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A B S T R A C T

Canada, with a substantial contribution from the personal transport sector, is a major per capita greenhouse gas 
emitter. This study advocates a sustainable 3-echelon transportation system, integrating Public Transit (PuT) and 
demand-responsive transit (DRT) for door-to-door service. Electric autonomous DRT vehicles serve the first and 
third legs of travel, while the second leg relies on PuT. The goal is to identify routes for commuters simulta
neously optimizing user, operator, and emission costs. A novel evolutionary algorithm, guided by fuzzy inference 
systems, optimizes travel costs. The algorithm is calibrated, and its performance is validated against benchmark 
instances. The proposed optimization framework demonstrates superior performance, achieving quick conver
gence even for large instances with over 5,000 billion possible routes. Near-optimal routing solutions for sizable 
scenarios with approximately 100 commuters, 250 PuT nodes, and 50 DRT vehicles can be computed within 
approximately 20 min.

1. Introduction

Canada emitted 16.44 tonnes of GHGs per capita in 2018, ranking 
among the world’s highest (Ritchie et al., 2020). The transport sector 
contributes 27 % of total GHG emissions, with half coming from pas
senger transportation (Davis et al., 2018). Promoting Public Transit 
(PuT) is crucial to reduce emissions; but door-to-door service is 
unachievable, deterring certain commuters like older adults and those 
with mobility needs. Extreme weather events further discourage PuT 
usage. Thus, establishing door-to-door services is essential to minimize 
usage of personal vehicles. This study examines a 3-echelon trans
portation system to address this issue. Integrating PuT with ride-sharing 
is a promising alternative (Thao et al., 2021; Whitmore et al., 2022).

Electric Autonomous Demand-Responsive Transit Vehicles 
(AuDRTVs) acts as feeders for PuT, providing door-to-door service. PuT 
and AuDRTVs together reduce the costs of the door-to-door trans
portation system. User cost, operator cost, and emission cost of the 3- 
echelon transportation system are simultaneously optimized. As a 

result, the proposed system architecture is expected to be pocket- 
friendly, environment-friendly, and sustainable.

In the first echelon, a passenger travels from an origin (specified by 
the passenger) to a suitable PuT node (using AuDRT). In the second 
echelon, the passenger travels between two specified PuT nodes (using 
PuT). Finally, the passenger travels to the desired destination in the third 
echelon (using AuDRT). The three echelons involve three different ve
hicles; electric AuDRTVs in the first and third echelons (as feeders to 
PuT), and the mass PuT vehicles in the second echelon. AuDRTVs are 
assumed to start and terminate their trip at a service station. The route 
between the passenger’s origin and destination involves all three eche
lons. The aim is to optimize the travel costs of this 3-echelon trans
portation system. Travel cost optimization is widely studied in the 
literature (Agatz et al., 2012; Rattanawai et al., 2024; Zhang et al., 
2022). Despite being common, the three-echelon transportation system 
is seldom considered for cost optimization.

This study optimizes multiple travel costs of a multi-echelon trans
portation system. Evolutionary Algorithms (EA) are widely used for 
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multi-objective optimization (Guo et al., 2022; Kabir et al., 2023). 
However, this study develops a novel methodology (which is termed 
F3E-MOGA, short for fuzzy-guided 3-echelon multi-objective genetic 
algorithm) utilizing fuzzy inference systems to guide the genetic oper
ations of an EA to optimize a 3-echelon multi-objective transit system.

1.1. System architecture and solution representation

Fig. 1 depicts the three-echelon architecture. There are three cate
gories of nodes in the network. The first is the ‘Service Station’ (S),

where the AuDRTVs originate, terminate, and undergo maintenance. 
Nodes corresponding to ‘Passenger Origins’ (P) and ‘Passenger Desti
nations’ (D) are the second type of nodes in the network. ‘Public Transit’ 
nodes (R) constitute the third type of node.

A passenger’s travel consists of three legs (echelons). In the first leg, 
AuDRTV-1 travels from a service station to the passenger’s origin. After 
dropping off the passenger at a PuT node, AuDRTV-1 returns to a service 
station for maintenance. The second leg involves fixed-route, fixed- 
schedule PuT travel between specified nodes. While PuT can use electric 
vehicles, this study intentionally examines diesel engine vehicles due to 
their current prevalence and local emissions impact. In the third leg, 
AuDRTV-2 picks up the passenger from a PuT node, transports them to 
their destination, and returns to a service station. These three echelons 
are depicted in Fig. 1(a).

The system can also be represented with eight nodes, as shown in 
Fig. 1(b). Nodes 1, 4, 5, and 8 represent the service stations. Nodes 3 and 
6 correspond to PuT nodes. Nodes 2 and 7 are the passenger’s origin and 
desired destination, respectively. Such a representation of 3-echelon 
travel using eight nodes makes it possible to model the travel solution 
to a passenger demand using an eight-element vector, as depicted in 
Fig. 2(a).

In the EA, an eight-element vector is termed a ‘chromosome’. Each 
element in a chromosome is a ‘gene’. Every gene in a chromosome 
represents a node in the network. Fig. 2(a) furnishes route solution for 
multiple passengers as stacked chromosomes. Every gene has associated 
geo coordinates. Hence, it is possible to present the travel solution for 
each passenger in a cartesian plane. One such fictitious route solution for 
Passenger 2 is presented in Fig. 2(b).

Fig. 1. (a) The three echelons of the proposed integrated system; (b) enumerated nodes.

Fig. 2. (a) Chromosome representation and (b) route depiction for Passenger 2.
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1.2. The rationale behind 3-echelon system architecture

(i) Even though 2-echelon transit systems are well explored (Belgin 
et al., 2018; Dellaert et al., 2019), systems like supply chain and 
PuT commuting require three echelons for accurate modeling. 
Our study integrates DRT with PuT using a three-echelon model, 
reflecting real-world complexity and the need for comprehensive 
modeling.

(ii) Integrating DRT with PuT reduces passenger costs compared to 
standalone DRT systems, making door-to-door service feasible.

(iii) Simple modifications can convert the proposed 3-echelon system 
architecture into two or single echelon architectures.

This study confines itself to a 3-echelon system (with two transfers). 
The inherent ability to reduce the echelons by simple modifications is 
one of the main reasons for proposing the 3-echelon transit system in 
this study.

2. Literature review

2.1. Integration of evolutionary algorithms and fuzzy systems for solving 
vehicle routing problems

Vehicle routing is a popular research topic that has been widely and 
thoroughly researched for many decades (Braekers et al., 2016; Elshaer 
and Awad, 2020; Nickkar et al., 2022). The section is therefore limited to 
reviewing relevant and recent studies that have integrated any EA with 
fuzzy inference systems in solving vehicle routing problem.

Lau et al. (2009) employed fuzzy logic to dynamically control the 
crossover and mutation rates of several multi-objective EAs. They 
attempted to solve multi-commodity capacitated Vehicle Routing 
Problems (VRP). Nondominated sorting genetic algorithm with fuzzy- 
guided rates of genetic operations outperformed other EAs tested.

