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as a consequence of chemotherapeutic resistance, metas-
tasis, or delayed presentation of treatment toxicities 
[2–4]. Therefore, identifying novel molecular targets for 
therapeutic intervention is imperative. Current hormonal 
therapies targeting oestrogen receptor (ERα) activity 
have been effectively used to treat ERα positive (ERα+) 
Luminal A and Luminal B breast cancers, which account 
for ~ 70% of diagnoses [5]. However, breast cancers that 
co-express ERα and human epidermal growth factor 
receptor 2 (HER2), HER2 alone, or triple negative breast 
cancers (TNBC), which do not express any hormone or 
growth factor receptors, are more aggressive and tougher 

Introduction
Breast cancer is the most common malignancy diag-
nosed worldwide. Due to advancements in therapeu-
tic strategies and early detection, overall survival has 
greatly improved over the last few decades [1]. However, 
approximately one third of diagnoses will result in death 
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Abstract
Hypoxia is common in breast tumours and is linked to therapy resistance and advanced disease. To understand 
hypoxia-driven breast cancer progression, RT-qPCR is a widely used technique to quantify transcriptional changes 
that occur during malignant transformation. Reference genes (RGs) are endogenous RT-qPCR controls used to 
normalise mRNA levels, allowing accurate assessment of transcriptional changes. However, hypoxia reprograms 
transcription and post-transcriptional processing of RNA such that favoured RGs including GAPDH or PGK1 are 
unsuitable for this purpose. To address the need for robust RGs to study hypoxic breast cancer cell lines, we 
identified 10 RG candidates by analysing public RNA-seq data of MCF-7 and T-47D (Luminal A), and, MDA-MB-231 
and MDA-MB-468 (triple negative breast cancer (TNBC)) cells cultured in normoxia or hypoxia. We used RT-qPCR to 
determine RG candidate levels in normoxic breast cancer cells, removing TBP and EPAS1 from downstream analysis 
due to insufficient transcript abundance. Assessing primer efficiency further removed ACTB, CCSER2 and GUSB from 
consideration. Following culture in normoxia, acute, or chronic hypoxia, we ascertained robust non-variable RGs 
using RefFinder. Here we present RPLP1 and RPL27 as optimal RGs for our panel of two Luminal A and two TNBC 
cell lines cultured in normoxia or hypoxia. Our result enables accurate evaluation of gene expression in selected 
hypoxic breast cancer cell lines and provides an essential resource for assessing the impact of hypoxia on breast 
cancer progression.
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to treat. Moreover, acquired or de novo resistance to 
ERα-targeting drugs is an additional barrier that further 
diminishes survival for women with ERα+ disease [6].

Solid tumours, including those of the breast, have 
regions of limited O2 availability (hypoxia) due to 
increased O2 consumption in rapidly dividing cancer 
cells, and inadequate perfusion and diffusion of O2 as 
cells outgrow local blood vessel supply [7, 8]. Hypoxia-
inducible factors (HIF)-1α and HIF-2α accumulate in 
hypoxic cells and are key transcriptional regulators of 
the hypoxic response. HIF-α subunits are constitutively 
expressed, even when O2 is abundant. However, under 
physiological levels of O2, HIF-α proteins are rapidly 
degraded by the proteasome via a tightly regulated pro-
cess involving prolyl hydroxylase domain (PHD) enzymes 
and von Hippel-Lindau protein (pVHL) [9]. PHD 
enzymes use O2 as a catalytic substrate to hydroxylate 
HIF-α proteins, and are inhibited under hypoxic condi-
tions; this in turn inhibits proteasomal degradation, and 
promotes accumulation of HIF-α subunits [10]. Stabilised 
HIF-α subunits translocate into the nucleus whereby 
they form heterodimers with HIF-1β and bind to hypoxia 
response elements (HREs) present within promoters of 
target genes, initiating transcription. In solid tumours, 
hypoxia and HIFs are recognised as important contribu-
tors to cancer progression and metastasis [11]. Hypoxia 
has been shown to remodel the chromatin landscape of 
breast cancer cells to promote epithelial-to-mesenchymal 
transition (EMT) in a HIF-1α-dependent manner [12]. 
Additionally, hypoxia has been linked to chemotherapy 
and radiotherapy resistance, and poor disease outcomes 
[13–15].

To assess complex physiological changes occurring 
during hypoxia-mediated breast cancer progression and 
therapy resistance, reverse transcription - quantitative 
real-time polymerase chain reaction (RT-qPCR) is gold 
standard for accurately quantifying gene transcription 
and capturing dynamic changes in gene expression that 
may be serving as molecular drivers of advanced disease 
[16]. A fundamental component of RT-qPCR is inclusion 
of reference genes (RGs) which act as internal controls 
for endogenous normalisation of measured target gene 
expression. RGs are selected on the basis of constitutive 
expression, and relative abundance not being altered by 
experimental conditions [17]. The substantial adjustment 
to the epigenome and transcriptome of cells that occurs 
under hypoxic conditions renders traditional RGs such as 
glycolytic enzymes GAPDH or PGK1 redundant; despite 
this, comprehensive, systematic determination of RGs for 
hypoxia studies has yet to be performed [18–21].

