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Abstract

Powder bed fusion (PBF) is an original additive manufacturing technique for creating 3D parts layer-by-layer. While there
are numerous benefits to this process, the complex undergoing physical phenomena are challenging to analytically model
and interpret. Hence, integrated and control-oriented 3D models are lacking in the current literature. As a result, the state of
the art in process control for the powder bed fusion (PBF) process is not as advanced as in other manufacturing processes.
Reinforcement learning is a machine learning, data-driven mathematical and computational framework that can be used for
process control while addressing this challenge (lack of control-oriented models) effectively. Its flexible formulation and its
trial-and-error nature make reinforcement learning suitable for processes where the model is intricate or even unknown. The
focus of this research work is selective laser melting, which is a laser-based PBF process. For the first time in the literature we
demonstrate the benefits of a reinforcement learning process control framework for multiple layers (complete 3D parts) and
we highlight the importance of stability during training. The presented case studies confirm the effectiveness of the proposed
control framework, directly addressing heat accumulation issues while demonstrating effective overall process control, hence
opening up opportunities for further research and impact in this area.

Keywords Powder bed fusion - Selective laser melting - Ti—-6A1-4V - Process control - Reinforcement learning

Introduction

Powder bed fusion (PBF) stands out as an innovative
approach to metal additive manufacturing (AM), attracting
considerable attention from both academia and industry. This
manufacturing method, based on depositing layers of mate-
rial using 3D computer designs, offers notable advantages
compared to traditional manufacturing techniques, see Dev
Singh et al. (2021). PBF allows for the creation of intricate
metal components, see Liu and Shin (2019), with complex
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shapes and microstructures. In contrast to traditionally manu-
factured metal parts that typically require multiple processes
such as drilling and welding, PBF achieves similar results in
a single process, leading to a decreased reliance on various
tools, see Huang et al. (2016).

PBF consists of two main manufacturing techniques
referred to as selective laser melting (SLM) and electron
beam melting (EBM), see Dev Singh et al. (2021). In both
SLM and EBM, an energy source, whether it be a laser or an
electron beam, see Liu and Shin (2019), selectively melts
the powder distributed on the build platform. This study
focuses on the SLM process, as it is presently the most
widely used and commercialised. As discussed in the fol-
lowing sections, existing SLM modelling efforts frequently
offer a complex physics or data-driven representation of the
real process. These versions, while realistic, are not suit-
able for applying advanced control due to their complexity
and/or computational cost. Hence, there is a research gap in
control-oriented, integrated, and computationally fast mod-
els, capable of establishing the relationship between desired
process characteristics and controllable parameters across
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all relevant scales. Consequently, in industry, manufacturers
resort to optimisation based on experience, without incor-
porating any active feedback process control, or merely
incorporating simple feedforward and predetermined fixed
control profiles that do not fully exploit the advantages of
the process.

Simple part geometries, combined with simple control
targets (e.g. constant temperature) could be addressed suf-
ficiently with simple control methods. However, as part
geometry becomes more complex, process and part mod-
els become more realistic and the control targets become
more intricate, sophisticated control methods are needed that
often require models and strict assumptions (e.g. on sens-
ing methods). In SLM, such models (e.g. integrated, across
scales) do not exist, or sensing and signal property assump-
tions cannot be satisfied. Using machine learning to control
the process is an alternative, for example via the use of rein-
forcement learning (RL). RL offers a straightforward control
framework, often implemented as iterative optimisation, for
which model development and signal property assumptions
can be less strict. For example, Nian et al. (2020) discuss the
potential of RL for industrial process control, and Ogoke and
Farimani (2021) demonstrate a RL framework for printing a
single layer for a SLM process. In this study, for the first time
in the literature, the control of a SLM process across mul-
tiple layers (complete 3D parts) is investigated via RL. The
resulting framework is benchmarked against Proportional-
Integral-Derivative (PID) control. This work reflects on the
advantages as well as the limitations of RL and the necessity
for stability in SLM process control, see Vagenas and Panout-
sos (2023), hence, the investigation is extended to include a
new, stable RL variant.

The purpose of this research study is to develop and evalu-
ate a process control framework based on a control-oriented
3D model of the SLM process. The 3D model represents
the multi-layer SLM process, with particular emphasis on
demonstrating - as an example - the challenges associated
with heat accumulation among the layers as the number of
layers increases. It is shown that the absence of a controller
leads to heat accumulation issues, hence feedback control is
considered. As a result of this investigation, a RL framework
is proposed as a control method to adjust the power of the
heat source based on process monitoring and feedback. The
proposed methods are benchmarked against a carefully tuned
PID controller. The main contributions and remarks of this
work are the following:

e Further development of an existing 2D SLM model to a
new 3D one, and implementation of process control on a
simulated 3D SLM platform.

e Demonstration of the benefits and limitations of a layer-
wise control approach in 3D SLM, for simple and more
complex control objectives (target tracking).

@ Springer
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Fig.1 Schematic of a SLM machine set up

e Reveal and reflect upon the benefits and limitations of
a RL control approach, compared to traditional control
theory-based methods.

e A new, stable RL framework is proposed and a demon-
stration of its benefits in the stability of the RL training
and in the RL performance is included.

SLM modelling
The SLM process

SLM manufacturing machines, also known as laser PBF
machines, utilise metallic materials (e.g. titanium alloys) in
powder form. This metal powder is stored on the powder plat-
form and it is swept onto the build platform by a recoating
blade. Then, the laser beam heat source selectively melts the
powder on the build platform following a specified scanning
pattern. Afterwards, the build platform is lowered and the
recoating blade sweeps a second layer of powder onto the
build platform. This process is repeated until the final part
is completed, see Moylan et al. (2014). Figure 1 presents a
schematic of the SLM set up, including the aforementioned
features.

