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ABSTRACT: Sorption isotherms for gases and liquids have long been
formulated separately. There is a fundamental problem with this approach:
the popular isotherm models (such as Langmuir, BET, and GAB) for gases
cannot be applied straightforwardly to sorption from solution. This contrasts
with the theory of liquid solutions, where solute−solute interaction, mediated
by the solvent, is captured as the potential of mean force, providing powerful
interpretive tools (e.g., virial expansion) founded on the gas-liquid analogy.
This analogy will be extended to sorption by adopting sorbate numbers and
their fluctuations as the common foundation. This enables the gas and liquid
isotherm equations to have an analogous mathematical form with a universal
language for interfaces and liquid solutions.

■ INTRODUCTION

“Adsorption from liquid solution is almost a new world in
comparison with adsorption from the gas phase: the
fundamental principles and methodology are different in
almost all respects.”1 This view is based on the following
well-established restrictions: (i) even the simplest isotherm
models for gas adsorption (e.g., the Langmuir and Freundlich
models), strictly speaking, cannot be applied directly to liquid
adsorption;1−3 and (ii) the “individual” isotherm for sorbate,
reported routinely for gas sorption,4 cannot be determined
without employing “overly simplified models” like the “surface
phase”.2

Such a gulf between gas and liquid adsorption contrasts with
the study of liquid solutions where the gas−liquid analogy has
long become a standard tool for analysis, starting from the
textbook analogy between the ideal gas and van’t Hoff
equation, culminating in the virial expansion for gases and
liquid solutions.5−11 The basis of this analogy is the molecular
distribution function as the measure of solute−solute
interactions mediated by the solvent,5−11 which serves as a
universal language for molecular thermodynamics, scattering,
and computer simulation.12,13

Thus, the universality attained by the theory of liquids
contrasts with the need for separate adsorption theories for
gases and liquids; while the most common gas isotherm
models assume site-specific, layer-by-layer binding on a
uniform surface, liquid isotherm models involve hypothetical
thickness, composition, or sorbate partitioning for introducing
the “surface phase”.1−3 Because the gas and liquid isotherm
models are overly idealized (as has long been recognized14),
the mechanistic insights available from analyzing experimental
isotherms have been strictly limited.
This Perspective aims to overcome these limitations and to

provide a unified sorption theory encompassing vapor/solid

and solution/solid interfaces. As the first step, the restrictions
that necessitated gas and liquid sorption to be analyzed
differently (see the opening paragraph) have been lifted
recently by the statistical thermodynamic fluctuation theory.15

The “individual” isotherm can now be determined without
introducing any models, by supplementing the surface excess
isotherm (i.e., a competition between sorbate and solvent
isotherms) with volumetric measurements.16 The isotherms for
sorption from solution have been derived directly from the
fluctuation theory with a clear physical meaning provided for
their parameters.15,17 Moreover, statistical thermodynamic
isotherms, derived for gases and liquids, have an analogous
mathematical form.18,19

Thus, it is timely to re-examine whether “the fundamental
principles and methodology are different in almost all
respects”1 between the sorption of gases and liquid solutions.
The objectives of this Perspective are

I. to establish the fundamental equations for gas and liquid
sorption analogously;

II. to show that the isotherm equations for gas and liquid,
derived directly from I, are analogous in form and
interpretation; and

III. to demonstrate that the isotherm equations for gas and
liquid can be simplified to yield the “surface phase”-
based interpretation in a parallel manner.
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Through these steps, sorption isotherms will attain the same
degree of gas−liquid analogy as solution theory, which will
facilitate isotherm analysis significantly.

