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Abstract
Assuming a modular version of Schanuel’s conjecture and the modular Zilber–Pink
conjecture, we show that the existence of generic solutions of certain families of
equations involving the modular j function can be reduced to the problem of finding a
Zariski dense set of solutions. By imposing some conditions on the field of definition
of the variety, we are also able to obtain versions of this result without relying on these
conjectures, and even a result including the derivatives of j .

Mathematics Subject Classification 11F03 · 11J89 · 03C60

1 Introduction

In this paper we study the strong part of the Existential Closedness Problem (strong
EC for short) for the modular j function. The strong EC problem asks to find minimal
geometric conditions that an algebraic variety V ⊂ C

2n should satisfy to ensure that
for every finitely generated field K over which V is defined, there exists a point
(z1, . . . , zn) in H

n such that (z1, . . . , zn, j(z1), . . . , j(zn)) is a point of V which is
generic over K . The results of [4] and [6] inform what the conditions of strong EC
should be: in technical terms, it is expected that broadness and freeness is the minimal
set of conditions (see §3.1 for definitions and Conjecture 3.5 for a precise statement).

When approaching the strong EC problem, the first immediate obstacle is the EC
problem, which simply asks to find geometric conditions that an algebraic variety
V ⊂ C

2n should satisfy to ensure that V has a Zariski dense set of points in the graph
of the j function.When V has such a Zariski dense set of points, we say that V satisfies
(EC). Following from the previous paragraph, it is expected that if V is free and broad,

Supported by NSF RTG grant DMS-1646385 and EPSRC fellowship EP/T018461/1. I would like to thank
Vahagn Aslanyan, Sebastián Herrero, Vincenzo Mantova, Adele Padgett, Thomas Scanlon and Roy Zhao
for helpful discussions on some of the details presented here.

B Sebastian Eterović
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then V satisfies (EC) (see Conjecture 3.5). It was proven in [14, Theorem 1.1] that if
V ⊂ C

2n is a variety such that the projection π : V → C
n onto the first n coordinates

is dominant, then V satisfies (EC). This is a partial solution to the EC problem, since
asking that the projection π is dominant is a stronger hypothesis than the notion of
broadness.

Regarding strong EC, it was shown in [14, Theorem 1.2] that if one assumes a
modular version of Schanuel’s conjecture, then any plane irreducible curve V ⊂
C
2 which is not a horizontal or a vertical line has a generic point over any given

finitely generated field over which it is defined. On the other hand, [5, Theorem 1.1]
provides a version of this without assuming the modular Schanuel conjecture, but
instead assuming that V is in some precise sense “generic” with respect to the j
function.

The main results of this paper extend [14, Theorem 1.2] and [5, Theorem 1.1]
to higher dimensions. Our first main result shows that under a modular version of
Schanuel’s conjecture (which we call MSCD, see Conjecture 2.3) and the modular
Zilber–Pink conjecture (MZP, see Conjecture 3.10) the strong EC problem can be
reduced to the EC problem.

Theorem 1.1 Let K ⊆ C be a finitely generated field, and let V ⊆ C
2n be a broad

and free variety defined over K satisfying (EC). Then MSCD and MZP imply that V
has a point of the form (z1, . . . , zn, j(z1), . . . , j(zn)), with (z1, . . . , zn) ∈ H

n, which
is generic over K .

This addresses the second question posed in [14, §1], and as such, this paper can be
seen as a continuation of the work done there. We will also show some general cases
in which we can remove the dependence onMZP, see Theorem 4.24. In particular, this
has consequences on the dynamical behaviour of the j function, see Corollary 4.26.

Using that theAx–Schanuel theorem for j ([29]) impliesweak forms of bothMSCD
and MZP, we are able to remove the dependency on these conjectures from Theorem
1.1 by instead imposing conditions on the field of definition of V , conditions we
are calling “having no C j -factors” (see §5 for the definition). Here C j is a specific
countable algebraically closed subfield of C which is built by solving systems of
equations involving the j function, and the condition of “having noC j -factors” ensures
that V is sufficiently generic so that the weak forms of MSCD and MZP suffice. A
version of this condition already appeared in the hypotheses of [5, Theorem 1.1]. We
now state our second main result.

Theorem 1.2 Let V ⊆ C
2n be a broad and free variety with no C j -factors and satisfy-

ing (EC). Then for every finitely generated field K containing the field of definition of V ,
there is a point in V of the form (z1, . . . , zn, j(z1), . . . , j(zn)), with (z1, . . . , zn) ∈ H

n,
which is generic over K .

We will also prove a version of Theorem 1.2 which includes the derivatives of j ,
see Theorem 6.5.

The EC problem for j is still open, but certain partial results have been achieved
(we already mentioned [14, Theorem 1.1]). One of the main results of [6] proves an
approximate solution to the EC problem. Their approach is referred to as a blurring
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of the j-function (definition can be found in §4.4). Using this, we will deduce the
following in §5.2.

Theorem 1.3 Let V ⊆ C
2n be a broad and free variety with no C j -factors. Then for

every finitely generated field K ⊂ C containing the field of definition of V , there are
matrices g1, . . . , gn in GL

+
2 (Q) such that V has a point of the form

(z1, . . . , zn, j(g1z1), . . . , j(gnzn)),

with (z1, . . . , zn) ∈ H
n, which is generic over K .

1.1 Summary of the proof of Theorem 1.1

In order to reduceStrongEC toECunderMSCDandMZP, there are twomain technical
steps.

(a) MSCD gives a lower bound for transcendence degree, but this inequality is only
measured overQ, whereas strongEC requires one tomeasure transcendence degree
over an arbitrary finitely generated field, that is, we need a modular Schanuel-
inequality with parameters. This is resolved by using the results on the existence
of “convenient generators” of [5, §5], which in turn is based upon the results of
[4] on differential existential closedness. See §4.2 for details.

(b) UnderMSCD, a point in V of the form (z1, . . . , zn, j(z1), . . . , j(zn))which is not
generic in V will produce what is known as an atypical intersection. MZP speaks
precisely about such atypical components, giving us sufficient control over their
behaviour.

1.2 Strong EC for exp

Themotivation for the EC and strong EC problems for j originates in the study of anal-
ogous problems stated for the complex exponential function exp : C → C

×, which
where first considered in Zilber’s work on pseudo-exponentiation [31], with further
details and results in [21] and [8]. Zilber’s work gives a model-theoretic approach to
the study of the algebraic properties of the complex exponential function, and his ideas
have since been expanded to many other settings.

With this in mind, the motivation for Theorem 1.1 is not simply a restating of
Zilber’s conjectures on exp for the case of j , but our aim is also to give a general
strategy for reducing strong EC problems to EC problems, even though there is no nice
model-theoretic “pseudo- j” structure like pseudo-exponentiation (yet). The methods
presented here are expected to work in more general situations, such as in the case of
Shimura varieties for which some cases of (EC) have been shown in [16].

The original name of the EC problem in the case of exp was Exponential Algebraic
Closedness (EAC). Instead of requiring the variety V to be broad and free, EAC
requires the varietiesV ⊆ C

n×(
C

×)n to be rotund, and additively andmultiplicatively
free, see [21, §3.7] for definitions. The original name for the Zilber–Pink conjecture
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in the context of the exponential function was the conjecture on the intersection with
tori (CIT).

The result below is a direct analogue of Theorem 1.1 for exp, and we reference
[21, Theorem 1.5] as a source. We point out however that the original formulation of
[21, Theorem 1.5] does not require the variety V to be additively and multiplicatively
free, although these conditions are necessary for the theorem to hold. Without them,
we cannot even expect the variety to intersect the graph of exp. For example, if we
define a variety V ⊂ C

2 × (
C

×)2 by the following two equations: X1 − X2 = 0 on

C
2 (which prevents V from being additively free) and Y1 − Y2 = 1 on

(
C

×)2, then
V cannot have point in the graph of any function. Not only that, if we slightly modify
V to be defined by the equations X1 − X2 = 0 and X1 = Y1, it can be checked that
V has an infinite intersection with the graph of exp (one for every fixed point of exp),
but every point in this intersection has transcendence degree at most 1, so they are not
generic in V .

Theorem 1.4 ([21, Theorem 1.5]) Let K ⊆ C be a finitely generated field, and let V ⊆
C
n × (

C
×)n

be an algebraic variety which is rotund, additively free, multiplicatively
free, defined over K , and satisfying (EAC). Then Schanuel’s conjecture and CIT imply
that V has a point of the form (z, exp(z)) which is generic over K .

Since ourmethods for proving Theorem 1.1 are expected to easily generalise to give
a proof of Theorem 1.4, and many aspects of the such a proof can already be found in
[8] and [21], we will not present a proof of this result here. We remark that Theorem
1.4 only considers complex algebraic varieties, not a general model of the first-order
theory of pseudo-exponentiation, and as such it falls short of the full ambition of [21,
Theorem 1.5].

On the other hand, we expect that by imposing conditions on the base field of V
(analogous to our notion of “having no C j -factors”) one can proceed like in the proof
of Theorem 1.2 to remove the dependence on Schanuel’s conjecture and CIT from
Theorem 1.4. Although not phrased in this way, many aspects of such a result can be
recovered from [8, Proposition 11.5], with some extra details provided by [5, Theorem
5.6].

Naturally, given the similarities between the results for exp and j one should ask:
when can one expect to obtain analogous results with other functions? The key ingre-
dient in obtaining the existence of the “convenient generators” mentioned in §1.1 is
the Ax–Schanuel theorem. As we will see, this theorem is also essential for obtaining
uniform weak forms of Zilber–Pink, which are then used in proving Theorem 1.2. We
therefore expect that the methods used here can be extended to other situations where
one has such a result. Ax–Schanuel theorems have been been obtained in many situ-
ations: the exponential map of a (semi-) abelian variety in [7] and [20], uniformizers
of any Fuchsian group of the first kind in [9] (and more), the uniformisation map of
a Shimura variety in [24], variations of mixed Hodge structures in [10, 18], among
many others.
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1.3 Structure of the paper

§2: We set up the basic notation and give some background on the algebraic aspects
of the modular j function.

§3: We go over the technical details of broadness, freeness, the (EC) condition, and
the uniform and weak versions of Zilber–Pink.

§4: We first lay down the necessary groundwork for handling transcendence inequal-
ities over different fields (using the convenient generators alluded to earlier), we
then deal with the possible presence of special solutions (using uniform André–
Oort), and we prove Theorem 1.1. After that, we give a few cases of Theorem
1.1 were we can remove the dependence on MZP, without imposing conditions
on the field of definition of V . We also prove Theorem 4.15 in §4.4, which is a
version of Theorem 1.1 for a blurring of the j function.

§5: We prove Theorem 1.2. This proof, combined with the technicalities explained
in the proof of Theorem 4.15, produce Theorem 1.3 in §5.2.

§6: We give an analogue of Theorem 1.2 including the derivatives of j .

2 Background

2.1 Basic notation

• If L is any subfield of C, then L denotes the algebraic closure of L in C.
• Given sets A, B we define A \ B := {a ∈ A : a /∈ B}.
• Tuples of elements will be denoted with boldface letters; that is, if x1, . . . , xm are
elements of a set X , then we write x := (x1, . . . , xm) for the ordered tuple.Wewill
also sometimes use x to denote the (unordered) set {x1, . . . , xm}, which should not
lead to confusion.

• Suppose X is a non-empty subset of C
m . If f denotes a function defined on X and

x is an element of X , then we write f (x) to mean ( f (x1), . . . , f (xm)).
• Given a subfield L of C and a subset A ⊆ C

n , we say that a subset Z ⊆ C
n is the

L-Zariski closure of A if Z is the smallest Zariski closed set containing A that is
defined over L .

• The term algebraic variety for uswill justmean aZariski closed set, not necessarily
irreducible. We also identify complex algebraic varieties V with the set of their
C-points V (C).

2.2 The j-function

We denote by H the complex upper-half plane {z ∈ C : Im(z) > 0}. The group
GL+

2 (R) of 2 by 2 matrices with coefficients in R and positive determinant, acts on H

via the formula

gz := az + b

cz + d
for g =

(
a b
c d

)
.
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This action can be extended to a continuous action of GL+
2 (R) on the Riemann sphere

Ĉ := C∪{∞}. Given a subring R of R we define M+
2 (R) as the set of 2 by 2 matrices

with coefficients in R and positive determinant. We put

G := GL+
2 (Q) = M+

2 (Q),

which is a subgroup of GL+
2 (R). The modular group is defined as

� := SL2(Z) = {g ∈ M+
2 (Z) : det(g) = 1}.

The modular j function is defined as the unique holomorphic function j : H → C

that satisfies

j(gz) = j(z) for every g in � and every z in H,

and has a Fourier expansion of the form

j(z) = q−1 + 744 +
∞∑

k=1

akq
k with q := exp(2π i z) and ak ∈ C. (2.1)

This function allows us to identify �\H � C. The quotient space Y (1) := �\H is
known to be a (coarse)moduli space for one-dimensional complex tori, or equivalently,
elliptic curves over C. If �z is a point in Y (1) and Ez denotes an elliptic curve in the
corresponding isomorphism class, then j(z) is simply the j-invariant of the curve Ez .

It is well-known ([23]) that j satisfies the following algebraic differential equation
(and none of lower order):

0 = j ′′′

j ′
− 3

2

(
j ′′

j ′

)2

+ j2 − 1968 j + 2654208

j2( j − 1728)2
(
j ′
)2

. (2.2)

2.3 Modular polynomials

Let {�N (X ,Y )}∞N=1 ⊆ Z[X ,Y ] denote the family ofmodular polynomials associated
with j (see [22, Chap. 5, Sect. 2] for the definition and main properties of this family).
We recall that �N (X ,Y ) is irreducible in C[X ,Y ], �1(X ,Y ) = X − Y , and for
N ≥ 2, �N (X ,Y ) is symmetric of total degree ≥ 2N . Also, the action of G on H can
be traced by using modular polynomials in the following way: for every g in G we
define g̃ as the unique matrix of the form rg with r ∈ Q and r > 0, so that the entries
of g̃ are all integers and relatively prime. Then, for every x and y in H the following
statements are equivalent:

(M1): �N ( j(x), j(y)) = 0;
(M2): There exists g in G with gx = y and det (g̃) = N .
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Definition A finite set A ⊂ C is said to be modularly independent if for every pair of
distinct numbers a, b in A and every positive integer N , we have that �N (a, b) �= 0.
Otherwise, we say that A is modularly dependent.

An element w is said to be modularly dependent over A if there is a ∈ A such that
the set {a, w} is modularly dependent.

Definition Given a subset A ⊆ C, the Hecke orbit of A is defined as

He(A) := {z ∈ C : ∃a ∈ A∃N ∈ N(�N (z, a) = 0)} .

Remark 2.1 Let d be a positive integer. As explained in [14, §7.3], combining isogeny
estimates of Masser–Wüstholz and Pellarin, with gonality estimates for modular
curves, we obtain that for every z ∈ C we have that the set

Hed(z) := {w ∈ He(z) : [Q(z, w) : Q(z)] ≤ d}

is finite. This immediately gives that if A ⊂ C is a finite set, then

Hed(A) := {w ∈ He(A) : [Q(A, w) : Q(A)] ≤ d}

is also finite.

2.4 Special points

A point w in C is said to be special (also known as a singular modulus) if there is
z in H such that [Q(z) : Q] = 2 and j(z) = w. Under the moduli interpretation of
j , special points are those that correspond to elliptic curves endowed with complex
multiplication. We set

� := {z ∈ H : [Q(z) : Q] = 2} .

