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JOYCE STRUCTURES AND THEIR TWISTOR SPACES

TOM BRIDGELAND

Abstract. Joyce structures are a class of geometric structures which first arose in relation to

holomorphic generating functions for Donaldson-Thomas invariants. They can be thought of as

non-linear analogues of Frobenius structures, or as special classes of complex hyperkähler manifolds.

We give a detailed introduction to Joyce structures, with particular focus on the geometry of the

associated twistor space. We also prove several new results.

1. Introduction

The aim of this paper is to give an introduction to a class of geometric structures known as

Joyce structures. These structures have appeared in several contexts recently, including integrable

systems [13, 20, 21] and topological string theory [1, 2]. A Joyce structure on a complex manifold

M involves a one-parameter family of flat and symplectic non-linear connections on the tangent

bundle TM , and gives rise to a complex hyperkähler structure on the total space X = TM . The

precise definition first appeared in [12], but the essential features are standard in twistor theory

(see e.g. [19]), and go back to work of Plebański [40].

Joyce structures take their name from a line of research initiated in [32] which aims to encode

the Donaldson-Thomas (DT) invariants [33, 36] of a three-dimensional Calabi-Yau (CY3) category

in a geometric structure on its space of stability conditions [9, 10]. From this point of view a Joyce

structure should be thought of as a non-linear analogue of a Frobenius structure [17, 18], in which

the linear structure group GLn(C) has been replaced by the group of Poisson automorphisms of a

complex torus (C∗)n. The wall-crossing formula shows that the DT invariants can be viewed as the

Stokes data for an isomonodromic family of irregular connections on P
1 taking values in this group.

This perspective is the subject of [12] and is summarised in [15, Appendix A].

Relations between the wall-crossing formula in DT theory and real hyperkähler manifolds were

first discovered in the celebrated work of Gaiotto, Moore and Neitzke [25, 26]. The connection with

complex hyperkähler manifolds is somewhat different and was made in [15]. In physical terms the

two stories are related by the conformal limit [1, 2, 24].

The geometry of a Joyce structure is often clearer when viewed through the lens of the associated

twistor space p : Z → P1. Each fibre of the map p is the leaf space of a half-dimensional foliation

on X = TM . There are essentially three distinct fibres, Z0, Z1 and Z∞, of which Z0 is naturally

identified with M . It is intriguing to note that in simple examples associated to the DT theory of
1
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a quiver, the fibre Z0 = M is a quotient of the space of stability conditions, whereas Z1 is closely

related to the cluster Poisson variety. The fibre Z∞ remains rather mysterious.

An interesting class of examples of Joyce structures was constructed in [16]. The base M pa-

rameterises pairs consisting of a Riemann surface of some fixed genus g equipped with a quadratic

differential with simple zeroes. The extension to spaces of quadratic differentials with poles of fixed

orders will appear in [41]. These Joyce structures are expected to arise from the DT theory of the

CY3 categories considered in [14, 28], and relate in physics [8] to supersymmetric gauge theories

of class S[A1]. We give explicit descriptions of the two simplest examples of this type, which are

naturally associated to the DT theory of the A1 and A2 quivers respectively. The A2 example is

particularly interesting, and is closely related to the Painlevé I equation.

Plan of the paper. We begin in Section 2 with the notion of a pre-Joyce structure on a complex

manifold M . It gives rise to a complex hyperkähler structure on the total space X = TM . A

Joyce structure is a pre-Joyce structure with certain additional symmetries. These symmetries are

discussed in Section 3 and are controlled by a special type of integral affine structure on M which

we call a period structure.1

The twistor space p : Z → P1 associated to a Joyce structure is introduced in Section 4. In

Section 5 we establish several new results on its structure. In Section 6 we show how to associate

a strongly-integrable Hamiltonian system to a Joyce structure equipped with certain extra data,

namely a Lagrangian submanifold R ⊂ Z∞, and an identification of M with an open subset of the

cotangent bundle of a complex manifold B.

In the rest of the paper we discuss examples. In Section 7 we first recall from [16] the construction

of Joyce structures of class S[A1] on spaces of holomorphic quadratic differentials. We then explain

how some of the constructions from previous sections play out in this setting. In Section 8 and 9

we give explicit formulae in the two simplest cases, which are associated to the DT theory of the

A1 and A2 quivers respectively.

Conventions. We work throughout in the category of complex manifolds and holomorphic maps.

All symplectic forms, metrics, bundles, connections, sections etc. are holomorphic. The holomor-

phic tangent bundle of a complex manifold M is denoted TM , and the derivative of a map of

complex manifolds f : M → N is denoted f∗ : TM → f ∗(TN). The map f is called étale if f∗ is an

isomorphism. We use the symbol L to denote the Lie derivative.

Acknowledgements. The author is very grateful for conversations and correspondence with Sergey

Alexandrov, Anna Barbieri, Maciej Dunajski, Dominic Joyce, Dimitry Korotkin, Davide Masoero,

Boris Pioline, Ian Strachan, Jörg Teschner and Iván Tulli.

1Some of this material appears also in [15] but we have chosen to tell the story again from the beginning because
a more detailed treatment of several points seems worthwhile, and experience with examples has suggested a few
small changes in the definitions.
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2. Pre-Joyce structures

Recall [17, 18] that a Frobenius structure on a complex manifold M consists of a pencil of

flat, torsion-free connections on the tangent bundle of M with certain additional properties (the

existence of the identity and Euler vector fields, potentiality of the multiplication, etc). In a similar

way, a Joyce structure on M consists of a pencil of flat, symplectic non-linear connections on the

tangent bundle of M , again admitting certain additional symmetries. In this section we focus on the

pencil of connections, which we refer to as a pre-Joyce structure, leaving discussion of the required

symmetries to the next section.

2.1. Non-linear connections. We begin by briefly summarising some basic facts about non-linear

connections in the sense of Ehresmann (see e.g. [34, Chapter 3]). Recall that we are always working

in the category of complex manifolds, so all connections will be holomorphic.

Let π : X → M be a holomorphic submersion of complex manifolds. We denote the fibres by

Xm = π−1(m). The derivative of π gives rise to a short exact sequence of bundles

0 −→ TX/M
i−→ TX

π∗−→ π∗(TM) −→ 0. (1)

Definition 2.1. A non-linear connection on the map π is a map of bundles h : π∗(TM) → TX

satisfying π∗ ◦ h = 1.

Writing H = im(h) and V = TX/M , the tangent bundle of X decomposes as a direct sum

TX = H ⊕ V . We call tangent vectors and vector fields horizontal or vertical if they lie in H or

V respectively. Note that a vector field u ∈ H0(M,TM ) can be lifted to a horizontal vector field

h(u) ∈ H0(X, TX) by composing the pullback π∗(u) ∈ H0(X, π∗(TM)) with the map h.

Consider a smooth path γ : [0, 1] → M . Given a point x ∈ Xγ(0) we can look for a lifted path

α : [0, δ] → X satisfying α∗(
d
dt
) = h(γ∗(

d
dt
)) and α(0) = x. Since we have not assumed that π is

proper, such a lift will exist only for small enough δ > 0. For t ∈ [0, δ] we call α(t) ∈ Xγ(t) the time

t parallel transport of the point x along the path γ. Given a point x0 ∈ Xγ(0) we can find a δ > 0

and open subsets Ut ⊂ Xγ(t) with x0 ∈ U0, such that time t parallel transport along γ defines an

isomorphism PTγ(t) : U0 → Ut for each t ∈ [0, δ].