■ SORPTION OF GASES AND SOLUTIONS MUST
HAVE ANALOGOUS FOUNDATIONS

Surface Excesses. Our first objective is to formulate the
sorption of gases and solutions in an analogous manner
(Objective I). To this end, it is imperative to introduce a
consistent set of notations for gas/solid and solution/solid
systems. Let e, 1, and 2 be the indexes for sorbent, solvent, and
sorbate molecules, respectively. The traditional Gibbsian setup
(Figure 1) involves a system (denoted by *, which contains the

interface), as well as the reference systems without the
interface on the solid sorbent side (denoted as e) and the
sorbate side (denoted as a); the bulk reference system a is a
vapor consisting only of species 2 for a vapor/solid system and
a solution comprised of species 1 and 2 for a solution/solid
system (Figure 1).
For the clearest manifestation of the analogy between vapor/

solid (Figure 2) and solution/solid (Figure 1) isotherm
theories, we propose to define vapor/solid surface excess, Γ2,
via

= *N N
a

2 2 2 (1a)

as the difference in sorbate number between the system ⟨N2*⟩
and the reference system ⟨N2

a⟩ (Supporting Information:
Section A). There is a subtle yet important difference between
this definition (eq 1a) and the traditional Gibbs surface excess
(Figure 2),

= *N N N
e a

2 2 2 2 (1b)

which is the presence of ⟨N2
e⟩, signifying the number of sorbate

in the solid sorbent side, in eq 1b. In the conventional
approach, when eq 1b is applied for isotherms, ⟨N2

e⟩ = 0 is
commonly assumed. Consequently, when absorption of
sorbate into sorbent takes place or cannot be ruled out, the
conventional approach (eq 1b) cannot be applied.1,4 Under
this assumption, Γ2′ (eq 1b) becomes formally identical to Γ2
(eq 1a). However, there are four reasons why Γ2 is
advantageous over the Gibbsian Γ2′. First, Γ2, which does not
exclude absorption, has a wider applicability than Γ2′. Second,
Γ2 (eq 1a) offers a clearer mathematical analogy to the
solution/solid relative surface excess, denoted by Γ2

(1) and
defined as2,15

= * *N N
N

N
N N( )a

a

a

a

2
(1)

2 2
2

1
1 1

(2)

because eq 2 involves two systems (* and a) just like eq 1a,
while the traditional Gibbs formalism (eq 1b) contains three
systems (*, e, and a). We emphasize here that the ensemble
averaging in eq 2 for the system (*) incorporates the structural
changes of sorbate and solvent molecules caused by the
presence of the interface. Third, in the absence of the solvent
(species 1), Γ2

(1) (eq 2) for liquid/solid becomes identical to Γ2
(eq 1a) for vapor/solid but not to the Gibbsian Γ2′ (eq 1b).
Fourth, Γ2 and Γ2

(1) are in closer accordance with the
experimental practice of isotherm determination.2,4 The
standard experimental procedure for liquid sorption measures
the reduced surface excess, Γ2

(n), from the change in solution
composition upon the introduction of the sorbent;2 Γ2

(1) is
determined via Γ2

(1) = Γ2
(n)/x2

a (where x1
a is the mole fraction of

solvent in the reference system a).2 The standard practice in
gas sorption measures Γ2 (including absorption) rather than
carrying out additional experiment to determine ⟨N2

e⟩, required
for Γ2′.

18,20,21

Thus, adopting Γ2 and Γ2
(1) as the analogous measures of

sorption is not only consistent with the standard experimental
practice but also simpler, which requires the sole assumption of
sorbent indissolubility (i.e., ⟨Ne

a⟩ = 0) for linking Γ2 and Γ2
(1) to

the thermodynamics of vapor/solid and solution/solid

Figure 1. (a) The traditional Gibbsian setup for sorption from
solution, involving sorbent (e), solvent (1), and sorbate (2) as the
difference in molecular distribution between the system (denoted by
*, which contains the interface) and the reference systems (without
the interface) on the sorbent (denoted as e) and sorbate (denoted as
a) sides. (b) Our novel approach to defining the interfacial effect on
the molecular distribution as the difference between the system (*)
and the reference system on the sorbate side (a), which is conducive
to a unified treatment of gas/solid and liquid/solid isotherms,
incorporating adsorption and absorption, and reflecting the standard
experimental practice for isotherm measurements (see main text for
discussion). For a vapor/solid system, the bulk reference system a is a
vapor consisting only of species 2. Note that the sorbate, sorbent, and
solvent molecules can be of any size and shape; the spherical
representation has been adopted here merely for simplicity.