A theorem of Schneider [30] says that tr.deg.QQ(z, j(z)) = 0 if and only if z is in �.
We say that a point w in C

n is special if every coordinate of w is special.

2.5 Themodular Schanuel conjecture

Given a subset A of H, we define dimG(A) as the number of distinct G-orbits in

G · A = {ga : g ∈ G, a ∈ A}

(which may be infinite). Equivalently, dimG(A) is the cardinality of the quotient set
G\(G · A). Given another subset C of C, we define dimG(A|C) as the number of
distinct G-orbits in (G · A) \ (G · C). In plain words, dimG(A|C) counts the number
of orbits generated by elements of A that do not contain elements of C .
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We now present two modular versions of Schanuel’s conjecture. Both follow from
the Grothendieck–André generalised period conjecture applied to powers of the mod-
ular curve (see [5, §6.3] and references therein).

Conjecture 2.2 (Modular Schanuel conjecture (MSC)) For every z1, . . . , zn in H:

tr.deg.QQ (z, j(z)) ≥ dimG(z|�).

Conjecture 2.3 (Modular Schanuel conjecture with derivatives (MSCD)) For every
z1, . . . , zn in H:

tr.deg.QQ
(
z, j(z), j ′(z), j ′′(z)

) ≥ 3 dimG(z|�).

Clearly MSC follows from MSCD. Also, in view of the differential equation 2.2,
MSCD only needs to involve up to the second derivative of j . We also point out that
MSCD is somewhat incomplete as it does not say anything about the transcendence
degree of Q(z, j(z), j ′(z), j ′′(z)) over Q when z ∈ �. In fact, a stronger conjecture
is implied by the generalised period conjecture (see [5, Conjecture 6.13]) which does
account for points in �. However, in the proofs of our main results we will show that
we can move away from points that have coordinates in�, and for this reason, MSCD
will suffice for us.

Remark 2.4 Using the equivalence between (M1) and (M2) in §2.3, it is easy to see
that MSC can be restated equivalently using a more geometric language (see also [26,
§15]): For every algebraic variety V ⊆ C

2n defined over Q for which there exists
(z, j(z)) ∈ V , if dim V < n then dimG(z|�) < n.

This way of thinking about MSC leads one naturally to a counterpart problem for
MSC, that is, the question of determining which subvarieties V ⊆ C

2n intersect the
graph of the j-function. This gives rise to the existential closedness problem, which
we discuss next.

3 Existential closedness and the Zilber–Pink conjecture

In this section we define the notions of broad and free, we define the existential
closedness conjecture for the j function, we recall themodular Zilber–Pink conjecture,
and we give some partial results.

To do all this, we need to distinguish a family of subvarieties that will be called
special. For this, it will be important to differentiate the first n coordinates of C

2n

from the last n coordinates because we want to think of C
2n as a product C

n × C
n

where the left factor has special subvarieties coming from the action of G, whereas
on the second factor the special subvarieties are defined by modular polynomials. So
as to avoid confusion, we prefer to change the name of the second factor to Y(1)n , as
in this case we are thinking of C as the modular curve Y(1). This way, we view C

2n

as C
n × Y(1)n . This is purely done for purposes of notation.

We will always think of the subvarieties of C
n × Y(1)n as being defined over the

ring of polynomials C[X1, . . . , Xn,Y1, . . . ,Yn].

123



Generic solutions of equations involving...

We will denote by πC : C
n × Y(1)n → C

n and πY : C
n × Y(1)n → Y(1)n the

corresponding projections.

3.1 Broad and free varieties

Given a matrix g =
(
a b
c d

)
in GL2(C), we define the polynomial Mg(X ,Y ) :=

Y (cX+d)−(aX+b) and the rational function gX := aX+b
cX+d . Note thatMg(X , gX) =

0.

Definition AMöbius subvariety of C
n is a variety defined by finitely many equations

of the form Mgi,k (Xi , Xk) with gi,k in GL2(C) non-scalar and i, k in {1, . . . , n} not
necessarily different.

Example 3.1 1 The variety V = {(x1, x2, x3) ∈ C
3 : x1 − 2x2 + 3x3 = 0} is not a

Möbius subvariety of C
3 but it contains infinitely many Möbius subvarieties. Indeed,

for every integer m define gm =
(
3m − 1 0

0 1

)
and hm =

(
2m − 1 0

0 1

)
. Then V

contains Mgm (X1, X2) ∩ Mhm (X1, X3), which is a Möbius subvariety when m ≥ 2.

Definition A special subvariety of Y(1)n is an irreducible component of an algebraic
set defined by equations of the following forms:

(a) �N (Yi ,Yk) = 0, for some N ∈ N, and
(b) Yi = τ , where τ ∈ C is a special point.

We allow the set of equations to be empty, so Y(1)n is itself a special variety. A special
subvariety without constant coordinates is called a basic special subvariety.

Since every special point can be obtained as the solutions of �N (X , X) = 0 for
some N ∈ N, the condition Yi = τ in the previous definition follows from the
condition �N (Yi ,Yk) = 0 by choosing i = k, but we have opted for this presentation
as it makes it easy to compare it with the definition of weakly special variety in the
following paragraph.

A subvariety of Y(1)n is called weakly special if it is an irreducible component of
an algebraic set defined by equations of the following forms:

(i) �N (Yi ,Yk) = 0, for some N ∈ N,
(ii) Y� = d, for some constant d ∈ C.

As it turns out, every special variety has a Zariski dense set of special points (see e.g.
[25, 1.4 Aside]), and so a weakly special subvariety is special if and only if it contains
a special point.

If S is a special subvariety of Y(1)n , then a (weakly) special subvariety of S is a
(weakly) special subvariety of Y(1)n that is contained in S.

If T is a proper positive dimensional weakly special subvariety of Y(1)n , there are
m ∈ {1, . . . , n}, a basic special subvariety S ⊆ Y(1)m , and a point p ∈ Y(1)n−m

such that (up to re-indexing of the coordinates) T can be written as S × {p}. We

1 We thanks Sebastián Herrero for providing this example.
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define the basic complexity of T to be the maximal positive integer N for which the
modular polynomial �N is required to define S. We denote this number by �b(T )

(which represents the complexity of the basic special part of T ). This definition differs
slightly from [19, Definition 3.8], where the complexity is only defined for special
varieties, and the complexity also depends on the constant special coordinates that the
variety may have.

We remark that if S and T are (weakly) special subvarieties of Y(1)n , then the
irreducible components of S ∩ T (if there are any) are again (weakly) special suvbari-
eties of Y(1)n . In fact, by Hilbert’s basis theorem the irreducible components of any
non-empty intersection of (weakly) special subvarieties is again a (weakly) special
subvariety.

Definition Given an irreducible constructible set X , we denote by spcl(X) the special
closure of X , that is, the smallest special subvariety containing X . Similarly, we denote
by wspcl(X) the weakly special closure of X .

Following [1], we also make the following definition.

Definition Given a tuple c = (c1, . . . , cm) of complex numbers, we say that a sub-
variety S of Y(1)n is c-special if S is weakly special and the values of each of the
constant coordinates of S (if there are any) is either an element of He(c), or a special
point.

Definition We will say that an irreducible constructible set V ⊆ C
n × Y(1)n is

modularly free if πY(V ) is not contained in a proper special subvariety of Y(1)n .
We will also say that V is free if V is modularly free, no coordinate of V is constant,

and πC(V ) is not contained in any Möbius subvariety of C
n which is only defined by

elements of G.
We say that a constructible subset V ⊆ C

n × Y(1)n is free if every irreducible
component of V is free.

Now we introduce some notation for coordinate projections. Let n and � denote
positive integers with � ≤ n, and let i = (i1, . . . , i�) denote a point in N

� with
1 ≤ i1 < . . . < i� ≤ n. Define the projection map pri : C

n → C
� by

pri : (x1, . . . , xn) �→ (xi1 , . . . , xi� ).

In particularwedistinguish between the natural numbern and the tuplen = (1, . . . , n).
We also use the notation n \ i to denote the tuple of entries of n that do not appear in i.

Remark 3.2 If T is a (weakly) special subvariety of Y(1)n , then for any choice of
indices 1 ≤ i1 < · · · < i� ≤ n we have that pri(T ) is a (weakly) special subvariety of
Y(1)�.

Define Pri : C
n × Y(1)n → C

� × Y(1)� by

Pri(x, y) := (pri(x), pri(y)).
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Definition An algebraic set V ⊆ C
n × Y(1)n is said to be broad if for any i =

(i1, . . . , i�) in N
� with 1 ≤ i1 < . . . < i� ≤ n we have dim Pri(V ) ≥ �. In particular,

if V is broad then dim V ≥ n.
We say V is strongly broad if the strict inequality dim Pri(V ) > � holds for

every i.

For example, if πC(V ) is Zariski dense in C
n , then V is broad.

3.2 Existential closedness

Here we will define the (EC) condition, give a conjecture for the EC problem for j
(see Conjecture 3.5), and review some known results.

Given an integer n ≥ 1 we denote the graph of j : H
n → C

n as

En
j := {(z1, . . . , zn, j(z1), . . . , j(zn)) : z1, . . . , zn ∈ H}.

Definition We say that an algebraic variety V ⊆ C
n × Y(1)n satisfies the Existential

Closedness condition (EC) if the set V ∩ En
j is Zariski dense in V .

We recall the following result which gives examples of varieties satisfying (EC).

Theorem 3.3 ([14, Theorem 1.1]) Let V ⊆ C
n × Y(1)n be an irreducible algebraic

variety. If πC(V ) is Zariski dense in C
n, then V satisfies (EC).

We also recall the following statement (although it falls short from giving examples
of varieties satisfying (EC) as it does not prove Zariski density).

Theorem 3.4 ([17, Theorem 3.31]) Let L ⊆ C
n be a subvariety defined by equations

of the form Mg(X ,Y ) = 0, with g ∈ GL2(R). Let W ⊆ Y(1)n be a subvariety,
and assume that L × W is a free and broad subvariety of C

n × Y(1)n. Then j(L) is
Euclidean dense in W.

These theorems and the main results of [4] give evidence for the following conjec-
ture (cf [6, Conjecture 1.2]).

Conjecture 3.5 Let n be a positive integer and let V ⊆ C
n × Y(1)n be a broad and

free variety such that V ∩ (Hn × Y(1)n) is Zariski dense in V . Then V ∩ En
j �= ∅.

The reader may be wondering why, in light of Theorem 3.3, Conjecture 3.5 does
not ask for the stronger condition of V ∩ En

j being Zariski dense in V . In fact, as we
will see in Lemma 3.8, Conjecture 3.5 already implies the this stronger condition.

Conjecture 3.5 can be thought of as a version ofHilbert’sNullstellensatz for systems
of algebraic equations involving the j-function (cf [12] for the discussion in the case
of the exponential function). The examples of [14, §3] show that if V has constant
coordinates or is contained in a proper subvariety of the form M × Y(1)n , with M a
Möbius subvariety, then it can happen that V ∩ En

j is empty.
We also point out that the condition of V ∩ (Hn × Y(1)n) being Zariski dense in V

is needed, as otherwise the subvariety of C
2 × Y(1)2 defined by the single equation
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X1 = i X2 is free and broad, but cannot have points in the graph of the j function since
there is no point z in H for which i z is also in H. One could alternatively resolve this
issue by extending the domain of j to the lower half-plane using Schwarz reflection.

Remark 3.6 Let V ⊆ C
n × Y(1)n be a broad and free variety. If dim V = n, then by

[29, Theorem 1.1] ifU is a component of V ∩En
j (assuming there are any), thenU has

dimension zero unless πY(U ) ⊆ T , for some proper special subvariety T ⊂ Y(1)n .
So for a generic V , we can only expect the intersection V ∩En

j to be at most countable.

The following result is an approximate version of Conjecture 3.5 using what is
known as a blurring of the j function.

Theorem 3.7 ([6, Theorem 1.9]) Let V ⊆ C
n ×Y(1)n be an irreducible variety which

is broad and free. Then the set of points in V of the form

(z1, . . . , zn, j(g1z1), . . . , j(gnzn)),

such that z1, . . . , zn ∈ Hand g1, . . . , gn ∈ G, isEuclideandense in V∩(Hn × Y(1)n).

We finish this subsection by recalling a useful trick.

Lemma 3.8 (cf [2, Proposition 4.34]) Suppose Conjecture 3.5 holds. Let V ⊆ C
n ×

Y(1)n be a broad and free irreducible variety. Then V satisfies (EC).

Proof Let p1, . . . , pm be polynomials in C[X1, . . . , Xn,Y1, . . . ,Yn] defining V . Let
f be a polynomial in C[X1, . . . , Xn,Y1, . . . ,Yn] that does not vanish identically on
V and let

W = {(x, y) ∈ V : f (x, y) = 0} .

To prove the lemma it suffices to show that En
j ∩ (V \W ) �= ∅. By Conjecture 3.5 this

is clear if W = ∅, hence we can assume that f vanishes at least at one point of V . We
now define the following subvariety2 of C

n+1 × Y(1)n+1:

V ′ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1(x1, . . . , xn, y1, . . . , yn) = 0
...

pm(x1, . . . , xn, y1, . . . , yn) = 0
yn+1 f (x1, . . . , xn, y1, . . . , yn) − 1 = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Choose 1 ≤ i1 < · · · < i� ≤ n + 1 and set i = (i1, . . . , i�). Then

dim Pri(V
′) =

⎧
⎨

⎩

dim Pri(V \ W ) if i� �= n + 1,
dim Pr(i1,...,i�−1)(V \ W ) + 1 if � ≥ 2 and i� = n + 1,
2 if � = 1 and i1 = n + 1.

2 This is the standard Rabinowitsch trick used in the proof of Nullstellensatz.
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Now, since V is irreducible, the set V \W is dense in V . Hence, for any subtuple k of
n we have, by continuity of Pri, that dim Prk(V \W ) = dim Prk(V ). Since V is broad,
we conclude that V ′ is also broad.

We will now prove that V ′ is free. Since V has no constant coordinates, and f is
non-constant, we see that no coordinate is constant on V ′. Also, since V is free, it
is clear that V ′ is not contained in a variety of the form M × Y(1)n+1 where M is
a proper Möbius subvariety of C

n+1. Moreover, if V is contained in a variety of the
form C

n+1 × T where T is a proper special subvariety of Y(1)n+1, then at least one
of the polynomials defining T must be of the from �N (yi , yn+1) with i ∈ {1, . . . , n}
and N ≥ 1. This implies that �N (yi , 1/ f ) = 0 on V \ W , hence V \ W is contained
in the variety Z defined by the polynomial f d�N (yi , 1/ f ) where d is the degree of
�N in the Y variable. This implies that V ⊆ Z . Since �N (X ,Y ) has leading term ±1
as a polynomial in Y , it follows that f has no zeroes on Z . But this implies that f has
no zeroes on V , which is a contradiction. This proves that V ′ is free.

Since V ′ is broad and free, Conjecture 3.5 implies that there exists a point of the
form (z, j(z)) in V ′ with z ∈ H

n+1, and so Prn(z, j(z)) ∈ (V \W ). This completes
the proof of the lemma.

3.3 Atypical intersections and Zilber–Pink

Definition Suppose that V and W are subvarieties of a smooth algebraic variety Z .
Let X be an irreducible component of the intersection V ∩ W . We say that X is an
atypical component of V ∩ W (in Z ) if

dim X > dim V + dimW − dim Z .