We sought to fill this important knowledge gap by iden-
tifying RGs suitable for interrogating effects of hypoxia in 
breast cancer, using four widely cited breast cancer cell 
lines representing both ERα+ Luminal A (MCF-7 and 

T-47D) and TNBC (MDA-MB-231 and MDA-MB-468) 
subtypes. We identified 10 RG candidates following 
analysis of a publicly available RNA-seq dataset [22, 23]. 
We then established a comprehensive investigation of 
candidates to determine RGs with the least variability in 
expression after being cultured in normoxia (20% O2), 
acute hypoxia (1% O2, 8  h) or chronic hypoxia (1% O2, 
48 h). RG candidates not abundantly expressed or associ-
ated with poor primer efficiencies were filtered out dur-
ing the selection process. RGs were chosen by employing 
the web-based RG tool RefFinder [24, 25]. Our findings 
identify RPLP1, or RPLP1 in combination with RPL27, 
as optimal RGs for analysis of hypoxia-mediated gene 
transcription in MCF-7, T-47D, MDA-MB-231 and 
MDA-MB-468 breast cancer cell lines. Our identifica-
tion of RPLP1 and RPL27 as robust RGs in this panel of 
hypoxic Luminal A and TNBC cell lines provides a valu-
able resource for future studies investigating important 
transcriptional changes occurring during breast cancer 
progression.

Materials and methods
Cell culture
MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cell 
lines were used in this investigation. All breast cancer 
cell lines were maintained in DMEM (Gibco; S41966-
029) supplemented with 5% foetal bovine serum (FBS; 
Gibco; 10270106) in a humidified Binder CO2 incuba-
tor at 37  °C and 5% CO2. Cells were regularly tested for 
Mycoplasma by immunofluorescent visualisation of 
Mycoplasma DNA with DAPI [26]. T-47D cells were pro-
vided by Dr. Andrew Holding (University of York), origi-
nally from ATCC, and MDA-MB-231 cells were a gift 
from Prof. Mustafa Djamgoz (Imperial College London). 
Both T-47D and MDA-MB-231 cell lines were authenti-
cated by commercial STR profiling [27]. The MCF-7 and 
MDA-MB-468 cell lines were purchased from ATCC. For 
hypoxia culture, breast cancer cell lines were incubated 
in a humidified Baker Ruskinn InvivO2 oxygen worksta-
tion (37 °C, 1% O2, 5% CO2) for 8–48 h.

Selection of RG candidates
High throughput RNA-seq datasets of 32 breast cancer 
cell lines cultured in 20% or 1% O2 for 24 h are available 
from the NCBI Gene Expression Omnibus (GEO; Series 
Accession: GSE111653) [22, 23]. Using the University of 
York’s Viking 2 cluster, we recovered paired-end fastq 
files for hypoxic and normoxic MCF-7, T-47D, MDA-
MB-231 and MDA-MB-468 breast cancer cells with 
fastq-dump (Supplementary Table S1). Low-quality reads 
were trimmed with trimmomatic (ILLUMINACLIP: 
TruSeq3-PE.fa:2:30:20 LEADING:3 TRAILING:3 SLID-
INGWINDOW:4:15 MINLEN:36) and fastQC reports 
were generated with fastQC. Reads were pseudo aligned 
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to the GRCh38.p14 annotation (release 111) and quan-
tified using kallisto. Hierarchical Data Format (h5) files 
containing quantified reads for each experiment were 
input into RStudio (version 4.3.3). Here, quantified reads 
were aggregated on the gene level using sleuth_prep 
(gene_mode = TRUE) for differential analysis.

To determine relative stability across a selection of 
common RGs, and generate a shortlist of RG candidates, 
normalised reads in transcript per million (TPM) at com-
mon RGs in hypoxia and normoxia were assessed inde-
pendently for each of the four cell lines. A shortlist of RG 
candidates was selected based on (i) the appearance of 
the RG in literature searches and/or (ii) a calculated simi-
larity (s) score of ≤ 0.30 between the 20% and 1% O2 con-
ditions in at least two of the breast cancer cell lines. s was 
calculated by s = 1 - MIN(A, B) / MAX(A, B) (Microsoft 
Excel), where A is the read count value for a gene in 1% 
O2, B is the read count value for a gene in 20% O2, MIN 
refers to the smallest value between A and B and MAX 
determines the maximum value between A and B.

RNA isolation and cDNA synthesis
Breast cancer cell lines were seeded to a density of 
0.2 × 106 per well in 6-well plates and were left for a 
minimum of 24 h to adhere to the surface of wells before 
starting experiments. Each experiment was carried out 
with three biological replicates, consisting of three tech-
nical replicates. The experiments were designed such that 
all samples from each normoxic or hypoxic timepoint 
were collected on the same day. RNA isolation, cDNA 
synthesis and RT-qPCR were performed in accordance 
with MIQE guidelines where appropriate [28]. At the 
experiment endpoint, cold QIAzol lysis reagent (QIAgen; 
79306) was used to harvest RNA, as per manufacturer’s 
guidelines. Samples were rapidly collected in QIAzol, 
placed on ice and stored at -80  °C before RNA extrac-
tion. For phase separation, phenol/chloroform extraction 
with isopropanol precipitation was carried out as previ-
ously described [29]. To enhance nucleic acid extrac-
tion, GlycoBlue Coprecipitant (Invitrogen; AM9515) was 
included in the isolation protocol. Nucleic acid was re-
suspended in 0.2 μm-filtered RNase-free water (Ambion; 
AM9937) and treated with DNase I (New England Bio-
Labs; M0303S) to remove contaminating genomic DNA. 
RNA concentration and purity were measured using a 
NanoDrop™ One/OneC Microvolume UV-Vis Spectro-
photometer (Thermo Fisher Scientific). RNA with an 
A260/280 of ≥ 2.0 was used. To ensure integrity, RNA was 
assessed by 1.5% agarose gel electrophoresis in denatur-
ing conditions.