Figure 2. (a) The traditional Gibbsian setup for gas sorption,
involving sorbent (e) and sorbate (2) as the difference in molecular
distribution between the system (denoted by *, which contains the
interface) and the reference systems (without the interface) on the
sorbent (denoted as e) and sorbate (denoted as a) sides. (b) Our
novel approach to defining the interfacial effect on the molecular
distribution as the difference between the system (*) and the
reference system on the sorbate side (a). See the main text for how
our approach enables a seamless connection between gas/solid and
liquid/solid sorption isotherm theories.
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interfaces (Supporting Information: Section A).16 We
emphasize that defining surface excesses via eqs 1a and 2 are
advantageous also in incorporating absorption into sorbents.16

In addition to its simplicity, this approach can handle arbitrary
geometry and porosity without a need to define a coordinate
system for the introduction of the Gibbs dividing surface
(Supporting Information: Section A).
To summarize, the vapor/solid and solution/solid surface

excesses have been defined analogously, in closer accordance
with the standard experimental practice and with significant
ease for dealing with interfacial porosity and sorbate
absorption.
Fluctuation Equations. Having introduced the surface

excess for gas and liquid sorption analogously (Γ2 and Γ2
(1) in

eqs 1a and 2), here we also establish sorbate number
fluctuations analogously as the fundamental relationships for
deriving isotherm equations. In doing so, we denote the
number deviation (from the mean) via δNi = Ni − ⟨Ni⟩ for
species i. What we present below is a generalization of
fluctuation solution theory,5,22−24 initiated by Kirkwood and
Buff,25 to interfaces.
Gas. Differentiating eq 1a with respect to ln a2 yields

= * *
i

k

jjjjj

y

{

zzzzza
N N N N

ln
T

a a2

2

2 2 2 2

(3a)

where ⟨δN2*δN2*⟩ and ⟨δN2
aδN2

a⟩ represent the sorbate number
fluctuation in the system and sorbate vapor reference,
respectively.21,26 Equation 3a can be rewritten using the
sorbate excess numbers (Figure 3), defined as21,26

* + =
* *

*
+ =N

N N

N
N

N N

N
1 , 1

a

a a

a22

2 2

2

22

2 2

2 (3b)

into

= * * + +
i

k

jjjjj

y

{

zzzzza
N N N N

ln
( 1) ( 1)

T

a a2

2
2 22 2 22

(3c)

which is the excess number relationship for vapor/solid
interfaces (Figure 3).17,21

Liquid. To formulate the excess number relationship for
sorption from solution in a form mathematically analogous to
the gas counterpart (eq 3c), we adopt the {T, P, N1, μ2}
ensemble, by taking advantage of the equivalence of ensembles
(via N1 = ⟨N1⟩ in eq 2 to introduce the constancy of N1) and
the ease of transformation between ensembles via a statistical
approach.27,28 Under this condition, differentiating eq 2 with
respect to ln a2 yields

= * *
*

{ *} { }

i

k

jjjjjj

y

{

zzzzzza
N N

N

N
N N

ln
T P

N a

a a

N

2
(1)

2
,

2 2
1

1
2 2 a

1 1

(4a)

with the subscripts {N1*} and {N1
a} introduced as the

shorthand for {T, P, N1*, μ2} and {T, P, N1
a, μ2} ensembles

for the system and sorbate reference in which ensemble
averaging has been carried out. Note that the number
fluctuations in eq 4a reflect the potential of mean force
between the sorbates that are mediated by the solvent (species
1).8−11 Introducing the excess numbers analogously to the
vapor/solid systems (Figure 3), via15