We say that the intersection V ∩ W is atypical (in Z ) if it has an atypical component.
Otherwise, we say that V∩W is typical (in Z ), i.e. V∩W is typical in Z if dim V∩W =
dim V + dimW − dim Z .

If Z = Y(1)n , we say that X is an atypical component of V if there exists a special
subvariety T of Y(1)n such that X is an atypical component of V ∩ T . We remark that
in this case, since dim T ≥ dim spcl(X), it is also true that X is an atypical component
of V ∩ spcl(X).

We say that X is a strongly atypical component of V if X is an atypical component
of V and no coordinate is constant on X .

An atypical (resp. strongly atypical) component of V is said to be maximal (in V )
if it is not properly contained in another atypical (resp. strongly atypical) component
of V .

Given a tuple c = (c1, . . . , cm) of complex numbers, an atypical component X of
V is said to be c-atypical is X is an atypical component of the intersection V ∩ T ,
where T is a c-special subvariety.

Example 3.9 Let T be a proper special subvariety of Y(1)n . Then T is an atypical
component of itself, since

dim T = dim T ∩ T > dim T + dim T − n.
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On the other hand, although Y(1)n is a special variety, it is not atypical in itself.

Conjecture 3.10 (Modular Zilber–Pink) For every positive integer n, any subvariety
of Y(1)n has only finitely many maximal atypical components.

From now on, we will abbreviate this conjecture as MZP. This conjecture is some-
times presented in terms of optimal varieties, which we discuss next.

Definition Let V be a subvariety of Y(1)n . Given a subvariety X ⊆ V , we define the
defect of X to be

def(X) := dim spcl(X) − dim X .

We say that X is optimal in V is for every subvariety W ⊆ V satisfying X � W we
have that def(X) < def(W ). We let Opt(V ) denote the set of all optimal subvarieties
of V . Observe that always V ∈ Opt(V ). We think of Opt(V ) as a cycle in Y(1)n .

Remark 3.11 A maximal atypical component of V is optimal in V . However, optimal
subvarieties need not be maximal atypical.

On the other hand, if X is a proper subvariety of V which is optimal in V ,
then def(X) < def(V ) which implies that dim V ∩ spcl(X) ≥ dim X > dim V +
dim spcl(X) − dim spcl(V ), so the intersection V ∩ spcl(X) is atypical.

As shown in [19, Lemma2.7],MZP is equivalent to the statement that any subvariety
of Y(1)n contains only finitely many optimal subvarieties, i.e. Opt(V ) is a finite set.

Definition Let S be a constructible set (resp. an algebraic variety) in C
N , where N is

some positive integer. A parametric family of constructible subsets (resp. subvarieties)
of S is a constructible set V ⊆ S × Q, where Q ⊆ C

m is another constructible set,
which we denote as an indexed collection V = (Vq)q∈Q , where for each q ∈ Q the
set

Vq := {s ∈ S : (s,q) ∈ V }

is a constructible subset (resp. subvariety) of S.3

Example 3.12 An important example for us of a parametric family is given by the
following construction. Let W be an algebraic subvariety of C

n × Y(1)n ; we want to
define the family of subvarieties of W obtained by intersecting W with all Möbius
subvareities of C

n defined by elements of GL2(C).
Given a function f : D → GL2(C) defined on a non-empty subset D of

{1, . . . , n} × {1, . . . , n}, set

W f := {(x1, . . . , xn, y1, . . . , yn) ∈ W : f (i, j)xi = x j for all (i, j) ∈ D}.
3 In the terminology of model-theory, we can equivalently say that V ⊆ S × Q is a definable family of
definable subsets of S, in the language of rings.
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Then, the collection of all such W f forms a parametic family of subvarieties of W .
Indeed, put

Q :=
⊔

∅�=D⊆{1,...,n}2
GL2(C)D.

Every function f : D → GL2(C) can be represented as an element of GL2(C)D .
Since for every finite non-empty set A we have that GL2(C)A is a constructible subset
of C

4m , where m = #A, we have that Q is a finite union of constructible sets, hence
it is constructible. Then choosing S = W and

V = {((x, y), f ) ∈ W × Q : (x, y) ∈ W f }

we have that (W f ) f is just the parametric family (V f ) f ∈Q associated to V .

Pila showed that MZP implies the following uniform version of itself.

Theorem 3.13 (UniformMZP, see [27, §24.2]) Suppose that for every positive integer
n, MZP holds for all subvarieties of Y(1)n. Let (Vq)q∈Q be a parametric family of
subvarieties of Y(1)n. Then there is a parametric family (Wp)p∈P of closed algebraic
subsets of Y(1)n such that for every q ∈ Q there is p ∈ P such that Opt(Vq) = Wp.

Corollary 3.14 Let (Vq)q∈Q be a parametric family of constructible subsets of Y(1)n.
Then MZP implies that there is a finite collection S of proper special subvarieties
of Y(1)n such that for all q ∈ Q and all special subvarieties T , if X is an atypical
component of Vq ∩ T , then there is T0 ∈ S such that X ⊆ T0.

Proof Let (Wp)p∈P be the parametric family given by applying Theorem 3.13 to
(Vq)q∈Q . Without loss of generality we may assume that for all p ∈ P there is q ∈ Q
such thatWp ⊆ Vq. Since Vq is always in Opt(Vq), we may remove this trivial optimal
subvariety, and so we can assume that for every p ∈ P , if Wp ⊆ Vq, then Vq is not in
Wq.

Let T be a special subvariety of Y(1)n and suppose that q ∈ Q is such that Vq ∩ T
contains an atypical component X . Then T must be a proper subvariety of Y(1)n . X is
contained in amaximal atypical component of Vq which, by Remark 3.11, is contained
in Wp for some p ∈ P .

For every p ∈ P , if Z is in Wp, then Z is an optimal proper subvariety of Vq, for
some q ∈ Q. By Remark 3.11 we know that

dim V ∩ spcl(Z) > dim V + dim spcl(Z) − n,

and so in particular spcl(Z) is a proper special subvariety of Y(1)n . We conclude then
that for every p ∈ P there are finitely many proper special subvarieties T1,p, . . . , Tm,p
such that

Wp ⊆
m⋃

i=1

Ti,p. (3.1)
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Wenowuse the compactness theorem frommodel theory. Let {Ti }i∈N be an enumer-
ation of all the proper special subvarieties of Y(1)n . If the conclusion of the corollary
were not true, then the following set of formulas (in the variables p and x)

{

p ∈ P ∧ x ∈ Wp ∧ x /∈
m⋃

i=0

Ti

}

m∈N
(3.2)

would be finitely satisfiable and hence it would form a type in the language of rings
with some extra constant symbols. As the family (Wp)p∈P only requires finitely many
parameters to be defined and every Ti in definable over Q, then (3.2) is a type in the
language of rings with only countably many added constant symbols. As C is ℵ0-
saturated, this type must be realised over C, but that would mean that there is p	 ∈ P
such that Wp	 is not contained in the union of all proper special subvarieties, which
contradicts (3.1).

We will need the following “two-sorted” version of this result.

Corollary 3.15 Let (Uq)q∈Q be a parametric family of subvarieties of C
n × Y(1)n.

Then MZP implies that there is a finite collection S of proper special subvarieties
of Y(1)n such that for all q ∈ Q and all special subvarieties T , if X is an atypical
component of Vq ∩ (Cn × T ), then there is T0 ∈ S such that X ⊆ C

n × T0.

Proof We follow the proof of [8, Theorem 11.4]. Let U ⊆ Q × C
n × Y(1)n be the

definable set such that for each q ∈ Q, Uq = {(x, y) ∈ C
n × Y(1)n : (q, x, y) ∈ U }.

Given k ∈ {0, . . . , dimU } define

U (k) :=
{
(q, x, y) ∈ U : dim(Uq ∩ π−1

Y (y)) = k
}

.

By definability of dimensions, theU (k) are all constructible subsets ofU . Furthermore,
define

V (k) := U (k) ∪U (k+1) ∪ · · · ∪U (dimU ).

Given q ∈ Q let V (k)
q := {

(x, y) ∈ C
n × Y(1)n : (q, x, y) ∈ V (k)

}
.

For each k ∈ {0, . . . , dimU } let Sk be the finite collection of special subvarieties

obtained by applying Corollary 3.14 to the family
(
πY

(
V (k)
q

))

q∈Q . Set

S :=
dimU⋃

k=0

Sk .

Let T ⊂ Y(1)n be a special subvariety, and suppose that X is an atypical component
of Uq ∩ (Cn × T ). Let k0 = dim X − dim πY(X), by the fibre-dimension theorem
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there is a Zariski open subset X ′ ⊂ X such that for every (x, y) ∈ X ′ we have that
dim X ′ ∩ π−1

Y (y) = k0. In particular dim X ′ = dim X . Also V (k0)
q ⊆ Uq, so

dim X > dimUq + dim T − n ≥ dim V (k0)
q + dim T − n.

Lety ∈ πY(X ′), thendim X ′∩π−1
Y (y) = k0.Byconstructiondim V (k0)

q ∩π−1
Y (y) ≥ k0,

so by the fibre-dimension theorem we get

dim πY(X) = dim πY(X ′) > dim πY

(
V (k0)
q

)
+ dim T − n.

Then there is a special subvariety T0 ⊂ Y(1)n with�(T0) ≤ N such thatπY(X ′) ⊆ T0
and

dim πY(X ′) ≤ dim πY

(
V (k0)
q ∩ T0

)
+ dim T ∩ T0 − dim T0.

This shows that X ′ ⊂ C
n ×T0, and sinceC

n ×T0 is Zariski closed, then X ⊂ C
n ×T0.

By the definition of V (k0)
q , the dimension of the fibres of the restriction of πY to

V (k0)
q ∩ (Cn × T0) is at least k0. By fibre-dimension theorem we get:

dim X − k0 ≤ dim V (k0)
q ∩ (Cn × T0) − k0 + dim T ∩ T0 − dim T0.

Since V (k0)
q ⊆ Uq, this completes the proof.

3.4 WeakMZP

AlthoughMZP is open, Pila andTsimerman ([29, §7]) showed that, as a consequence of
the Ax–Schanuel theorem for j , one can obtain a weak form of MZP which states that
the atypical components of an algebraic subvariety of Y(1)n , are contained in finitely
many parametric families of proper weakly special subvarieties. For the proofs of our
main results, we will need the following version of the weak form of MZP which
allows for parametric families of algebraic varieties and is “two-sorted” like Corollary
3.15.

Proposition 3.16 Given a parametric family (Uq)q∈Q of constructible subsets ofCn ×
Y(1)n, there is a positive integer N such that for every q ∈ Q, for every weakly special
subvariety T ⊂ Y(1)n and for every atypical component X ofUq∩(Cn×T ), there is a
properweakly special subvariety T0 ⊂ Y(1)n with�b(T0) ≤ N such that X ⊆ C

n×T0
and

dim X ≤ dimUq ∩ (Cn × T0) + dim T ∩ T0 − dim T0.
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In this section we will present a few technical results centred around the weak form
of MZP, which build up to prove Proposition 3.16. We begin with a result of Aslanyan
showing the following uniform version of weak MZP.4

Theorem 3.17 (Weak MZP, [3, Theorem 5.2]) Let S be a special subvariety of Y(1)n.
Given a parametric family (Uq)q∈Q of constructible subsets of S, there is a finite
collection S of proper special subvarieties of S such that for every q in Q and for
every strongly atypical component X of Uq in S, there is T ∈ S such that X ⊆ T .

Corollary 3.18 Let S be a special subvariety of Y(1)n. Given a parametric family
(Uq)q∈Q of constructible subsets of S, there is a finite collectionS of proper special
subvarieties of S such that for every q in Q and for every strongly atypical component
X of Uq, there is T0 ∈ S satisfying the following conditions:

(a) X ⊆ T0,
(b) X is a typical component of U ∩ spcl(X) = (Uq ∩ T0)∩ (spcl(X)∩ T0) in T0, that

is:
dim X ≤ dimUq ∩ T0 + dim spcl(X) − dim T0,

and
(c) the intersection Uq ∩ T0 is atypical in S:

dimUq ∩ T0 > dimUq + dim T0 − dim S.

Proof We will first show that there is a family S satisfying conditions (a) and (b).
We proceed by induction on the dimension of S. When dim S = 0, then S is a just a
point and there is nothing to prove as Uq = S for all q ∈ Q, so no Uq contains an
atypical component. Now assume that dim S > 0. Let S1 be the finite collection of
proper special subvarieties of S obtained by applying Theorem 3.17 to (Uq)q∈Q .

Suppose that X is a strongly atypical component of Uq, then

dim X > dimUq + dim spcl(X) − dim S.

Choose T1 ∈ S1 such that X ⊆ T1. If

dim X > dimUq ∩ T1 + dim spcl(X) ∩ T1 − dim T1,

then X is a strongly atypical component of (Uq ∩T1)∩ (T ∩T1) in T1. Since dim T1 <

dim S we can apply the induction hypothesis on T1 to the family
(
Uq ∩ T1

)
q∈Q to

obtain a finite collection S2 of proper special subvarieties of T1 (which in turn are
special subvarieties of S) such that there is T0 ∈ S2 satisfying that X ⊆ T0 and the
intersection (Uq ∩ T0) ∩ (spcl(X) ∩ T0) is typical in T0.

Therefore, the collection S obtained by taking the union of S1 with the finite
collections obtained by the induction hypothesis applied to

(
Uq ∩ T0

)
q∈Q for every

T0 ∈ S satisfies conditions (a) and (b).

4 That Ax–Schanuel implies a uniform version of a weak form of the Zilber–Pink conjecture holds in very
general contexts, see [15, Propositon 2.20] and [28].
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We now check thatS satisfies (c). Suppose that X is a strongly atypical component
ofUq, and let T0 ∈ S be an element satisfying (a) and (b). Observe that spcl(X)∩T0 =
spcl(X). From (b) we get that

dim X − dim spcl(X) ≤ dimUq ∩ T0 − dim T0.

Combining this with the fact that X is an atypical component of Uq gives

dimUq − dim S < dim X − dim spcl(X) ≤ dimUq ∩ T0 − dim T0,

from which we get

dimUq ∩ T0 > dimUq + dim T0 − dim S,

thus confirming (c).

Corollary 3.19 Let (Sq)q∈Q be a parametric family of proper weakly special subvari-
eties of a special subvariety S of Y(1)n. Then there are only finitely many members of
this family which are basic special subvarieties.

Proof Let S be the finite family of proper special subvarieties of S obtained by
applying Corollary 3.18 to the family (Sq)q∈Q . Suppose q ∈ Q is such that Sq is a
proper basic special subvariety of S. Then

dim Sq ∩ Sq = dim Sq > dim Sq + dim Sq − dim S,

which shows that Sq is a strongly atypical component of itself in S. There is T0 ∈ S
such that Sq ⊆ T0 and

dim Sq ≤ dim Sq ∩ T0 + dim Sq − dim T0.

From this we obtain that 0 ≤ dim Sq ∩ T0 − dim T0, and so we obtain that T0 = Sq.
Since S is a finite set, the result is proven.

We can now get the following result with the same proof used in Corollary 3.15.