Cao and Lai (2010) used a fuzzy chance-constrained program to 
model the fuzziness in travel demands. They used a differential evolu
tion algorithm to solve the open VRP with fuzzy demands. Feng and Liao 
(2014) used a fuzzy clustering approach for solving large-scale traveling 
salesman problems. They employed a table transform-based particle 
swarm optimization algorithm coupled with simulated annealing.

Conformance (or violation) of service time windows (preferred by 
passengers) is a measure of passenger satisfaction. But the boundaries 
between satisfactory levels are fuzzy. Hence, fuzzy inference systems are 
used to express passengers’ satisfaction levels (Ghannadpour and Zar
rabi, 2019). In a similar study, Ghannadpour et al. (2014) used fuzzy 
membership functions to express passengers’ satisfaction based on their 
importance levels. They employed a multi-objective genetic algorithm 
to solve the dynamic VRP with fuzzy time windows.

Yan et al. (2020) recently solved a single objective 2-echelon VRP by 
integrating a fuzzy inference system with an EA. The second echelon 
routes are heuristically minimized, considering customer correlations. 
Fuzzy subsets of second echelon nodes are utilized.

Sometimes, knowing the relative importance of different objectives 
may be possible. Passengers may be able to prioritize (or provide rela
tive importance) between the objectives (for example, when optimizing 
travel time and cost). In such cases, a solution from the non-dominated 
frontiers could be chosen to optimize more preferred objectives. How
ever, the relative importance is fuzzy in nature. Hence, a method to 
express relative importance using fuzzy membership functions was 
provided (Shen et al., 2010).

Often in literature, a single-echelon variant of VRP is solved. The 
capability of FIS to achieve superior convergence is not exploited. The 
present study solves a challenging multi-objective 3-echelon variant of 
VRP. FISs govern the genetic operations of F3E-MOGA for superior 
convergence.

2.2. Relevant 3-echelon multi-objective problems

F3E-MOGA solution for each passenger would have three routes 
making it a 3-echelon system (see Fig. 1). 3-echelon VRPs are rarely 
addressed in the literature. Optimizing multi-echelon logistics supply 
chains (LSCs) is a problem like multi-echelon VRPs (Srivatsa Srinivas 
and Marathe, 2021). LSCs containing three levels (but termed 4-echelon 
systems in LSCs) may be similar to F3E-MOGA.

Multiple options are optimized in LSCs using approaches like EAs 
and integer programming models. Yet, the network size considered is 
relatively small. In contrast, the present study considers up to 100 
customer nodes, 30 service station nodes, and 300 transit nodes. The 
large number of nodes in a network disproportionately increases the 
solution complexity. F3E-MOGA can solve much larger practical prob
lems than existing studies.

2.3. Solving vehicle routing problem

Vehicle routing models are extensively used to optimize trans
portation networks. Passengers’ commutes are often composed of mul
tiple legs (or levels or echelons) of travel. Each leg of a trip may be 
served by a different travel mode (or vehicle). Assigning vehicles to 
passengers and deciding the travel routes while optimizing specific ob
jectives is the essence of vehicle routing. Certain constraints are to be 
adhered to in the process. In the context of VRP involving passenger 
transportation, several objectives can be explored. Optimization of 
travel time, waiting time, and travel distances are widespread 
(Coindreau et al., 2019). Optimization of vehicle acquisition and oper
ational costs is often performed (Alogdianakis and Dimitriou, 2023; Guo 
et al., 2019; Masmoudi et al., 2022).

With the advent of electric vehicles, objectives such as battery 
recharging and charging station setup costs are explored (Dimatulac 
et al., 2023; Hulagu and Celikoglu, 2022). Environmental cost, i.e., 
minimization of GHG emissions (fuel consumption), is a popular 
objective (Rezaei et al., 2022; Ye et al., 2022). Objectives like passen
gers’ out-of-pocket cost and service quality (discomfort due to ride- 
sharing, passenger load factor, etc.) are seldom optimized in the litera
ture (Aiko et al., 2018). Interested readers may refer to literature on VRP 
for a comprehensive classification, taxonomy, and state-of-the-art 
(Braekers et al., 2016; Díaz-Parra et al., 2014; Elshaer and Awad, 
2020; Konstantakopoulos et al., 2020; Lin et al., 2014; Vidal et al., 
2020).

Multi-echelon VRP is one of the variations of the VRP. Machine 
learning approaches for solving such problems are gaining popularity 
(Parvez Farazi et al., 2021). Several heuristics are being developed to 
solve large scale problems (Aloui et al., 2021). Each leg of travel con
stitutes an echelon of a transit system. 2-echelon VRPs are explored in 
the literature (Agárdi et al., 2021; Farajzadeh et al., 2020; Gayialis et al., 
2019). 3-echelon transit systems are observed in the real world but are 
seldom modeled (Beheshtinia et al., 2021; Saragih et al., 2019). The 
focus of this study is on solving a 3-echelon multi-objective VRP. Vehicle 
routing in such an architecture requires making the following decisions 
(Please refer to Table 1 for notations used in this study): 

(i) S − P assignment in the first echelon
(ii) P − R assignment in the first echelon

(iii) R − S assignment in the first echelon
(iv) R − R assignment in the second echelon
(v) S − R assignment in the third echelon

(vi) R − D assignment in the third echelon
(vii) D − S assignment in the third echelon

The computation of the optimal path between a pair of nodes is a 
well-researched and challenging problem. This study assumes the 
availability of optimal paths (and the related travel costs) between pairs 
of origins and destinations at any given time. The emphasis is on solving 
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the problem of vehicle routing, passenger-vehicle assignment, and 
vehicle-service station assignment. User and operator costs are simul
taneously optimized by employing a nondominated sorting EA. Four 
random genetic operators developed for F3E-MOGA prevent the solu
tions from getting stuck in local optima. Fuzzy-guided genetic operators 
in F3E-MOGA guarantee superior convergence.

2.4. Contributions and policy implications

2.4.1. Development of fuzzy-guided genetic operators
F3E-MOGA is developed by fusing FISs with an EA. Several random 

genetic operations are explicitly developed for the problem. Further, 
FISs guide genetic operations to increase the solution convergence rate. 
The concept of Neighborhood Score is introduced to improve the quality 
of emerging solutions. Besides improving the convergence rate, fuzzy 
guidance also yields superior convergence.

2.4.2. Solutions to multi-objective 3-echelon VRPs
3-echelon optimization is computationally challenging, and such 

complex problems are seldom solved in literature. The proposed F3E- 
MOGA can solve pragmatically large networks by simultaneously opti
mizing multiple objectives.

2.4.3. Benchmarking
Despite being common, 3-echelon transit systems are rarely 

explored. Hence, there does not exist any dataset with known optimal 
solutions. This poses a challenge in assessing the quality of F3E-MOGA. 
This study generated several instances (with small complexities) and 
optimized them with exhaustive exploration techniques. These optimal 
solutions are used as benchmarking instances against which the quality 
of F3E-MOGA is assessed. Benchmarking instances and the optimal so
lutions would be furnished upon request.