Extensive research has been dedicated to understanding
the physics behind SLM processes, with a particular empha-
sis on the meltpool temperature, see Shi et al. (2019) and
Wang et al. (2020), as this factor strongly correlates with
the SLM part’s quality. The meltpool refers to the region at
the interface between the laser and the metal powder, where
the powder particles fuse together to create a pool of molten
metal. Once the laser beam moves to a different location,
the meltpool solidifies, see Liu and Shin (2019). The melt-
pool’s characteristics have great impact on the density and
the microstructure of the component. Maintaining a uniform
and consistent meltpool temperature and shape throughout
the SLM build is crucial for preventing major defects, such
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as the formation of keyhole effects, see Snell et al. (2019).
Heat accumulation among the layers of the SLM build would
violate this goal of uniform and consistent meltpool tempera-
tures and shapes. Hence, in this work, the heat accumulation
challenge is selected as the primary objective to address.

SLM modelling efforts

During the manufacturing process, the metallic powder
undergoes multiple transitions, from a powder form to a lig-
uid state and then rapidly solidifying into a dense metal.
These are very complex behaviours that make it challeng-
ing to create an integrated and precise model that accurately
describes the relationship between the process inputs and
the final part’s characteristics analytically. However, there
have been significant efforts in the literature to develop mod-
els specifically focusing on the SLM manufacturing process.
These modelling attempts involve combining analytical mod-
elling efforts with numerical techniques such as the Finite
Element Method (FEM), as well as data-driven modelling
methods.

In a study conducted by Matsumoto et al. (2002), a
technique was introduced to calculate the temperature dis-
tribution and stress within a single-layer build during the
SLM process. The approach involved analytical physics for-
mulations, and 2D FEM was employed for the necessary
calculations. Roberts et al. (2009) employed an innova-
tive simulation technique using 3D FEM modelling in their
research. The simulation results indicated that “the heating
and subsequent cooling to the ambient temperature occur
within a few tenths of a millisecond of each other, thus sug-
gesting that the irradiated spots are subject to rapid thermal
cycles. These rapid cycles are associated with commensurate
thermal stress changes” (Roberts et al., 2009). Megahed et al.
(2016) analysed the modelling framework of PBF processes,
with a specific focus on SLM. The authors introduced ana-
lytical equations for physics-based modelling and utilised
FEM to solve these models. Shi et al. (2019) developed a
comprehensive multi-physics and multi-scale framework that
incorporated 3D modelling of heat transfer, flow dynamics,
and considerations of grain size and microstructure. Numer-
ical methods, including FEM, were employed to solve the
equations of mass, momentum, and energy conservation.
Wang et al. (2020) created a control-oriented model to anal-
yse the temperature and the dynamics of the cross-sectional
area of the meltpool when scanning a part with multiple
tracks (single-layer builds). Subsequently, a controller was
designed with the objective of modifying the laser power.
In the following sections, the work of Wang et al. (2020) is
used as a starting point and the 2D model is extended to a
3D one, in an attempt to establish a fully controllable SLM
multi-layer model.

Regarding data-driven modelling approaches, Tapia et al.
(2018) suggested the creation of a material database that
could describe robust concepts within the SLM process.
The developed model was capable of predicting the melt-
pool depth based on input parameters such as the power of
the energy beam. It was found to perform sufficiently even
when the training data was sub-optimal, as long as appropri-
ate physics filters were employed. Kouraytem et al. (2021)
presented a compilation of analytical and data-driven mod-
elling methods, highlighting the increasing prevalence of
data-driven models. The study emphasised the significance
of machine learning as a data processing technique to support
data-driven modelling efforts. Finally, a more comprehensive
review on modelling attempts can be found in the the work
of Soundararajan et al. (2021).

Extending a 2D SLM model to 3D

For the model used in this study, the work of Wang et al.
(2020) is used as a template; the authors successfully cre-
ated a control-oriented 2D model of a SLM process. The
developed 2D model is based on building multiple tracks on
a layer, following a back and forth scanning pattern. This
model is extended, so that each time a new track is built, the
model takes into account the heat accumulation due to the
previous track, utilising the concept of a virtual heat source
and applying the Rosenthal solution, as introduced in Rosen-
thal (1941). This virtual source concept is shown in Fig.2.
The material used in this work is Ti-6A1-4V powder and the
manufacturing properties used are presented in Table 1.

In order to investigate the temperature behaviour within
a layer, an example for a 4-track build is investigated, with
10mm length for each track, on a single layer. The layer
consists of 800 points, which show the meltpool temperature
history. The temperature observed is shown in Fig.3. As it
is observed, the first track is built at a constant temperature,
as there is no heat accumulation effect yet. From the second
track onwards, temperature peaks are observed at the begin-
ning of each track, due to the scanning strategy (beam passing
next to recently scanned material) and the resulting overall
heat effect of the previous tracks. Moreover, these tempera-
ture peaks tend to reach higher values as the building of the
part progresses to further tracks built on the same layer. Given
enough time, and a long enough track, the temperature within
a track starts saturating towards the value that corresponds to
the temperature that would have been achieved without the
heat effect of the previous tracks.