Theorem 3.20 (Two-sorted weak MZP) Given a parametric family (Uq)q∈Q of alge-
braic subvarieties of C

n × Y(1)n, there is a finite collection S of proper special
subvarieties of Y(1)n such that for every q ∈ Q, every proper special subvariety T of
Y(1)n and every atypical irreducible component X of Uq ∩ (Cn × T ) satisfying that
πY(X) has no constant coordinates, there is T0 inS such that X ⊆ C

n × T0.

Although Theorem 3.17 and Corollaries 3.18 and 3.19 only speak about strongly
atypical intersections, one can get the following result about general atypical intersec-
tions.
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Proposition 3.21 ([1, Proposition 3.4]) Let S be a special subvariety of Y(1)n. Given
a parametric family (Uq)q∈Q of constructible subsets of S, there is a positive integer
N such that for every q ∈ Q and for every weakly special subvariety T of S, if X is an
atypical component of Uq ∩ T in S, then there is a proper weakly special subvariety
T0 of S satisfying the following conditions:

(a) �b(T0) ≤ N,
(b) X ⊆ T0,
(c) X is a typical component of (Uq ∩ T0) ∩ (T ∩ T0) in T0:

dim X ≤ dimUq ∩ T0 + dimwspcl(X) − dim T0,

and
(d) the intersection Uq ∩ T0 is atypical in S:

dimUq ∩ T0 > dimUq + dim T0 − dim S.

Proof The proof requires a few more calculations than the proof given in [1]. We
proceed by induction on n, the case n = 0 being trivial. Let S be the finite family
of special subvarieties given by Corollary 3.18 applied to (Uq)q∈Q . Let NS be the
maximal complexity of the elements of S .

Suppose that for some q ∈ Q and some weakly special subvariety T ⊂ S, the
intersection Uq ∩ T contains an atypical component X . We may assume that T =
wspcl(X).

If X is strongly atypical (i.e. has no constant coordinates), then spcl(X) = wspcl(X)

and so we know that there is T0 ∈ S satisfying (b), (c) and (d). By construction,
�b(T0) ≤ NS , which verifies (a).

Assume now that X is not strongly atypical. Let i = (i1, . . . , im) be the tuple of all
of the coordinates which are constant on X , let c ∈ Y(1)m be such that pri(X) = {c},
and define

Sc := S ∩ pr−1
i (c),

that is, Sc is the fibre in S over c. As explained in [1, Proposition 3.4], Sc is an
irreducible variety, so it is weakly special. Observe that as T is the weakly special
closure of X , then T ⊂ Sc. When i is not all of n, let k = n\i. We consider now the
possible cases.

Suppose that

dimUq ∩ Sc > dimUq + dim Sc − dim S.

If dim X ≤ dimUq∩Sc+dim T −dim Sc, then we can let T0 be Sc, since�b(Sc) = 0.
In particular, this would be the case if X happens to be a single point, in which case
i = n.

If instead dim X > dimUq ∩ Sc + dim T − dim Sc, then i �= n. Consider the
projection prk : Y(1)n → Y(1)n−m . Since we have that X ⊆ T ⊆ Sc, then
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dim X = dim prk(X), dim T = dim prk(T ) and dimUq ∩ Sc = dim prk(Uq ∩ Sc).
Also, since Sc ⊆ S, then dim Sc = dim prk(Sc) ≤ dim prk(S). Let X1 be the irre-
ducible component of prk(Uq ∩ Sc) ∩ prk(T ) containing prk(X), and observe that
prk(T ) is a weakly special subvariety of prk(S). Thus

dim X1 ≥ dim prk(X) = dim X

> dimUq ∩ Sc + dim T − dim Sc
= dim prk(Uq ∩ Sc) + dim prk(T ) − dim prk(Sc),

showing that X1 is atypical in prk(Uq ∩ Sc) ∩ prk(T ). We also remark that by con-
struction X1 is in fact strongly atypical, and so prk(Sc) must in fact be a basic special
subvariety of prk(S). The collection

(
prk(Sc)

)
c∈Y(1)m is a parametric family of weakly

special subvarieties of prk(S). By definability of dimensions, we may consider the
parametric subfamily of those elements which are properly contained in prk(S) (if
there are any), and so by Corollary 3.19 among the whole family

(
prk(Sc)

)
c∈Y(1)m we

will find only finitely many basic special subvarieties. Specifically we can find a finite
set C ⊂ Y(1)m such that every basic special subvariety found in

(
prk(Sc)

)
c∈Y(1)m can

be realised as Sc for some c ∈ C .
We can apply the induction hypothesis to the family

(
prk(Uq ∩ Sc)

)
q∈Q of con-

structible subsets of prk(Sc). In this way we find a natural number Nk,c and a proper
weakly special subvariety T1 of prk(Sc) such that

(i) �b(T1) ≤ Nk,
(ii) X1 ⊆ T1,
(iii) dim X1 ≤ dim prk(Uq ∩ Sc) ∩ T1 + dimwspcl(X1) − dim T1, and
(iv) dim prk(Uq ∩ Sc) ∩ T1 > dim prk(Uq ∩ Sc) + dim T1 − dim prk(Sc).

Let T0 := pr−1
k (T1) ∩ Sc. Then T0 is a weakly special subvariety of S with the

property that �b(T0) = �b(T1) ≤ Nk, dim T0 = dim T1 and X ⊆ T0. Observe that
since X1 ⊆ prk(T ) and prk(T ) is weakly special, then wspcl(X1) ⊆ prk(T ). Also,
one can readily check that prk(Uq ∩ T0) = prk(Uq ∩ Sc) ∩ T1. So using (iii) we get:

dim X = dim prk(X) ≤ dim X1

≤ dim prk(Uq ∩ Sc) ∩ T1 + dimwspcl(X1) − dim T1
≤ dim prk(Uq ∩ T0) + dim T − dim T0
= dimUq ∩ T0 + dim T − dim T0,

and using (iv) we get

dimUq ∩ T0 = dim prk(Uq ∩ T0)

= dim prk(Uq ∩ Sc) ∩ T1
> dim prk(Uq ∩ Sc) + dim T1 − dim prk(Sc)

≥ dimUq ∩ Sc + dim T0 − dim prk(Sc)

> dimUq + dim T0 − dim S.
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Thus, we can set Nk = max
{
Nk,c | c ∈ C

}
, and in this case T0 satisfies the conditions

of the proposition.
Suppose now that

dim(Uq ∩ Sc) = dimUq + dim Sc − dim S.

As T ⊆ Sc, dim T = dim prk(T ) and dim(Uq ∩ Sc) = dim prk(Uq ∩ Sc). Then

dim prk(X) = dim X > dimUq + dim T − dim S

= dim prk(Uq ∩ Sc) + dim prk(T ) − dim prk(Sc).

This seems to puts us right back in the previous case, and the argument can still be
carried through with a few subtleties, so we will just focus on those. Let X1 be the
irreducible component of prk(Uq ∩ Sc) ∩ prk(T ) containing prk(X), and observe that
X1 is strongly atypical. As before, we get a finite set C ⊂ Y(1)m such that every basic
special subvariety found in

(
prk(Sc)

)
c∈Y(1)m can be realised as Sc for some c ∈ C .

LetSk,c be the finite family of special subvarieties of prk(S) given by Corollary 3.18
applied to

(
prk(Uq ∩ Sc)

)
q∈Q as a family in Sc. Then there is T1 ∈ Sk,c such that

(i) X1 ⊆ T1
(ii) dim X1 ≤ dim prk(Uq ∩ Sc) ∩ T1 + dimwspcl(X1) − dim T1, and
(iii) dim prk(Uq ∩ Sc) ∩ T1 > dim prk(Uq ∩ Sc) + dim T1 − dim prk(Sc).

Let NSk be the maximal basic complexity of elements of Sk,c for all c ∈ C .
Define T0 := pr−1

k (T1) ∩ Sc, which is a proper weakly special subvariety of S
satisfying �b (T0) = �b(T1) ≤ NSk , X ⊆ T0,

dim X = dim prk(X) ≤ dim X1

≤ dim prk(Uq ∩ T0) + dim prk(T ) − dim T0
= dimUq ∩ T0 + dim T − dim T0,

and

dimUq ∩ T0 = dimUq ∩ Sc ∩ T0
= dim prk(Uq ∩ Sc) ∩ T1
> dim prk(Uq ∩ Sc) + dim T1 − dim prk(Sc)

= dimUq ∩ Sc + dim T0 − dim prk(Sc)

≥ dimUq + dim T0 − dim S.

Since there are finitely many tuples k to consider, by taking the maximum of the
NSk , the Nk and NS , we get the desired N . This completes the proof.

Now one can prove Proposition 3.16 using the samemethod of proof as in Corollary
3.15. We leave the details to the reader.
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4 Strong existential closedness

Let V ⊆ C
m be an irreducible constructible set and K ⊂ C a subfield over which V

is defined. We say that a point v ∈ V is generic in V over K if

tr.deg.K K (v) = dim V .

Lemma 4.1 Let V ⊆ C
m be an irreducible subvariety, and let K ⊂ C be a subfield

over which V is defined. Suppose that no coordinate is constant on V . If v ∈ V is
generic in V over K , then every coordinate of v is transcendental over K .

Proof Say that V defined in the ring of polynomials C[X1, . . . , Xm]. Since no coor-
dinate is constant on V , then for every c ∈ C and for every i ∈ {1, . . . ,m} we have
that V ∩ {Xi = c} is a proper subvariety of V . So, given v ∈ V , if c ∈ K and vi = c,
for some i ∈ {1, . . . ,m}, then we have that

tr.deg.K K (v) ≤ dim V ∩ {Xi = c} < dim V ,

which prevents v from being generic in V over K .

Definition We say that a variety V ⊆ C
n × Y(1)n satisfies the strong existential

closedness property (SEC for short) if for every finitely generated field K ⊂ C over
which V can be defined, there exists (z, j(z)) ∈ V such that (z, j(z)) is generic in V
over K .

Conjecture 4.2 For every positive integer n, every algebraic variety V contained in
C
n ×Y(1)n which is broad and free, if V ∩ (Hn × Y(1)n) is Zariski dense in V , then

V satisfies (SEC).

The condition in Theorem 3.3 that πC(V ) be Zariski dense in Y(1)n implies broad-
ness but not freeness, and yet, (EC) still holds on V . That is, even if V is contained in
a subvariety of the form C

n × T , with T a special subvariety of Y(1)n , V will satisfy
(EC) as long as πC(V ) is Zariski dense in C

n . However, if V is not free then it may
not have points in V ∩ En

j which are generic, as shown in the next example.

Example 4.3 Let D denote the diagonal of Y(1)2, and let V = C
2 × D (so V is

defined over Q). By Theorem 3.3 V ∩ E2
j is Zariski dense in V . However, every point

(z1, z2, j(z1), j(z2)) ∈ V satisfies that j(z1) = j(z2), and so for this point there
exists γ ∈ SL2(Z) such that γ z1 = z2. Therefore

tr.deg.QQ(z1, z2, j(z1), j(z2)) ≤ 2 < 3 = dim V .

The next proposition shows that in Conjecture 4.2 we may assume dim V = n.

Proposition 4.4 (cf [2, Lemma 4.30]) Fix a positive integer n. Assume that every
subvariety of C

n × Y(1)n which is free, broad and has dimension n satisfies (SEC).
Then every subvariety V ⊆ C

n × Y(1)n which is free and broad satisfies (SEC).

123



S. Eterović

Proof Let V ⊆ C
n × Y(1)n be an subvariety which is free and broad. Let k :=

dim V −n. We proceed by induction on k. The case k = 0 is given by the assumption,
so we assume that k > 0.

Let K be a finitely generated field over which V is definable. Choose (a,b) ∈ V
to be generic over K . Let p1, . . . , pn, q1, . . . , qn−1 ∈ C be algebraically independent
over K (a,b) and choose qn ∈ C such that

n∑

i=1

piai +
n∑

i=1

qibi = 1. (4.1)

Set K1 := K (p,q) (so K1 is also finitely generated) and let V1 be the K1-Zariski
closure of (a,b). Clearly V1 is and dim V1 < dim V . We now check the remaining
conditions to apply the induction hypothesis on V1.

(a) We first show that dim V1 = dim V − 1. Observe that

tr.deg.K K (a,b) + tr.deg.K (a,b)K (a,b,p,q) = tr.deg.K K (a,b,p,q)

= tr.deg.K K1 + tr.deg.K1
K1(a,b),

and since by construction

tr.deg.K K (a,b) = dim V

tr.deg.K (a,b)K (a,b,p,q) = 2n − 1

tr.deg.K K1 ≥ 2n − 1

we conclude that dim V1 = tr.deg.K1
K1(a,b) = dim V − 1.

(b) We now show that V1 is free. Since V is free, we know that (a,b) is not contained
in any variety of the form M ×T , where M is a Möbius subvariety of C

n defined
over Q and T is a proper special subvariety of Y(1)n . If V1 had a constant
coordinate, then that would imply that some coordinate of (a,b) is in K1, but
since (a,b) already satisfies (4.1) and is generic in V1 over K1, then we would
have that dim V1 < dim V − 1. Therefore V1 is free.

(c) Next we show that V1 is broad. Let i = (i1, . . . , i�) be such that 1 ≤ i1 < · · · <

i� ≤ n and � < n. Consider the projection Pri(V1). We have that

dim Pri(V1) = tr.deg.K1
K1(pri(a), pri(b)).

Proceeding as we did in (a), we have that

tr.deg.K K (pri(a), pri(b)) + tr.deg.K (pri(a),pri(b))K (pri(a), pri(b),p,q)

= tr.deg.K K1 + tr.deg.K1
K1(pri(a), pri(b)),
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and

tr.deg.K K (pri(a), pri(b)) = dim Pri(V )

tr.deg.K (pri(a),pri(b))K (pri(a), pri(b),p,q) ≥ 2n − 1

tr.deg.K K1 = 2n.

By [2, Lemma 4.31] we have that one of the two following cases must hold:

(i) a1, . . . , an, b1, . . . , bn ∈ K (pri(a), pri(b)). Then dim Pri(V ) = dim V , so

dim Pri(V1) ≥ n − 1 ≥ �.

(ii) tr.deg.K1
K1(pri(a), pri(b)) = tr.deg.K K (pri(a), pri(b)). Since V is broad,

dim Pri(V1) = dim Pri(V ) ≥ �.

We can now apply the induction hypothesis and deduce that there is (z, j(z)) ∈
V1 ∩ En

j such that (z, j(z)) is generic in V1 over K1. In particular (z, j(z)) satisfies
(4.1), but since the coefficients of this equation are transcendental over K , then

dim V ≥ tr.deg.K K (z, j(z)) > tr.deg.K1
K1(z, j(z)) = dim V1,

so (z, j(z)) is generic in V over K .

4.1 j-derivations

As mentioned in §1.1, an obstacle towards proving Theorem 1.1 is that MSCD only
gives a lower bound for the transcendence degree over Q. Since we are looking for
generic points over an arbitrary finitely generated field K , we would like to have an
inequality for the transcendence degree over K . This is done in §4.2. Before that, we
need to give a quick review of j-derivations (see [5, §3.1] and [13, §5] for details).

A function ∂ : C → C is called a j -derivation if it satisfies the following axioms:

(1) For all a, b ∈ C, ∂(a + b) = ∂(a) + ∂(b).
(2) For all a, b ∈ C, ∂(ab) = a∂(b) + b∂(a).
(3) For all z ∈ H and all n ∈ N, ∂

(
j (n)(z)

) = j (n+1)(z)∂(z), where j (n) denotes the
n-th derivative of j .