2.4.4. Policy implications
The developed solution methodology provides policymakers with a 

tool to optimize travel costs in real-world multi-echelon systems, such as 
logistics supply chains and integrated public transit networks. This 
approach addresses a critical gap, as methodologies for modeling and 
optimizing large-scale 3-echelon systems are scarce.

From a policy perspective, the methodology has significant envi
ronmental and economic implications. By optimizing resource utiliza
tion, it can guide policies aimed at reducing carbon emissions and 
operational costs. For example, governments can adopt this methodol
ogy to develop sustainable transport policies that minimize environ
mental impact while maximizing economic efficiency.

In the context of public transit, the methodology can inform policies 
to improve service accessibility, particularly for vulnerable populations. 
This is crucial in ensuring equitable public transit availability, especially 
during adverse weather conditions or other disruptions. Policymakers 

can use these insights to prioritize investments in transit infrastructure 
and optimize transit routes for greater inclusivity and resilience.

3. Problem description

A 3-echelon architecture is envisioned to promote PuT usage with 
door-to-door service. Such a transportation system’s travel costs (oper
ator, user and emission costs) are optimized by fusing FISs and an EA.

3.1. Network representation and notations

The 3-echelon transit network is modeled as a graph consisting of 
nodes and edges. The cost of traveling along a road link is modeled by 
the corresponding edge cost. Nodes indicate the locations of passengers’ 
origins, destinations, service stations, and transit stops. Let G = (N,E)
represent a road network as a graph with nodes N and edges E. G is a 
directed and weighted graph, which permits a comprehensive repre
sentation of an actual road network. There can be several origins, des
tinations, and transfer points in a transit network, all of which can be 
represented as nodes. Edges between any two nodes represent optimal 
AuDRTV routes or PuT routes. Table 1 describes the notations used in 
this study.

3.2. Optimization model

Travel for each passenger along the three echelons results in three 
types of costs. User Cost (UC) is the cost borne by the passenger; Oper
ator Cost (OC) is the cost incurred by the transit operator; Emission Cost 
(EC) is the cost of local emissions. These three costs are conflicting in 
nature. Simultaneous minimization of these costs is thus a major chal
lenge.

The monetary values of these objectives can be computed as: 

f1 = minimizeUC =
∑

∀u

{[
β0 + β1 ×

(
du

pr + du
rm

) ]
+ fu

rr × xu
rr

}
∀p ∈ P, r

∈ R,m ∈ D

(1) 

f2 = minimizeOC =
∑

∀u

{
β1 ×

(
du

sp + du
rs + du

sr + du
ms

)
+ α × hu

rr

}
∀p ∈ P, r

∈ R,m ∈ D, s ∈ S

(2) 

f3 = minimizeEC =
∑

∀u
β2 × du

rr∀r ∈ R (3) 

Equation (1) minimizes the UC. The suffixes p, r and m indicate the 
passenger origin node, transit node and passenger destination node 
respectively. Hence, the travel between p and r is in the first echelon, 
while the travel from r to m is the final leg of travel, both of which are 
served by the demand-responsive transit vehicles, similar to taxis. The 
operating cost of taxi services is proportional to the vehicle distance 
travelled (Mehran et al., 2020). Hence, the cost of traveling in the first 
and third echelons is computed as a function of the distance travelled (β0 
is the minimum fixed cost per trip of AuDRTVs and β1 is the cost of 
traveling unit distance).

The travel between two PuT nodes (i.e., rr) is served by PuT buses. As 
per Mehran et al. (2020), the operating cost of the second echelon (PuT) 
can be estimated as a function of total vehicle hourly usage (α is the 
hourly cost of operating a vehicle per passenger). AuDRTV would be 
occupied by passengers while traveling between nodes p&r and r&m ∀
p ∈ P, r ∈ R,m ∈ D. Further, there would be PuT usage fare, frr ∀r ∈ R, 
(taken as C$3 in this study). These costs for user u, constitute the user 
cost, as given in Equation (1).

Equation (2) minimizes the OC. No passenger would be on board 
AuDRTVs during the travel between the following node pairs: s & p, r & s, 

Table 1 
Notations and descriptions.

Notation Description

s A service station with an available AuDRTV
ś A service station without any available AuDRTV
S Set of all service stations with an available AuDRTV,S = ∪s
SS Set of all service stations,SS = S ∪ ś
p A passenger origin
P Set of all passenger origins,P = ∪p
m Destination of a passenger
D Set of destinations;D = ∪m∀p
r A PuT station
R Set of all PuT stations,R = ∪r
N Set of all nodes;N = {S,P,D,R}

ij The shortest edge connecting origin node i and destination node j
du

ij Travel distance for passenger u while traveling between nodes i and j
hu

ij Travel time for passenger u while traveling between nodes i and j
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s & r, and m & s ∀ p ∈ P, r ∈ R, m ∈ D, and s ∈ S. The operator will bear 
these travel costs and the cost of operating PuT. Total operator cost is 
determined as in Equation (2).

AuDRTVs are considered battery autonomous vehicles, which orig
inate and terminate at a service station. As such, AuDRTVs do not 
contribute to local emissions. The second echelon travel is facilitated by 
public transit, which is assumed to be served by conventional diesel 
powered 12 m long buses with passenger capacity of 70. The emission 
cost of such a vehicle is computed based on the distance travelled 
(1.254C$/km) (Barraza and Estrada, 2021). The total emission cost of all 
three echelons is obtained as in Equation (3).

The values of the coefficients (β0 = $4 and β1 = 1.81 C$/km) are 
adopted from Mehran et al. (2020). A value of α = C$8 per hour per 
passenger is chosen in this study. Emission cost coefficient β2 = 1.254 C 
$/km is used based on the literature (Barraza and Estrada, 2021; Querini 
et al., 2011). Appropriate values for the coefficients α and β may be 
chosen during adoption of the methodology. The choice of α and β will 
not necessiate recalibration of the model parameters as normalized units 
are used during calibration (Section 4.2).

Further, time spent by a passenger at a PuT node and slack time of 
the AuDRTVs may also be considered apart from the edge costs. How
ever, the waiting time of vehicles (that are yet to be assigned a pas
senger) at the service stations is not a significant concern as the time may 
be utilized for recharging the batteries and maintaining/servicing the 
AuDRTVs. Further, PuT is considered reliable and frequent, implying 
that the waiting periods for passengers at PuT nodes are nominal.

Proof of concept is the primary goal of this study, hence there are 
only three objectives. Other objectives like fuel consumption, and ser
vice levels can be easily included. F3E-MOGA can easily handle multiple 
objectives.

4. Solution methodology

The three objectives used may be conflicting, and it is impossible to 
prioritize between them. It is also impractical to form a utility function 
including all the objectives, i.e., converting the multi-objective optimi
zation problem into a single-objective optimization problem. Hence, a 
well-established multi-objective Pareto optimization approach using an 
EA (Deb et al., 2002) is used. Moreover, a Fuzzy inference system is 
integrated with the EA to guide the genetic operations and ensure su
perior convergence. Fig. 3 furnishes an overview of the proposed EA 
framework, emphasizing the development of custom-built random and 
fuzzy-guided genetic operators.