Regarding heat accumulation, the Rosenthal solution is
used, as introduced in Rosenthal (1941), in order to estimate
the heat effect of an already built layer to the next layer being
built. In addition, a delay of five seconds is assumed between
the end of one layer and the beginning of the next one, due
to the time required for spreading the new powder after the
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Fig.2 Visualisation of the build of a layer, track per track. Example for a layer of 4 tracks

Table 1 SLM model parameters

Parameter Symbol Value
Melting temperature (K) T 1923
Ambient temperature (K) Ta 292
Layer thickness (jum) Ly, 30
Scanning speed (mm/s) \%4 800
Sampling rate (pus/point) tg 62.5

completion of each layer. As a result, a 3D SLM model is
produced, which does not only demonstrate how heat accu-
mulates within each layer (2D), but among all the layers in
height as well (3D).

In order to gain some practical intuition about the 3D SLM
model’s temperature behaviour, simulations corresponding
to three different geometries are produced. The geometries
are distinguished by the dimensions of the layer of the build,
as bigplate (40 tracks, 10mm each), rectangle (18 tracks,
5Smm each), and thinwall (4 tracks, 10 mm each) geometry.

7300
6300

— 5300

The melting temperature of the material is 1923 K. However,
in the SLM model developed by Wang et al. (2020), it is
assumed that the steady-state temperature of the meltpool
is a constant percentage higher than the melting tempera-
ture. As implemented by Wang et al. (2020), the value of
20% above the melting point of the material is chosen in this
study, which is 2308 K. For each geometry, the laser power,
P, is set to an integer value that approximately corresponds
to an average layer temperature of 2308 K. For the bigplate,
the power is set as P =258 W, for the rectangle, the power
is set as P =198K, and for the thinwall, the power is set as
P =280W. As seen in Figs. 4 and 5 the average layer temper-
ature of the first layer in all cases is approximately 2308 K. As
the build progresses and more layers are added, the average
layer temperature increases because of heat accumulation. In
all three scenarios, as many layers as necessary are simulated
for the heat accumulation among the layers to reach a satura-
tion point, so that one can appreciate the significance of the
geometry of the build in heat accumulation issues.

=
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5 4300
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[
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U
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Fig.3 Temperature history collected for different values of power, P, during a single-layer, 4-track build (10 mm length for each track)
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Fig.4 Colormaps for visual representation of heat accumulation among the layers. Each point is denoted with the average temperature of the layer
in which it belongs. Axes are in scale so that visual dimension differences correspond to actual dimension differences among the three geometries
(Color figure online)
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Fig. 5 Average layer temperature graphs for representation of heat accumulation among the layers. These graphs correspond to the respective
colormaps in Fig. 4
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It is observed, that the bigplate geometry’s heat accu-
mulation saturates after 25 layers, the rectangle geometry’s
after 100 layers, and the thinwall geometry’s after 200 layers.
Moreover, it is measured that the average layer temperature
difference between starting layer and saturation layer in the
bigplate geometry is 10K, while in the rectangle geometry
is 36 K and in the thinwall geometry is 115 K. Hence, it can
be concluded that the thinwall geometry comprises the most
challenging geometry regarding layer-wise heat accumula-
tion issues. Therefore, the thinwall geometry is selected for
the following process control case studies, in an attempt to
clearly demonstrate the adjustment of the power accordingly
on each layer, with a layer-wise control approach.

Process control
The need for feedback control in PBF

Process control is a critical task in relevant industry sectors,
see Juneja et al. (2021). Within the PBF context it requires
special attention to enable the process to realise its potential in
terms of achieving bespoke microstructures, ensuring stabil-
ity (e.g. for certification of aerospace parts), see Vagenas and
Panoutsos (2023) and Jensen et al. (2023), optimising surface
and mechanical characteristics in complex designs etc. In
this work, the focus is on process control techniques that are
based on control theory, as well as on data-driven approaches
in order to determine the benefits and the drawbacks for
each class of methods. Control theory methods such as PID
and feedforward control are the most popular approaches
in industrial process control, mainly due to the simplicity
of implementation, see Nian et al. (2020). The fundamen-
tal principle of the PID control, see Astrém and Higglund
(2006), involves measuring the difference between the actual
and desired system output signals. The PID controller then
takes an action in order to minimise this difference, based
on the dynamic characteristics of the error signal (Kp, K;
and K p terms in the control law). These are well-established,
interpretable methods that can be applied in a large variety of
tasks. When addressing a simplified model of PBF, where the
complexity is low and the control target is simple, these the-
ory methods seem to be the obvious choice as a first attempt
to apply process feedback control in PBF. However, when the
part geometry and underlying models become more complex
and the control target is not as straightforward (e.g. multiple
target tracking), simple control theory methods would not
perform well in PBF (e.g. to counteract disturbances, signal
delays, process drifts etc.). In this case, the most valuable
information is monitoring and process data, in order to iden-
tify the relationship between the control system’s inputs and
outputs. Hence, data-driven approaches and feedback con-
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trol methods could help alleviate some of the aforementioned
challenges.