C has non-trivial j-derivations (in fact, it has continuummanyC-linearly independent
j-derivations).

Definition Let A ⊆ C be any set.We define the set jcl(A) by the property: x ∈ jcl(A)

if and only if ∂(x) = 0 for every j-derivation ∂ with A ⊆ ker ∂ . If A = jcl(A), then
we say that A is jcl-closed.

Every jcl-closed subset of C is an algebraically closed subfield. Furthermore, jcl
has a correspondingwell-definednotion of dimension,5 whichwedenote dim j , defined

5 In technical terms, jcl is a pregeometry.
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in the following way. For any subsets A, B ⊆ C, dim j (A|B) ≥ n if and only if there
exist a1, . . . , an ∈ jcl(A) and j-derivations ∂1, . . . , ∂n such that B ⊆ ker ∂i for
i = 1, . . . , n and

∂i (ak) =
{
1 if i = k
0 otherwise

for every i, k = 1, . . . , n.
We defineC j := jcl(∅); this is a countable algebraically closed subfield ofCwhich

is jcl-closed.

Remark 4.5 By definition, C j is contained in the kernel of every j-derivation, so for
every finite set A ⊆ C we have that dim j (A) = dim j (A|C j ).

Lemma 4.6 Let C ⊆ C be jcl-closed. For every z ∈ H, the following statements hold:

(a) z ∈ C implies j(z), j ′(z), j ′′(z) ∈ C.6

(b) j(z) ∈ C implies z ∈ C.

Proof Follows from [13, Proposition 5.8] and the fact that j ′(z) = 0 implies that z is
algebraic

The Ax–Schanuel theorem for j [29, Theorem 1.3] has the following consequence:

Proposition 4.7 ([13, Proposition 6.2]) Let C be a jcl-closed subfield of C, then for
every z1, . . . , zn ∈ H we have that

tr.deg.CC
(
z, j(z), j ′(z), j ′′(z)

) ≥ 3 dimG (z|C) + dim j (z|C) .

4.2 Convenient tuples

In this section we use the results of [5] to show that MSCD implies the existence of
“convenient generators” for any finitely generated field. We will use J to denote the
triple of function ( j, j ′, j ′′), so that if z1, . . . , zn are elements of H, then:

J (z) := ( j(z1), . . . , j(zn), j
′(z1), . . . , j ′(zn), j ′′(z1), . . . , j ′′(zn)).

Definition Wewill say that a tuple t = (t1, . . . , tm) of elements ofH\� is convenient
for j if

tr.deg.QQ(t, J (t)) = 3 dimG(t) + dim j (t).

We remark that since the coordinates of t are not in �, then dimG(t) = dimG(t|�).

The convenience of such a tuple of elements is manifested in the following two
lemmas, which show that we can obtainMSCD-type inequalities over fields generated
by a convenient tuple.

6 Due to the differential equation of j (2.2), it is enough to only consider the derivatives up to j ′′.
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Lemma 4.8 Assume MSCD holds. Suppose that t1, . . . , tm ∈ H \ � is a convenient
tuple for j and set F = Q (t, J (t)). Then for any z1, . . . , zn ∈ H we have

tr.deg.F F (z, J (z)) ≥ 3 dimG (z|�, t) + dim j (z|t) , and (4.2)

tr.deg.F F (z, j(z)) ≥ dimG (z|�, t) + dim j (z|t) . (4.3)

Proof Using the addition formula, we first get that:

tr.deg.QQ (z, t, J (z), J (t)) = tr.deg.QF + tr.deg.F F(z, J (z)). (4.4)

Similarly we get

dimG(z, t|�) = dimG(t|�) + dimG(z|t, �) (4.5)

and also
dim j (z, t) = dim j (t) + dim j (z|t). (4.6)

Combining MSCD with (4.4), (4.5) and (4.6), we obtain (4.2). Inequality (4.3) now
follows directly from (4.2).

Remark 4.9 Suppose that t1, . . . , tm ∈ H \ � are such that j(t1), . . . , j(tm) ∈ Q.
Then under MSCwe get tr.deg.QQ(t, j(t)) = tr.deg.QQ(t) = dimG(t|�). So for any
z1, . . . , zn ∈ H we can repeat the arguments in the proof of Lemma 4.8 to get:

tr.deg.Q(t)Q(z, t, j(z), j(t)) ≥ dimG(z|�, t).

Lemma 4.10 Assume MSCD holds. Let t1, . . . , tm ∈ H \ � be a convenient tuple for
j . Then for any z1, . . . , zn ∈ H we have

tr.deg.QQ(z, t, J (z), J (t)) ≥ 3 dimG(z, t|�) + dim j (t), and

tr.deg.QQ(z, t, j(z), j(t)) ≥ dimG(z, t|�) + dim j (t).

Proof Set F = Q (t, J (t)). We proceed by contradiction, if z1, . . . , zn ∈ H are such

tr.deg.QQ(z, t, j(z), j(t)) < dimG(z, t|�) + dim j (t),

then we also get that

tr.deg.QQ(z, t, J (z), J (t)) < 3 dimG(z, t|�) + dim j (t).

Then using that t is convenient for j , Lemma 4.8, (4.4) and (4.5), we get:

3 dimG(z|�, t) + tr.deg.QF = 3 dimG(z, t|�) + dim j (t)

> tr.deg.QQ(z, t, J (z), J (t))
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= tr.deg.QF + tr.deg.F F(z, J (z))

≥ tr.deg.QF + 3 dim(z|�, t) + dim j (z|t).

As dim j (z|t) ≥ 0, this gives a contradiction.

In the rest of the subsection we address the question of existence of convenient
tuples, and furthermore finding a convenient tuple which contains the generators of a
specific finitely generated field. We start by recalling the following result.

Theorem 4.11 ([5, Theorem 5.1]) Let F be a subfield of C such that tr.deg.C j
F is

finite. Then there exist t1, . . . , tm ∈ H \ C j such that:

(A1): F ⊆ C j (t, J (t)), and
(A2): tr.deg.C j

C j (t, J (t)) = 3 dimG
(
t|C j

) + dim j (t).

Assuming MSCD, we now refine this result to show that convenient tuples exist.

Lemma 4.12 Let K ⊂ C be a finitely generated subfield. Then MSCD implies that
there exist t1, . . . , tm ∈ H \ � such that:

(c1): K ⊆ Q (t, J (t)),
(c2): t is convenient for j .

Furthermore, we can assume that dimG(t|�) = m.

Proof By Theorem 4.11 there exist t1 := (t1, . . . , tk) ∈ (H\C j )
k such that

(a) K ⊆ C j (t1, J (t1)),
(b) tr.deg.C j

C j (t1, J (t1)) = 3 dimG
(
t1|C j

) + dim j (t1).

As tr.deg.C j
C j (t1, J (t1)) is finite, then there is a finitely generated field F ⊆ C such

that tr.deg.C j
C j (t1, J (t1)) = tr.deg.F F (t1, J (t1)). As K is finitely generated, if L

denotes the compositum of F and K ∩C j , then L has finite transcendence degree over
Q, so by [5, Theorem 6.18], MSCD implies that there exist t2 = (tk+1, . . . , tm) ∈
(H ∩ C j )

m−k such that

(i) L ⊆ Q (t2, J (t2)),
(ii) tr.deg.QQ (t2, J (t2)) = 3 dimG (t2| �).

The paragraph immediately following [5, Theorem 6.18] shows that the coordinates
of t2 may be chosen outside of �. Let t = (t1, t2). By construction, the elements of
t1 share no G-orbits with element of t2. Condition (c1) is satisfied by (a) and (i). As
F is contained in L , then condition (c2) is satisfied by (ii) and (b).

The “furthermore” part follows from Schneider’s theorem and the equivalence
between (M1) and (M2) in §2.3.

4.3 Proof of Theorem 1.1

We first set up some notation that will be kept through the rest of this subsection.
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Let V ⊂ C
n ×Y(1)n be a broad and free variety. Let K ⊂ C be a finitely generated

subfield such that V is defined over K and let t1, . . . , tm ∈ H \ � be given by Lemma
4.12 (which assumes MSCD) applied to K (m may be zero, which happens when
K ⊆ Q). We assume that dimG(t|�) = m. Set F := Q(t, j(t)).

Choose (x, y) ∈ V generic over F . By Lemma 4.1 and the freeness of V we know
that no coordinate of (x, y) is in F . Let W ⊆ C

n+m × Y(1)n+m be the Q-Zariski
closure of the point (x, t, y, j(t)).

Lemma 4.13 dimW = dim V + m + dim j (t).

Proof.

dimW = tr.deg.QQ(x, t, y, j(t))

= tr.deg.QQ(t, j(t)) + tr.deg.Q(t, j(t))Q(x, t, y, j(t))

= dimG(t|�) + dim j (t) + dim V .

We are now ready to prove the first main result.

Proof of Theorem 1.1 By Proposition 4.4, we can reduce to the case dim V = n. The
case n = 1 was proven in [14, Theorem 1.2], so now we assume that n > 1.

Consider the parametric family (Wq)q∈Q of subvarieties of W defined in Example
3.12. Let S be the finite collection of proper special subvarieties of Y(1)n given by
Corollary 3.15 applied to the parametric family

(
πY(Wq)

)
q∈Q . Let N be the integer

given by applying Proposition 3.16 to the family (Wq)q∈Q . Without loss of generality
we may assume that �b(T ) ≤ N for all T ∈ S .

Let W1 ⊆ W be a Zariski open subset such that for all (a,b) ∈ W1 we have that
b /∈ T0 for all T0 ∈ S .

Observe that we can choose (z, j(z)) ∈ V such that ( j(z), j(t)) /∈ T0 for all
T0 ∈ S . This is because every equation defining T0 either gives a modular depen-
dence between two coordinates of j(z), or it gives a modular dependence between
a coordinate of j(z) and a coordinate of j(t). As V is free, satisfies (EC), and S is
finite, we can find the desired point. This way we get that (z, t, j(z), j(t)) ∈ W1.

We will show that dimG(z, t|�) = n + m. For this we proceed by contradiction,
so suppose that dimG(z, t|�) < n + m. Let T be the special closure of the point
( j(z), j(t)). Observe that dim T = dimG(z, t|�).

Since dimG(z, t|�) < n + m and dimG(t|�) = m, then that at least one of the
following happen:

(a) There is i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, and g ∈ G such that gzi = tk .
(b) There are i, k ∈ {1, . . . , n} (possibly equal) and g ∈ G such that gzi = zk .

Let M ⊂ C
n+m be a proper subvariety defined by Möbius relations defined over Q

and/or setting some coordinates to be a constant in �, satisfying (z, t) ∈ M . In other
words, M is a Möbius variety witnessing the relations found in (a) and (b). Thus
W ∩ (M × Y(1)n+m) is an element of the family (Wq)q∈Q , call it WM . We remark
that WM is defined over Q.
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We now claim that dimWM < dimW . Indeed, if the dimensions were equal, then
WM = W and so V ⊂ Pri(WM ). An equation defining M coming from either (a) or
(b) would then immediately contradicts freeness of V .

Now let X be the irreducible component of WM ∩ (Cn+m × T ) containing
(z, t, j(z), j(t)). Observe that X is defined over Q. Then by Lemma 4.10 (which
assumes MSCD) we get

dim X ≥ tr.deg.QQ(z, t, j(z), j(t)) ≥ dimG(z, t|�) + dim j (t).

On the other hand, using that dimWM < dimW and Lemma 4.13 we get:

dimWM + dimC
n+m × T − dimC

n+m × Y(1)n+m < dimW + dim T − n

= dim T + dim j (t)

≤ dimG(z, t|�) + dim j (t)

≤ dim X .

This shows that X is an atypical component ofWM∩(Cn+m×T ). But then byCorollary
3.15 there must be T0 ∈ S such that X ⊆ C

n+m × T0, which is a contradiction since
( j(z), j(t)) /∈ T0.

We have thus shown that dimG(z, t|�) = n + m, which proves the theorem by
Lemma 4.8.

Remark 4.14 In the proof of Theorem 1.1, if we somehow knew beforehand that the
coordinates of j(z) are all transcendental over Q, then we would not need to invoke
MZP, because as X is defined over Q, then any coordinate that is constant on X must
equal an element ofQ. So if we know that the coordinates of j(z) are all transcendental
over Q, then we would know that X does not have constant coordinates, hence X is
strongly atypical and we can apply Theorem 3.20.

4.4 Blurring

We will now give an analogue of Theorem 1.1 for the the so-called blurring of j by
G (see [6] for more details).

Theorem 4.15 Let V ⊆ C
2n be a broad and free irreducible variety with. Then MSCD

andMZP imply that for every finitely generated field K ⊂ C, there are g1, . . . , gn ∈ G
such that V has a point of the form

(z1, . . . , zn, j(g1z1), . . . , j(gnzn)),

with (z1, . . . , zn) ∈ H
n, which is generic over K ,7

To prove Theorem 4.15, proceed in exactly the sameway as in the proof of Theorem
1.1 (recall that Theorem 3.7 already ensures the existence of a Zariski dense set of

7 In fact, using [6, Theorem 3.1] g1, . . . , gn may be chosen to be upper-triangular.
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solutions). The key (trivial) observation is that for all z, w ∈ H and all g, h ∈ G
we have that j(z) and j(w) are modularly dependent if and only if j(gz) and j(hw)

are modularly dependent. This manifests in the different ingredients of the proof as
follows.

(a) MSCD implies that for every g1, . . . , gn ∈ G and every z1, . . . , zn ∈ H
n we have

tr.deg.QQ(z1, . . . , zn, j(g1z1), . . . , j(gnzn)) ≥ dimG(z1, . . . , zn|�).

(b) One can restate the inequalities of §4.2 in a straightforward way. This is because
for any field F , for all z1, . . . , zn ∈ H and all g1, . . . , gn ∈ G we have that

tr.deg.F F(z1, . . . , zn, j(z1), . . . , j(zn))

= tr.deg.F F(z1, . . . , zn, j(g1z1), . . . , j(gnzn)).

So, for example, we can restate Lemma 4.10 as: let t1, . . . , tm ∈ H \ � be a
convenient tuple for j , then for all z1, . . . , zn ∈ H and all g1, . . . , gn ∈ G we have
that:

tr.deg.QQ(z, t, j(g1z1), . . . , j(gnzn), j(t)) ≥ dimG(z, t|�) + dim j (t).

(c) Corollary 3.15 still applies as stated.

4.5 Special solutions

In this subsection we show that for a variety V as in Theorem 1.1, the set

V� := {(α, j(β)) ∈ V : j(α), j(β) are special points}

cannot be Zariski dense in V . We show this in Proposition 4.16. The proof relies on the
results of [25] (Pila’s proof of the André–Oort conjecture for powers of the modular
curve).

Let X denote a subvariety of Y(1)n defined over a finitely generated field F . Let
KX denote the set of all subfields of F over which X is definable. Define

δF (X) := min {[K : F] | K ∈ KX } .

Definition Given a special point τ ∈ �, there is a unique quadratic polynomial ax2 +
bx + c, with a, b, c ∈ Z, gcd(a, b, c) = 1 and a > 0, such that aτ 2 + bτ + c = 0.
Let Dτ = b2 − 4ac. If τ = (τ1, . . . , τn) ∈ �n , we define

disc(τ ) := max
{
Dτ1, . . . , Dτn

}
.