* + =
* *

*
+ =

{ *}

{ *}

{ }

{ }

N

N N

N

N

N N

N
1 , 1

N

N

a

a a

N

a

N

22

2 2

2

22

2 2

2

a

a

1

1

1

1

(4b)

we can express eq 4a in terms of the excess numbers (eq 4b),
as (Figure 3)15

= * * +
*

+{ *} { }

i

k

jjjjjj

y

{

zzzzzza
N N

N

N
N N

ln
( 1) ( 1)

T

N a

a

N

a2
(1)

2
2 22

1

1
2 22a

1 1

(4c)

Thus, the excess number relationship for vapor/solid (eq 3c)
and solution/solid (eq 4c) systems are analogous, for which
the adoption of the {T, P, N1, μ2} ensemble was crucial.

15,17

■ GAS AND LIQUID ISOTHERMS ARE ANALOGOUS

Our second objective is to derive the gas and liquid solution
isotherms systematically from a universal theoretical founda-
tion furnished in the previous section, thereby establishing an
analogy between the two classes of isotherms (objective II).
Our goal is to extend the powerful gas−solute analogy for the
theory of liquids5−11 to sorption isotherms.
Gas Isotherm. Based on the theoretical foundation

summarized above, we derive here the ABC isotherm for gas
sorption, which contains the Langmuir, BET (Brunauer−
Emmett−Teller), and GAB (Guggenheim−Anderson−De
Boer) isotherms yet without their overly idealized assumptions,
directly from the gas/solid excess number relationship (eq 3c).
To do so, we rewrite eq 3c as21

=

* *i

k

jjjjj

y

{

zzzzza

a N N N N

T

a a

2

2

2

2 22 2 22

2

2

(5a)

We expand the right-hand side of eq 5a in terms of the sorbate
activity, a2, as

* *
= + +

N N N N
B C a

( )
...

a a

2 22 2 22

2
2 0 0 2

(5b)

which is referred to as the characteristic equation,17,19 with the
parameters B0 and C0.

15 Integrating eq 5a, in combination with
eq 5b, leads to the following ABC isotherm:18−21

Figure 3. Excess numbers of sorbates (red spheres) around a probe
sorbate (denoted by the orange circle): (a) at the vapor/solid
interface (N22* , eq 3b), (b) in the sorbate vapor reference system (N22

a ,
eq 3b), (c) at liquid/solid interface (N22* , eq 4b), and (d) in the
solution reference system (N22

a , eq 4b). The excess numbers are the
key descriptors of the sorbate−sorbate interaction, which is related to
the gradient of a sorption isotherm via eqs 3c and 4c. Note that the
volume and solvent number define the sizes of the system and
reference for gas and liquid sorptions, respectively.
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=

a

A B a a
C2

2

0 0 2 2 2

20

(5c)

which was named after its parameters. The parameters of the
ABC isotherm are expressed in terms of the numbers and
number correlations, via18−21

=

i

k

jjjjj

y

{

zzzzzA a

1

a
0

2

2
0

2 (6a)

=

* *i

k

jjjjj

y

{

zzzzz
B

N N N N
a a

a

0

2 22 2 22

2

2

0
2

(6b)

and C0 with a more complex expression involving ternary
correlations.18,20 We emphasize that the a2 → 0 limit in eqs 6a
and 6b comes from the Maclaurin expansion (eq 5b) that the
ABC isotherm is founded upon. The functional shape of eq 5c
makes it clear that it is a generalization of the Langmuir, BET,
and GAB isotherms.18−21 The general statistical thermody-
namic nature of the parameters, defined solely in terms of the
numbers and number correlations without any model
assumptions, shows that the ABC isotherm is free from the
overly idealized assumptions of previous isotherm models.
Liquid Solution Isotherm. The ABC isotherm for the

solution isotherm can be derived directly from the solution/
solid excess number relationship (eq 4c), in a manner
analogous to that for the gas/solid counterpart, by virtue of
the constant N1 ensemble adopted in eq 4c. Just as in gas
isotherms, first, we rewrite the excess number relationship (eq
4c) as15