Process control in PBF

In this section, attempts at process feedback control for PBF
in the literature are appraised. Mireles et al. (2015) presented
a feedback control method based on a LabVIEW virtual
instrument for the EBM process. They altered the process
temperature, in order to achieve a desired grain size. The
authors used a virtual instrument to apply control with feed-
back obtained via IR camera images and layer information
decoded from calculations made by the virtual instrument’s
loop iterations. However, no systematic feedback control law
was presented. Renken et al. (2018) presented an approach
of a P-controller which enabled fast control of the melt-
pool temperature. This approach reduced the deviation of
process temperature by up to 73%, which led to more sta-
ble conditions in the meltpool, in comparison with constant
laser power strategies. Based on this approach, Renken et al.
(2019) presented an improved method using a model-assisted
version of the earlier attempt that reduced the deviation of
process temperature by up to 90%. Kruth et al. (2007) utilised
a PID control system for overhang structures, with a high-
speed camera installed on the SLM machine. The control
system was represented as a single-input-single-output sys-
tem. Wang et al. (2020) introduced a feedforward controller
to address overheating issues and keyhole effects in SLM.
The purpose of their controller was to maintain the melt-
pool cross-sectional area at a constant level throughout the
building process. Liao-McPherson et al. (2022) introduced
a control-oriented thermal model of a multi-layer SLM pro-
cess and proposed an in-layer Linear-Quadratic Regulator
(LQR) to track temperature. Vasileska et al. (2020) were one
of the first teams to attempt a layer-wise control strategy in
SLM. They could effectively apply control to limit geometri-
cal defects due to overheating. Kavas et al. (2023) developed
arobust controller, inspired by iterative learning control and
online feedback optimisation, which altered the laser power
in order to stabilise the inter-layer temperature. In general,
the recent work of Lupi et al. (2023) covers control require-
ments in AM, for the reader to gain a broader perspective.
The aforementioned control techniques are either too sim-
ple to be effective at scale (e.g. PID) when part and process
complexity increases, or require tuning which is not trivial
(e.g. LQR) and strong assumptions (e.g. regarding distur-
bances, process drift), as discussed in the introduction section
of this study. On the other hand, RL offers a data-driven con-
trol framework, for which learning algorithms are used to
create an effective control policy. There seems to be still lit-
tle evidence of RL-based process control in PBF processes.
State of the art RL attempts are still in a preliminary develop-
ment phase, focusing mostly on single-layer parts or applied
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in other AM processes (e.g. blown powder), but not yet in
PBF. In PBF, Ogoke and Farimani (2021), influenced by the
contributions of Eagar and Tsai (1983) in process modelling,
and Wolfer et al. (2019), created a simulation model that
can track the temperature history that is created by a trav-
elling laser beam, on a single-layer part, and implemented
RL control to achieve a desired meltpool depth. Building
on this work, Vagenas and Panoutsos (2023) replicated the
above results and demonstrated the need for stability in the
behaviour of RL process control in PBE.

The above literature review shows that there are mostly
simple feedback and PID-based approaches for PBF process
feedback control, while data-driven approaches based on RL
have been only recently investigated in a preliminary fashion.
Moreover, there is no evidence in comparing control the-
ory with data-driven techniques, particularly in multi-layer
PBF environments. Hence, benchmarking of these methods
is needed, and a comparison between control theory and
data-driven techniques is to provide substantial intuition on
multi-layer PBF control.

Reinforcement learning overview

RL is a data-driven iterative optimisation approach centred
around interactions with an environment/process. The con-
troller, also known as the agent, serves as a decision maker,
consistently learning and refining its control actions. Unlike
being explicitly instructed which actions to take in specific
states, the RL agent must discover the most effective actions
through a process of trial-and-error, see Sutton and Barto
(1998). This exploration is guided by the objective of max-
imising a numerical target, the reward.

A high-level diagrammatic representation of RL is shown
in Fig.6. The RL sequence starts with the agent being in
an initial set of states, s;, with ¢ denoting the corresponding
timestep. The agent takes an action, a;, in the environment’s
initial states, and the response of the environment is fed back
to the agent with the form of a new set of states, s;4+1, and a
corresponding reward, ;4. For example, within the context
of PBF, the action could be the laser power of a SLM process,
while the reward could cover maintaining a constant layer
temperature.

The most popular and efficient approach, in terms of pro-
cess control in RL, is the actor critic class of methods, see
Schulman et al. (2017); Haarnoja et al. (2018). In Fig.7, a
generic structure is shown for the control framework. In the
actor critic class of RL, the agent can be formulated as a pair
of neural networks, each of which has a very specific role to
play. The neural networks are function approximators (pol-
icy function and value function respectively) and are denoted
with g (s, a) for the actor network, parameterised by 6, that
approximates the policy distribution, and vy, (s) for the critic
network, parameterised by w, that approximates the value.

A

state _
Agent
reward
_ Environment |<—
< action

Fig.6 The RL paradigm

The magnitude of the update step that the neural networks
go through during the learning process is dependent on the
learning rate, denoted by « for the actor network, and g for
the critic network.

Soft actor critic method

The soft actor critic (SAC) algorithm, introduced by Haarnoja
etal. (2018), is amodel-free actor critic method within the RL
domain. It aims not only to maximise expected rewards but
also to maximise entropy (via entropy regularisation), which
enhances the exploration of control actions. Considered as a
state of the art RL algorithm, SAC has demonstrated excep-
tional performance in continuous control benchmarks, see
Pardo (2020). It employs an experience replay buffer to store
previously collected agent-environment interactions, utilis-
ing them to enhance sample efficiency. The SAC algorithm
consists of an actor neural network responsible for policy
updates, determining action selection, and two critic neu-
ral networks responsible for evaluating the quality of the
taken action. It balances exploration and exploitation, using
an entropy coefficient (or reward scale) and this hyperparam-
eter is found to be the only hyperparameter that needs to be
tuned for SAC to perform. For this work, the SAC algorithm
is used, as in the stable-baselines3 platform by Raffin et al.
(2021).

Proposed method: adaptive weighted actor critic

Despite the benefits of the actor critic framework, stability
remains a key challenge in RL process control, see Nian et
al. (2020) and Vagenas and Panoutsos (2023), as there are
no performance guarantees. In an attempt to introduce more
stable RL frameworks for PBF, for the first time the Adap-
tive Weighted Actor Critic (AWAC) algorithm is introduced.
AWAC is a model-free actor critic method which aims to
improve the stability of the agent’s training. It utilises an
auto-tuned signal from the environment, which guides the
agent towards its goal while stability is accounted for.