Given complex manifolds M,N there is a connection on the projection map πM : M × N → M

induced by the canonical splitting TM×N = π∗
M(TM )⊕ π∗

N (TN). The connection h is called flat if it

is locally isomorphic to a connection of this form. More precisely:

Definition 2.2. The connection h is flat if the following equivalent conditions hold:

(i) for every x ∈ X there are local co-ordinates (x1, · · · , xn) on X at x, and (y1, · · · , yd) on M

at π(x), such that xi = π∗(yi) and h( ∂
∂yi

) = ∂
∂xi

for 1 6 i 6 d,

(ii) the sub-bundle H = im(h) ⊂ TX is closed under Lie bracket: [H,H ] ⊂ H.
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Suppose given a relative symplectic form Ωπ ∈ H0(X,∧2 T ∗
X/M ) on the map π. It restricts to a

symplectic form Ωm ∈ H0(Xm,∧2 T ∗
Xm

) on each fibre Xm. We say that the connection h preserves

Ωπ if for any path γ : [0, 1] → M the partially-defined parallel transport maps PTγ(t) : Xγ(0) → Xγ(t)

take Ωγ(0) to Ωγ(t). This is equivalent to the statement that for any horizontal vector field u on X

the Lie derivative Lu(Ωπ) = 0.

Using the decomposition TX = H ⊕ V the relative form Ωπ can be lifted uniquely to a form

Ω ∈ H0(X,∧2 T ∗
X) satisfying ker(Ω) = H .

Lemma 2.3. (i) The connection h preserves Ωπ precisely if iv1iv2(dΩ) = 0 for any two vertical

vector fields v1, v2 ∈ H0(X, TX/M ).

(ii) If the connection h is flat then it preserves Ωπ precisely if dΩ = 0.

Proof. Part (i) is [27, Theorem 4]. For part (ii), note that one implication follows from (i), so let

us assume that h is flat and preserves Ωπ and prove that dΩ = 0.

Take three vector fields u1, u2, u3 on X and consider the expression defining dΩ(u1, u2, u3). We

can assume that each ui is either horizontal or vertical. Note that both horizontal and vertical

vector fields are closed under Lie bracket, and ih(Ω) = 0 for any horizontal vector field h. Thus

dΩ(u1, u2, u3) = 0 as soon as two of the ui are horizontal. In the remaining cases two of the ui are

vertical, and the claim follows from part (i). �

Suppose that a discrete group G acts freely and properly on X preserving the map π. Then

Y = X/G is a complex manifold and the quotient map q : X → Y is étale. There is an induced

submersion η : Y → M and a factorisation π = η ◦ q. A connection h : π∗(TM) → TX will be called

G-invariant if g∗ ◦ h = h for all g ∈ G. There is then an induced connection j : η∗(TM) → TY on η

defined uniquely by the condition that q∗ ◦ h = q∗(j). We say that the connection h descends along

the quotient map q.

2.2. Pre-Joyce structures. Let M be a complex manifold and let π : X = TM → M be the total

space of the tangent bundle of M . There is a canonical isomorphism ν : π∗(TM) → TX/M obtained

by composing the chain of identifications

π∗(TM)x = TM,π(x) = TTM,π(x),x = TXπ(x),x = TX/M,x. (2)

We set v = i ◦ ν. A connection h : π∗(TM) → TX on π then defines a family of connections

hǫ = h+ ǫ−1v parameterised by ǫ ∈ C∗.2

2At this stage it might seem more sensible to parameterise the pencil by t = ǫ−1. In later applications however it
is the parameter ǫ which appears most naturally.
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0 // TX/M
i // TX

π∗ // π∗(TM)

hǫ

��

ν

gg
// 0 (3)

Suppose that M is equipped with a holomorphic symplectic form ω ∈ H0(M,∧2 T ∗
M). Via the

isomorphism ν we obtain a relative symplectic form Ωπ ∈ H0(X,∧2T ∗
X/M) which restricts to a linear

symplectic form ωm on each fibre Xm = TM,m. We say that a connection on π is symplectic if it

preserves Ωπ in the sense defined above.

Definition 2.4. A pre-Joyce structure (ω, h) on a complex manifold M consists of

(i) a holomorphic symplectic form ω on M ,

(ii) a non-linear connection h on the tangent bundle π : X = TM → M ,

such that for each ǫ ∈ C∗ the connection hǫ = h+ ǫ−1v is flat and symplectic.

Take a local co-ordinate system (z1, · · · , zn) on M which is Darboux, in the sense that

ω =
1

2
·
∑

p,q

ωpq · dzp ∧ dzq, (4)

with ωpq a constant skew-symmetric matrix. We denote by ηpq the inverse matrix.

There are associated linear co-ordinates (θ1, · · · , θn) on the tangent spaces TM,m obtained by

writing a tangent vector in the form
∑

i θi · ∂/∂zi. We thus get induced local co-ordinates (zi, θj)

on the total space X = TM . In these co-ordinates

vi := v
( ∂

∂zi

)

=
∂

∂θi
. (5)

The fact that the connection h is flat and symplectic ensures that we can write

hi := h
( ∂

∂zi

)

=
∂

∂zi
+
∑

p,q

ηpq ·
∂Wi

∂θp
· ∂

∂θq
, (6)

for locally-defined functions Wi = Wi(z, θ). Note that Wi is only well-defined up to the addition

of functions ai(z) independent of the θ co-ordinates. We can fix these integration constants by

insisting that Wi vanishes along the zero section M ⊂ X = TM , i.e. that

Wi(z1, · · · , zn, 0, · · · , 0) = 0. (7)

The connection hǫ is flat precisely if
[

hi + ǫ−1vi, hj + ǫ−1vj
]

= 0 for all 1 6 i, j 6 n. A short

calculation shows that this holds for all ǫ ∈ C∗ precisely if
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∂

∂θk

(∂Wi

∂θj
− ∂Wj

∂θi

)

= 0, (8)

∂

∂θk

(∂Wi

∂zj
− ∂Wj

∂zi
−

∑

p,q

ηpq ·
∂Wi

∂θp
· ∂Wj

∂θq

)

= 0. (9)

for all 1 6 i, j, k 6 n.

Remark 2.5. So as to be able to include certain interesting examples it is sometimes useful to weaken

the axioms of a (pre-) Joyce structure to allow the connection h : π∗(TM) → TX to have poles. In

precise terms this means that h should be defined by a bundle map h : π∗(TM) → TX(D) satisfying

(π∗ ⊗ OX(D)) ◦ h = 1π∗(TM ) ⊗ sD, (10)

where D ⊂ X is an effective divisor, and sD : OX → OX(D) is the canonical inclusion. When

expressed in terms of local co-ordinates as above, this just means that the functions Wi(z, θ) are

meromorphic. We will refer to the resulting structures as meromorphic (pre-) Joyce structures.

2.3. Complex hyperkähler structures. The following structures have appeared before in the

literature under various different names (see e.g. [4, 20, 30, 31]). We emphasise that, as throughout

the paper, all quantities appearing are holomorphic.