The locations of every node n⊂N and the travel demand for every 
passenger p⊂P would be known. A DRT operator would also have in
formation about the availability of AuDRTVs at different service stations 
s⊂S. Knowing this information, the initial solution is randomly gener
ated. In the EA, routes for all passengers (stack of chromosomes (as 
shown in Fig. 2(a)) is termed a ‘member’. Several such members 
constitute a ‘population’. Detailed description of EA is provided in the 
Annexure C for the purpose of brevity; however, the methodology for 
parameter calibration, fuzzy inference systems and fuzzy guided genetic 
operations are described in this section.

4.1. Methodology for parameter calibration

The study employed fuzzy inference systems and developed several 
genetic operators. Therefore, multiple parameters are used (see Table 2). 
Two parameters are used to represent the shape of the membership 
functions, while 17 other parameters indicate the probabilities of per
forming genetic operations. Two more parameters are used to identify a 

Fig. 3. Framework of the EA highlighting research contributions.
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suitable population size and the minimum number of generations. The 
list of parameters is presented in Section 5. Fig. 4 provides the procedure 
used for the calibration of the model parameters.

With 21 parameters and just four levels per parameter, an exhaustive 
exploration approach would result in 421 (≈ 4.4× 1012) unique com
binations of parameters. It is impossible to explore so many combina
tions. Also, it is not prudent to sequentially calibrate the parameters 
considering one at a time. Such sequential calibration ignores the 
nonlinear correlation between the parameters. Hence, the fractional 
factorial experimental design approach proposed by Taguchi is used for 
simultaneously calibrating the model parameters (Abhang and Hamee
dullah, 2012; Sharath and Velaga, 2020; Taguchi et al., 2005). Taguchi’s 
approach shortlists the unique parameter combinations for simulta
neous calibration. Using L64b orthogonal array, the number of unique 
parameter combinations reduces to 64.

Parameters are optimal if the F3E-MOGA determined solution fron
tiers are similar to Pareto optimal frontier. Inverted Generational Dis
tance (IGD) and Maximum Spread (λ) are the two popular indicators 
used to assess the quality of the solutions obtained from F3E-MOGA 
(Equations (4) and (5)). 

IGD =
1

|F *|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

∀k
(dk)

2
√

(4a) 

dk = min
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

∀m,i

(
fm,i − f *

m,k

)2
√

(4b) 

Table 2 
Model parameters that are calibrated in the present study.

Sl 
No

Parameters Level 
1

Level 
2

Level 
3

Level 
4

Calibrated 
Level

1 SSX 0 0.033 0.067 0.1 0.033
2 PasRX 0.1 0.167 0.233 0.3 0.233
3 TNX 0 0.033 0.067 0.1 0.100
4 ParRX 0 0.033 0.067 0.1 0.000
5 FGGO12 0 0.033 0.067 0.1 0.033
6 FGGO15 0 0.033 0.067 0.1 0.000
7 FGGO23 0 0.033 0.067 0.1 0.033
8 FGGO26 0 0.033 0.067 0.1 0.067
9 FGGO36 0.1 0.167 0.233 0.3 0.300
10 FGGO37 0 0.033 0.067 0.1 0.067
11 FGGO45 0.1 0.167 0.233 0.3 0.300
12 FGGO46 0 0.033 0.067 0.1 0.000
13 FGGO47 0 0.033 0.067 0.1 0.033
14 FGGO34 0.1 0.167 0.233 0.3 0.300
15 FGGO56 0 0.033 0.067 0.1 0.067
16 FGGO67 0 0.033 0.067 0.1 0.033
17 FGGO78 0 0.033 0.067 0.1 0.000
18 α 5 10 15 20 10
19 β 3 5.333 7.667 10 3
20 PopSize 100 200 300 500 500
21 MinGenerations 100 200 300 400 300

Fig. 4. Methodology used for calibration of model parameters.
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λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M
∑M

m=1

(
fmax

m − fmin
m

f *max
m − f *min

m

)2
√
√
√
√ (5) 

where, F * and F respectively are the Pareto optimal frontier and best 
frontier determined by F3E-MOGA; 

f*
m,k is the mth objective function value of kth member of F *;

fm,i is the mth objective function value of ith member of F ;
f*max
m and f*min

m respectively are maximum and minimum value of mth 

objective function in F *;

fmax
m and fmin

m respectively are maximum and minimum value of mth 

objective function in F ;

M is the total number of objective functions.

Smaller IGD values indicate desirable convergence and diversity of 
F (Tian et al., 2016). The departure of λ from 1 indicates lack of uni
form spread of the solution in F . The method employed for calibrating 
the model parameters utilizing IGD and λ is presented in Fig. 4.

L64b orthogonal array permits 4 levels for each of the 21 parameters 
to be calibrated. Initially, appropriate levels for all the parameters are 
decided (this step is the trial-and-error method). Thus, 64 unique com
binations of the parameters are generated. The study uses 11 bench
marking instances with known optimal solution frontier, F *, for each 
instance. Each of these instances is solved by F3E-MOGA using different 
parameter combinations. This process results in 64 solution frontiers, 
F , for each instance. F * and F are compared to compute IGD and λ,
and the results are presented in Fig. 5 and Fig. 6. 95th percentile IGD and 
λ values during Taguchi tirals are $8.31 and 0.84. Only top 5 percentile 
values are shown in the dark shade. From the figures, it is evident that 
parameter combination 25 results in high-quality IGD and λ. Hence, such 
specific parameter combination is considered optimal. Detailed results 
are presented in Section 5.

Genetic operations are guided by a fuzzy inference system. The 
development of genetic operators is one of the significant contributions. 
Hence, Sections 4.3 and Annexure B are dedicated to describing them. 
Section 5 is dedicated to model calibration results, while Section 6
presents the results of solving large problem instances.

4.2. Fuzzy inference system and neighborhood score computation

4.2.1. Desired characteristics of a route solution
Good (near-optimal) routes may be assumed to have specific char

acteristics. Based on the intuition and general understanding of the 
transit system, desired characteristics of a route (for the network ar
chitecture considered) are conceived. The inherent assumption is that an 
optimal solution would also exhibit desired characteristics. The desired 
characteristics of a route are formulated as spatial (distance) and tem
poral (travel time) separations between the nodes.

For example, Nodes 1 and 2 in Fig. 7 represent the assignment of a 
service station to a passenger. Serving a passenger from a nearer service 
station appears preferable. Hence, the desired character between nodes 
1 and 2 would be to have a smaller spatial and temporal separation.

Another contrasting example can be provided by considering the 
separation between nodes 4 and 5 in Fig. 7. Node 4 is the terminal 
service station of AuDRTV-1, and Node 5 is the origin service station of 
AuDRTV-2. If these two nodes are closer (assume overlap), the travel 
between PuT nodes 3 and 6 becomes redundant. Hence, a larger sepa
ration between nodes 4 and 5 is desired.