=

* *
{ *}

*

{ }i

k

jjjjjj

y

{

zzzzzza

a
N N N N

T

N

N

N

a

N

a

2

2

2
(1)

2 22 2 22

2
(1)2

a
a

1

1

1 1

(7a)

We expand the right-hand side of eq 7a in terms of sorbate
activity a2, as

* *

= +
{ *}

*

{ }N N N N

B C a

N

N

N

a

N

a

2 22 1 22

2
(1)2

0 0 2

a
a

1

1

1 1

(7b)

which is the characteristic equation for solution isotherms with
the parameters B0 and C0.

15 Integrating eq 7a with eq 7b yields
the following ABC isotherm for the solution phase:15

=

a

A B a a
C2

(1) 2

0 0 2 2 2
20

(7c)

The parameters of the ABC isotherm (eq 7c) are defined via
the ensemble averages of numbers and number correlations,
via

=

i

k

jjjjjj

y

{

zzzzzzA a

1

a
0

2
(1)

2
02 (8a)

=

* *
{ *}

*

{ }
i

k

jjjjjjjjjj

y

{

zzzzzzzzzz

B

N N N N
N

N

N

a

N

a

a

0

2 22 2 22

2
(1)2

0

a
a

1

1

1 1

2 (8b)

with a more complex form, involving ternary correlations, for
C0.

15 The parameters of the ABC isotherm for liquid solutions
are defined purely in terms of the general (model-free)

statistical thermodynamic expressions involving ensemble
averages without any need for any overly idealized assumptions
that were invoked in the past when simply adapting the gas
isotherm models for solutions.15

Interfacial Locality as the Universal Language. The
ABC isotherms for gases (eq 5c) and solutions (eq 7c) are
founded on the common principle of interfacial locality; i.e.,
the effect of interface on sorbate structure is confined within a
finite distance from the interface on the bulk sorbate side,
tending to the bulk structure at larger distances. Formulating
isotherms on interfacial locality has an additional advantage:
establishing a theoretical analogy between sorption on
interfaces and the solvation of molecules. In addition,
Supporting Information: Section B makes it clear that the
excess number relationships (eqs 3c and 4c) and the
characteristic equations (eqs 5b and 7b) are local quantities;
hence, the ABC isotherm parameters are also local for gases
and solutions. Our common foundation contrasts with the
previous isotherm models that involved separate foundations:
binding sites for gases and surface phase for liquids.

■ GAS AND LIQUID ISOTHERMS CAN BE
SIMPLIFIED ANALOGOUSLY

“Surface Phase” Can Be Introduced for Both Gas and
Liquid Isotherms. Having established the gas and solution
isotherms on a theoretical foundation of interfacial locality
analogous to solvation, here we simplify the gas and solution
isotherms by introducing the “surface phase” in an analogous
manner (Objective III). Our objective here is threefold: (III-i)
to provide the analogous approximate treatments of gas and
solution isotherms by introducing the “surface phase”, which
was chiefly to solution isotherms, also to gas isotherms; (III-ii)
to introduce the “actual amount sorbed” systematically for gas
and solution isotherms clarifying the interpretation of the ABC
isotherm parameters; (III-iii) to establish the novel interpretive
tool, isotherm multiplicativity,29 for gas and solution isotherms
when they are dominated by the actual amount sorbed.