In the advantage actor critic learning process, see Mnih
et al. (2016), a metric called advantage is defined, this is
A(s, a), as presented in (1). The actor network’s update rule
is presented in (2), while the critic network’s update rule

@ Springer
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Fig.7 The actor critic
framework
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is presented in (3). The factor y is a numerical value, such
as 0 < y < 1, and determines the current contribution of
future returns. The value of this discount factor is usually set
empirically as y = 0.99.

A(sy, ar) = req1 + Yo (Se41) — Vw(sy) (€))
A0 = aVo(lnmy(s;, a;))A(se, ar) (2)
Aw = BV (vy(s1))A(st, ar) 3)

At the start of the process, the agent has an initial set of
states, s;. The critic network approximates the corresponding
value, vy, (sy). The agent takes an action a; in the environ-
ment, sampled from the actor network g (s;, a;). A new set
of states, 5,41, with the corresponding reward, r; 1, are fed
back to it and the critic network, yet again, approximates the
corresponding value vy, (s;41). Having this information, one
can now calculate A(s;, a;) and the update steps A6 and Aw
of the neural networks. The aim of this learning process is
for the agent to be able to choose actions that lead to higher
returns.

The main idea behind AWAC is the construction of a cost
function, ¢4, in which stability is accounted for, just as the
reward function relates to performance. This cost function
is a positive defined function and its formulation depends
on the task at hand. This cost function is used to design a
discount for the calculated advantage, A(s;, a;), so that the
agent is guided to perform in a stable manner. The novelty
of the proposed approach is within the way this discount is
designed.

In the proposed framework, an extra stability network,
d,(s),is introduced, parameterised by z, which approximates
the expected cumulative cost, as shown in Fig. 8. In this way, a
disadvantage, D(s;, a;), is calculated as presented in (4). The
role of D(s;, a;) is to guide the agent towards stability. How-
ever, it should not subsume the role of A(s;, a;) that guides
the agent towards good performance. Hence, the impact of
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D(s;, as) is weighted by a factor, w, with 0.1 < w < 0.5,
such as the new, total advantage, A’(s;, a,), can be calculated
in (5). As a result, the update steps for the neural networks
can be calculated in (6), (7) and (8), with n denoting the
learning rate of the stability network.

D(styar) = cry1 + ydz(se+1) — d(s1) )
A/(St, ar) = A(s¢, ar) — wD(sy, ar) (5)
A0 = aVg(Inmg(s;, ar)) A’ (1, ar) (6)
Aw = BV (v (1)) A(st, ar) (7
Az =0V (d;(s:))D(st, ar) 3

Specifically, w is defined as a sigmoid function, o (£),
where ¢ is the intermediate variable between the agent’s train-
ing progress and the w value allocation. The definition of the
designed sigmoid function is presented in (9).

In order to exploit the meaningful region of the sigmoid
function and maintain the effectiveness in the @ adjustment,
the aim is to stay outside the saturation areas of the sigmoid
function. Therefore, alimitis applied to &, suchas —5 < & <
5. The training process begins by allocating an initial value to
the intermediate variable, £ = —5, which leads to w = 0.1.
When o is close to 0.1 (initial value), rapid @ changes are
avoided, since the agent is still exploring and it is allowed to
interact more freely with the environment. At the same time,
when w is close to 0.5, rapid @ changes are also avoided,
since the agent should persistently be discouraged to repeat
poor policies. In other cases, the behaviour of the w value
changes is close to linear.

_ — 01 0.4
w=0(&)=0. +1+7

)

During training, the current mean expected cost, EC¢y;r,
is estimated and compared against the mean expected cost
of the previous training update, EC .y, in order to monitor
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Fig.8 The AWAC framework T
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the direction of the training’s stability. Then, an increment,
A&;,cr, 18 applied if the cost is heading towards higher values,
and a decrement, A&y, otherwise, in the way presented in
(10) and (11) respectively. This tuning of the £ variable is
always within the limitation of —5 < & < 5. The pseudo-
code of the proposed algorithm is shown in Algorithm 1.

1 ECeurr
Abiper = 4= —247 10
§inc 2ECyen (10)
1EC
Aéjoer = —— —L% 11
‘i'-dtcr 2 EConrr ( )

Intuitively, instead of using the AWAC method, one could
attempt to manipulate the reward function accordingly, i.e.
rl’ 41 = 1 oy T he reward function manipulation
is a straightforward approach to provide a purely heuristic
stability improvement, however, the proposed AWAC method
has some significant benefits, which are discussed below:

e In AWAC, the w factor is auto-tuned during training
and it is constantly updated according to the training’s
progress. With reward manipulation, this tuning would
have to be manually implemented, based on a series of
necessary experiments beforehand that would determine
an arguably sub-optimal value for w.

e In AWAQC, the training of the critic network and the train-
ing of the stability network occur independently. The
stability network only influences the policy update with-
out complicating further the critic network’s training.
With reward manipulation, however, both the perfor-
mance metric and the stability metric would be included

Algorithm 1 Adaptive weighted actor critic

Require: timesteps N, batch size B, update epochs K
Initialise neural network parameters 6, w and z
Initialise learning rates «, 8 and n (annealing)
Initialise stability parameters & and w
for update = 1, update++, update < N/B do

fort =1, t++,t < Bdo
Sample s;, a; (fromme), si41, 141, Cr41
Approximation: vy, d,

end for

fort =B, t——, t > 1do
Calculate A(s;, a;), D(s;, a;)

end for

Calculate expected future returns
if update >= 2 then
Compare ECe¢yrr and ECprey
§ <&+ A
w < o(§)
end if
Calculate A’ (s;, a;)
fori =1, i++,i < K do
Create random minibatches from batch
for each gradient step do

0 < 60— A0
w<—w—Aw
z<z72—Az
end for
end for
end for

in the reward function, hence they would be both included
in the training of the critic’s network.

e In AWAC, the reward graph is straightforward to interpret
since the reward consists solely of the performance metric
of the problem. With reward manipulation, the reward
graph would become more complex to understand, hence

@ Springer
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Table2 RL implementation

Case study
summary

Action space Box(1,)

State space Box(3,) Episode duration

Fixed target
Tracking target

Power [250, 300]
Power [250, 350]

Temperature, power, height 35 timesteps (layers)

Temperature, power, height 35 timesteps (layers)

it would be challenging to investigate the contribution of
each reward factor in the agent’s performance.