RNA was reverse transcribed using SuperScript IV 
cDNA Synthesis Kit as per manufacturer’s instructions 
(Invitrogen; 18091050). The amount of total RNA was 
1  µg. The reaction volume was 20  µl and consisted of 

1 µl 0.1 M DTT, 4 µl SSIV buffer, 1 µl RNAseOUT, 1 µl 
SSIV Enzyme, 1 µg of RNA in 11 µl of dH2O, 1 µl of ran-
dom hexamer and 1 µl of 10 mM dNTP. Reactions were 
carried out on a Bioer LifePro thermocycler, compris-
ing an initial step at 65  °C for 05:00 (mm: ss), followed 
by 23  °C for 10:00 (mm: ss), 55  °C for 10:00 (mm: ss), 
80 °C for 10:00 (mm: ss) and then 4 °C for 10:00 (mm: ss). 
cDNA samples were diluted to 5 ng / µl in 0.2 μm-filtered 
RNase-free water (Ambion; AM9937). A standard curve 
was prepared from pooled RNA from each biological 
replicate, and diluted to 20 ng / µl, 4 ng / µl, 0.8 ng / µl, 
0.16 ng / µl and 0.032 ng / µl. Samples were stored at 
-30 °C until further downstream analysis.

RT-qPCR
RT-qPCR was performed using the QuantStudio™ 7 
qPCR system (Thermo Fisher) in MicroAmp optical 
384-well reaction plates (Applied Biosystems; 4309849) 
sealed with Expell™ optical sealing membranes (CAPP; 
510400 C). Technical reactions were performed in dupli-
cate using 2X SYBR Green SuperMix (Applied Bio-
systems; 4385612). Each reaction mixture had a final 
working volume of 12 µl, containing 6 µl SuperMix, 1 µl 
10 µM primer stock (Table 1) and 4 µl of 5 ng / µl cDNA. 
Primer sequences for ACTB [30], RPL27 [31], CCSER2 
[32], GUSB [33], TFRC [34, 35] and CA9 [36] have been 
described before. For OAZ1, TBP, RPL30, RPLP1, PGK1 
and EPAS1, NCBI Primer BLAST was used to generate 
primer pair sequences that span the exon-exon junc-
tion with an amplicon size of between 70 and 200 bp and 
an optimal melting temperature of 60 ± 3  °C. All primer 
sequences were run through NCBI Primer BLAST to 
ensure no unintended gene targets could be amplified, 
but predicted transcript variants of the same gene were 
allowed. Primers were purchased from Integrated DNA 
Technologies.

For the standard curve, 80 ng, 16 ng, 3.2 ng, 0.64 ng 
and 0.128 ng of pooled cDNA were used. A no-template 
reaction was included as a negative control. RT-qPCR 
cycling parameters comprised an initial denaturation 
step at 95 °C for 01:35 (mm: ss), followed by 40 cycles of 
00:03 (mm: ss) at 95 °C and 00:30 (mm: ss) at 60 °C. Melt 
curve analysis was carried out in the final cycle of the RT-
qPCR by increasing the temperature from 60 °C to 95 °C 
at 0.1 °C per second.

Determining RG stability in breast cancer cell lines in 
normoxia, or acute or chronic hypoxia
Following RT-qPCR, reaction summaries were exported 
from ThermoFisher Design and Analysis Data Gallery 
and analysed in Microsoft Excel. A standard curve was 
used to calculate primer efficiency (PE) using the equa-
tion PE% = (10(−1/m) − 1) ∗ 100
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where m denotes the slope of the standard curve. 
Then, PE = SUM(PE%/100) + 1. Where PE was > 2.20 
or < 1.80, RG candidates were excluded from further 
analysis. Efficiency-corrected Ct values (CtE) were calcu-
lated using the equation

CtE = SUM (Ct∗( Log (PE) /Log (2) )).
mRNA expression (mE) of normoxic RGs was deter-

mined by mE = 10((CtE − a)/m) where a refers to the Y 
intercept.

CtE values were supplied to the online tool RefFinder 
for determination of the most stable reference genes to 
be used in normoxic vs. hypoxic breast cancer cell lines 
(available at ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​c​i​i​d​i​r​s​i​n​a​l​o​a​.​c​o​m​.​m​x​/​R​e​f​F​i​n​d​e​
r​-​m​a​s​t​e​r​​​​​) [24]. The RefFinder program employs the com-
putational RG analysis tools geNorm [37], Normfinder 
[38], BestKeeper [39] and the comparative ΔCt method 
[40] to rank candidate RGs based on the individual rank-
ing from each of the RG analysis tools.

Validation of RGs
The change in expression of the HIF-regulated, hypoxia-
induced target gene CA9 was assessed using the 2−ΔΔCt 
method [41], with the geometric mean of the recom-
mended RG combination for comparative analysis 
between MCF-7, T-47D, MDA-MB-231 and MDA-
MB-468 breast cancer cell lines used for normalisation. 

One-way ANOVA and Dunnett’s multiple comparisons 
were performed to assess significant fold-change in CA9 
expression following normalisation with the geometric 
mean of the recommended pair of RGs. Statistical analy-
sis was performed using GraphPad Prism. Significance 
was reported where p < 0.05.

Results
Analysis of public RNA-seq data identifies ten RG 
candidates
The aim of our study was to identify optimal RGs for 
investigations of normoxic vs. hypoxic ERα+ Luminal 
A (MCF-7 and T-47D) and TNBC (MDA-MB-231 and 
MDA-MB-468) cell lines. We selected cell lines based on 
widespread use in breast cancer research: MCF-7, T-47D 
and MDA-MB-231 represent more than two-thirds of 
cell lines used within such studies [42].