Definition 2.6. A complex hyperkähler structure (g, I, J,K) on a complex manifold X consists of

(i) a metric g, i.e. a symmetric, non-degenerate bilinear form g : TX ⊗ TX → OX ,

(ii) endomorphisms I, J,K ∈ EndX(TX),

such that:

(HK1) the quaternion relations hold: I2 = J2 = K2 = IJK = −1,

(HK2) I, J,K are compatible with g and are parallel for the associated Levi-Civita connection ∇:

g(R(u1), R(u2)) = g(u1, u2), ∇(R) = 0, R ∈ {I, J,K}. (11)

Let M be a complex manifold with a holomorphic symplectic form ω. A non-linear connection h

on the tangent bundle π : X = TM → M gives a decomposition

TX = im(h)⊕ im(v) ∼= π∗(TM)⊗C C
2. (12)

We can then define an action of the quaternions on TX by choosing an identification of the com-

plexification of the quaternions H⊗R C with the algebra of 2× 2 matrices EndC(C
2). We can also

define a metric g by taking the tensor product of π∗(ω) with a linear symplectic form on C2.

With appropriate conventions this leads to the formulae3

3Compared to [15] we have changed the signs of I and K, and divided the metric by 2.



JOYCE STRUCTURES AND THEIR TWISTOR SPACES 7

I ◦ h = i · h, J ◦ h = −v, K ◦ h = i · v,

I ◦ v = −i · v, J ◦ v = h, K ◦ v = i · h,
(13)

which should be interpreted as equalities of maps π∗(TM) → TX , and

g(h(u1), v(u2)) =
1
2
ω(u1, u2), g(h(u1), h(u2)) = 0 = g(v(u1), v(u2)). (14)

It is easily checked that g is preserved by the endomorphisms I, J,K.

The following result implies in particular that a pre-Joyce structure on a complex manifold M

induces a complex hyperkähler structure on the total space X = TM .

Theorem 2.7. The operators I, J,K are parallel for the Levi-Civita connection ∇ associated to g

precisely if the connection hǫ = h + ǫ−1v is flat and symplectic for all ǫ ∈ C∗.

Proof. We begin with a general remark. Let g : TX × TX → OX be a metric on a complex manifold

X with associated Levi-Civita connection ∇. Let R ∈ EndX(TX) be an endomorphism which

is compatible with g and satisfies R2 = −1. We can then define a 2-form Ω on X by setting

ΩR(u1, u2) = g(R(u1), u2). Let H ⊂ TX denote the +i eigenbundle of R. Then standard proofs

from Kähler geometry apply unchanged in this holomorphic context to give implications

∇(R) = 0 =⇒ [H,H ] ⊂ H, ∇(R) = 0 ⇐⇒ dΩR = 0. (15)

Return now to the setting above. For ǫ ∈ C
∗ we introduce the endomorphism

Jǫ = I − iǫ−1(J + iK). (16)

A simple calculation using the definitions (13) shows that J2
ǫ = −1, and that the +i eigenbundle of

Jǫ coincides with Hǫ = im(hǫ).

As in Section 2.2, the symplectic form ω on M induces a relative symplectic form Ωπ on the

projection π : X → M . Moreover, as explained before Lemma 2.3, there is then a unique 2-form Ωǫ

on X satisfying the conditions

ker(Ωǫ) = Hǫ, Ωǫ(v(u1), v(u2)) = ω(u1, u2), (17)

where u1, u2 are arbitrary vector fields on M . Another calculation using (13) and (14) shows that

this form is given explicitly by the formula

Ωǫ = ǫ−2 · Ω+ + 2iǫ−1 · ΩI + Ω−, Ω± = ΩJ±iK . (18)

We can now prove the Theorem. Suppose first that I, J,K are parallel. Then Jǫ is parallel for all

ǫ ∈ C∗, and applying (15) with R = Jǫ we find that [Hǫ, Hǫ] ⊂ Hǫ and hence that hǫ is flat. Since

Ωǫ is also parallel and hence closed, applying Lemma 2.3 shows that hǫ is symplectic. Conversely

suppose that for all ǫ ∈ C∗ the connection hǫ is flat and symplectic. Then by Lemma 2.3 again,
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dΩǫ = 0 for all ǫ ∈ C∗, and this easily implies that dΩR = 0 for R ∈ {I, J,K}. By (15) we conclude

that I, J,K are parallel. �

2.4. Associated 2-forms. The complex hyperkähler structure (g, I, J,K) gives rise to closed 2-

forms on X

ΩI(w1, w2) = g(I(w1), w2), Ω±(w1, w2) = g((J ± iK)(w1), w2). (19)

Note that ΩI is non-degenerate, but since (J ± iK)2 = 0 the forms Ω± have kernels.

Let us express these forms in terms of a local co-ordinate system (z, θ) on X as in Section 2.2.

We denote by (hi, vj) the basis of covector fields dual to the basis of vector fields (hi, vj) defined by

(5) – (6). Thus (hj , vi) = 0 = (vj, hi) and (hj, hi) = δij = (vj , vi). Explicitly we have

hj = dzj , vj = dθj +
∑

r,s

ηjr ·
∂Ws

∂θr
· dzs. (20)

The definition (13) of the operators I, J,K immediately give

(J + iK) ◦ h = −2v, (J + iK) ◦ v = 0 = (J − iK) ◦ h, (J − iK) ◦ v = 2h, (21)

and so we have

Ω+ =
1

2
·
∑

p,q

ωpq · hp ∧ hq, ΩI =
i

2
·
∑

p,q

ωpq · vp ∧ hq, (22)

Ω− =
1

2
·
∑

p,q

ωpq · vp ∧ vq. (23)

Using the formulae (20) these expressions can be rewritten as

Ω+ =
1

2
·
∑

p,q

ωpq · dzp ∧ dzq, (24)

2iΩI =
1

2
·
∑

p,q

(

∂Wp

∂θq
− ∂Wq

∂θp

)

· dzp ∧ dzq −
∑

p,q

ωpq · dθp ∧ dzq, (25)

Ω− =
1

2
·
∑

p,q

ωpq · dθp ∧ dθq +
∑

p,q

∂Wq

∂θp
· dθp ∧ dzq −

1

2
·
∑

p,q,r,s

ηrs ·
∂Wp

∂θr

∂Wq

∂θs
· dzp ∧ dzq. (26)

Note that by (8) the first term in (25) is independent of the co-ordinates θk and hence descends to

M . In the case of a Joyce structure the identity (47) shows that this term vanishes.
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3. Joyce structures

A Joyce structure on a complex manifold M is a pre-Joyce structure with certain additional

symmetries. These symmetries are controlled by a special kind of integral affine structure on

M which we call a period structure. After introducing the necessary definitions we derive some

consequences of the extra symmetries, both for the associated complex hyperkähler structure on

X = TM , and for the local generating functions Wi.

3.1. Period structures. Let H be a holomorphic vector bundle on a complex manifold M . By

a lattice in H we mean a locally-constant subsheaf of abelian groups H
Z ⊂ H such that the

multiplication map H
Z⊗Z OM → H is an isomorphism. There is an induced flat (linear) connection

∇ on H whose flat sections are C-linear combinations of the sections of HZ.

Definition 3.1. A period structure (T Z

M ,∇, Z) on a complex manifold M consists of

(P1) a lattice T Z

M ⊂ TM whose associated flat connection is denoted ∇,

(P2) a vector field Z ∈ Γ(M,TM) satisfying ∇(Z) = id.

Given a point p ∈ M , a basis of the free abelian group T Z

M,p extends uniquely to a basis of ∇-flat

sections φ1, · · · , φn of TM over a contractible open neighbourhood p ∈ U ⊂ M . Writing the vector

field Z in the form Z =
∑

i zi · φi then defines holomorphic functions zi : U → C. Given a local

co-ordinate system (u1, · · · , un) on M , condition (P2) shows that

∂

∂uj
= ∇ ∂

∂uj

(Z) =
∑

i

∂zi
∂uj

· φi, (27)

for all 1 6 j 6 n, from which it follows that (z1, · · · , zn) is also a local co-ordinate system. Applying

(27) with uj = zj then shows that φi =
∂
∂zi

. This implies in particular that the connection ∇ is

torsion-free.