For every γ ∈ SL2(Z) we have that disc(γ τ) = disc(τ ), so it makes sense to define:

disc( j(τ )) := disc(τ ).
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Definition A basic special subvariety T ⊂ Y(1)n is defined by certain modular poly-
nomials in the ring C[Y1, . . . ,Yn]. Suppose that 1 ≤ i1 < · · · < i� ≤ n denote some
indices such that, for every s ∈ {1, . . . , s}, the variable Yis does not appear in any
the polynomials defining T . In particular this implies that pri(T ) = Y(1)�. Following
[25], given y ∈ Y(1)� we call T ∩ pr−1(y) the translate of T by y, and denote it as
tr(T , y).

We remark that tr(T , y) is a weakly special subvariety, and if every coordinate of
y is a special point, then tr(T , y) is a special subvariety.

Proposition 4.16 Let V ⊆ C
n × Y(1)n be an irreducible variety which is modularly

free and defined over Q. Suppose that the dimension of the generic fibre of πC �V is
less than n. Then V� is not Zariski dense in V .

Proof Given a ∈ C
n , let

Va := {
b ∈ Y(1)n : (a,b) ∈ V

}
.

In this way we obtain a parametric family (Va)a∈πC(V ) of subvarieties of Y(1)n .
Let F ⊂ Q be a finitely generated field such that V is definable over F . For every

(a,b) ∈ V , Va is definable over the field F(a). If (a,b) ∈ V� , then since every
coordinate of a defines a degree 2 extension of Q, we get that δQ(Va) ≤ 2n[F : Q].

By [25, Theorem 13.2] (uniform André-Oort) there is a finite collectionS of basic
special subvarieties of Y(1)n such that for every T ∈ S there is a constant C > 0
(depending only on n, V and T ) such that, if i = (i1, . . . , i�) denotes indices as in the
definition above, then for every a ∈ C

n and for every τ ∈ H
�, if δQ(Va) ≤ 2n[F : Q]

and tr(T , j(τ )) is a maximal special subvariety of Va, then

disc(τ ) ≤ C and δQ(tr(T , j(τ ))) ≤ C .

We remark that by [25, Proposition 13.1], all the maximal special subvarieties of Va
are of the form tr(T , j(τ )).

As explained in [25, §5.6], there are finitely many values of j(τ ) subject to
disc(τ ) ≤ C . Therefore, there is a finite collection S 	 of special subvarieties of
Y(1)n such that for every (a,b) ∈ V� , the maximal special subvarieties of Va are
elements of S 	.

By hypothesis and the fibre-dimension theorem there is a Zariski open subset V ′ ⊂
V such that for all (a,b) ∈ V ′ we have

dim V ∩ π−1
C

(a) = dim V − dim πC(V ) < dim V = n.

This means that (Va)a∈πC(V ′) is a family of proper subvarieties of Y(1)n . Therefore
the elements of S 	 corresponding to the family (Va)a∈πC(V ′) are proper special sub-
varieties of Y(1)n . As V is free, the intersection

V ∩
⋃

T∈S 	

C × T
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is contained in a proper subvariety of V .

Remark 4.17 If V ⊆ C
n × Y(1)n is not definable over Q, then it is immediate by

Galois-theoretic reasons that V
(
Q

)
cannot be Zariski dense in V . Since the elements

of V� are all elements of V
(
Q

)
, then V� is also not Zariski dense in V in this case.

Example 4.18 The condition on the dimension of the fibres in Proposition 4.16 is
necessary. For example, consider the variety V ⊆ C

2 ×Y(1)2 of dimension 3 defined
by the single equation X1 = X2

2. It is clear that V is modularly free, dim πC(V ) =
1 > 0, and V is defined over Q.

Let τ be any element of � with positive real part (of which there are infinitely
many), and observe that then τ 2 ∈ H. Since τ 2 /∈ R and Q(τ 2) ⊆ Q(τ ), then
1 < [Q(τ 2) : Q] ≤ [Q(τ ) : Q] = 2, thus showing that τ 2 ∈ �. Therefore, given any
two singular moduli b1, b2 ∈ Y(1), we have that (τ 2, τ, b1, b2) ∈ V� . Since special
points are Zariski dense in Y(1)2 and X1 = X2

2 defines a curve in C
2, the Zariski

closure of V� is equal to V .

Lemma 4.19 Let V ⊆ Y(1)n × Q be a parametric family of irreducible subvarieties
of Y(1)n, and let d be a positive integer. Let t ∈ (H \ �)n be a convenient tuple for j ,
and suppose that V is definable over F = Q(t, J (t)). Then there is a finite collection
of j(t)-special subvarieties S such that for every q ∈ Q with [F(q) : F] ≤ d, if Vq
is a j(t)-special subvariety, then Vq ∈ S .

Proof Using definability of dimensions as we did in the proof of Corollary 3.15, we
may first restrict to the subfamily Q′ ⊆ Q such that for all q ∈ Q′ we have that Vq
is a proper subvariety of Y(1)n . So we will assume now that V ⊆ Y(1)n × Q is a
parametric family of proper irreducible subvarieties of Y(1)n .

Let T be a basic special subvariety of Y(1)n , and suppose that some translate
tr(T , y) is equal to Vq, for some q ∈ Q. Then since tr(T , y) is definable over Q(y),
then so is Vq. On the other hand, Vq is definable over F(q), and so by [14, Lemma 7.1]
there is a positive integer d ′ depending only on d and F such that if [F(q) : F] ≤ d
and q is algebraic over Q( j(t)), then [Q( j(t),q) : Q( j(t))] ≤ d ′. So if tr(T , y) = Vq
and [F(q) : F] ≤ d, then [Q( j(t), y) : Q( j(t))] ≤ d ′.

By Remark 2.1 and [25, Theorem 13.2] we have that the set

B = {
c ∈ He( j(t)) ∪ j(�) : [Q( j(t), c) : Q( j(t))] ≤ d ′}

is finite. Indeed, by [14, Lemma 7.1] we can find a positive integer d ′′ depending only
on d ′ and j(t) such that if c ∈ B ∩ j(�), then [Q(c) : Q] ≤ d ′′, and so [25, Theorem
13.2] applies. Otherwise c ∈ Hed ′′( j(t)), and so Remark 2.1 applies directly.

This shows that, for a given basic special variety T , there are only finitely many
tuples y which satisfy the following three conditions

(i) tr(T , y) is a j(t)-special subvariety,
(ii) tr(T , y) = Vq for some q ∈ Q, and
(iii) [F(q) : F] ≤ d.
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We also have that when tr(T , y) = Vq,

dim Vq ∩ tr(T , y) > dim Vq + tr(T , y) − n,

so the intersection is atypical. By [1, Thoerem 4.2] there is a finite collection S of
basic special subvarieties such that for every q ∈ Q, every maximal j(t)-atypical
component of Vq is a translate of some T ∈ S . This finishes the proof.

A straightforward adaptation of the proof of Proposition 4.16 gives now the fol-
lowing.

Proposition 4.20 Suppose that t1, . . . , tm ∈ H \ � define a convenient tuple for j ,
and set F := Q(t, J (t)). Let V ⊆ C

n × Y(1)n be an irreducible variety which is
modularly free and defined over F. Suppose that the dimension of the generic fibre of
πC �V is less than n. Then the set

V�,F := {(α, j(β)) : dimG(α|� ∪ t) = dimG(β|� ∪ t) = 0}

is not Zariski dense in V .

4.6 Results which do not require MZP

In this subsection we review some cases of Theorem 1.1 which do not depend onMZP.
We recall that the case n = 1 (i.e. plane curves) was proven in [14, Theorem 1.2], and
does not rely on MZP. We will show that the same is true for n = 2. First we need the
following lemma.

Lemma 4.21 Let V ⊆ C × Y(1) be a free irreducible curve. Let t1, . . . , tm ∈ H be a
convenient tuple for j and set F = Q(t, J (t)). If V is definable over F, then MSCD
implies that the set

A(V ) := {
(z, j(z)) ∈ V : j(z) ∈ F

}

is not Zariski dense in V .

Proof By freeness and irreducibility of V we have that dim πY(V ) = 1, and so the
standard fibres of the restriction πY �V have dimension 0, so there is a non-empty
Zariski open subset U ⊂ V such that if (z, j(z)) ∈ U ∩ A(V ), then z ∈ F .

Similarly we have that dim πC(V ) = 1. Let d ∈ N be the degree of the restriction
πC �V . Suppose (z, j(z)) ∈ U ∩ A(V ), then as z ∈ F , Lemma 4.8 implies that z is in
the same G-orbit of some element of � ∪ t. Using Proposition 4.16 we can shrink U
if necessary, and so without loss of generality we may assume that z /∈ �, therefore
it must be that z is in the G-orbit of some element of t. This implies that z ∈ F , and
so we get that [F( j(z)) : F] ≤ d. Since j(z) is modularly dependent over j(t), this
means that there are only finitely many possible values for j(z) by Remark 2.1. This
finishes the proof.
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Theorem 4.22 Let V ⊆ C
2 × Y(1)2 be a broad and free variety. If V satisfies (EC),

then MSCD implies that V satisfies (SEC).

Proof By Proposition 4.4 we may assume that dim V = 2. Let t1, . . . , tm ∈ H \ � be
a convenient tuple for j , set F = Q(t, J (t)), and assume that V is definable over F .

By the fibre-dimension theorem, Proposition 4.20 and Lemma 4.21 we can first find
a non-empty Zariski open subset U ⊂ V satisfying the following three conditions:

(a) If i = (1) or (2), then for all (a, b) ∈ Pri(U )we have that dim Pr−1
i ((a, b))∩V =

dim V − dim Pri(V ).
(b) If (z1, z2, j(z1), j(z2)) ∈ U ∩E2

j , then there is i ∈ {1, 2} such that zi /∈ � ∪Gt.

(c) If i = (1) or (2) and dim Pri(V ) = 1, then for all (z1, z2, j(z1), j(z2)) ∈ U ∩E2
j

we have that pri( j(z1), j(z2)) /∈ F .

Claim 4.23 The set

A(V ) :=
{
(z1, z2, j(z1), j(z2)) ∈ V ∩ E2

j : j(z1) ∈ F or j(z2) ∈ F
}

is not Zariski dense in V .

Proof Proceed by contradiction, so suppose that A(V ) is Zariski dense in V . Then for
some i ∈ {1, 2} we have that the subset

Ai (V ) := {(z1, z2, j(z1), j(z2)) ∈ A(V ) : j(zi ) ∈ F}

is also Zariski dense in V . Without loss of generality, we assume that A2(V ) is Zariski
dense inV . Thenwe can choose (z1, z2, j(z1), j(z2)) ∈ U∩A2(V ). Also, since A2(V )

is Zariski dense in V , then Pi(2)(A2(V )) is Zariski dense in Pr(2)(V ). By broadness of
V we know that dim Pr(2)(V ) ≥ 1, and using condition (c) in the definition of U we
conclude that dim Pr(2)(V ) = 2. Thus generic fibres of the restriction Pr(2) �V have
dimension 0.

By condition (b) in the definition of U , we have that either z1 /∈ � ∪ Gt or
z2 /∈ � ∪ Gt (or both). We now show that both cases imply that z2 is transcendental
over F . If z2 /∈ � ∪ Gt, then by Lemma 4.8 we get that tr.deg.F F(z2, j(z2)) ≥ 1,
and since we are assuming that j(z2) ∈ F , we conclude that z2 /∈ F . On the other
hand, if z1 /∈ � ∪ Gt, then by Lemma 4.8 (which assumes MSCD) we get that
tr.deg.F F(z1, j(z1)) ≥ 1. By condition (a) in the definition of U , we know that the
fibre in V above (z2, j(z2)) has dimension 0, and so tr.deg.F F(z2, j(z2)) �= 0, which
as before gives that z2 /∈ F .

We will now show that we can reduce to the case where both z1 and z2 are transcen-
dental over F . For thiswewill separate into cases depending on the value of dim πC(V )

(which is at least 1, by freeness).Wefirst consider the case dim πC(V ) = 1.By the free-
ness of V there is a Zariski open subset O ⊆ πC(V ) such that for every (x1, x2) ∈ O
we have that if x2 /∈ F , then x1 /∈ F . Therefore, we may shrink U if necessary to
ensure that both z1, z2 /∈ F .
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Now suppose that dim πC(V ) = 2 = dim V (the following paragraph is just an
adapation of an argument present in the proof of [14, Proposition 7.4]). We may then
shrink U so that for all (x1, x2, y1, y2) ∈ U we have that (see e.g. the definition of
triangular varieties in [14, §5])

tr.deg.F F(x1, x2, y1, y2) = tr.deg.F F(x1, x2).

By Lemma 4.8 we get that

tr.deg.F F(z1, z2) = tr.deg.F F(z1, z2, j(z1), j(z2)) ≥ dimG(z1, z2|�, t).

From this we deduce that

tr.deg.F F(z1, z2) = dimG(z1, z2|�, t).

If z1 ∈ F , then this equality implies that z1 ∈ � ∪ Gt. There is a positive integer d1,
which depends only on the equations defining V , such that for all (x1, x2, y1, y2) ∈ U
we have [F(x1, x2, y1) : F(x1, x2)] ≤ d1. Then in particular [F(z1, z2, j(z1)) :
F(z1, z2)] ≤ d1, but since z2 is transcendental over F , we get [F(z1, j(z1)) : F(z1)] ≤
d1. We can now find another positive integer D1 depending only on V and F such that,
if z1 ∈ �, then [Q(z1, j(z1)) : Q(z1)] ≤ D1 (observe that F ∩ Q is a number field).
On the other hand, if z1 ∈ Gt, let us say that z ∈ Gti , then F ∩ Q(ti , j(ti )) is a finite
extension of Q(ti , j(ti )). So, similarly as to the case z1 ∈ �, we get a positive integer
D2 depending only on V and F such that, z1 ∈ Gti for some i ∈ {1, , . . . ,m}, then
[Q(z1, ti , j(z1), j(ti )) : Q(z1, ti , j(ti ))] ≤ D2. In either case, we may use Remark
2.1 and [14, Lemma 2.1] to conclude that there are only finitely many possible values
for j(z1). By shrinking U , we may avoid these values.

So from now on, we assume that z1, z2 /∈ F . Since j(z2) ∈ F and V is free, then
(z1, z2, j(z1), j(z2)) is not generic in V over F . By Lemma 4.8 we have that

2 = dim V > tr.deg.F F(z1, z2, j(z1), j(z2)) ≥ dimG(z1, z2|�, t),

so we must have that z1 ∈ G · z2. Let d ∈ N be the degree of the restriction Pr(2) �V ,
then

[F(z1, z2, j(z1), j(z2)) : F(z2, j(z2))] ≤ d.

Since z1 ∈ G · z2 and z2 is transcendental over F , then by [14, Lemma 7.1]

[F(z1, z2, j(z1), j(z2)) : F(z2, j(z2))] = [F(z2, j(z1), j(z2)) : F( j(z2))]
= [F( j(z1), j(z2)) : F( j(z2))]
≤ d.

By Remark 2.1 we conclude that there are only finitely many modular poly-
nomials �1, . . . , �N such that if (z1, z2, j(z1), j(z2)) ∈ U ∩ A2(V ), then
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∏N
k=1 �k( j(z1), j(z2)) = 0. Since V is free, we may shrink U to avoid these finitely

many modular polynomials, while still preserving Zariski openness. This contradicts
the density of A(V ).