To address the need for robust RGs, we first used a 
publicly available RNA-seq dataset that investigated 
genome-wide transcriptional changes taking place in 32 
breast cancer cell lines as a consequence of O2 depri-
vation [22, 23]. From the 30,187 genes quantified in 
selected ERα+ (MCF-7 and T-47D) and TNBC (MDA-
MB-231 and MDA-MB-468) cell lines, we were able to 
evaluate overall Euclidean distance between individual 
datasets (Supplementary Figure S1) and responsiveness 

Table 1  Primer sequences and protein features of reference genes and hypoxia responders
Uniprotkb Gene Protein Forward Primer 

Sequence
Reverse Primer 
Sequence

Am-
plicon 
Length 
(bp)

Source Biological Function

P54368 OAZ1 Ornithine decarbox-
ylase antizyme 1

​A​T​A​A​A​C​C​C​A​G​C​G​C​C​A​C​
C​A​T​C

​A​G​G​G​A​G​A​C​C​C​T​G​G​A​A​C​
T​C​T​C​A

97 This 
study

Regulator of cell 
growth & proliferation

P60709 ACTB β-Actin ​C​C​T​C​G​C​C​T​T​T​G​C​C​G​A​T​C​C ​G​G​A​T​C​T​T​C​A​T​G​A​G​G​T​A​G​T​
C​A​G​T​C

626 30 Regulator of cell motil-
ity & structure

P20226 TBP TATA-binding protein ​G​T​G​A​G​G​T​C​G​G​G​C​A​G​G​T​T​C ​A​A​G​A​A​A​C​A​G​T​G​A​T​G​C​T​G​
G​G​T​C​A

108 This 
study

Essential regulator of 
gene transcription

P61353 RPL27 Ribosomal protein 
L27

​A​T​C​G​C​C​A​A​G​A​G​A​T​C​A​A​A​
G​A​T​A​A

​T​C​T​G​A​A​G​A​C​A​T​C​C​T​T​A​T​
T​G​A​C​G

123 31 Structural constituent 
of ribosome

P62888 RPL30 Ribosomal protein 
L30

​A​C​T​G​C​C​C​A​G​C​T​T​T​G​A​G​
G​A​A​A​T

​G​C​C​A​C​T​G​T​A​G​T​G​A​T​G​G​A​
C​A​C​C

77 This 
study

Structural constituent 
of ribosome

P05386 RPLP1 60 S acidic ribosomal 
protein P1

​A​G​G​A​A​G​C​T​A​A​G​G​C​T​G​C​
G​T​T​G

​G​C​A​T​T​G​A​T​C​T​T​A​T​C​C​T​C​C​
G​T​G​A​C​T

180 This 
study

Important in elonga-
tion during translation

Q9H7U1 CCSER2 Coiled-Coil Serine 
Rich Protein 2

​G​A​C​A​G​G​A​G​C​A​T​T​A​C​C​A​C​
C​T​C​A​G

​C​T​T​C​T​G​A​G​C​C​T​G​G​A​A​A​A​
A​G​G​G​C

143 32 Predicted: microtubule 
binding & bundling

P08236 GUSB β-Glucuronidase ​C​T​G​T​A​C​A​C​G​A​C​A​C​C​C​A​
C​C​A​C

​A​T​T​C​G​C​C​A​C​G​A​C​T​T​T​G​T​T 159 33 Degrades glycosamino-
glycans in the lysosome

P02786 TFRC Transferrin receptor 1 ​G​G​A​C​G​C​G​C​T​A​G​T​G​T​T​C​
T​T​C​T

​C​A​T​C​T​A​C​T​T​G​C​C​G​A​G​C​
C​A​G​G

126 34 Ion uptake via receptor-
mediated endocytosis

P00558 PGK1 Phosphoglycerate 
kinase 1

​G​G​A​G​C​T​C​C​T​G​G​A​A​G​G​T​A​
A​A​G​T​C

​T​C​C​T​G​G​C​A​C​T​G​C​A​T​C​T​
C​T​T​G

185 This 
study

Glycolytic enzyme used 
in glucose metabolism

Q99814 EPAS1 Endothelial PAS 
domain-containing 
protein 1

​C​A​C​C​T​C​G​G​A​C​C​T​T​C​A​C​
C​A​C​C

​T​C​C​T​C​T​C​C​G​A​G​C​T​A​C​T​C​
C​T​T​T​T​C

160 This 
study

Regulator of oxygen-
dependent gene 
transcription

Q16790 CA9 Carbonic anhydrase 
IX

​G​T​G​C​C​T​A​T​G​A​G​C​A​G​T​T​G​
C​T​G​T​C

​A​A​G​T​A​G​C​G​G​C​T​G​A​A​G​T​C​
A​G​A​G​G

115 36 Maintaining intracellu-
lar and extracellular pH

https://www.ciidirsinaloa.com.mx/RefFinder-master
https://www.ciidirsinaloa.com.mx/RefFinder-master
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of hypoxia-regulated genes to ensure cell lines behaved 
as expected when cultured in the absence of O2. Analy-
sis demonstrated increased expression of CA9, PGK1 and 
VEGFA in all four cell lines in response to hypoxic cul-
ture, and in agreement with previous findings (Supple-
mentary Figure S2) [20, 43–45]. We also looked at ARNT 
(HIF-1β), ARNT2 (HIF-2β), EPAS1, HIF1A and HIF3A 
expression in each of the four cell lines in normoxia and 
hypoxia (Supplementary Figure S3). Interestingly, we 
found EPAS1, the gene encoding HIF-2α, appeared to be 

relatively stable in expression in TNBC but not ERα+ cell 
lines (Supplementary Figure S3).