Recall [35] that an integral affine structure on a complex manifold M is a lattice T Z

M ⊂ TM

whose associated flat connection ∇ is torsion-free . A local co-ordinate system (z1, · · · , zn) is then
called integral affine if the tangent vectors ∂

∂zi
lie in the lattice T Z

M . Such co-ordinate systems are

uniquely defined up to affine transformations of the form zi 7→
∑

j aijzj + vi with (aij) ∈ GLn(Z)

and (vi) ∈ Cn.

Given a period structure on a complex manifold M we obtain an integral affine structure by

forgetting the vector field Z. A system of integral affine co-ordinates (z1, · · · , zn) will be called

integral linear if Z =
∑

i zi · ∂
∂zi

. Such co-ordinate systems are uniquely defined up to linear

transformations of the form zi 7→
∑

j aijzj with (aij) ∈ GLn(Z). Thus a period structure can be

thought of as an integral linear structure.
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Definition 3.2. A period structure will be called homogeneous if the vector field Z generates an

action of the multiplicative group C∗ on M .

We can use the connection ∇ on TM to lift the vector field Z on M to a horizontal vector field E

on X = TM . If we take a system of integral linear co-ordinates (z1, · · · , zn) on M , and associated

co-ordinates (zi, θj) on X = TM as in Section 2.2, then

Z =
∑

i

zi ·
∂

∂zi
, E =

∑

i

zi ·
∂

∂zi
. (28)

In what follows we refer to both Z and E as Euler vector fields. This will hopefully not cause

confusion since they live on different spaces.

Lemma 3.3. Let (T Z

M ,∇, Z) be a homogeneous period structure on a complex manifold M . Then

the lifted Euler vector field E generates an action of C∗ on X = TM . This action is obtained by

combining the derivative of the action map a : C∗ ×M → M , with a rescaling of weight −1 on the

linear fibres of the projection π : TM → M .

Proof. Take local co-ordinates (zi) on M and (zi, θj) on X as above. The C
∗-action on M is given

by t · (zi) = (tzi). The derivative of the action map a : C∗ × M → M defines a C∗-action on X

given by t · (zi, θj) = (tzi, tθj). Composing with the weight −1 rescaling action on the fibres gives

the action t · (zi, θj) = (tzi, θj) whose generating vector field is E. �

3.2. Joyce structures. We define a Joyce structure by combining a pre-Joyce structure with a

compatible period structure. Given a symplectic form ω : TM × TM → OM there is an induced

pairing η : T ∗
M × T ∗

M → OM defined by the condition that the induced maps ω♭ : TM → T ∗
M and

η♭ : T ∗
M → TM are mutually inverse. We refer to η as the inverse of ω.

Definition 3.4. A Joyce structure on a complex manifold M consists of

(a) a period structure (T Z

M , Z,∇) on M ,

(b) a pre-Joyce structure (ω, h) on M ,

satisfying the following compatibility conditions:

(J1) if η is the inverse of ω then (2πi)−1η takes integral values on the dual lattice (T Z

M)∗ ⊂ T ∗
M ,

(J2) the connection h is invariant under translations by the lattice (2πi) T Z

M ⊂ TM ,

(J3) if E is the ∇-horizontal lift of the vector field Z, then for any vector field u on M

h([Z, u]) = [E, h(u)], (29)

(J4) the connection h is invariant under the action of the involution −1: X → X which acts by

multiplication by −1 on the fibres of π : X = TM → M .

We say that a Joyce structure is homogeneous if the underlying period structure is.
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Given a period structure on a complex manifold M we introduce the quotient

X# = T#
M = TM/(2πi) T Z

M . (30)

Axiom (J2) is the statement that the connection h descends to a connection on the (C∗)n-bundle

over M given by the projection π : X# → M .

Remark 3.5. In the context of DT theory, in which M is a space of numerical stability conditions

on a CY3 category, the period structure (T Z

M , Z,∇) and symplectic form ω are well-known and

immediate: the integral linear co-ordinates are given by central charges, and the symplectic form is

induced by the inverse of the Euler form. The extra content of the Joyce structure is then just the

non-linear connection h, which however is required to satisfy a complicated system of symmetry

and curvature conditions.

3.3. Associated hyperkähler structures. Given a Joyce structure on a complex manifold M ,

the associated complex hyperkähler structure (g, I, J,K) on X = TM defined in Section 2.3 has

certain extra symmetry properties. For example, axiom (J2) ensures that it is invariant under

the translations by the lattice (2πi) T Z

M ⊂ TM , and hence descends to the quotient manifold X#

introduced above. The other axioms give the following result.

Lemma 3.6. There are identities

LE(I) = 0, LE(J ± iK) = ±(J ± iK), LE(g) = g. (31)

(−1)∗(I) = I, (−1)∗(J ± iK) = −(J ± iK), (−1)∗(g) = −g. (32)

Proof. We will evaluate both sides of each identity on vector fields of the form h(u) and v(u), where

u is an arbitrary vector field on M . For the identities (31) note first that we have

LE(h(u)) = h(LZ(u)), LE(v(u)) = v(LZ(u) + u) (33)

The first of these equations is axiom (J3), and the second follows from Lemma 3.3.

If u is a vector field on M then using (21) we have

(LE(J − iK)) h(u) = LE((J − iK) h(u))− (J − iK)LE(h(u)) = 0, (34)

(LE(J − iK)) v(u) = LE((J − iK) v(u))− (J − iK)LE(v(u))

= 2h(LZ(u))− 2h(LZ(u) + u) = −2h(u),
(35)

and it follows that LE(J − iK) = −(J − iK). The claim LE(J + iK) = J + iK follows in the same

way. The statement that LE(I) = 0 holds because by (33)

(LE(I)) h(u) = LE(I(h(u)))− I(LE(h(u))) = LE(ih(u))− iLE(h(u)) = 0, (36)

with an analogous identity for v(u).



12 TOM BRIDGELAND

For the statement on the metric note first that (J1) implies that LZ(ω) = 2ω. Then using the

definition (14) of the metric g we have

LE(g)(h(u1), v(u2)) = E · g(h(u1), v(u2))− g(LE(h(u1)), v(u2))− g(h(u1),LE(v(u2)))

= E · 1
2
π∗(ω(u1, u2))− 1

2
π∗(ω(LZ(u1), u2))− 1

2
π∗(ω(u1,LZ(u2) + u2))

= 1
2
π∗(LZ(ω)(u1, u2))− 1

2
π∗(ω(u1, u2)) =

1
2
π∗(ω(u1, u2))

= g(h(u1), v(u2)),

(37)

where we used the fact that π∗(Ex) = Zπ(x) for all x ∈ X to write E · π∗(f) = π∗(Z · f) for any

function f on M . An easier argument gives

LE(g)(h(u1), h(u2)) = 0 = LE(g)(v(u1), v(u2)), (38)

so we find that LE(g) = g as required.

The identities (32) follow from the definitions (13) and (14) together with

(−1)∗(h(u)) = h(u), (−1)∗(v(u)) = −v(u). (39)

The first of these equations is axiom (J4), and the second is immediate from the definition of the

involution −1. �

3.4. Plebański function. Consider a local system of integral linear co-ordinates (z1, · · · , zn) on

M . Taking associated co-ordinates (zi, θj) on X = TM we can express the connections hǫ using

locally-defined functions Wi = Wi(z, θ) as in Section 2.2. As before we fix the integration constants

by imposing the condition that Wi vanishes on the zero section M ⊂ X = TM .