Similarly, it is possible to arrive at the desired characteristics (sep
arations) of different node pairs. Smaller (spatial and temporal) sepa
ration is better for the following node pairs: 1&2, 2&3, 3&4, 5&6, 6&7, 
and 7&8. In contrast, a larger separation is preferred for the following 
node pairs: 1&5, 2&6, 3&6, 3&7, 4&5, 4&6, and 4&7. A pair of nodes is 
‘desirable’ in the solution if it exhibits the desired separation charac
teristics. The optimal (or near-optimal) route would be a combination of 
desirable node pairs.

The terms like ‘large separation’, ‘small separation’, and ‘good pairs’ 
used to describe the routes’ desired characteristics are qualitative and 
fuzzy. But a fuzzy inference formulation would permit quantifying these 
desired qualities/ characters. Thus, a fuzzy inference system is adopted.

4.2.2. Fuzzy inference systems for guiding genetic operations
A 2-input, one-output Sugeno fuzzy inference system is used in this 

study. Spatial separation (travel distance) and temporal separation 
(travel time) between a pair of nodes are the two input variables. The 
output is a Neighborhood Score (NS), which is a scalar quantity indi
cating the suitability of a node to be a neighbor to another (in the node 

Fig. 5. Inverted generational distances. IGDs (averaged over 11 instances) for parameter combinations 25, 32 and 33 are $8.31, $8.5, and $9.17 respectively. The 
best combination ID (average IGD closest to 0) is shown with a solid line, while dashed lines indicate the combinations resulting in the top 5 percentile IGD values.
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pair).
Desirable node pairs (ideal neighbor to a node) are identified by 

computing NSs. The one with the largest NS is considered an ideal 
neighbor to a subject node among all possible neighboring nodes.

Three fuzzy membership functions are used to describe the (spatial 
and temporal) separations, as depicted in Fig. 8. The x-axis presents the 
scaled spatial or temporal proximity on a scale of 0 to 100. The sepa
ration can be converted into the actual distance or time units by 
choosing an appropriate scale factor. The scaling of the x-axis is neces
sary to avoid re-calibration of the parameters of the membership func
tions for different networks (of sizes and characteristics). Scaled 
membership functions could be used for various transit networks 
without re-calibrating parameters, making them network invariant. It is 
to be noted here that the scale factors are not dimensionless quantities. 
The spatial and temporal separation scale factors are determined as 
provided in Equations (6) and (7). 

SFDistance =
Longesttraveldistanceintheconsideredtransitnetwork

100
(6) 

SFTime =
Longesttraveltimeintheconsideredtransitnetwork

100
(7) 

The elements of the fuzzy subset associated with ‘Spatial Separation’ are 
‘Small’, ‘Medium’ and ‘Large’. The same fuzzy subset is also used to 
represent ‘Temporal Separation’. The elements of fuzzy subset attrib
uted to NSs are ‘Bad’, ‘Fair’, and ‘Good’.

A Z-shaped membership function is used to formulate ‘Small’ sepa
ration as shown in Equation (8). ‘Large’ separation is described using an 
S-Shaped membership function provided in Equation (9). Both of these 
membership functions have two parameters, α and b. However, if b =

SF× 100 − α, the symmetry of membership function would be preserved. 

f(x; α, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ≤ α

1 − 2
(x − α

b − α

)2
, α ≤ x ≤

α + b
2

2
(

x − b
b − α

)2

,
α + b

2
≤ x ≤ b

0,Otherwise

(8) 

Fig. 6. Maximum spread, λ.λ (averaged over 11 instances) for parameter combinations 14, 25 and 32 are 0.84, 0.831, and 0.83 respectively. The best combination ID 
(average λ closest to unity) is shown with a solid line, while dashed lines indicate the combinations resulting in the top 5 percentile λ values.

Fig. 7. Desired characteristics between node pairs 1–2 and 4–5.
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f(x; α, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ α

2
(

x − b
b − α

)2

,
α + b

2
≤ x ≤ b

1 − 2
(x − α

b − α

)2
,α ≤ x ≤

α + b
2

1,Otherwise

(9) 

The third membership function for ‘Medium’ separation is described 
using a generalized bell-shaped membership function as in Equation 
(10). This membership function has three parameters, α, β and c. If α =

SF× a, and c = 50, then the membership function would be 
symmetrical. 

f(x; α, β, c) =
1

1 +

⃒
⃒
⃒x− c

α

⃒
⃒
⃒
2β (10) 

Hence, from Equations (8), (9), and (10), α and β are the only two pa
rameters of the three membership functions to be calibrated. The other 
parameters (a, b, and c) are computed to preserve the symmetry of the 
membership functions and are functions of α as shown in Equation (11). 

a =
α
SF

(11a) 

b = SF × 100 − α (11b) 

c = 50 (11c) 

Constant output membership functions are used to describe NSs. A ‘bad’ 
NS is when it is 10; ‘fair’ when it is 50; and ‘good’ when it is 90.

4.2.3. Knowledge-based fuzzy rules
Several knowledge-based fuzzy rules are used to compute NS. Early 

in this Section, it is explained that separation (spatial and temporal) 
between node pairs is an essential characteristic of a solution (route). 
The solution tends to be optimal (or near-optimal) if the following fuzzy 
rules are satisfied.

4.2.3.1. Smaller separation is preferred. A smaller spatial and temporal 
separation between the following node pairs is preferred: 1&2, 2&3, 
3&4, 5&6, 6&7, and 7&8. The solution tends to be near-optimal when 

the following fuzzy rules are satisfied: 

11: If ‘Spatial Proximity’ is Small AND ‘Temporal Proximity’ is 
Small, THEN ‘Neighborhood Score’ is Good

21: If ‘Spatial Proximity’ is Large OR ‘Temporal Proximity’ is Large, 
THEN ‘Neighborhood Score’ is Bad

31: If ‘Spatial Proximity’ is Medium AND ‘Temporal Proximity’ is 
Medium, THEN ‘Neighborhood Score’ is Bad

41: If ‘Spatial Proximity’ is Small AND ‘Temporal Proximity’ is Me
dium, THEN ‘Neighborhood Score’ is Fair

51: If ‘Spatial Proximity’ is Medium AND ‘Temporal Proximity’ is 
Small, THEN ‘Neighborhood Score’ is Fair

4.2.3.2. Larger separation is preferred. In contrast, larger spatial and 
temporal separations are desired between the following node pairs: 1&5, 
2&6, 3&6, 3&7, 4&5, 4&6, and 4&7. If the node pairs satisfy the below 
fuzzy rules, the solution tends to be near-optimal. 