Next, we interrogated read count stability of com-
mon RGs when ERα+ and TNBC cells were cultured in 
hypoxia or normoxia, to identify RG candidates that 
may be stably expressed in each cell line, regardless 
of O2 availability (Supplementary Figures S4 and S5). 
From this, we generated a shortlist of 10 RG candidates 
(Table 2). We initially selected candidates based on com-
mon use as RGs in breast cancer cell lines (e.g. CCSER2 
in MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 cell 
lines), or as stable RGs in other models of hypoxia (e.g. 
RPLP1 in hypoxic pre-conditioned human neural stem 
cells) [46–48], and further stratified candidates based on 
a calculated similarity score (s) which was used to deter-
mine the similarity of read counts in genes from breast 
cancer cell lines cultured in 20% or 1% O2. Where s = 0, 
read counts are the same between the two conditions. A 
minimum threshold was established, where s ≤ 0.30 in at 
least two of the cell lines, for an RG candidate to be car-
ried forward.

ERα+ MCF-7 cells had the greatest variability in 
expression of the 10 RG candidates, compared to T-47D 
and the TNBC cell lines, with CCSER2, EPAS1, OAZ1 
and TFRC exceeding the maximum threshold for RG 
candidate selection, with s scores of 0.39, 0.33, 0.34 and 
0.39, respectively (Table  2). Additionally, when s was 
calculated across the transcriptome of each breast can-
cer cell line, MCF-7 cells had the highest percentage of 
genes exceeding the maximum threshold set as a marker 
of stable gene expression (Supplementary Figure S6). 
EPAS1 also responded positively to hypoxic culture in 
T-47D cells with an s score of 0.40, whereas no induc-
tion was observed in the TNBC cells. However, EPAS1 
was the only RG candidate that exceeded the maximum 
threshold in T-47Ds. Furthermore, for MDA-MB-231 
and MDA-MB-468 cell lines, only TFRC or TBP dis-
played altered expression following O2 deprivation, with 
s scores of 0.32 and 0.34, respectively. The remaining RG 
candidates ACTB, GUSB, RPL27, RPL30 and RPLP1 were 
stably expressed across the two conditions, in all cell lines 
(Table 2; Supplementary Figure S4).

Eight candidate RGs are highly expressed in normoxic 
breast cancer cells
To demonstrate suitability of RG candidates, we used 
RT-qPCR to confirm RG expression in TNBC and 
ERα+ breast cancer cell lines cultured in normal O2 con-
ditions. ACTB was expressed most highly among the 
breast cancer cell lines, but also showed greatest varia-
tion between biological replicates ranging from 8 ng / 
µl to 202 ng / µl in MCF-7 cells, and 30 ng / µl to 179 
ng / µl in T-47D cells (Fig. 1A). EPAS1 was only ampli-
fied in one biological replicate in MDA-MB-231 and 

Table 2  Similarity (s) score between hypoxic and normoxic RNA-
sequencing reads (TPM) of RG candidates
RG Candidate Cell Line Normoxia 

(TPM)
Hypoxia 
(TPM)

s 
Score

ACTB MCF-7 2414.55 1860.14 0.23
T-47D 4207.65 3874.77 0.08
MDA-MB-231 4351.13 4864.34 0.11
MDA-MB-468 4303.52 6144.26 0.30

CCSER2 MCF-7 12.72 20.99 0.39
T-47D 20.55 19.81 0.04
MDA-MB-231 31.95 27.11 0.15
MDA-MB-468 28.21 28.32 0.00

EPAS1 MCF-7 0.60 0.88 0.33
T-47D 35.53 21.35 0.40
MDA-MB-231 28.94 26.96 0.07
MDA-MB-468 58.87 57.13 0.03

GUSB MCF-7 40.36 45.53 0.11
T-47D 84.66 68.09 0.20
MDA-MB-231 48.25 44.31 0.08
MDA-MB-468 40.41 51.16 0.21

OAZ1 MCF-7 1167.01 775.30 0.34
T-47D 769.99 687.38 0.11
MDA-MB-231 1216.07 1275.52 0.05
MDA-MB-468 881.12 908.12 0.03

RPL27 MCF-7 1901.03 2499.22 0.24
T-47D 1726.21 1964.37 0.12
MDA-MB-231 1883.42 1773.80 0.06
MDA-MB-468 944.38 1049.75 0.10

RPL30 MCF-7 5177.74 7321.43 0.29
T-47D 2884.35 3093.66 0.07
MDA-MB-231 1937.35 1852.97 0.04
MDA-MB-468 1258.62 1252.28 0.01

RPLP1 MCF-7 2982.47 3504.12 0.15
T-47D 1367.30 1748.70 0.22
MDA-MB-231 1478.45 1492.10 0.01
MDA-MB-468 955.97 1024.99 0.03

TBP MCF-7 16.28 18.87 0.14
T-47D 11.24 9.14 0.19
MDA-MB-231 14.54 16.06 0.09
MDA-MB-468 16.38 10.76 0.34

TFRC MCF-7 163.80 99.57 0.39
T-47D 578.39 795.26 0.27
MDA-MB-231 120.05 177.34 0.32
MDA-MB-468 158.89 154.56 0.03
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MDA-MB-468 cells, with mRNA levels of 103 ng / µl and 
6 ng / µl, respectively (Fig.  1C). Additionally, TBP did 
not have detectable levels of transcript in any cell lines 
(Fig.  1J). These results are supported by the RNA-seq 
analysis (Supplementary Figures S3 and S4), where TPM 
for EPAS1 and TBP were among the lowest in expres-
sion in the breast cancer cell lines compared to other 
RG candidates. We therefore removed TBP and EPAS1 
from further investigation. The next lowest expressed RG 
was CCSER2, expressed at 0.21, 0.31, 1.15 and 2.36 ng / 
µl in MCF-7, T-47D, MDA-MB-468 and MDA-MB-231 
cells, respectively (Fig.  1B). The remaining RG candi-
dates (GUSB, OAZ1, RPL27, RPL30, RPLP1 and TFRC) 
and PGK1 were more highly expressed in all cell lines 
(Fig. 1D-I, K).