By the Claim and (EC) we can find (z1, z2, j(z1), j(z2)) ∈ U satisfying
j(z1), j(z2) /∈ F are Zariski dense in V . By Remark 4.14, this finishes the
proof.

In higher dimensions, inspired by the results in [11], we get the following theorem.

Theorem 4.24 Let V ⊆ C
n × Y(1)n be variety such that V projects dominantly both

to C
n and Y(1)n. Then MSCD implies that V has (SEC).

Proof The proof below is a small adaptation of the one given in [11]. The domination
conditions on V imply that V is free, broad and satisfies (EC) (by Theorem 3.3). By
(the proof of) Proposition 4.4, it suffices to consider the case where dim V = n.

We keep the notation used earlier, so K , t and F are as in §4.3. Using the fibre
dimension theorem, let V 	 be the Zariski open subset of V such that for all (x, y) ∈ V
we have that

tr.deg.F F(x, y) = tr.deg.F F(y) = tr.deg.F F(x).

Take (z, j(z)) ∈ V0 and assume that

tr.deg.F F(z, j(z)) < n.

Then by MSCD we know that dimG(z|�, t) < n, and so we can choose a Möbius
variety M ⊂ C

n defined over Q(t), and a proper j(t)-special subvariety T of Y(1)n

such that (z, j(z)) ∈ M × T and dim M = dim T = dimG(z|�, t).
As usual, consider the definable family (Vq)q∈Q of Example 3.12 and let VM :=

V ∩ (M ×Y(1)n). Observe that by MSCD and the double domination assumption we
get

tr.deg.F F(z, j(z)) = tr.deg.F F( j(z)) = tr.deg.F F( j(z)) = dimG(z|�, t). (4.7)

As (z, j(z)) ∈ VM , then dim VM ≥ dim M .
By (4.7), T is in fact the F-Zariski closure of j(z). So T is contained in the

irreducible component of Zariski closure of πY(VM ) containing j(z).
Similarly, (4.7) shows that M is the F-Zariski closure of z. So M is contained

in the irreducible component of the Zariski closure of πC(VM ) containing z. But by
definition of VM we also have that πC(VM ) must be contained in M , so M is in fact
the Zariski closure of πC(VM ). Since z is generic in M over F , it is also generic
in πC(VM ), so by the fibre dimension theorem the dimension of VM ∩ π−1

C
(z) must

be equal to dim VM − dim π−1
C

(VM ). By hypothesis dim π−1
C

(z) = 0, so dim VM =
π−1
C

(VM ) = dim M .
This shows that dim πY(VM ) ≤ dim M = dim T , and as we already showed that

T is contained in πY(VM ), then dim πC(VM ) = dim T , and T must be equal to the
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irreducible component of Zariski closure of πY(VM ) containing j(z). As V is free,
then dim VM < dim V = n, so

dim πY(VM ) ∩ T = dim T > dim πY(VM ) + dim T − n.

This shows that T is a j(t)-atypical component of πY(VM ) ∩ T . As V is free and
satisfies (EC), to complete the proof it suffices to show that there are only finitely
many possible options for T .

Consider the parametric family {Ui }i∈I of the Zariski closures of irreducible com-
ponents of the members of

(
πY(Vq)

)
q∈Q . Let d be a positive integer so that for every

q ∈ Q which is defined over Q( j(t)), we have that the irreducible components of
πY(Vq) are defined over a field L satisfying [L : F] ≤ d. Then there is an integer
d ′, which only depends on d and the family {Ui }i∈I with the following property: for
every j(t)-special subvariety S of Y(1)n , if S equals Ui , where Ui is an irreducible
component of some πY(Vq) with q ∈ Q definable over Q( j(t)), then for any value c
of a constant coordinate of S we have that

[Q( j(t), j(�), c) : Q( j(t), j(�))] ≤ d ′.

So by Lemma 4.19 this shows that there are only finitely many possible values that
can appear as constant coordinates in S. Therefore there are only finitely many options
for T .

Remark 4.25 We observe that one can also get a notion of “convenient tuples for exp”
in analogy to our notion of convenient tuples for j (see [5, §5.2]). Using this, one
can then strengthen the main result of [11] by removing the requirement of V being
definable over Q, and instead allowing any finitely generated field of definition like
we have done in Theorem 4.24.

In [14] it was shown that despite the fact that the composition of j with itself is not
defined on all of H, we are still able to find solutions to certain equations involving
the iterates of j . More precisely, given a positive integer n we define inductively

j1 := j and jn+1 := j ◦ jn .

The domains of these iterates are defined as

H1 := H and Hn+1 := {z ∈ Hn : j(z) ∈ H} ,

so that the natural domain of jn is Hn .
If perhaps unnatural at first, the motivation behind the results of [14] concerning

iterates of j was to show that there is some ground to stand on if one wants to consider
a dynamical system using j . While there is a lot of work on the dynamical aspects of
meromorphic functions onC, the same is not true about holomorphic functions whose
natural domain is (under the Riemann mapping theorem) the unit disc.

123



Generic solutions of equations involving...

The following result is a generalisation of [14, Theorem 1.4], and in particular,
it shows that (under MSCD) for every positive integer n there is z ∈ Hn satisfying
z = jn(z) and

tr.deg.QQ(z, j(z), j2(z), . . . , jn−1(z)) = n.

Corollary 4.26 Let Z ⊂ C
n+1 be an irreducible hypersurface defined by an irreducible

polynomial p ∈ C[X ,Y1, . . . ,Yn] satisfying ∂ p
∂X ,

∂ p
∂Yn

�= 0. Then MSCD implies that

for every every finitely generated field K over which Z can be defined, there is z ∈ Hn

such that (z, j(z), j2(z), . . . , jn(z)) is generic in Z over K .

Proof As explained in [14, §8], finding a point of the form (z, j(z), j2(z), . . . , jn(z))
in Z can be done by finding points in V ∩ En

j , where V ⊂ C
n × Y(1)n is defined as

V :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X2 = Y1
X3 = Y2

...

Xn = Yn−1
p(X1, . . . , Xn,Yn) = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Under the conditions ∂ p
∂Yn

�= 0 and ∂ p
∂X �= 0 we have that dim πC(V ) = dim πY(V ) =

n. So by Theorem 4.24 we get that V has a point (z, j(z)) which is generic over K .
Since z2 = j(z1), . . . , zn = j(zn−1), then we also obtain a point in Z of the desired
form which is generic over K .

5 Unconditional results

One would like to find varieties V ⊆ C
n × Y(1)n having generic points in the graph

of the j-function without having to rely on MSCD or MZP. As we mentioned in the
introduction, a few unconditional results have already been obtained: see [5, Theorem
1.1 and §6.2].

Definition A broad algebraic variety V ⊆ C
n ×Y(1)n is said to have no C j -factors if

for every choice of indices 1 ≤ i1 < . . . < ik ≤ n we have that either dim Pri(V ) > k,
or dim Pri(V ) = k and Pri(V ) is not definable over C j .

In particular, if V ⊆ C
n × Y(1)n is an irreducible variety of dimension n with no

C j -factors, then V is not definable over C j .

The condition of having no C j -factors aims at giving a precise notion of what it
would mean for a variety to be sufficiently generic with respect to the j-function. In
particular, if (Vq)q∈Q is an algebraic family of free and broad subvarieties of C

n ×
Y(1)n such that for every choice of indices 1 ≤ i1 < . . . < ik ≤ n we have that the
family of projections (Pri(Vq))q∈Q is either generically of dimension larger than k or
non-constant in q, then this family contains varieties with no C j -factors (because C j

is countable).
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It should be observed that the condition of having no C j -factors is stronger than
simply saying thatV is not definedoverC j . Indeed,we cannot expect to proveTheorem
1.2 unconditionally under thisweaker assumption. For example, suppose that V1, V2 ⊂
C × Y(1) are two different free plane curves, with V1 defined over C j and V2 not
definable over C j . Then the variety V = V1 × V2 ⊂ C

2 × Y(1)2 can be easily
checked to be free, broad, and not definable over C j . If somehow we could prove
Theorem 1.2 for this V , then in particular we would have proven Theorem 1.1 for V1
unconditionally, thus eliminating the need for MSCD.

5.1 Proof of Theorem 1.2

The proof is inspired by [8, Proposition 11.5]. We will set up very similar notation to
the one used in §4.3. Let V ⊂ C

n ×Y(1)n be a broad and free variety. Let K ⊂ C be
a finitely generated subfield such that V is defined over K . Let t1, . . . , tm ∈ H \ C j

be given by Theorem 4.11 applied to K . We assume that dimG(t|C j ) = m.
Choose (x, y) ∈ V generic over C j (t, j(t)) (which is possible since C j (t, j(t)) is

a countable field). By the freeness of V and Lemma 4.1 we know that no coordinate
of (x, y) is in C j (t, j(t)). Let W ⊆ C

n+m × Y(1)n+m be the C j -Zariski closure of
the point (x, t, y, j(t)).

Lemma 5.1 W is broad, free and dimW = dim V + m + dim j (t). Furthermore, if
dim j (t) > 0, then W is strongly broad.

Proof The calculation of the dimension of W is done in the same way as in Lemma
4.13.

As V is free, then the coordinates of x are all in distinctG-orbits and the coordinates
of y aremodularly independent. On the other hand, as (x, y) is generic overC j (t, j(t)),
then the coordinates of x define different G-orbits than the coordinates of t. Similarly,
every coordinates of y is modularly independent from every coordinate of j(t). Since
W is defined over C j , then W cannot have constant coordinates as every coordinate
of (x, t, y, j(t)) is transcendental over C j . By construction of t, the coordinates of t
are all in distinct G-orbits which implies that the coordinates of j(t) are modularly
independent. Therefore W is free.

Choose 1 ≤ i1 < · · · < i� ≤ n < k1 < · · · < ks ≤ n + m and set

(i,k) = (i1, . . . , i�, k1, . . . , ks).

Write

Pr(i,k)(x, t, y, j(t)) = (xi, tk, yi, j(tk)).
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Observe that Pr(i,k)(W ) is defined overC j , and since (x, t, y, j(t)) is (by construction)
generic in W over C j , then by Proposition 4.7 we get

dim Pri(W ) = tr.deg.C j
C j (xi, tk, yi, j(tk))

= tr.deg.C j
C j (tk, j(tk)) + tr.deg.C j (tk, j(tk))C j (xi, tk, yi, j(tk))

≥ dimG(tk|C j ) + dim j (t) + dim Pri(V )

≥ s + �.

Therefore W is broad. From the last inequality we also get that if dim j (t) > 0, then
W is strongly broad.

Proof of Theorem 1.2 By Proposition 4.4 we will assume that dim V = n. We then
know that V is not definable over C j , so V (C j ) is contained in a proper subvariety of
V . In particular, there is a Zariski open subset V0 ⊆ V such that if (z, j(z)) ∈ V0∩En

j ,

then some of the coordinates of j(z) are not in C j . Also, K �⊂ C j , so dim j (t) ≥ 1.
The case n = 1 was proven in [5, Theorem 1.1], so now we assume that n > 1.

Consider the parametric family of subvarieties (Wq)q∈Q of W defined in Example
3.12 and let S be the finite collection of special subvarieties of Y(1)n+m given by
Theorem 3.20 applied to this family. Let N be the integer given by Proposition 3.16
applied to (Wq)q∈Q .

Let W0 ⊆ W be a Zariski open subset defined over C j such that the points (a,b)

of W0 satisfy all of the following conditions:

(a) The point b does not lie in any T ∈ S . As W is free, this condition defines a
Zariski open subset of W .

(b) The coordinate of b do not satisfy any of the modular relations �1, . . . , �N . As
W is free, this condition defines a Zariski open subset of W .

(c) For every 1 ≤ i1 < · · · < i� ≤ n, and letting i = (i1, . . . , i�), we have that

dim
(
W ∩ Pr−1

i ((a,b))
)

= dimW − dim Pri(W ).

By the fibre-dimension theorem and the fact there are only finitely many tuples
i to consider, this defines a Zariski open subset of W .

By the construction of W , there is a Zariski opens subset V1 ⊆ V such that if (x, y) is
any point of V1, then (x, t, y, j(t)) is a point in W0.

Choose (z, j(z)) ∈ V0 ∩ V1, so that (z, t, j(z), j(t)) ∈ W0. We will show
that dimG(z, t|C j ) = n + m. For this we proceed by contradiction, so suppose
that dimG(z, t|C j ) < n + m. Let T be the weakly special subvariety of Y(1)n+m

of minimal dimension defined over C j for which ( j(z), j(t)) ∈ T . Observe that
dim(T ) = dimG(z, t|C j ).

Let M ⊂ C
n+m be a subvariety of minimal dimension defined by Möbius relations

defined over Q and/or setting some coordinates to be a constant in C j satisfying
(z, t) ∈ M . Then W ∩ (M × Y(1)n+m) is an element of the family (Wq)q∈Q , call it
WM . We remark that WM is defined over C j .
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Now let X be the irreducible component of WM ∩ (Cn+m × T ) containing
(z, t, j(z), j(t)). Observe that X is defined over C j . Then by Proposition 4.7 we
get

dim X ≥ tr.deg.C j
C j (z, t, j(z), j(t)) ≥ dimG(z, t|C j ) + dim j (z ∪ t). (5.1)

On the other hand, asW is free, then dimWM < dimW , so using Lemma 5.1 we have

dimWM + dimC
n+m × T − dimC

n+m × Y(1)n+m < dimW + dim T − n − m
= dim j (t) + dim T
= dim j (t) + dimG(z, t|C j )

≤ dim X .

(5.2)
This shows that X is an atypical component ofWM ∩(Cn+m×T ) inC

n+m×Y(1)n+m .
If πY(X) has no constant coordinates, then there exists T0 ∈ S such that X ⊂
WM ∩ (Cn+m × T0). However, this would contradict condition (a) in the definition of
W0.

So πY(X) has some constant coordinates. Then, as X is defined over C j , those
constant coordinates must be given by elements of C j . Since no element of j(t) is in
C j , the constant coordinates of πY(X) must be found among the coordinates of j(z).
Let 1 ≤ i1 < · · · < i� ≤ n denote all the coordinates of j(z) which are in C j . Since
(z, j(z)) ∈ V0, then � < n.

By Proposition 3.16 we know that there is a weakly special subvariety T0 ⊂
Y(1)n+m such that �b(T0) ≤ N , X ⊆ C

n+m × T0, and

dim X ≤ dimWM ∩ (Cn+m × T0) + dim T ∩ T0 − dim T0. (5.3)

By condition (b) in the definition of W0 we know that �(T0) = 0, which means that
T0 is completely defined by setting certain coordinates to be constant. As the constant
coordinates of πY (X) are in C j , then T0 is defined over C j , and dim T0 ≥ n +m − �.
But T is, by definition, the smallest weakly special subvariety of Y(1)n+m which is
defined over C j and contains the point ( j(z), j(t)). So T ∩ T0 = T . Combining (5.1)
and (5.3) we get

dim j (t) + dim T0 ≤ dimWM ∩ (Cn+m × T0). (5.4)

Set  := W ∩ Pr−1
i (Pri(z, t, j(z, t))). By the fibre dimension theorem, condition

(c) of the definition ofW0 and the fact thatW is strongly broad (Lemma 5.1) we know
that

dim ≤ dimW − dim Pri(W ) < n + m + dim j (t) − �. (5.5)

Observe thatWM ∩ (Cn+m ×T0) = W ∩ (M ×T0) ⊆ , so combining (5.4) and (5.5)
gives

dim T0 < n + m − �

which is a contradiction.
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We deduce from this that dimG(z, t|C j ) = n +m. By [5, Lemma 5.2] this implies
that (z, j(z)) is generic in V over C j (t, j(t)).