61: If ‘Spatial Proximity’ is Large AND ‘Temporal Proximity’ is 
Large, THEN ‘Neighborhood Score’ is Good

71: If ‘Spatial Proximity’ is Small OR ‘Temporal Proximity’ is Small, 
THEN ‘Neighborhood Score’ is Bad

81: If ‘Spatial Proximity’ is Medium AND ‘Temporal Proximity’ is 
Medium, THEN ‘Neighborhood Score’ is Bad

91: If ‘Spatial Proximity’ is Medium AND ‘Temporal Proximity’ is 
Large, THEN ‘Neighborhood Score’ is Fair

101: If ‘Spatial Proximity’ is Large AND ‘Temporal Proximity’ is Me
dium, THEN ‘Neighborhood Score’ is Fair

Fig. 9 provides the framework of the developed methodology to 
compute NSs. The spatial and temporal separations would be known for 
a given node pair. Knowing the separations, their corresponding mem
bership values for different fuzzy subsets are computed. Fuzzy rules are 
then evaluated to obtain NS. α and β are the two parameters to be 
calibrated to compute NSs appropriately. The process of calibrating α 
and β is detailed in Section 5.

4.3. Fuzzy-guided genetic operations

NS between a pair of nodes is assumed to indicate the chance of 

Fig. 8. Input membership functions.
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encountering that pair in the optimal route. Therefore, node pairs 
constituting smaller NSs are replaced with the node pairs that constitute 
larger NSs.

Consider a fictitious example, as shown in Fig. 10. S = {11,12,13,
14,15,16,17,18,19,20} form the set of all service stations. A randomly 
chosen passenger p = 5⊂P could be served by any of the service stations 
belonging to S. Hence, every member of S is a potential neighbor of p =

5. The most appropriate neighbor would be the one with the largest NS. 
The originally assigned service station s = 12⊂S has a NS of 56. How
ever, if the service station s = 19 is assigned to passenger p = 5, the 
resulting NS is 85, which is greater than 56. Hence, it would be desirable 
to serve passenger p = 5 from service station s = 19.

Instead of randomly determining the node pairs (assigning a service 
station to a passenger in the above example), NS (derived from a fuzzy 
inference system) can be used to determine the node pairs. Such guid
ance (heuristics), used in the form of genetic operators, can increase the 
convergence rate.

The mechanism mentioned above guides genetic operations between 
several node pairs. The 13 node pairs identified are 1&2, 2&3, 3&4, 
5&6, 6&7, 7&8, 1&5, 2&6, 3&6, 3&7, 4&5, 4&6, and 4&7. Corre
spondingly, 13 probabilities of performing the genetic operations are to 
be calibrated. The process of calibrating the 13 parameters is described 
in Section 4.1.

5. Calibration and benchmarking

The present study has a total of 21 parameters that needs calibration. 
Using a single problem instance for calibration casts doubts about the 
transferability of the model. Hence, 11 instances were used for the 
calibration of the parameters (the procedure for creating benchmarking 
instances and the characteristics of benchmarking instances are detailed 
respectively in Annexures A and D). Based on the procedure described in 
the previous Section, the parameters are calibrated. Table 2 lists the 
model parameters, their corresponding exploration levels, and the 

Fig. 9. Fuzzy inference system used for computation of Neighborhood Scores.

Fig. 10. An example of fuzzy-guided genetic operation between nodes 1 and 2.
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calibrated (ideal) levels. Fig. 11(a) and (b) respectively depict the NS 
when (i) smaller spatial and temporal separations are better and (ii) 
larger spatial and temporal separations are better. Calibrated α and β are 
used to generate Fig. 11.

Pareto optimal solution frontier for 11 instances is determined by 
exhaustive exploration. The total number of nodes in these instances 
varied between 20 and 50, as presented in Table D.1. Further, the 
benchmark instances were solved by F3E-MOGA (using the calibrated 
parameters). The resulting solution frontiers are presented in Fig D.1(b), 
along with the Pareto optimal solution frontier Fig D.1(a). It can be 
observed that the F3E-MOGA determined frontier is very similar to the 
Pareto-optimal frontier, and the solutions appear to be well distributed 
along the Pareto frontier. Violin plots in Fig. D.2 (a, b and c) depict the 
distribution of (i) average operator cost, (ii) average user cost, and (iii) 
average emission cost in the solution frontier. The evidence from 
Fig. D.2 suggests that the best solution frontier determined by F3E- 
MOGA is similar to that of the Pareto optimal frontier (for all the 
benchmarking instances).

The distribution of the three costs in the best frontier as determined 
by F3E-MOGA closely resembles the distribution of costs in the Pareto 
optimal solutions across all benchmarking instances and objectives. This 
is a desired characteristic of any calibrated optimization algorithm. This 
suggests that the calibration of parameters of F3E-MOGA is appropriate.

6. Validation: Solving large problem instances

F3E-MOGA is benchmarked using 11 instances where Ω ≤ 5× 106. 
However, 20 larger instances are solved to exhibit the effectiveness of 
F3E-MOGA. The characteristics of the validation dataset are presented 
in Table D.2. The number of unique routing solutions in the dataset, Ω, 
ranges from 2 billion to 5,062 billion. For such an enormous value of Ω, 
it is impossible to compute the optimal frontier by an exhaustive search 
approach. F3E-MOGA is expected (and equipped) to determine a near- 
optimal solution quickly.

Fig. 12 furnishes the distributions of (i) average operator cost, (ii) 
average user cost, and (iii) average emission cost of best frontier of the 
large instances. The mean operator cost per passenger in the large in
stances is about $50 per passenger, compared to about $100 per pas
senger in the benchmark instances. There is no significant change in the 
mean user costs (benchmark vs. large instance). As the number of nodes 
in the system increases, the biggest improvement is observed in the 
emission costs. More than 5-fold decrease in the average emission cost 
can be observed from about $5 in benchmark instances to less than 1$ in 
large instances.

Both the average operator cost, and average emission cost have more 
than halved from benchmark instances to the large instances. This is 
because more transit and service station nodes are used in large 

instances, implying better choices of transit and service station nodes for 
the passengers. Establishing more transit and service station nodes thus 
results in reduced operating costs. The best solution frontiers derived 
from F3E-MOGA for the large instances presented in Fig. 13 demonstrate 
a wide range of solutions.

F3E-MOGA is implemented in MATLAB on a Windows computer 
powered by AMD Ryzen 5 3550H, 16 GB RAM. Based on the bench
marking instances, the mean and standard deviations of solution 
convergence time per passenger are 13.32 s and 2.85 s, respectively. For 
the larger instances, the mean and standard deviations of solution 
convergence time per passenger are 12.37 s and 1.73 s, respectively. 
Even for the large magnitude of Ω in the larger instances, the mean 
convergence time per passenger remained similar. This aspect highlights 
the effectiveness of F3E-MOGA.

7. Summary and conclusions

Multi-echelon transportation systems are common yet highly com
plex to optimize. The study envisioned an integrated transit system to 
encourage public transit usage, offering door-to-door service through 
Autonomous Demand-Responsive Transit Vehicles (AuDRTVs) and 
promoting more sustainable travel via PuT. Fuzzy inference systems are 
integrated with a nondominated sorting EA. A novel concept called 
‘Neighborhood Score’ is introduced to evaluate and enhance the quality 
of evolving solutions. We have developed four random genetic operators 
and thirteen fuzzy-guided genetic operators. Model parameters are 
simultaneously calibrated using Taguchi’s design of experiment 
approach, ensuring superior convergence. The solutions obtained from 
the developed algorithm (F3E-MOGA) are compared with the optimal 
solutions. Benchmarking F3E-MOGA confirms the estimation of high- 
quality routing solutions, which closely approximate the Pareto 
optimal frontier and are well-distributed along it.