Robust RGs identified by evaluating ct values in normoxic 
vs. hypoxic breast cancer cells
Next, expression stability of RG candidates was inves-
tigated following culture in normoxia or hypoxia for 
8–48 h (Fig. 2A; Supplementary Table S2). We also tested 
PEs from standard curves included in the RT-qPCR 
experiments (Supplementary Table S3; Supplementary 
Figures S7-S10). ACTB, CCSER2 and GUSB displayed 
poor PE (Supplementary Table S3; ACTB mean 1.70, 
range 1.48–1.96; CCSER2 mean 2.43, range 2.05–3.26; 
GUSB mean 2.22, range 2.03–2.50). These RG candi-
dates were therefore removed from downstream analy-
sis. OAZ1, RPL27, RPL30 and RPLP1 were expressed at 
comparatively similar levels across all cell lines, and in 
each condition (Fig. 2A-D). TFRC showed inter-cell line 
stability when cultured in normoxia, or acute or chronic 
hypoxia. However, intra-cell line CtE was more varied. In 
particular, TFRC had higher CtE values in MCF-7 cells, 

Fig. 1  Expression of RG candidates in MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 breast cancer cell lines cultured in 20% O2. Selected RG candidates 
(A) ACTB, (B) CCSER2, (C) EPAS1, (D) GUSB, (E) OAZ1, (F) PGK1, (G) RPL27, (H) RPL30, (I) RPLP1 (J) TBP and (K) TFRC were evaluated for mRNA expression in 
breast cancer cell lines cultured in normal conditions for 72 h post seeding. Error bars are ± SEM. n = 3. Where there is an outlier, data point is displayed 
above the relevant box plot with mRNA expression value included

 



Page 7 of 12Malcolm et al. BMC Genomics           (2025) 26:59 

which suggests this gene is not as highly expressed in 
this cell line compared to the other cell lines (Fig.  2E). 
As predicted based on the literature, PGK1 CtE values 
decreased in all cell lines following hypoxic culture for 
8–48  h, implying that expression of PGK1 increases in 
response to limited O2 supply (Fig. 2F). This result is in 
line with previous reports of hypoxic induction of PGK1 
[20, 47, 49, 50].

We then submitted CtE values (Supplementary Table 
S2) of the five remaining RG candidates, OAZ1, RPL27, 
RPL30, RPLP1 and TFRC, as well as hypoxia-responder 
PGK1, to RefFinder, with intent to rank RG candidates 
in order of expression stability across all cell lines in 
normoxia or acute or chronic hypoxia. RefFinder first 
employs GeNorm, NormFinder, BestKeeper and the 
comparative ΔCt method to independently rank RGs. 
Next, RefFinder assigns a weight to an individual gene 
based on RG performance in the prerequisite programs, 
and calculates the geometric mean of candidate weights 
to provide a final ranking of the most stable RGs [24, 
25]. In all iterations of RG stability analysis across all cell 
lines, PGK1 and TFRC were ranked 5th and 6th, respec-
tively (Supplementary Table S4). According to Best-
Keepeer and the comparative ΔCt method, RPLP1 had 
the least variable inter- and intra-cell line expression in 
normoxic and hypoxic environments. RPLP1 was also 
the highest ranked RG candidate by RefFinder (Fig. 3A). 
Conversely, NormFinder ranked OAZ1 as the best RG 

candidate, and placed RPL27 and RPLP1 as the second 
and third best RG candidates (Supplementary Table S4). 
A benefit of GeNorm over the other programs is the 
additional assessment of the optimal number of RGs 
to use for accurate normalisation [37]. For the study of 
hypoxia-mediated alterations in gene expression between 
MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 breast 
cancer cell lines, GeNorm recommended the combined 
use of RPL27 and RPLP1.

We next identified optimal RGs to be used for RT-qPCR 
of hypoxic breast cancer cell lines following stratifica-
tion into breast cancer subtypes. When CtE values from 
ERα+ breast cancer cell lines were supplied, RPLP1 was 
again ranked top RG candidate with the least variability 
in expression, according to RefFinder, BestKeepeer and 
the comparative ΔCt method (Supplementary Table S5, 
Fig. 3B). Normfinder suggested OAZ1 to be the optimal 
RG to use when investigating hypoxic induction of genes 
of interest in the ERα+ Luminal A breast cancer group. 
GeNorm recommended the combined use of RPLP1 
and RPL30, instead of RPL27, for all cell lines. PGK1 
and TFRC were ranked as the least stable RGs in all out-
puts, as before. For the TNBC group, RPL30 was placed 
first by all programs (Supplementary Table S6, Fig. 3C), 
apart from GeNorm which recommended RPL27 and 
RPLP1, the same as for all four breast cancer cell lines. 
Analysis of the individual cell lines cultured in normoxia, 
and acute or chronic hypoxia was also performed. Here, 