A substantial benefit of AWAC is that its RL framework
does not require any additional hyperparameters to be man-
ually tuned. Thus, it is simple to implement and interpret its
performance. The only intervention by the user is the con-
struction of a stability cost function, which guides the agent
towards its goal, assisting the originally constructed reward
function within the RL framework. The construction of a
stability cost function requires similar intuition to the one
corresponding to the construction of any reward function,
hence, there is no inherently added complexity in the pro-
posed method. One could include this stability cost function
in the originally constructed reward function of SAC and gain
similar results with AWAC. However, this would raise a num-
ber of interpretation issues and tuning challenges. Hence, the
benefit of AWAC is that it yields a more intuitive approach
to introduce stability in the RL training than reward manip-
ulation.

SLM process control results
Control problem

In this section, the benefits and the challenges of layer-wise
control in SLM are demonstrated, via case studies of appli-
cations in symmetric parts. The control is implemented by
varying the power, layer-by-layer, in order to achieve the
desired average layer temperature of the meltpool. The geom-
etry of the part plays crucial role regarding the level of
challenge in this control task. If the layers of the part are long
and wide enough, then the heat dissipates effectively and the
heat accumulation observed among layers is small. However,
when addressing thinwall structures (e.g. thin design features
in heat exchangers), the heat accumulation observed among
layers is significant, and changing the power according to
a control law can be crucial for the quality of the produced
part. Hence, in this demonstration the focus is on a thinwall
geometry.

Specifically, the geometry of the part is a cuboid, with
a base that consists of 4 tracks, with 10mm length each,
resulting in a thinwall geometry. The cuboid consists of 35
layers. The simulation model is set up to take a value of power
for each layer as an input, and produce for this layer a time
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series of thermal history, consisting of 800 points. This time
series per layer is then averaged to be used as a performance
indicator (and target for control). Each layer comprises a
timestep from the controllers’ perspective. When applying
RL, in terms of RL notation and terminology, see Sutton and
Barto (1998), the whole build is referred to as an episode.
Hence, it follows that the whole build is an episode consisting
of 35 timesteps (35 layers). The RL implementation details
for the following case studies are presented in Table 2.

Three different control approaches are compared; the state
of the art SAC reinforcement learning, the stable approach
AWAC reinforcement learning, and these are benchmarked
against a PID controller. Regarding the RL techniques, SAC
and AWAC, the agents undergo a training process before they
come up with their resulting policy for the control problem.
Hence, it is essential to compare the SAC and AWAC agents’
training process and assess the impact of AWAC in the stabil-
ity of the training. The improvement in stability is measured
with regards to reduction in RL training variance, both overall
and during pre-convergence training periods, while achieving
higher or at least the same reward values. After the training
is completed, the resulting policies of SAC and AWAC are
compared, against the control policy of a carefully tuned PID
controller. The training of SAC and AWAC is a stochastic pro-
cess, hence the resulting policy of the agents is different for
each time the same experiment is run. For the PID, however,
the resulting policy is always the same (deterministic) for the
same experiment. Hence, in order to compare the SAC and
AWAC training processes, multiple experiments are run and
statistical analysis is performed. For comparison, the control
policy for the PID is contrasted against the average result-
ing policy for the SAC and the AWAC agents (rather than
the best resulting policy). The control policies are tested in
two scenarios, in a target tracking setting, where the target is
fixed, as well as a setting where the target varies with time.
The hyperparameters used for the SAC and the AWAC agent
are shown in Table 3.

Thinwall control with fixed control target

The first case study is process control for a thinwall geome-
try, with the aim of maintaining the average layer temperature
constant throughout the build. 7},.;; is defined as the average
layer temperature observed and A,,.;;, as the average melt-
pool area observed during the simulated build of a layer. The
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Table 3 Hyperparameters for

Buffer/batch size

Discount factor Entropy coefficient/w factor

SAC and AWAC training RL agents Learning rates
SAC 3e-4
AWAC 3e-4

le6 0.99 auto
2048 0.99 auto

desired temperature is set to be T;4ger= 2308 K and the SAC
controller framework is designed as follows:

e Action space: The action space is a continuous space and
it includes only the power of the laser beam, 250 W <
P <300W.

e State space: The state space is a continuous space. It con-
sists of the observed average layer temperature, 7,,.;;, the
power, P, that was used to achieve this temperature, and
the part’s current height (layer).

e Reward function: The reward function plays a crucial role
to RL training. Based on the work of Ogoke and Farimani
(2021), the reward function r, per layer, is formulated as:

Ttarget — Teir
100

r=1-—

12)

In order to implement the AWAC control approach, the
same action space, state space and reward function are used
as in the case of SAC. All the environment’s definitions and
assumptions remain the same. However, there is a need for a
stability metric to indicate if the agent is far or close to the
control target. The stability metric in this case study is chosen
to be the meltpool area, since the meltpool area is correlated
with the meltpool temperature, which is the control target
variable (one may select a different stability metric). The
desired temperature is still set to be T;4rger= 2308 K and the
corresponding desired average meltpool area is calculated to
be Asarger= 5.44e—8m?. For the cost function c, per layer, a
quadratic Lyapunov term is constructed, as it is also common
in control theory, see Sistu and Bequette (1996). In this case,
it is formulated as:

Atarget — Apelr 2
_ 13
¢ ( 0.0le—8 ) (13)

10 separate experiments are run for each agent (SAC and
AWAC). Figure 9 depicts the training process of the SAC and
AWAC agent. The average reward and the standard deviation
are shown by the dense line and the error bars respectively.
It is observed that the agents achieve high levels of reward,
since they reach a maximum higher than 31.5 out of 35 (max-
imum theoretically possible), hence higher than 90% training
performance. The AWAC agent seems to outperform the SAC
agent in stability and overall robustness of the training. More
specifically, the comparison metrics and the results for the
training are shown in Table 4. Similar to the step response

settling time in control theory, the settling time here refers to
the timestep in which the agent reaches 95% of the maximum
reward and stays consistently above the 95% for the rest of
the training (convergence). The mean settling time std refers
to the mean of the standard deviations calculated from the
beginning of the training until the settling time.

At this point, it is worth investigating the training process
of SAC and AWAC more in depth, in order to gain intuition
and fully understand the benefits of the AWAC approach.
As observed in Table 4, the maximum rewards achieved in
the two training processes show no significant difference
between SAC and AWAC, while both training processes con-
verge to the same reward values. Hence, it is expected that
the resulting policies of the two approaches after the training
completion show no significant difference. However, after
the early, preliminary training steps (where interactions are
mostly random for both agents), it is observed that AWAC
reaches consistently higher rewards than SAC during the
pre-convergence period. In a realistic scenario, where com-
putational cost and resources availability could be critical
factors, one might not be able to train the RL agents until full
convergence. Hence, it is plausible that the training process
would have to stop during the pre-convergence period. For
this reason, an additional experiment is run, where in the 10
separate training processes conducted before for each agent,
see Fig. 9, the training is terminated before the settling time,
and the resulting policy of the two agents is investigated.
Specifically, the training is stopped at 33.3% convergence
and at 66.6% convergence and the resulting policies and tem-
peratures of SAC and AWAC are shown in Figs. 10, 11, 12
and 13. In the 33.3% scenario, it is observed that the AWAC
agent comes up with a better policy to maintain the average
layer temperature at the desired value, reaching a mean of
2306.9K, with a mean absolute error of 1.87 K. The SAC
agent also reaches satisfactory temperatures, with a mean of
2306.2 K, however, the mean absolute error is 2.57 K, which
is approximately 38% worse than AWAC. In the 66.6% sce-
nario, it is observed once more that the AWAC agent comes
up with a better policy, reaching a mean of 2307.9K, with a
mean absolute error of 1.22K. The SAC agent also reaches
satisfactory temperatures, with a mean of 2307.2 K, however,
the mean absolute error is 1.74 K, which is approximately
43% worse than AWAC. In conclusion, the fact that AWAC
reaches consistently higher rewards than SAC, in a more sta-
ble manner, has significant impact in the resulting policy of
the two agents, and this impact is particularly shown in cases
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Fig.9 Training curves of the SAC and the AWAC agents. Fixed target for the average layer temperature

Table 4 Fixed target training

comparison between SAC and RL agents Mean reward Mean of std Max reward Settling time Mean settling time std
AWAC SAC 30.37 0.24 31.54 4550 0.80
AWAC 30.55 0.15 31.54 4200 0.70

All values correspond to the average of 10 runs

where there are limitations in computational resources and
cost.

In order to implement PID control, parametric optimi-
sation via gradient descent is used for tuning the P, I, and
D terms. These terms are then further fine-tuned heuristi-
cally which results in a further performance increase. The
final values of the control law terms are Kp = 5.58e—10,
K; = 1.0le—13 and Kp = —1.9e+01. The resulting pol-
icy (from RL completed training and PID tuning) and the
achieved temperature in each layer are shown in Figs. 14, 15
and 16. Itis argued that both RL controllers manage to main-
tain the average layer temperature in the desired value in a
satisfactory manner throughout the build, outperforming the
PID controller. It is noticed that the PID controller follows a
reasonable policy of gradually decreasing power. However,
it does not reach the desired value as effectively and con-
sistently as the RL controllers, demonstrating a slight offset
from the desired value. The offset challenge is a well-known
challenge in PID controllers, see Shaw (2003). The full list
of comparison metrics and the results for the controllers are
shown in Table 5.

Thinwall control with tracking control target

The second case study attempts to challenge the controller, in
the sense that the control target is no longer fixed. This could
be the case, for example, when one wishes to create bespoke
material microstructure and local properties via manipulating
the cooling rate between layers. The desired temperature,
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Tiarger, now varies with the part’s height, as seen in the results
in Fig. 18. Hence, the way the RL frameworks are defined is
altered, as follows:

e Action space: The action space is a continuous space and
it includes only the power of the laser beam, 250 W <
P <350W.

e State space: The state space is a continuous space. It con-
sists of the observed average layer temperature, 7,,.;;, the
power, P, that was used to achieve this temperature, and
the part’s current height (layer).

e Reward function: The reward function plays a crucial role
to RL training. Based on the work of Ogoke and Farimani
(2021), the reward function r, per layer, is formulated as:

Tmrget — Tnelr
100

r=1-—

(14)