Gas. Gas/solid isotherms have been measured via
gravimetry, which directly measures the amount of sorption
⟨n2*⟩ (i.e., the quantity of sorbates associated locally with the
sorbent, denoted throughout this Perspective by the lowercase
n2*),

4 namely,

*n
2 2 (9a)

which means neglecting the reference states while introducing
the “interface” explicitly as the region of volume v within which
the deviation from the bulk (reference state) is confined.20

This means that Γ2, defined via eq 1a, is an approximation for
the gravimetrically measured ⟨n2*⟩, which is valid under
sufficiently strong sorption (see the Supporting Information,
section A of ref 21). Under this condition, the ABC isotherm
for gas sorption (eq 5c) can be simplified as

* =n
a

A B a a
C2

2

0 0 2 2 2

20

(9b)

Using eq 9a in conjunction with eqs 5c, 6a, and 6b leads to a
simplified expression of the isotherm parameters. The
parameter A0 can now be linked to the interface/bulk partition

coefficient,
*n

n
a

2

2

(where ⟨n2
a⟩ is the number of sorbates in the

bulk reference state with the same volume v as the interface),
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by taking advantage of a2 = ⟨n2
a⟩/⟨n2

⌀⟩ with ⟨n2
⌀⟩ as the number

of sorbates in the saturated reference system within v.18,20,21

The interpretation of the parameter B0 can also be simplified.
To this end, it is convenient to deal with −1/B0 instead,
because it is the saturation value of the isotherm (eq 9b) under
C0 = 0, which is the generalization of the Langmuir isotherm.

19

Under eq 9a, eq 6b simplifies to18,20,21
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Let us clarify the physical meaning of eq 9d. The key is −N22* ;
since N22* is the excess number of sorbates around a probe
sorbate, −N22* is the deficit number, i.e., the number of sorbates
excluded by the presence of a probe sorbate. Therefore,
according to eq 9d, the saturating capacity of the AB isotherm
(eq 9b with C0 = 0) is the amount of sorption (⟨n2*⟩) per
deficit number.18,20,21

Thus, we have introduced the surface phase for the analysis
of gas isotherms, which enabled us to interpret the isotherm
parameters in terms of the interface/gas partition coefficient,
amount of sorption, and sorbate excess number in the surface
phase.18,20,21 The clarity here contrasts with the previous
attempts based on the hypothetical equations of states (EOS)
for the interfacial “phase”,1,30 in which the simplest EOS led to
the Volmer31 and Hill−de Boer32,33 models instead of
rederiving the Langmuir, BET, and GAB models.
Solution. By introducing the “surface phase” with volume v,

Γ2
(1), can be expressed as

* *

= * *

n n

n

n

n n

n

n

n

n

( )a

a

a

a

a

a

2
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1
1 1

2
2

1
1

(10a)

where ni* and ni
a express the numbers of species i within the

surface phase and the bulk reference state with volume v,
respectively.15 Note that the only approximation made in
deriving eq 10a from eq 2 is the introduction of the interfacial
volume. This enables us to introduce surface/bulk partitioning
of sorbate and solvent, ⟨n2*⟩/⟨n2

a⟩ and ⟨n2*⟩/⟨n2
a⟩, through

which eq 10a can be rewritten as
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Equation 10b can be simplified further when Γ2
(1) can be

approximated as the actual amount adsorbed at the interface,15

i.e.,

*n2
(1)

2 (10c)

which has long been assumed, despite the admonishment of
IUPAC, until the recent establishment of its theoretical basis as
well as the quantitative condition for its validity.16 We
emphasize that eq 10c, rather than eq 10a, corresponds to
the gas sorption counterpart, eq 9a.
Under this condition (eq 10c), we will show that the

solution isotherm (eq 7c) reduces to the form analogous to the
simplified gas isotherm (eq 9b), facilitating the interpretation

of the isotherm parameters. To do so, let us note that for a
“dilute ideal” solution, a2 ≃ x2 = ⟨n2

a⟩/⟨n1
oa⟩ (with n1

oa being the
concentration of pure solvent) applies, which simplifies the
interpretation of A0,
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as the surface/bulk partition coefficient of the sorbate, ⟨n2*⟩/
⟨n2