Fig. 2  RG stability in breast cancer cell lines cultured in normoxia for 72 h post-seeding, or normoxia and then hypoxia for 8–48 h (total experimental time 
72 h post-seeding). RT-qPCR was used to determine the variance in gene expression of selected RG candidates: (A) OAZ1, (B) RPL27, (C) RPL30, (D) RPLP1, 
(E) TFRC and (F) PGK1 following culture of MDA-MB-231, MDA-MB-468, MCF-7 or T-47D breast cancer cell lines in normoxia (blue bars, closed blue points 
- left) or hypoxia for 8 h (orange bars, closed orange points - middle) or 48 h (orange checkered bars, open orange points - right). Error bars are ± SEM
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GeNorm identified RPLP1 and RPL27 as the least vari-
able and most suitable RGs for MDA-MB-231 or MDA-
MB-468 cell lines, but RPL30 was ranked as the least 
variable single RG by RefFinder in both TNBC models. 
RPLP1 and RPL30 were the least variable and most suit-
able RGs for the T-47D or MCF-7 cell lines (Supplemen-
tary Tables S7-S10, Supplementary Figure S11).

RPLP1 and RPL27 are suitable for normalising gene 
expression in a panel of normoxic vs. hypoxic ERα+ and 
TNBC cell lines.

Following identification of optimal RGs, we aimed to 
evaluate combined use of RPLP1 and RPL27 for normali-
sation of gene transcription in a panel of normoxic and 
hypoxic breast cancer cell lines. We assessed upregula-
tion of hypoxia-induced CA9 in each breast cancer cell 
line cultured in normoxia or hypoxia for 8–48 h. The geo-
metric mean of RPLP1 and RPL27 was used to normalise 
CA9 CtE values, before fold change induction (2−ΔΔCt) 
of CA9 was calculated [41]. Expression (CtE) of RPLP1 
and RPL27 in MCF-7 (19.4 ± 0.4 SD), T-47D (19.7 ± 0.5 
SD), MDA-MB-231 (18.8 ± 0.5 SD) and MDA-MB-468 
(19.6 ± 0.9 SD) cells was consistent, regardless of environ-
mental O2 (Fig.  4A). Conversely, all cell lines displayed 
significant induction of CA9 following hypoxic culture 
(Fig.  4B). In MCF-7 cells, CA9 was increased 470-fold 
after chronic exposure to a hypoxic environment. For 
T-47D cells, acute and chronic hypoxia induced a 42- 
and 109-fold increase in CA9 expression, respectively. 
After 8 h of hypoxic culture, MDA-MB-231 cells showed 
a moderate but significant 9-fold induction, and for 
MDA-MB-468 cells a 17-fold increase in CA9 expression 
occurred following 48 h of hypoxic culture. Importantly, 
RPLP1 and RPL27 were similarly expressed in each cell 
line, in each condition. Thus, combination of RPLP1 and 
RPL27 as RGs is suitable for normalising gene expression 

in this panel of normoxic and hypoxic breast cancer cell 
lines.

Discussion
The use of RT-qPCR for investigating gene transcrip-
tion has been customary practice in labs since quanti-
tative PCR was first discussed by Higuchi et al. in 1993 
[51]. While RT-qPCR is the gold standard for quantify-
ing mRNA expression and understanding mechanisms 
involved in altered gene transcription, interpretation of 
gene expression is dependent on appropriate use of inter-
nal controls as a means of normalisation [52]. Common 
RGs previously deemed to have stable expression include 
GAPDH, ACTB, PGK1 and 18 S rRNA, which have sub-
sequently been shown to have variation in abundance 
across different experimental conditions, emphasising 
the notion that there is no such thing as an RG that works 
for all investigations [53]. Indeed, in the context of cel-
lular hypoxia, ACTB is affected by insufficient O2 supply, 
as are GAPDH and PGK1 which are specifically regulated 
by the activity of HIF-1α [19–21, 50]. Thus, when looking 
to identify novel therapeutic targets to combat hypoxia-
induced therapy resistance, suitable RGs need to be 
selected prior to RT-qPCR investigation of genes of inter-
est, so that hypoxia-induced alterations in RG expression 
do not obscure novel and important biological findings.

To meet the demand for robust endogenous RGs for 
investigations of hypoxic ERα+ and TNBC cell lines, 
we carried out a comprehensive investigation combin-
ing bioinformatic analysis of publicly available RNA-seq 
datasets to select 10 RG candidates, RT-qPCR of those 
candidates to assess expression levels and variability, and 
utilisation of the online RG tool RefFinder to ensure the 
most suitable RGs were selected. The 10 RG candidates 
we identified included genes that are generally consid-
ered RGs (ACTB, RPL30, RPLP1, GUSB, TBP and TFRC), 

Fig. 3  Geometric mean (Geomean) of ranking values for each RG candidate according to RefFinder. The final overall ranking of RG candidates was deter-
mined by RefFinder based on the geometric mean of the weights of each gene from GeNorm, NormFinder, BestKeeper and the comparative ΔCt method 
for (A) all breast cancer cell lines, (B) ERα+ breast cancer cell lines MCF-7 and T-47D and (C) TNBC cell lines MDA-MB-231 and MDA-MB-468
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and novel RGs (OAZ1, RPL27, CCSER2, and EPAS1) [31, 
46–48, 54, 55]. When CtEs of our candidates were sup-
plied to RG selection tools, it is perhaps unsurprising 
that constituents of the ribosome (RPLP1, RPL27 and 
RPL30) which are abundantly and consistently expressed 
in human tissues were selected as the optimal RGs with 
the least variability in expression in breast cancer cell 
lines cultured in normoxia, or acute or chronic hypoxia 
[56–58]. This result is supported by the observation 
that breast cancer cells can bypass hypoxia-mediated 
inhibition of protein synthesis through gene silencing 
of 4E-BP1, eEF2 kinase or tuberous sclerosis complex 2 
(TSC2), maintaining a continuous requirement of trans-
lational machinery [59].

