthalpy change 
between folded and unfolded states), which can then be linked to the kinetic aggregation mechanism for a protein in 
question.228 However, larger quantities of material (>100 μL at protein concentrations ~1 mg/mL, compared to tens of 
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microliters at a similar concentration for DSF) are needed to perform these measurements. DSF is thus likely to be 
performed in the first instance when quantities of material are lower, albeit with the caveats mentioned above.

Assessing Manufacturability: Shaking Up the Developability Pipeline
Of the various stresses biologics experience as part of their manufacturing, hydrodynamic forces (namely shear and 
extensional flows, as well as interaction with both solid-liquid and air-liquid interfaces) are ubiquitous.229–231 Such 
mechanical forces are thought to be able to initiate protein aggregation, mainly through the adsorption of proteins to 
interfaces. Subsequent partial unfolding and aggregation can take place on the surface, with flow then able to dislodge 
these species into bulk solution to regenerating these interfaces.110,231,232 The bulk flow may also induce formation of the 
aggregation-prone state,233–236 though this is controversial.231,237. Although poorly defined, orbital shaking studies 
appear to generate many of the hydrodynamic stresses described above and have been used to identify aggregation- 
prone molecules,187,238 as well as the type and concentration of surfactant excipients, which protect against these 
interfacial stresses.239,240

However, the mechanistic drivers of aggregation in this mixed type of stress can be difficult to define. Devices have 
been developed to subject proteins to defined shear flows, often in the presence of a solid–liquid interface of known 
chemistry,241–243 with this latter factor playing the dominant role in any subsequent aggregation. We have developed 
a small-volume extensional flow device (EFD), which subjects proteins to a predominantly elongational flow in the 
presence of solid (glass)-liquid interfaces.73,187,236,244 Others have built similar devices,232,237,245 including a recent 
example that can subject later-stage formulations to realistic hydrodynamic forces encountered during syringe actions.246 

Though this latter application falls slightly outside the scope of this review, one could envisage the utilization of these 
devices for the rapid small-scale assessment of proteins to manufacturing stresses, something which appears to be 
a unique developability feature not described by the other assays mentioned in this review.244

How Do We Make Sense of Developability Data?
The many critical quality attributes required by a candidate therapeutic has driven the deployment of a wide array of 
methods to assess developability, but how these can be integrated is unclear. For example, if multiple methods are 
available to measure the same developability attribute (eg HIC and SMAC chromatography measuring molecular 
“stickiness”), then will one method provide adequate insight? If these assays predict conflicting developability outcomes, 
which do you trust? Once the data have been generated, how can one integrate the outputs to make an informed holistic 
decision on candidate selection?

Firstly, it is important to understand how assays relate to one another. Jain et al used Spearman’s rank correlation to 
look at the pairwise interaction between the behavior of 137 clinically relevant mAb sequences in 12 different 
developability assays.104 Hierarchical clustering was used to group the assays based on the responses of the mAbs; for 
example, HIC and SMAC chromatography yielded similar results.104 Both we244 and others228,247–251 have subsequently 
used similar approaches (sometimes using Pearson’s correlation instead of Spearman) to understand how novel assays/ 
analyses compare to the established methods discussed herein, as well as infer (numerically) relationships between 
developability assays. There is an argument that applying multiple methods that probe the same biophysical property of 
a molecule is not the best use of resources, as one ends up with degenerate data. Using one technique from each branch of 
the “family tree” of developability assays (outlined in Figure 3) may be a better approach.

Secondly, statistical (and in a more simplistic sense, anecdotal) evidence can aid the decision to remove a molecule 
from a development campaign based on its behavior in a given developability assay. While liabilities (such as primary 
sequence motifs, which could lead to poor chemical stability252 or aggregation propensity60) can be engineered out in 
early-stage development, or by the addition of surfactant during formulation253,254 this becomes increasingly difficult the 
further the molecule progresses through the clinic. Acceptable thresholds are often placed on particular developability 
assays either from the regulator (eg particle levels255), scientific reasoning (based on long-term stability data, for 
example), or other more arbitrary cut-offs.99,100 This latter approach would allow one to discard (for example) the 
worst molecules in a panel if they score a “red flag” in a particular assay.104 This becomes less clear cut if a molecule 
performs poorly in one DA but well in other unrelated assays.
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Machine learning/artificial intelligence approaches have gained much traction over the past five years in the 
biophysical analysis of proteins.93,202,256,257 For example, Makowski et al used CS (charge stabilised)-SINS and PSR 
to screen the self-association and polyspecificity, respectively, of a panel of 80 clinically-relevant antibody sequences. 
A machine-learning model was trained on these data (plus others) to effectively predict which mutations would 
ameliorate aberrant behavior in these assays, which was validated experimentally.202 Most recently, clinical and natural 
sequence databases have been mined to compute different sequence and structural liabilities across antibodies.92,257 As 
the biopharmaceutical industry embraces Industry 4.0, the leveraging of large datasets in this fashion will only aid the 
identification of the rules of developability for both current and next-generation molecules.

The biopharmaceutical pipeline has seen an increase in diversity in terms of both the pharmacological targets and the 
molecular architecture of the molecules used to interact with these.24 The number of modalities is only set to increase 
over the next few years.24 How the relatively established rules used to develop mAbs applies to these modalities in the 
future, remains to be seen, though efforts to this aim have begun.251 Some rules could be the same (for example, 
a molecule obeying Arrhenius kinetics will allow prediction of long-term stability).100 Others could change in light of 
allosteric effects, or due to the availability of a richer and larger dataset as technical challenges in analyzing these 
modalities are overcome . The field will inevitably rise to the challenge to bring about the successful development of the 
next-generation of biopharmaceutical proteins.

In conclusion, therapeutic proteins, in particular, monoclonal antibodies, have emerged as powerful medicines over 
the past forty years due to their potency, specificity and multiple modes of action. However, the multiple mechanisms by 
which they can degrade means an array of “developability” assays have been developed to identify defective molecules 
and select only those with drug-like properties. These analyses probe the varied molecular features of these complex 
molecules. The integration of computational and statistical workflows with experimental methods, especially as the field 
continues to grow, will aid the development of the therapeutic proteins of the future.
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