With this we can get the following “generic” version of Corollary 4.26.

Corollary 5.2 Let Z ⊂ C
n+1 be an irreducible hypersurface defined by an irreducible

polynomial p ∈ C[X ,Y1, . . . ,Yn] satisfying ∂ p
∂X ,

∂ p
∂Yn

�= 0. Suppose that Z is not
definable over C j . Then for every every finitely generated field K over which Z can
be defined, there is z ∈ Hn such that (z, j(z), j2(z), . . . , jn(z)) is generic in Z over
K .

Proof Proceed just like in the proof of Corollary 4.26. Aswe are assuming that Z is not
definable over C j , this will imply that the corresponding variety V has no C j -factors,
and so Theorem 1.2 applies.

5.2 Proof of Theorem 1.3

The proof of Theorem 1.3 is done by a straightforward repetition of the proof of
Theorem 1.2, and taking into consideration the comments in §4.4, which manifest in
the proof of Theorem 1.3 as follows.

(a) Proposition 4.7 takes the following form: for every g1, . . . , gn ∈ G and every
z1, . . . , zn ∈ H

n we have

tr.deg.C j
C j (z1, . . . , zn, j(g1z1), . . . , j(gnzn))

≥ dimG(z1, . . . , zn|C j ) + dim j (z1, . . . , zn).

(b) Wecanuse [5,Corollary 5.4] to obtain the following: if t1, . . . , tm ∈ H\C j satisfies

tr.deg.C j
C j (t, J (t)) = 3 dimG(t|C j ) + dim j (t)

(the existence of such tuples is guaranteed by Theorem 4.11), then setting F :=
C j (t, j(t)) we have that for all z1, . . . , zn ∈ H and all g1, . . . , gn ∈ G:

tr.deg.F F(z1, . . . , zn, j(g1z1), . . . , j(gnzn)) ≥ dimG(z|C j ∪ t) + dim j (z|t).

(c) Theorem 3.20 still applies as stated.

6 Results with derivatives

As explained in [6] and [3] (among other sources), in conjunction with the EC problem
for j , one should also consider the EC problem for j and its derivatives. In this section
we will explain how the methods we have used can be adapted to study the strong EC
problem for j and its derivatives.
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6.1 Definitions

We start by setting up some notation. Define Y2(1) := Y(1) × C
2. Let En

J :=
{(z, J (z)) : z ∈ H

n} ⊆ C
n × Y2(1)n .

Let n, � be positive integers with � ≤ n and i = (i1, . . . , i�) in N
� with 1 ≤ i1 <

. . . < i� ≤ n. Define PRi : C
n × Y2(1)n → C

� × Y2(1)� by

PRi : (x, y0, y1, y2) �→ (pri(x), pri(y0), pri(y1), pri(y2)).

We will abuse slightly some notation we have already introduced define the maps
πC : C

n × Y2(1)n → C
n and πY : C

n × Y2(1)n → Y(1)n as the coordinate
projections. Notice that πY still maps onto Y(1)n , not to Y2(1)n . These projections
will be used in a very similar way as to how πC and πY have been used in the previous
sections, which is why we have decided to keep the names.

Definition An algebraic set V ⊆ C
n × Y2(1)n is said to be J -broad if for any i =

(i1, . . . , i�) inN
� with 1 ≤ i1 < . . . < i� ≤ nwe have dim PRi(V ) ≥ 3�. In particular,

if V is J -broad then dim V ≥ 3n.
We say V is strongly J -broad if the strict inequality dim PRi(V ) > 3� holds for

every i.

Definition A subvariety T ⊆ Y2(1)n is called a special subvariety of Y2(1)n if there
is a Möbius subvariety M ⊆ C

n defined over Q such that T is the Zariski closure over
Q of the set J (M ∩ H

n). We will say that T is weakly special if there is a Möbius
subvariety M ⊆ C

n such that T is the Zariski closure over C of the set J (M ∩ H
n).

Definition Wewill say that an irreducible constructible set V ⊆ C
n×Y2(1)n is J -free

if no coordinate of V is constant, and V is not contained in any subvariety of the form
M × Y2(1)n or C

n × T , where M ⊂ C
n is a proper Möbius subvariety defined over

Q, and T ⊂ Y(1)n is a proper special subvariety.
A constructible subset V ⊆ C

n × Y(1)n is J -free if every irreducible component
of V is free.

Definition We say that an algebraic variety V ⊆ C
n ×Y2(1)n satisfies the Existential

Closedness condition for J , or (EC)J , if the set V ∩ En
J is Zariski dense in V .

We say thatV satisfies theStrongExistentialClosedness condition for J , or (SEC)J ,
if for every finitely generated field K ⊂ C over which V can be defined, there exists
(z, J (z)) ∈ V such that (z, J (z)) is generic in V over K .

Conjecture 6.1 For every positive integer n, every algebraic variety V ⊆ C
n×Y2(1)n

which is J -broad and J-free, if V ∩ (Hn × Y2(1)n) is Zariski dense in V , then V
satisfies (EC)J . Even more, such V satisfy (SEC)J .

As explained in [2, §5.2], Conjecture 6.1 can be reduced to the case where dim V =
3n by doing an obvious adaptation of Proposition 4.4.

Before continuing to the results with derivatives, in the next few sections we will
go over the key ingredients that we need.
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6.2 Convenient tuples for J

We could start this section by giving a natural definition of convenient generators for
J , following what we did in §4.2. However this definition would be exactly the same
as the definition of convenient generators for j . To see this we recall that [4, Theorem
1.2] and the results in [5, §5] already include the derivatives of j . This is manifested
in the fact that the various inequalities for j we showed in §4.2 were all proven by
first proving the statement with derivatives. So we already have all the transcendence
inequalities we need.

6.3 Weak Zilber–Pink with derivatives

Here we recall one of the main results of [3].

Definition Given a special subvariety S of Y2(1)n and a special subvariety T of Y(1)n ,
we say that S is associated with T if πY(S) = T .

Definition Let V be an algebraic subvariety of Y2(1)n . An atypical component of V
is an irreducible component X of the intersection between V and a special subvariety
T of Y2(1)n such that

dim X > dim V + dim T − 3n.

Furthermore, we say that X is a strongly atypical component of V if X is an atypical
component of V and no coordinate is constant on πY(X).

For the definition of upper triangular D-special subvariety used in the following
theorem, see [3, §6.1]. In particular, we can choose S = Y2(1)n .

Theorem 6.2 (Uniform weakMZPwith derivatives, see [3, Theorem 7.9]) Let S be an
upper-triangular D-special subvariety ofY2(1)n. Given a parametric family (Vq)q∈Q
of algebraic subvarieties of Y2(1)n, there is a finite collection S of proper special
subvarieties of Y(1)n such that for every q ∈ Q we have that for every strongly
atypical component X of V there is a special subvariety S of Y2(1)n such that X ⊆ S
and πY(S) = T for some T ∈ S .

Theorem 6.3 Given a parametric family (Uq)q∈Q of constructible subsets of C
n ×

Y2(1)n, there is a finite collection S of of proper special subvarieties of Y(1)n such
that for every q ∈ Q we have that for every strongly atypical component X of Vq there
is a special subvariety S of Y2(1)n such that X ⊆ C

n × S and πY(S) = T for some
T ∈ S .

Wecan now go through the same sequence of steps as in §3.4 to obtain the following
analogue of Proposition 3.16.

Proposition 6.4 Given a parametric family (Uq)q∈Q of constructible subsets of C
n ×

Y2(1)n, there is a positive integer N such that for every q ∈ Q, for every weakly
special subvariety S ⊂ Y2(1)n and for every atypical component X of Uq ∩ (Cn × S),
there is a proper weakly special subvariety S0 ⊂ Y2(1)n with �b(πY(S0)) ≤ N such
that X ⊆ C

n × S0.
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6.4 Main result

Here we present and prove an analogue of Theorem 1.2 which includes derivatives.

Definition Let L be an algebraically closed subfield ofC. A J -broad algebraic variety
V ⊆ C

n ×Y2(1)n is said to have no L-factors if for every choice of indices 1 ≤ i1 <

. . . < ik ≤ n we have that either dim PRi(V ) > 3k, or dim PRi(V ) = 3k and PRi(V )

is not definable over L .

Theorem 6.5 Let V ⊆ C
n × Y2(1)n be a J -broad and J-free variety with no C j -

factors satisfying (EC)J . Then for every finitely generated field K over which V can
be defined, there exists z ∈ H

n such that (z, J (z)) ∈ V is generic over K .

We will set up very similar notation to the one used in §4.3. Let V ⊂ C
n ×Y2(1)n

be a J -broad and J -free variety with no C j -factors. Let K ⊂ C be a finitely generated
subfield such that V is defined over K . Let t1, . . . , tm ∈ H\C j be given by Theorem
4.11 applied to K . By Lemma 4.6, we also assume that dimG(t|C j ) = m.

Choose (x, y0, y1, y2) ∈ V generic over C j (t, J (t)). Let W ⊆ C
n+m ×Y2(1)n+m

be the C j -Zariski closure of the point (x, t, y0, y1, y2, J (t)).

Lemma 6.6 W is J -broad, J -free and dimW = 3 dim V + 3m + dim j (t). Further-
more, if dim j (t) > 0, then W is strongly J -broad.

Proof Repeat the proof of Lemma 5.1.

Proof of Theorem 6.5 We assume that dim V = 3n. We then know that V is not defin-
able over C j , so V (C j ) is contained in a proper subvariety of V . In particular, there is
a Zariski open subset V0 ⊆ V such that if (z, j(z)) ∈ V0, then some of the coordinates
of j(z) are not in C j . Also, in this case K �⊂ C j so dim j (t) ≥ 1.

Consider the parametric family of subvarieties (Wq)q∈Q of W such that for every
q ∈ Q there is a Möbius subvariety Mq ⊆ C

n such that Wq := W ∩ (Mq × Y2(1)2).
Let S be the finite collection of special subvarieties of Y2(1)n+m given by Theorem
6.3. Let N be given by Proposition 6.4 applied to (Wq)q∈Q .

Let W0 ⊆ W be a Zariski open subset defined over C j such that the points
(a,b0,b1,b2) of W0 satisfy all of the following conditions:

(a) The point b0 does not lie in any T ∈ S . As W is free, this condition defines a
Zariski open subset of W .

(b) The coordinate of b0 do not satisfy any of the modular relations �1, . . . , �N . As
W is free, this condition defines a Zariski open subset of W .

(c) For every 1 ≤ i1 < · · · < i� ≤ n, and letting i = (i1, . . . , i�), we have that

dim
(
W ∩ PR−1

i ((a,b0,b1,b2))
)

= dimW − dim PRi(W ).

By the fibre-dimension theorem and the fact there are only finitely many tuples i
to consider, this defines a Zariski open subset of W .
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By the construction of W , there is a Zariski open subset V1 ⊆ V such that if
(x, y0, y1, y2) is any point of V1, then (x, t, y0, y1, y2, J (t)) is a point in W0.

Choose (z, J (z)) ∈ V0 ∩ V1, so that (z, t, J (z), J (t)) ∈ W0. We will show
that dimG(z, t|C j ) = n + m. For this we proceed by contradiction, so suppose
that dimG(z, t|C j ) < n + m. Let S be the weakly special subvariety of Y2(1)n+m

of minimal dimension defined over C j for which (J (z), J (t)) ∈ T . Observe that
dim(T ) = 3 dimG(z, t|C j ).

Let M ⊂ C
n+m be theMöbius subvariety of smallest dimension defined byMöbius

relation over Q and/or setting some coordinates to be a constant in C j , which satisfies
(z, t) ∈ M . Then W ∩ (M × Y2(1)n+m) is an element of the family (Wq)q∈Q , call it
WM . We remark that WM is defined over C j .

Now let X be the irreducible component of WM ∩ (Cn+m × S) containing
(z, t, J (z), J (t)). Observe that X is defined over C j . Then by Proposition 4.7 we
get

dim X ≥ tr.deg.C j
C j (z, t, J (z), J (t)) ≥ 3 dimG(z, t|C j ) + dim j (z, t). (6.1)

On the other hand, asW is free, then dimWM < dimW , so using Lemma 5.1 we have

dimWM + dimC
n+m × S − dimC

n+m × Y2(1)n+m < dimW + dim T − n − m
= dim j (t) + dim S
= dim j (t) + 3 dimG(z, t|C j )

≤ dim X .

(6.2)
This shows that X is an atypical component ofWM∩(Cn+m×S) inC

n+m×Y2(1)n+m .
If πY(X) has no constant coordinates, then by 6.3 there exists a special subvariety
S ⊆ Y2(1)n+m and T0 ∈ S such that X ⊂ WM ∩ (Cn+m × S) and πY(S) = T0.
However, this would contradict condition (a) in the definition of W0.

So πY(X) has some constant coordinates. Then, as X is defined over C j , those
constant coordinates must be given by elements of C j . Since no element of J (t) is
in C j (by Lemma 4.6), the constant coordinates of πY(X) must be found among the
coordinates of J (z). Let 1 ≤ i1 < · · · < i� ≤ n denote all the coordinates of j(z)
which are inC j . Recall that byLemma4.6, if some coordinate of (z, j(z), j ′(z), j ′′(z))
is in C j , then they all are. Since (z, J (z)) ∈ V0, then � < n. We also remark that at
this point we have already proven the theorem for the case n = 1.

By Proposition 3.16 we know that there is a weakly special subvariety S0 ⊂
Y2(1)n+m such that �b(πY(S0)) ≤ N , X ⊆ C

n+m × S0, and

dim X ≤ dimWM ∩ (Cn+m × S0) + dim T ∩ S0 − dim S0. (6.3)

By condition (b) in the definition of W0 we know that �b(πY(S0)) = 0, which
means that πY(S0) is completely defined by setting certain coordinates to be constant.
As the constant coordinates of πY(X) are in C j , then S0 is defined over C j , and
dim S0 ≥ 3(n + m − �) (again by Lemma 4.6). But S is, by definition, the smallest
weakly special subvariety of Y2(1)n+m which is defined over C j and contains the
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point (J (z), J (t)). So S ∩ S0 = S. Combining (6.1) and (6.3) we get

dim j (t) + dim S0 ≤ dimWM ∩ (Cn+m × S0). (6.4)

Set := W ∩PR−1
i (PRi(z, t, j(z, t))). By the fibre dimension theorem, condition

(c) of the definition ofW0 and the fact thatW is strongly broad (Lemma 6.6) we know
that

dim ≤ dimW − dim PRi(W ) < 3(n + m − �). (6.5)

Observe thatWM ∩ (Cn+m × S0) = W ∩ (M × S0) ⊆ , so combining (6.4) and (6.5)
gives

dim S0 < 3(n + m − �)

which is a contradiction.
We deduce from this that dimG(z, t|C j ) = 3(n + m). By [5, Lemma 5.2] this

implies that (z, J (z)) is generic in V over C j (t, J (t)).

We have not added here an analogue of Theorem 1.3 including derivatives because
[6, Theorem 1.8], which is the available result on EC for the blurring of J , requires one
to use a group larger than G to define the blurring. So the result we can obtain would
not be as close an approximation to Conjecture 6.1 as Theorem 1.3 is to Conjecture
4.2.
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