Lemma 3.7. There is a unique locally-defined function W = W (z, θ) which vanishes on the zero

section M ⊂ X = TM and satisfies Wi =
∂W
∂θi

for all 1 6 i 6 n. It also satisfies the relations

∂2W

∂θi∂zj
− ∂2W

∂θj∂zi
=

∑

p,q

ηpq ·
∂2W

∂θi∂θp
· ∂2W

∂θj∂θq
(40)

∂2W

∂θi∂θj
(z1, · · · , zn, θ1 + 2πik1, · · · , θn + 2πikn) =

∂2W

∂θi∂θj
(z1, · · · , zn, θ1, · · · , θn), (41)

W (λz1, · · · , λzn, θ1, · · · , θn) = λ−1 ·W (z1, · · · , zn, θ1, · · · , θn), (42)

W (z1, · · · , zn,−θ1, · · · ,−θn) = −W (z1, · · · , zn, θ1, · · · , θn), (43)

for all 1 6 i, j 6 n, where (k1, · · · , kn) ∈ Zn and λ ∈ C∗.

Proof. Using the expressions (28) the axioms (J2) – (J4) become the conditions
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∂Wi

∂θj
(z1, · · · , zn, θ1 + 2πik1, · · · , θn + 2πikn) =

∂Wi

∂θj
(z1, · · · , zn, θ1, · · · , θn), (44)

∂Wi

∂θj
(λz1, · · · , λzn, θ1, · · · , θn) = λ−1 · ∂Wi

∂θj
(z1, · · · , zn, θ1, · · · , θn), (45)

∂Wi

∂θj
(z1, · · · , zn,−θ1, · · · ,−θn) = −∂Wi

∂θj
(z1, · · · , zn, θ1, · · · , θn). (46)

Note that (46) implies that both sides vanish along the zero section M ⊂ X = TM where all

θk = 0. It then follows that for all 1 6 i, j 6 n

∂Wi

∂θj
− ∂Wj

∂θi
= 0. (47)

Indeed, (8) shows that this expression is independent of the co-ordinates θk, and so if it vanishes

on the zero section it must be identically zero. It follows that there is a locally-defined function

W = W (z, θ) such that Wi = ∂W/∂θi. We again fix the integration constants by assuming that W

vanishes on the zero section M ⊂ X = TM . In view of (7) we therefore have

W (z1, · · · , zn, 0, · · · , 0) = 0 =
∂W

∂θi
(z1, · · · , zn, 0, · · · , 0). (48)

The equations (40) then follow from (9). Indeed (9) shows that the difference of the two sides is

independent of the co-ordinates θk, but by (46) and (48) both sides vanish along the zero section.

Similarly, we deduce (42) from (45), and (43) from (46). �

The function W is called the Plebański function, and the partial differential equations (40) are

known as Plebański’s second heavenly equations.

4. Twistor space

In this section we define the twistor space p : Z → P1 associated to a pre-Joyce structure on a

complex manifold M . It is defined as the space of leaves of a foliation on P
1 ×X , where as before

X = TM denotes the total space of the tangent bundle of M . The construction coincides with the

Penrose twistor space construction [39] applied to the complex hyperkähler manifold on X . We

explain some special properties enjoyed by the twistor space of a Joyce structure, and derive an

equation describing the twistor lines. In the final part we use this equation to revisit the analogy

between Joyce and Frobenius structures which was the main topic of [12].

4.1. Construction of the twistor space. Let M be a complex manifold equipped with a pre-

Joyce structure, and set X = TM . For each point (ǫ0, ǫ1) ∈ C2 \ {0} there is a bundle map

ǫ0v + ǫ1h : π
∗(TM) → TX , (49)
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whose image, which depends only on the corresponding point ǫ = [ǫ0 : ǫ1] ∈ P1, is a half-rank sub-

bundle H(ǫ) ⊂ TX . The definition of a pre-Joyce structure ensures that this sub-bundle is closed

under Lie bracket, and hence defines a foliation on X . The twistor space Z defined below will have

a map p : Z → P1 whose fibre over the point ǫ ∈ P1 is the space of leaves of this foliation.

To give a global definition of the twistor space Z we first recall that the tangent bundle of the

product P1 ×X has a canonical direct sum decomposition

TP1×X = π∗
1(TP1)⊕ π∗

2(X), (50)

where π1, π2 denote the projections from P1×X onto the two factors. There is a half-rank sub-bundle

H ⊂ π∗
2(TX) which when restricted to a fibre π−1

1 (ǫ) is the sub-bundle H(ǫ) ⊂ TX . Composing with

the canonical inclusion π∗
2(TX) ⊂ TP1×X we can view H as a sub-bundle of TP1×X and this is easily

seen to be closed under Lie bracket. The twistor space Z is then defined to be the space of leaves

of the associated foliation on P
1 ×X .

We denote by q : P1×X → Z the quotient map. There is an induced projection p : Z → P
1 which

satisfies p ◦ q = π1. We denote by Zǫ = p−1(ǫ) ⊂ Z the twistor fibre over ǫ ∈ P1, and qǫ : X → Zǫ

the induced quotient map. For each ǫ ∈ P1 there is a commutative diagram

X �

� //

qǫ

��

P1 ×X

q

��
π1

||

Zǫ
�

� //

��

Z

p

��

{ǫ} � � // P1

(51)

in which the horizontal arrows are the obvious closed embeddings.

Each point x ∈ X determines a section of the map p : Z → P1

σx : P
1 → Z, ǫ 7→ q(ǫ, x), (52)

which we refer to as a twistor line.

Recall the complex hyperkähler structure (g, I, J,K) on X and the associated closed 2-forms Ω±

and ΩI defined by (19). As in the proof of Theorem 2.7, an easy calculation using (13) shows that

H(ǫ) = im (ǫ0v + ǫ1h) = ker
(

ǫ20(J + iK) + 2iǫ0ǫ1I + ǫ21(J − iK)
)

. (53)

Since the right-hand side is precisely the kernel of the closed 2-form

ǫ20Ω+ + 2iǫ0ǫ1ΩI + ǫ21Ω−, (54)

this 2-form descends along the map qǫ : X → Zǫ, and defines a symplectic form Ωǫ on Zǫ.

In more global terms, the formula (54) defines a twisted relative 2-form on P1 × X , namely a

section of the bundle π∗
1(O(2)) ⊗ π∗

2(∧2 T ∗
X). This descends along the quotient map q : X → Z to
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give a twisted relative symplectic form on the twistor space p : Z → P1. By definition, this is the

section Ω of the bundle p∗(O(2))⊗ ∧2 T ∗

Z/P1 uniquely defined by the condition

q∗(Ω) = ǫ20 Ω+ + 2iǫ0ǫ1ΩI + ǫ21Ω−. (55)

From now on we will take the usual embedding C ⊂ P
1 with affine co-ordinate ǫ = ǫ1/ǫ0, and

write P1 = C ∪ {∞} with ∞ = [0 : 1]. When ǫ ∈ C ∪ {∞}, the twistor fibre Zǫ is the space of

leaves of the foliation on X associated to the integrable distribution im(hǫ) ⊂ TX , where as before

we write hǫ = h+ ǫ−1v. On the other hand the twistor fibre Z0 is the space of leaves of the foliation

on X associated to the vertical sub-bundle im(v) = ker(π∗), and is therefore identified with M .