As the control target is no longer fixed, the stability
metric target for AWAC needs to be redefined accordingly.
Specifically, a step change to the meltpool area target is intro-
duced that corresponds to each new meltpool temperature
target, as Asgrger = 5.44e—8m?2, Ararger = 6.06e—8 m?2,
Asarger = 5.10e—8m?%, Aygrger = 5.91e—8m?, Aygrger =
6.40e—8m?%, Argrger = 5.26e—8m?, and Asgrger = 5.44
e—8m?. For the cost function c, per layer, a quadratic Lya-
punov term is constructed, as it is also common in control
theory, see Sistu and Bequette (1996). In this case, it is for-
mulated as:
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= Atarget — Apelr 2 (15)
0.0le—8

10 separate experiments are run for each agent (SAC
and AWAC). Figure 17 depicts the training process of the
SAC and AWAC agent. The average reward and the stan-
dard deviation are shown by the dense line and the error bars
respectively. It is observed that the agents achieve high levels
of reward, since they reach a maximum higher than 30.6 out
of 35 (maximum theoretically possible), hence higher than
87% training performance. The AWAC agent seems to out-
perform the SAC agent in stability and overall robustness of
the training. More specifically, the comparison metrics and
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the results for the training are shown in Table 6. Similar to
the step response settling time in control theory, the settling
time here refers to the timestep in which the agent reaches
95% of the maximum reward and stays consistently above
the 95% for the rest of the training (convergence). The mean
settling time std refers to the mean of the standard deviations
calculated from the beginning of the training until the settling
time.

For the PID controller, the same formulation and tuning
are used as in the earlier case study (fixed control target). The
resulting policy and the achieved temperature in each layer
are shown in Figs. 18, 19 and 20. It is argued that both RL
controllers manage to maintain the average layer temperature
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Table 5 Fixed target results comparison of PID, SAC and AWAC

Controller Mean temperature (K) Mean temperature error (K)
SAC 2308.27 0.65
AWAC 2308.39 0.62
PID 2311.24 3.24

SAC and AWAC values correspond to the average of 10 runs

in the desired value in a satisfactory manner throughout the
build, outperforming the PID controller. The PID controller
demonstrates a delay in the action it takes when there is a
change in the control target. This delay is expected (and a
known drawback in PID control methods), see Shaw (2003),
since the controller does not know about the change in target,
until this is fed back indirectly via the error signal. In contrast,
the RL controllers demonstrate no delay and they follow the
target effectively. More specifically, the comparison metrics
and the results for the controllers are shown in Table 7.

Discussion and future research directions

For the first time in the literature, in this study we demon-
strate the benefits of a RL process control framework for
multiple layers (complete 3D PBF parts) and we highlight
the importance of stability during training. The presented
case studies confirm the effectiveness of the proposed con-
trol framework, directly addressing heat accumulation issues
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while demonstrating effective overall process control. Based
on simple 3D part geometries, SAC and AWAC outperform
a tuned PID controller. Moreover, when comparing the RL
algorithms’ training, we confirm the benefits of the pro-
posed AWAC approach regarding stability and consistent
performance, which can be key factors for satisfactory man-
ufacturing results and practical applications.

Despite the satisfactory control performance of RL in our
case studies, there are still important challenges that prevent
RL from entering the control mainstream in the metal AM
industry. As our case studies show, the RL agent needs to be
trained before it derives a control policy. However, there is
no established way to predict if the training is going to be
successful. Further research, new methods and new analyses
are needed in the areas of convergence guarantees, constraint
satisfaction, and control performance guarantees, to create
more trustworthy implementations of RL (which are required
for critical applications).

From a process perspective (PBF), a noteworthy chal-
lenge is the development of advanced control strategies, for
example to create bespoke microstructure and localised part
properties. While this work focuses on a layer-by-layer con-
trol approach, there is a need to explore track-by-track and
point-by-point control frameworks. However, these would
require more complex models, that would have higher com-
putational demands. We also expect that the identification of
good control policies would be more challenging, hence this
would require more effective and efficient RL methods.

80000 100000 120000 140000

Training Step

Fig. 17 Training curves of the SAC and the AWAC agents. Tracking target for the average layer temperature

Table 6 Tracking target training

comparison between SAC and RL agents Mean reward Mean of std Max reward Settling time Mean settling time std
AWAC SAC 26.28 0.54 30.65 44,800 0.98
AWAC 26.51 0.35 30.83 40,950 0.94

All values correspond to the average of 10 runs
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Fig.20 Resulting policy of the PID with tracking target

Table 7 Tracking target results comparison of PID, SAC and AWAC

Controller Action delay Mean temperature error (K)
SAC No 1.95

AWAC No 1.63

PID Yes 59.05

SAC and AWAC values correspond to the average of 10 runs

Finally, in this work, we formulate the meltpool behaviour
in a deterministic fashion. However, in a real-world PBF
process, the meltpool behaviour is not deterministic, since
there is uncertainty within the manufacturing process and

@ Springer

2700

2600
Control

— 2500 — — —Target

=
o
£ 2400
-
oo
>
< 2300

2200

2100

0 5 10 15 20 25 30 35
Layer
2700
2600
Control

— 2500 — = =Target
=
g
S 2400
=
oo
>
<

2300

2200

2100

Layer

2700

Control
2600

= = =Target

2500

Avg Temp (K)
N
S
(=]
o

N
w
=}
s}

2200
2100

Layer

sensitivity limitations in the monitoring capability and sys-
tems. In order to make the PBF simulation more realistic
and test the controllers’ capabilities, there is a need for test-
ing against monitoring noise and other process disturbances.
Hence, further research is required towards validation of
simulation results with real-world experiments, as well as
practical implementation for a range of part geometries and
materials. This would also lead to further research work in
RL, towards methods that are more tolerant to uncertainty
and disturbances.
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