Throughout our study, we have chosen to include the 
process of RG candidate deselection, based on assess-
ment of gene expression and primer efficiencies, as it is 
important to understand peripheral results which impact 
the quality of data interpretation. Thus, for full trans-
parency of our RG selection process, we have shown 
negative filtration of poor candidates as well as positive 
selection of stable candidates. To ensure precision when 
normalising expression of genes of interest, we recom-
mend including two RGs in RT-qPCR studies, as use of 
a single RG for normalising gene expression may result 

in erroneous interpretation, whereas inclusion of two 
RGs should ensure accurate normalisation of target gene 
abundance [28, 60].

With respect to selection of our 10 RG candidates, the 
RNA-seq dataset used to curate the shortlist was limited 
by a single replicate for each cell line in each condition 
being available for analysis [22, 23]. The original study is 
an impressive investigation into the molecular portrait 
of hypoxia spanning 32 breast cancer cell lines, and for 
the purpose of our study, provided a meaningful starting 
point for selecting and determining the approximate sta-
bility of RG candidates in our four chosen breast cancer 
cell lines.

A limitation of our study is that identification of ribo-
somal proteins as suitable RGs may only be applicable 
to those wishing to capture hypoxia-induced changes in 
gene expression in the breast cancer cell line panel inves-
tigated in this study (MCF-7, T-47D, MDA-MB-231, 
MDA-MB-468). How our results translate to other breast 
cancer cell lines, or indeed patient samples, requires 
further investigation. Cell lines representing the same 
disease model often display variation in response to envi-
ronmental or experimental conditions and have unique 
gene expression signatures and molecular portraits [42]. 
This is exemplified in MCF-7 and T-47D cell lines, where 

Fig. 4  RG expression level stability and hypoxic induction of CA9 in four breast cancer cell lines cultured in normoxia or hypoxia for 8–48 h. (A) RPL27 
(n = 3) and RPLP1 (n = 3) expression was determined by RT-qPCR. Raw CtE values for triplicate biological replicates of the two RGs (n = 6) in MDA-MB-231, 
MDA-MB-468, T-47D and MCF-7 breast cancer cell lines are shown. Error bars are geometric mean ± geometric SD. (B) Expression of CA9 was assessed 
in MCF-7, T-47D, MDA-MB-231 and MDA-MB-468 breast cancer cell lines following culture in normoxia (20% O2, “0 hours”) or hypoxia (1% O2) for 8–48 h. 
Changes in CA9 expression were determined by the 2−ΔΔCt method, using the geometric mean of RGs RPLP1 and RPL27 for normalisation (A). One-way 
ANOVA with Dunnett’s multiple comparisons was employed to investigate significance of fold change in gene expression relative to normoxic control. 
*p = < 0.05, **p = < 0.01, ***p = < 0.001. Error bars are ± SEM. n = 3
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17β-oestradiol has been shown to confer disparate effects 
on gene expression between the two models of Lumi-
nal A breast cancer, despite both cell lines being driven 
by ERα activity [61]. For patient derived samples, the 
answer to identifying suitable RGs for RT-qPCR is more 
unclear, due to the complexity of individuality between 
patients, heterogeneity of cell types within the tumour 
microenvironment, and uneven distribution of hypoxia 
observed throughout tumours. Cancer grade at diagno-
sis, and samples coming from secondary metastatic sites, 
will also require further optimisation of RGs. Indeed, pat-
terns of dysregulated ribosomal protein expression have 
been observed in human tissues, primary cell lines and 
tumours [62]. Thus, careful identification of suitable RGs 
for such studies needs to be implemented prior to carry-
ing out experiments, and consideration given to includ-
ing a greater number of RGs (3–5 for more complex 
tissue samples) would reduce variability and allow more 
accurate normalisation in such instances [37].

An alternative solution to normalising gene expres-
sion in more complex breast cancer specimens may be 
to incorporate spike-in controls of exogenous RG, of a 
known amount in the qPCR. In this case, RG transcripts 
can act as a stable reference, while simultaneously under-
going reverse transcription and amplification with the 
target transcripts [63]. Nonetheless, we have outlined 
a robust strategy for selection of suitable endogenous 
RGs that can be applied to a broad range of studies aim-
ing to identify important transcriptional aberrations act-
ing as drivers of breast cancer progression. Further, the 
method outlined in this study can serve as a best practice 
approach for selecting suitable RGs in experiments which 
may extend beyond the scope of hypoxia in breast cancer 
cells, such as those exploring hypoxia in the context of 
development, stroke, or heart failure.

In conclusion, we have carried out a comprehensive 
investigation to identify the most suitable RGs with the 
least variability in their expression, which can be used 
in RT-qPCR studies of MCF-7, T-47D, MDA-MB-231 
and MDA-MB-468 breast cancer cell lines cultured in 
normoxia or hypoxia. We used robust computational 
RG selection programs following stringent criteria for 
identifying RG candidates and recommend the inclu-
sion of RPLP1 and RPL27 in RT-qPCR studies as internal 
controls for accurate interpretation of gene expression 
results. Furthermore, this result provides the means to 
assess the impact of hypoxia within breast cancer devel-
opment and progression when the chosen Luminal A and 
TNBC cell lines are utilised.
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