Restricting Ω to a twistor fibre Zǫ gives a complex symplectic form Ωǫ, well-defined up to multi-

plication by a nonzero constant. When ǫ ∈ C∗ ∪ {∞} we fix this scale by taking

q∗ǫ (Ωǫ) = ǫ−2Ω+ + 2iǫ−1 ΩI + Ω−, (56)

whereas for ǫ = 0 we take Ω0 = ω. We then have relations

q∗0(Ω0) = Ω+, q∗∞(Ω∞) = Ω−. (57)

Remark 4.1. Unfortunately, to obtain a well-behaved twistor space p : Z → P1 we cannot in general

just take the space of leaves of the foliation on P1 ×X . Rather, we should consider the holonomy

groupoid, which leads to the analytic analogue of a Deligne-Mumford stack [38]. We will completely

ignore these subtleties here, and essentially pretend that Z is a complex manifold. In fact, for what

we do here, nothing useful would be gained by a more abstract point of view, because we are only

really using the twistor space as a useful and suggestive shorthand. All statements we make about

the space Z can be easily translated into statements only involving objects on X . For example, a

symplectic form on the twistor fibre Zǫ is nothing but a closed 2-form on X whose kernel coincides

with the sub-bundle H(ǫ) ⊂ TX . Similarly, an étale map from the twistor fibre Zǫ to some complex

manifold Y is just a holomorphic map f : X → Y such that ker(f∗) = H(ǫ).

4.2. Twistor space of a Joyce structure. Suppose now that we have a Joyce structure on a

complex manifold M and consider the associated twistor space p : Z → P1. Recall the vector field

Z on M and the horizontal lift E on X . Using the decomposition (50) we can define a vector field

on the product P1 ×X as the sum

Ẽ = ǫ
d

dǫ
+ E. (58)

Lemma 4.2. The vector field Ẽ descends along the quotient map q : P1 ×X → Z.
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Proof. Let u be a vector field on M . Writing hǫ(u) = h(u) + ǫ−1v(u) and using (33) we have
[

Ẽ, hǫ(u))
]

= [E, h(u)] + ǫ−1[E, v(u)]− ǫ−1v(u)

= h([Z, u]) + ǫ−1v([Z, u]) = hǫ([Z, u]).
(59)

Thus LẼ preserves the sub-bundle Hǫ = ker(qǫ)∗, and the claim follows. �

Let us specialise to the case of a homogeneous Joyce structure. The C∗-action on M generated

by the vector field Z induces a C∗-action on X with generating vector field E as in Lemma 3.3.

Combining this with the standard action of C∗ on P1 rescaling ǫ with weight 1, we can then consider

the diagonal action on X × P1. It follows from Lemma 4.2 that this descends to an action on Z.

Thus we obtain C∗-actions on each of the spaces in the right-hand column of (51), and the vertical

maps q and p intertwine these actions.

Since the map p : Z → P1 is C∗-equivariant, there are at most three distinct twistor fibres: Z0,

Z1 and Z∞, and as above there is an identification Z0 = M .4 Using the definition (19) and the

identities (31) we have

LE(Ω+) = 2Ω+, LE(ΩI) = ΩI , LE(Ω−) = 0. (60)

The C∗-action on Z induces a C
∗-action on Z0 and it follows from (60) that the symplectic form Ω0

is homogeneous of weight 2 for this action. Similarly there is an induced C
∗-action on Z∞, but in

this case the symplectic form Ω∞ is invariant.

We can use the C∗-action to trivialise the map p : Z → P1 over the open subset C∗ ⊂ P1. We

obtain a commutative diagram

C∗ × Z1
m //

π1

��

p−1(C∗)

p

��

�

� // Z

p
��

C∗ oo = // C∗ �
� // P1

(61)

where π1 is the projection onto the first factor, and the isomorphism m is the restriction of the

action map m : C∗ × Z → Z.

Consider the map y : C∗ ×X → Z1 given by

y(ǫ, x) = ǫ−1 · q(ǫ, x) = q(1, ǫ−1 · x). (62)

Note that, under the trivialisation (61), the restriction of the twistor line σx : P
1 → Z becomes

the section of π1 given by ǫ 7→ (ǫ, y(ǫ, x)). Let us take a system of integral linear co-ordinates

(z1, · · · , zn) on M and consider the induced co-ordinates (zi, θj) on X = TM as in Section 2.2.

4Note that, unlike in the case of real hyperkähler manifolds, there is no requirement for an involution of the twistor
space Z lifting the antipodal map on P

1. In particular, there need be no relation between the twistor fibres Z0 and
Z∞.
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Lemma 4.3. The map y(ǫ, x) satisfies the equation

∂

∂ǫ
y(ǫ, x) =

(

1

ǫ2
·
∑

i

zi ·
∂

∂θi
+

1

ǫ
·
∑

i,p,q

ηpq · zi ·
∂2W

∂θi∂θp
· ∂

∂θq

)

y(ǫ, x), (63)

Proof. The formula y(ǫ, x) = q(1, ǫ−1 · x) shows that y is invariant under the diagonal C∗-action on

X × C∗, and is therefore annhilated by the vector field

Ẽ =
∑

i

zi · ∂/∂zi + ǫ · ∂/∂ǫ. (64)

On the other hand, the formula y(ǫ, x) = ǫ−1 · q(ǫ, x) = ǫ−1 · qǫ(x) shows that y factors via the map

1× qǫ : C
∗ ×X → C

∗ × Zǫ. (65)

By definition of the twistor space it is therefore also annhilated by the vector fields hǫ(∂/∂zi) =

hi + ǫ−1vi. The result then follows from the formulae (5) and (6). �

4.3. Preferred co-ordinates and Stokes data. The definition of a Joyce structure was first

identified in [12] by considering an analogy between the wall-crossing formula in DT theory and a

class of iso-Stokes deformations familiar in the theory of Frobenius manifolds. This analogy can

be re-expressed in terms of the geometry of the twistor space p : Z → P
1, and leads to interesting

conjectural properties of Z which we attempt to explain here. This section is speculative, and can

be safely skipped. The basic point is that one should expect preferred systems of co-ordinates on the

twistor fibre Z1, in terms of which the twistor lines, viewed as maps C∗ → Z1 via the trivialisation

(61), have good asymptotic properties as ǫ → 0.

Let us fix a point m ∈ M and restrict attention to points x ∈ TM,m ⊂ X . Changing the notation

slightly, we obtain a family of maps y(ǫ) : TM,m → Z1. Thus for each point x ∈ TM,m, the restriction

of the twistor line σx : P
1 → Z corresponds under the trivialisation (61) to the map ǫ 7→ (ǫ, y(ǫ)(x)).

It is then interesting to observe that the equation (63) controlling the variation of y(ǫ) is formally

analogous to the linear equation

d

dǫ
y(ǫ) =

(

U

ǫ2
+

V

ǫ

)

y(ǫ) (66)

occurring in the theory of Frobenius manifolds. In the equation (66) the matrices U and V are

infinitesimal linear automorphisms of the tangent space TmM at a point m ∈ M of a Frobenius

manifold, whereas the corresponding quantities in (63) are infinitesimal automorphisms of the vector

space TM,m preserving the linear symplectic form ωm. This analogy was the main topic of [12].