Optimizing real-world applications such as multimodal trans
portation systems and logistics supply chains can be computationally 
challenging, with multi-echelon systems being seldom studied. Existing 
solution methodologies often struggle to address such extensive prob
lems. However, F3E-MOGA demonstrates capability in solving such 
complex problems.

Analysis of the solutions from the large problem instances revealed a 
reduction in operator costs per passenger, highlighting the advantages of 
establishing numerous transit and service station nodes. Implementing a 
policy of establishing multiple PuT nodes may seem costly, but coun
terintuitively, the results show a significant decline in the average 
operator cost per user, making it advantageous. Additionally, the best 
solution frontier demonstrates a wide range across all objectives, indi
cating effective solution distribution.

The system architecture has a few shortcomings. It assumes (i) every 

Fig. 11. NS when (a): smaller separation is better; (b): larger separation is better.
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Fig. 12. Cost distribution of large validation instances solved by F3E-MOGA.

Fig. 13. Solution frontier after solving 20 large instances using F3E-MOGA.
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passenger makes three legs of travel, (ii) AuDRTVs start and terminate 
their trips at a service station, (iii) no ride-sharing in the first and the 
third echelons, and (iv) the costs of waiting at the transit nodes and 
transfers are insignificant. All of these limitations can be addressed in 
future studies. Further, artificial intelligence has the potential to provide 
precise direction in genetic operations, replacing fuzzy-guidance. 
Various metaheuristic algorithms can be devised to address the opti
mization problem involving three echelons, followed by a comparative 
analysis.
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Annexure A: Generation of benchmarking instances

Data used and benchmarking

The multi-objective 3-echelon system used in this study is novel. As far as we know, no available instances could be used for benchmarking. Hence, 
several instances (with different network complexities) are developed, the procedure of which is described in this Section.

Instance generation

The number and Locations of service stations, PuT nodes, passenger travel demand, and travel costs (time and distance between any two node 
pairs) are the basic details necessary before generating route solutions for the passengers. A systematic procedure is adopted to generate instances. The 
city of Winnipeg, Canada, inspires the characteristics of generated instances. Every node ⊂N in an instance is assumed to be confined by a square of 
side 20 km.

Distribution of nodes
The locations (in the cartesian plane) of transit nodes (T) in Winnipeg are enclosed in a 20 km square. Such locations are observed to be normally 

distributed with. 

μX = 12,574m, μY = 13,131m, and σ2
XY =

[
24316563 2568510
2568510 24902444

]

m2 

where, μX, μY are the mean Easting and Northing coordinates of the Winnipeg transit bus stops, and σ2
XY is its covariance. Hence, the PuT nodes of R in 

the synthesized instances are assumed to be normally distributed with these properties.
A uniform distribution of Passenger Origins, P, Destinations, D, and Service Stations, S, within the square bounds is assumed for every instance.

Travel cost matrices
After generating N, the travel cost between every node pair is required. If |N| = n, then the dimension of the cost matrix would be n × n. In reality, 

the travel cost matrix is obtained from different sources for the chosen period. Two travel cost matrices (distance and time) are synthesized in this 
study.

The travel distance matrix is simply obtained by determining the Euclidean distance between the node pairs ⊂N. The Euclidean distances are 
rounded off to the nearest 100 m. Travel speeds by DSTVs and PuT would be different. Travel speeds in the first and third echelons are assumed to be 
normally distributed with a mean of 40 km/h, while that in the second echelon (PuT) are normally distributed with a mean speed of 20 km/h. The 
standard deviation of speeds in both cases is taken as 4 km/h. The travel time matrix is computed as the ratio between distance and speed.

From the above exercise, the spatial distribution of nodes in S,R,C, andD is known. Subsequently, travel cost matrices are synthesized. The set of 
nodes, N, and corresponding travel cost matrices form a problem instance where several passenger demands are to be served. Figure A1 depicts these 
nodes N, overlayed on the map of Winnipeg.

31 problem instances are synthesized in this study. Determining the optimal solution frontier for a 3-echelon 2-objective routing problem is not 
trivial. It requires computing operator, user and emission costs of all the possible routes and then determining the optimal non-dominated frontier. 
Based on the 3-echelon architecture described earlier, the number of unique routing solutions possible is, Ω ≈ |S| × |P| × |R| × |S| × |S| × |R| × |S|. 
Even for a small instance containing 10 passenger nodes, 10 service station nodes, and 10 PuT nodes, approximately 107 (10 million) unique routing 
solutions are possible. Thus, it is computationally impossible to obtain an optimal solution for larger and more realistic instances by exhaustive 
exploration. However, Pareto optimal solutions are necessary to assess the quality of solutions obtained from F3E-MOGA. Thus, the exhaustive 
exploration technique is adopted to optimally solve 11 problem instances (11 benchmarking instances). The remaining 20 problem instances are large 
instances. 
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Fig. A1. (a) a benchmark instance with ; (b) a large instance with

Annexure B: Random genetic operations

Fuzzy-guided operators may result in a solution getting stuck at a locally optimal point. Random genetic operations in an EA are necessary to 
release the solutions from local optima. It is required to develop random genetic operations tailored for the present study. Four such genetic operators 
are custom-built in this study. The probability of each of these genetic operations is a parameter to be calibrated. The process of calibration and the 
calibrated parameters are presented in Section 4.1 and Section 5, respectively.
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Service station crossover operator (SSX)

Fig B.1(a) portrays the SSX operation involving two parents. A service station gene in a stack of chromosomes is randomly selected from both 
parents. These two genes are then swapped, resulting in two offsprings. A similar genetic operation is possible with one parent resulting in one 
offspring. Both the asexual and sexual crossover operations are assumed equally probable. The probability of SSX operation is pSSX.

Passenger route crossover operator (PasRX)

Fig B.1(b) shows the PasRX operation involving two parents. An entire chromosome from a stack of chromosomes is randomly chosen from a 
parent. The passenger being served is then noted. The chromosome for the same passenger from another parent is then selected. These two chro
mosomes are then swapped between the two parents resulting in two offsprings. The probability of PasRX operation is pPasRX.

Transit node crossover operator (TNX)

As the name suggests, a transit node gene is randomly chosen from two parents. The two genes are then swapped, resulting in two offsprings. Such 
an operation can also be performed with only a single parent resulting in one offspring. The probability of both the sexual and asexual TNX operation is 
considered equally likely and is pTNX. See Fig. B.1(c).

Partial route crossover operator (ParRX)

The genes 1 to 4 of a chromosome represent the route of AuDRTV-1, while genes 5 to 8 correspond to the route of AuDRTV-2. Route of AuDRTV-1 
or AuDRTV-2 of one of the passengers is randomly selected, and the corresponding passenger is noted in ParRX operation. The route of AuDRTV-1 or 
AuDRTV-2 for the same passenger from another parent is selected. These partial routes are then swapped. The probability of ParRX operation is pParRX.