a⟩. Under this approximation, the saturation capacity, −1/B0,
has a form mathematically analogous to the simplified vapor
isotherm (eq 9d)
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as the amount of sorption *
{ *}n
n2
1

per sorbate deficit number

(−N22* ), just like for the simplified vapor isotherm (eq 9d).
Such a simple interpretation, in a form analogous to that of gas
sorption, has been made possible by virtue of the constant N1

ensemble.
Thus, we have shown that an analogous formulation of gas

and solution isotherms applies even when the “surface phase”
is introduced to simplify them, thereby fulfilling objectives III-i
and ii.
Multiplicativity for Gas and Liquid Isotherms. Here,

we show that gas and solution sorption obey the same
fundamental equation when they are approximated by the
actual amount sorbed (eqs 9a and 10c) and that isotherm
multiplicativity applies, which can lead to novel insights into
sorption mechanisms (objective III-iii). When Γ2 for gas
sorption and Γ2

(1) for the solution can be approximated via the
actual amount sorbed, ⟨n2*⟩ (see eqs 9a and 10c), eqs 3c and
4c (with ⟨n2*⟩ instead of ⟨N2*⟩) lead to a common fundamental
equation for gas and solution isotherms16,17
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This common foundation is the basis for the novel property of
an isotherm: isotherm multiplicativity.29 This can be seen by
rewriting eq 11a as
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Equation 11b inspires the following isotherm multiplicativity
rule: when the excess number is additive,

* = +N N N
I II

22 22
( )

22
( )

(11c)

the isotherm is multiplicative

*

=
n

a

n

a

n

a

I II

2

2

2
( )

2

2
( )

2 (11d)

consisting of the unconditional (I) and conditional (II)
sorption processes.29

As the simplest example, let us consider a multiplication of
the two AB isotherms (i.e., the ABC isotherms with C = 0),
namely,

Langmuir pubs.acs.org/Langmuir Perspective

https://doi.org/10.1021/acs.langmuir.4c04324
Langmuir 2025, 41, 2103−2110

2107

pubs.acs.org/Langmuir?ref=pdf
https://doi.org/10.1021/acs.langmuir.4c04324?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= =n
a

A B a

n
a

A B a

,I

I I

II

II II2
( ) 2

( ) ( )
2

2
( ) 2

( ) ( )
2 (12a)

Applying isotherm multiplicativity (eq 11d) yields

* =n
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The denominator is a product of two linear terms in a2, which
is reminiscent of the BET and GAB isotherms and has the
following functional form:

=
[ + ]

n
C n K a

C K a K a1 ( 1) (1 )

B m G

B G G

2
2

2 2 (12c)

where nm is the monolayer capacity, CB is the BET constant,
and KG is the GAB constant, respectively; the BET model is a
special case of GAB (eq 12c) with KG = 1. A comparison
between eqs 12b and 12c shows that the BET/GAB isotherm
is a special case of the multiplicative isotherm (eq 12b) via

= =

= =
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The above realization that BET/GAB is a special case of
isotherm multiplicativity leads to their new interpretation

(Figure 4). To this end, the unconditional step, combining eqs
12c and 12d, can be expressed as

=

[ ]

+ [ ]
n

C K a

C K a

( 1)

1 ( 1)

I

C n
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2
( ) 1 2

2
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which has the mathematical form of the Langmuir isotherm
with (CB − 1)KG corresponding to the “Langmuir constant”
and nmCB/(CB − 1) to the “monolayer capacity”. However, we
emphasize that eq 12e as the AB isotherm (eq 12a) is not
restricted to monolayer adsorption; it signifies the constancy of
sorbate−surface attraction and sorbate−sorbate exclusion
regardless of a2.