Suppose that the matrix U in (66) has distinct eigenvalues ui ∈ C. The Stokes rays of the equation

(66) are then defined to be the rays ℓij = R>0 · (ui − uj) ⊂ C∗. A result of Balser, Jurkat and Lutz
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[3] shows that in any half-plane H(ϕ) ⊂ C∗ centred on a non-Stokes ray r = R>0 · exp(iπϕ) ⊂ C∗,

there is a unique fundamental solution Φ: H(ϕ) → GLn(C) to (66) satisfying

Φ(ǫ) · exp(U/ǫ) → id as ǫ → 0. (67)

Comparing these canonical solutions for half-planes H(ϕ±) centred on small perturbations r± of a

Stokes ray ℓ ⊂ C∗ defines the Stokes factors S(ℓ) ∈ GLn(C).

Turning to the equation (63), note that the first term on the right-hand-side is the translation-

invariant vector field U =
∑

i zi ·∂/∂θi on TM,m corresponding to the value Zm ∈ TM,m of the vector

field Z defined by the period structure on M . Exponentiating this vector field yields well-defined

linear automorphisms exp(U/ǫ) of the vector space TM,m given in co-ordinates by θi 7→ θi + ǫ−1zi.

The above analogy then suggests that there should be a countable collection of Stokes rays ℓ ⊂ C∗,

and for any half-plane H(ϕ) ⊂ C∗ centred on a non-Stokes ray r = R>0 · exp(iπϕ) ⊂ C∗, a

symplectomorphism F : Z1 → TM,m, such that Φ(ǫ) := F ◦ y(ǫ) : TM,m → TM,m satisfies5

exp(U/ǫ) ◦ Φ(ǫ) → id as ǫ → 0. (68)

The maps F corresponding to different half-planes H(ϕ) then differ by compositions of symplectic

automorphisms S(ℓ) ∈ Autωp(TM,m) associated to rays ℓ ⊂ C
∗. These automorphisms S(ℓ) should

be viewed as non-linear Stokes factors.

In practice the above analogy should be considered a guiding principle rather than a precise

statement. In particular we cannot expect the map F to be defined on the whole of Z1. Nonetheless

the basic point is that once we have chosen a system of integral linear co-ordinates (z1, · · · , zn) near
the point m ∈ M , there should be preferred systems of Darboux co-ordinates (t1, · · · , tn)6 on open

subsets of Z1, depending on a choice of half-plane H(ϕ) ⊂ C∗. Given a point x ∈ X with local

co-ordinates (zi, θj) these should satisfy

ti(y(ǫ)(x)) ∼ −ǫ−1zi + θi +O(ǫ), (69)

as ǫ → 0 in the half-plane H(ϕ).

We observed in Section 3.2 that axiom (J2) of Definition 3.4 implies that the connections hǫ =

h+ ǫ−1v descend to the quotient manifold X# = TM/(2πi) T Z

M . We can then define a twistor space

Z# in exactly the same way as before by considering the space of leaves of the resulting foliation

on P1 ×X#. We can then repeat the above discussion replacing Z1 with Z#
1 and the vector spaces

5The factors in (67) and (68) appear in different orders because we are working in the group of symplectic
automorphisms of the space Cn rather than the opposite group of Poisson automorphisms of its ring of functions:
compare [12, Section 6.6].

6Unfortunately these co-ordinates are usually denoted (x1, · · · , xn) since in certain examples they are the loga-
rithms of cluster X co-ordinates. We can only apologise for this excess of x’s.
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TM,m with the tori

T#
M,m = TM,m/(2πi) T

Z

M,m
∼= (C∗)n. (70)

This leads to an anaalogy between Frobenius structures and Joyce structures in which the group of

linear automorphisms of the vector space TM,m is replaced by the group of symplectic automorphisms

of the torus T#
M,m.

5. Further properties of twistor space

Let M be a complex manifold equipped with a Joyce structure. In this section we gather some

miscellaneous results about the associated twistor space p : Z → P1 associated to a Joyce structure.

Firstly, we investigate Hamiltonian generating functions for the C∗-action on Z∞. Secondly, we

observe that the zero section M ⊂ X = TM is contracted by the quotient map q∞ : X → Z∞, and

hence defines a distinguished point 0 ∈ Z∞. Structures on the tangent space T0 Z∞ can then be

pulled back to give linear structures on the tangent bundle TM . Finally we explain an alternative

way to describe a Joyce structure in terms of local co-ordinates and a generating function.

5.1. Joyce function. From the Cartan formula and (60) we have

diE(Ω−) = LE(Ω−)− iE(dΩ−) = 0. (71)

Let us consider a locally-defined function F on X satisfying dF = −iE(Ω−). Then F descends along

the quotient map q∞ : X → Z∞. Indeed, if a vector field u on X is horizontal for the connection

h = h∞ then

u(F ) = iu(dF ) = −iuiE(Ω−) = iEiu(Ω−) = 0, (72)

since Ω− = q∗∞(Ω∞). We call the resulting function F : Z∞ → C, or its pullback to X , a Joyce

function.7 In the case of a homogeneous Joyce structure, F is a Hamiltonian generating function

for the symplectic action of C∗ on Z∞.

Note that F is only well-defined up to the addition of a constant. It follows from Lemma 5.2

below that the pullback q∗∞(F ) is constant along the zero section M ⊂ TM = X . We can therefore

normalise F by insisting that it vanishes on this locus. Assuming that M is connected this is

equivalent to the statement that F vanishes on the distinguished point 0 ∈ Z∞ of Lemma 5.2. With

this normalisation q∗∞(F ) becomes a global function on X .

To write an explicit expression for the Joyce function let us choose a local system of co-ordinates

on M as in Section 3.4, and denote by W = W (z, θ) the resulting Plebański function.

7In [12] we used the term Joyce function as a synonym for the Plebański function W of Section 3.4. Following [1]
we now prefer to use it for the function introduced here, which was also considered by Joyce [32].
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Lemma 5.1. The Joyce function F is given by the expression

F (zi, θj) = v(E)(W ) =
∑

q

zq ·
∂W

∂θq
(73)

Proof. Using (26) and (40), and recalling that Wi = ∂W/∂θi, we have

iE(Ω−) = −
∑

p,q

zq
∂2W

∂θp∂θq
dθp +

∑

p,q

∂2W

∂zp∂θq
(zp dzq − zq dzp)

= −
∑

p,q

zq
∂2W

∂θp∂θq
dθp −

∑

p,q

zq
∂2W

∂zp∂θq
dzp −

∑

q

∂W

∂θq
dzq

= −
∑

p

(∂F

∂θp
dθp +

∂F

∂zp
dzp

)

= −dF,

(74)

where we used the homogeneity property (42) in the form
∑

p zp · ∂W
∂zp

= −W . The expression (73)

vanishes along the zero section M ⊂ TM = X by the relation (48). �

5.2. Distinguished point of Z∞. In this section we will assume that the base M of our Joyce

structure is connected. For simplicity we also assume that the Joyce structure is homogeneous,

although this is not strictly necessary.

Lemma 5.2. The map q∞ : X → Z∞ contracts the zero section M ⊂ X = TM to a single point

0 ∈ Z∞ which is a fixed point for the induced C∗-action on Z∞.

Proof. Note that the parity property (43) and the formula (6) imply that along the zero section

M ⊂ X = TM we have hi = ∂/∂zi. The first claim follows immediately from this. The second claim

holds because the action of C∗ on X preserves the zero section. �

The operator J : TX → TX maps vertical tangent vectors to horizontal ones, and hence identifies

the normal bundle to the zero section M ⊂ TM with the tangent bundle TM . The derivative of the

quotient map q∞ : X → Z∞ identifies this normal bundle with the trivial bundle with fibre TZ∞,0.