See Fig B.1(d).

Fig. B1a. Service Station Crossover Operation
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Fig. B1b. Passenger Route Crossover Operation

Fig. B1c. Transit Node Crossover Operation
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Fig. B1d. Partial Route Crossover Operation

Annexure C: Evolutionary algorithm

Initial random population

The EA is initiated with randomly generated members. A member is represented as a matrix of dimension |P| × 8, where |P| is the cardinality of P. 
Columns 1 and 5 are filled up from set S (random sampling without replacement). Elements of columns 4 and 8 are randomly sampled from SS (with 
replacement). Columns 3 and 6 are filled with elements from R (random sampling with replacement). Columns 2 and 7 correspond to the origin and 
destination of the passengers, which are obtained from P and D. Please refer to Table 1 for the description of the notations used.

The above is the procedure for generating random routing solutions for all passengers (or a member). Such solutions satisfy all the constraints 
mentioned in Section 3.2. Several such members are generated to form the initial random population. A large population would be a computation 
burden, while a small population would result in insufficient exploration. Population size is one of the crucial parameters and thus has been calibrated.

Fitness evaluation of the members

The offsprings and the parents from every generation are pooled before evaluating their fitness. This is a commonly adopted elite preservation 
strategy. When the fitness of every member of the pooled population is evaluated, the fitter parents or offsprings survive for future generations. A 
member’s fitness is evaluated using the three objectives. The three fitness measures (CUC, COC, and CEC) are computed for every member of the 
population.

Nondominated sorting

In a multi-objective optimization problem, the concept of domination is used to identify the relative fitness of different population members. 
Nondominated sorting (as described in Deb et al. (2002)) is performed to determine the nondominated frontiers (or sets). The best nondominated 
frontier is F 1, followed by F 2, F 3, and so on.

Population diversity control and niching

If the population from one generation is pooled with the offsprings, the population size for the next generation will increase. Some of the weaker 
(frequently dominated) members are to be excluded from future generations for a fixed population size. In doing so, the diversity of the population is 
to be preserved. Preserving population diversity is one of the significant challenges in EAs (Li et al., 2017). This study uses a Hypervolume indicator 
provided in Equation (12) as a population diversity indicator. 

H k = dk,UC × dk,OC × dk,EC (12) 

dk,UC = Ck,UC − CReference
UC (13a) 
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dk,OC = Ck,OC − CReference
OC (13b) 

dk,EC = Ck,EC − CReference
EC (13c) 

where, H i is the hypervolume indicator of member k;
dk,UC is the distance (from an arbitrary but fixed reference point) of member k in user costs;
dk,OC is the distance of member k in operator costs;
dk,EC is the distance of member k in emission costs;
CReference

UC = 0, CReference
OC = 0, and CReference

EC = 0, are the three fixed reference points used in this study; and Ck,UC,Ck,OC, and Ck,EC respectively are the 
user cost, operator cost and emission cost associated with member k.

Frontiers F 1,F 2,⋯F n− 1 from the parent-offspring pool survive for the future generations if |F 1| + |F 2| + ⋯ + |F n− 1| ≤ N , where N is the 
desired population size. The remaining k members (k = N − [|F 1| +|F 2| +⋯+|F n− 1| ]) are obtained from nondominated frontier F n. The process of 
selecting members from nondominated frontier F n is called Niching. In this study, k members are selected using k-means clustering strategy. 
Hypervolume indicator, H of the members of the frontier F n are used to form k clusters. The best member (with smallest H ) from each cluster is then 
selected for future generations. Such a clustering technique ensures population diversity. The number of nondominated frontiers reduces, and the 
number of members in the first frontier increases as members evolve. It is then the effect of niching becomes prominent and essential.

Selection of members for evolution

2-way tournament selection and fitness proportionate selection strategies are randomly used (with equal probability) to select the members 
(parents) to perform genetic operations.

Solution convergence criteria

Let g be the number of generations for which evolution is permitted and, H g

best be the hypervolume indicator of the best (lowest magnitude) 
member at generation g. The solution is said to be converged if (H g− 300

best − H
g

best)/H
g

best < 0.01. That is, if the H does not improve by more than 1 % in 
successive 300 generations, the solution is said to be converged. The bounds for the number of generations in this study are 300 ≤ g ≤ 30000.

Annexure D: Benchmarking

Table D1 and Table D2 provide characteristics of benchmarking and large instances respectively.

Table D1 
Characteristics of benchmarking instances.

Instance ID |P| |S| |R| |N| Ω(× 106)

1 5 5 5 20 0.078125
2 10 5 5 30 0.15625
3 5 5 10 25 0.3125
4 5 5 15 30 0.703125
5 5 10 5 25 1.25
6 5 5 20 35 1.25
7 5 5 25 40 1.953125
8 5 5 30 45 2.8125
9 5 5 35 50 3.828125
10 5 5 40 55 5
11 5 10 10 30 5
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Table D2 
Characteristics of large instances dataset.

Instance ID |P| |S| |R| |N| Ω(× 109) Convergence time (s)

1 50 20 300 420 720.0 661.7
2 50 15 250 365 158.2 519.3
3 50 10 200 310 20.0 686.5
4 50 15 150 265 57.0 738.2
5 50 15 100 215 25.3 608.7
6 70 25 100 265 273.4 982.6
7 60 20 250 390 600.0 821.7
8 70 15 250 405 221.5 1051.8
9 100 30 100 330 810.0 1291.3
10 100 30 250 480 5062.5 1122.4
11 80 30 200 390 2592.0 1203.1
12 70 20 100 260 112.0 823.8
13 70 10 50 200 1.8 625.1
14 70 10 100 250 7.0 848.8
15 100 10 100 310 10.0 1048.4
16 100 15 250 465 316.4 1294.4
17 80 10 300 470 72.0 995.7
18 100 10 300 510 90.0 1164.7
19 90 15 50 245 11.4 980.3
20 80 20 100 280 128.0 805.1

|P|: Number of passenger origin nodes.
|D|: Number of passenger destination nodes.
|S|: Number of service station nodes.
|R|: Number of PuT nodes.
|N|: Total number of nodes.
Ω: Total number of routing solutions possible.

Fig. D1a. Optimal frontiers of benchmark instances, determined by exploring all possible solutions
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Fig. D1b. Best frontier determined by F3EMOGA after solving benchmark instances

It can be observed that the best frontier of F3E-MOGA is very close to the Pareto optimal frontier. Also, F3E-MOGA solutions are well distributed 
along the Pareto optimal frontier. 
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Fig. D2a. Distribution of average operator costs per user in the best frontier of benchmark instances
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Fig. D2b. Distribution of average user costs per user in the best frontier of benchmark instances
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Fig. D2c. Distribution of average emission costs per user in the best frontier of benchmark instances

Data availability

Data will be made available on request. 
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Díaz-Parra, O., Ruiz-Vanoye, J.A., Bernábe Loranca, B., Fuentes-Penna, A., Barrera- 
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