18 The conditional step can be expressed as

=n
a

K a1

II

G

2
( ) 2

2 (12f)

with the form of a so-called “anti-Langmuir” isotherm, which,
according to our recent paper,18 signifies sorbate−sorbate
attraction at the interface. Thus, the BET/GAB model can be
interpreted as the multiplicative process of (1) saturating
adsorption (unconditional process) and (2) attractive
sorbate−sorbate interaction (conditional process); the sorbate
molecules sorbed at the interface attract further sorbate
molecules, which is a generalization of the monolayer−
multilayer mechanism for BET/GAB (Figure 4).
Our reinterpretation of BET/GAB may help rationalize why

they are “less common in solution than in the gas phase”.34

Since the saturating AB isotherm (such as Langmuir or eq 12e)
is observed frequently for solution isotherms, the less common
occurrence of BET/GAB for solution is due to the relative
rarity of the conditional process (eq 12f; rather than that of the
multilayer formation34). In the solution, sorbate−sorbate
interactions are mediated by the solvent molecules but not
in the gas, which is the key difference between gas and solution
isotherms. Hence, desolvation is not enhanced by localizing
sorbates at the interface, which may be the reason that BET/
GAB-like behavior is less common for solution isotherms.

■ MOVING FORWARD

Universal Foundation of Sorption. The goal of this
Perspective was to establish a common theory for gas and
liquid isotherms analogously from their fundamentals, through
isotherm equations, to their simplifications. This was achieved
by rewriting the sorption theory via the statistical thermody-
namic fluctuation theory, founded on the molecular distribu-
tion function as the universal measure for sorbate−sorbate
interactions both for gases and for sorbate solutes mediated by
the solvent.5−11 The signatures of sorption (i.e., surface
excesses and excess numbers) for gases and liquids are not
only analogous but also local, whose spatial contributions are
restricted within a finite distance just like the solvation
shell.22,23,35 This elevates sorption isotherms to the same level
of universality as solution theory, where the analogy between
gas and osmotic pressures serves as a powerful tool for
interpretation.
Practical Implications. The gas−liquid analogy in the

theoretical foundation leads to isotherm equations usable not
only for gas sorption but also for liquid solutions. When
analyzing sorption isotherms, there is no longer any need to
switch back and forth between different assumptions, such as
(a) site-specific, layer-by-layer binding on a uniform surface for
gas sorption and (b) “surface phase”1−3 and surface/bulk
partition coefficients for sorption from solution. These overly
idealized assumptions (e.g., (a) and (b))14 can be eliminated
because our statistical thermodynamic isotherms are derived
directly from the model-free concepts of surface excesses and
number fluctuations.
Decluttering Isotherm Models. Previously, isotherm

models were derived on an individual basis, each based on a
set of assumptions on the sorption mechanism and interfacial
geometry. This has led to the proliferation of isotherm models,
with more than 100 models listed in the literature for gas
sorption alone.36−42 There is a need to reconsider whether it is
productive to keep inventing new isotherm models. We
propose to capture complex isotherms by combining simple
isotherms, for which two approaches have so far been known:
isotherm additivity and multiplicativity. Isotherm additivity can
capture sorption isotherms on statistically independent surface
patch types, such as heterogeneous pores43 and surfaces.19

Figure 4. BET/GAB isotherm as the multiplicative isotherm
consisting of (I) saturating adsorption (unconditional process) and
(II) attractive sorbate−sorbate interaction (conditional process) in
which the sorbate molecules sorbed at the interface in (I) attract
further sorbate molecules. This mechanism is a generalization of the
monolayer−multilayer mechanism for BET/GAB.
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Isotherm multiplicativity can reduce the BET and GAB models
to the conditional process consisting of Types I and III
isotherms, in addition to its track record in rationalizing the
“anomalous” isotherm observed in membrane polymers.29

In summary, the theory of sorption has attained the same
level of universality as enjoyed by the theory of liquid
solutions12,13 where the gas−liquid analogy (i.e., virial
expansion for gases and solutes) has long been established as
the standard tool for analyzing experimental data.5−11We hope
that our approach to sorption isotherms will be applied to
diverse isotherm classifications observed in sorption from
solution and bring simplicity and clarity through the universal
principles.
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