The combination of these two maps gives an isomorphism

TM,p
J−→ NM⊂X,p

q∞,∗−→ TZ∞,0, (75)

for each point p ∈ M ⊂ TM , and hence a flat connection on the tangent bundle TM . This is the

linear Joyce connection from [12, Section 7], which appeared in the original paper of Joyce [32]. In

co-ordinates it is given by the formula

∇J
∂

∂zi

( ∂

∂zj

)

= −
∑

l,m

ηlm · ∂3W

∂θi ∂θj ∂θl

∣

∣

∣

θ=0
· ∂

∂zm
. (76)
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It was shown in [15, Section 3.2] that ∇J coincides with the Levi-Civita connection of the complex

hyperkähler structure on X restricted to the zero-section M ⊂ X = TM .

The following result follows immediately from the definitions.

Lemma 5.3. The weight space decomposition for the action of C∗ on TZ∞,0 defines via the identi-

fication (75) a decomposition TM
∼=

⊕

i∈Z Vi into ∇J -flat sub-bundles Vi ⊂ TM . �

If the distinguished point 0 ∈ Z∞ is an isolated fixed point for the C
∗ action, there are some

additional consequences described in the following result. An example when this condition holds is

described in Section 9 below.

Lemma 5.4. Suppose the point 0 ∈ Z∞ is an isolated fixed point for the action of C∗.

(i) The Hessian of the Joyce function F defines a non-degenerate symmetric bilinear form on

TZ∞,0. Via the identification (75) this induces a metric on M whose Levi-Civita connection

is the linear Joyce connection ∇J .

(ii) The positive and negative weight spaces of the C∗-action on TZ∞,0 define via the identification

(75) a decomposition TM = V− ⊕ V+ into ∇J -flat sub-bundles. These are Lagrangian for the

symplectic form ω.

Proof. Part (i) is immediate from the result of Lemma 5.1 that F is the Hamiltonian for the C∗-

action on Z∞. For part (ii), note that since Ω− is C
∗-invariant, the positive and negative weight

spaces in TZ∞,0 are Lagrangian for the form Ω−. The result then follows by noting that the operator

J exchanges the forms Ω− = q∗∞(ω∞) and Ω+ = π∗(ω), so the composite (75) takes the form ωp to

Ω∞,0. �

The metric g of Lemma 5.4 is given in co-ordinates by the formula

g
( ∂

∂zi
,
∂

∂zj

)

=
∂2F

∂θi∂θj

∣

∣

∣

θ=0
. (77)

This is the Joyce metric of [12, Section 7], which also appeared in the original paper [32].

5.3. Another Plebański function. In Section 3.4 we described a Joyce structure in local co-

ordinates using the Plebański function W = W (z, θ). For the sake of completeness we briefly

discuss here an alternative generating function, also introduced by Plebański [40]. In the literature

(see e.g. [19]) the function W is called the Plebański function of the second kind, whereas the

function U introduced below is the Plebański function of the first kind.

Consider a Joyce structure on a complex manifold M . We can introduce local co-ordinates on

X = TM by combining local Darboux co-ordinates (z1, · · · , zn) on the twistor fibre Z0 = M as in

Section 2.2, with the pullback of local Darboux co-ordinates (φ1, · · · , φn) on the twistor fibre Z∞.
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Then by definition

Ω+ =
1

2
·
∑

p,q

ωpq · dzp ∧ dzq, Ω− =
1

2
·
∑

p,q

ωpq · dφp ∧ dφq. (78)

To find an expression for ΩI in the co-ordinate system (zi, φj), note that since Z∞ is the quotient

of X by the distribution spanned by the vector fields hi of (6), we can write

∂

∂zi

∣

∣

∣

∣

φ

=
∂

∂zi

∣

∣

∣

∣

θ

+
∑

p,q

ηpq ·
∂2W

∂θi∂θp
· ∂

∂θq
, (79)

where the subscripts indicate which variables are being held fixed. Then

∂

∂zr

∣

∣

∣

∣

φ

(

∑

k

ωksθk

)

=
∂2W

∂θr∂θs
, (80)

and the symmetry of the right-hand side ensures that there is a locally-defined function U = U(zi, φj)

on X satisfying the equations

∂U

∂zs
=

∑

k

ωksθk,
∂2U

∂zr∂zs
=

∂2W

∂θr∂θs
. (81)

The formula (25) then becomes

2iΩI = −d
(

∑

p,q

ωpqθp dzq

)

= −
∑

p,q

∂2U

∂φp∂zq
· dφp ∧ dzq. (82)

After restricting to a fibre of π : X → M the formula (26) shows that

∑

p,q

ωpq · dθp ∧ dθq =
∑

p,q

ωpq · dφp ∧ dφq, (83)

which implies that

∑

p,q

ωpq ·
∂θp
∂φi

· ∂θq
∂φj

= ωij. (84)

Using (81) we then obtain the relations

∑

r,s

ηrs ·
∂2U

∂φi∂zr
· ∂2U

∂φj∂zs
= −ωij (85)

which are known as Plebański’s first heavenly equations.
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6. Hamiltonian systems

In this section we show how to use a Joyce structure to define a time-dependent Hamiltonian

system. The construction depends on two additional pieces of data: a cotangent bundle structure

on Z0, and a Lagrangian submanifold R ⊂ Z∞. We give some motivation in the next section,

where, in the particular case of Joyce structures of class S[A1], we relate our Hamiltonian systems

to isomonodromy connections.

6.1. Hamiltonian systems. We begin with the following definition.

Definition 6.1. A time-dependent Hamiltonian system consists of the following data:

(i) a submersion f : Y → B with a relative symplectic form Ω ∈ H0(Y,∧2 T ∗
Y/B),

(ii) a flat, symplectic connection k on f ,

(iii) a section ̟ ∈ H0(Y, f ∗(T ∗
B)).

For each vector field u ∈ H0(B, TB) there is an associated function

Hu = (f ∗(u), ̟) : Y → C. (86)

There is then a pencil kǫ of symplectic connections on f defined by

kǫ(u) = k(u) + ǫ−1 · Ω♯(dHu). (87)

The system is called strongly-integrable if these connections are all flat.

These definitions become more familiar when expressed in local co-ordinates. Take co-ordinates

ti on the base B, which we can think of as times, and k-flat Darboux co-ordinates (qi, pi) on the

fibres of f , so that Ω =
∑

i dqi ∧ dpi. We can then write ̟ =
∑

i Hi dti and view the functions

Hi : Y → C as time-dependent Hamiltonians. The connection kǫ is then given by the flows

kǫ

( ∂

∂ti

)

=
∂

∂ti
+

1

ǫ
·
∑

j

(∂Hi

∂pj

∂

∂qj
− ∂Hi

∂qj

∂

∂pj

)

. (88)

The condition that the system is strongly-integrable is that for all 1 6 i, j 6 n

∑

r,s

(∂Hi

∂qr
· ∂Hj

∂ps
− ∂Hi

∂qs
· ∂Hj

∂pr

)

= 0,
∂Hi

∂tj
=

∂Hj

∂ti
. (89)

For a nice exposition of Definition 6.1 see [5, Section 5]. Note that Boalch works in the real C∞

setting, whereas we assume, as elsewhere in the paper, that all structures are holomorphic. Note

also that Boalch assumes that Y = M ×B is a global product, with M a fixed symplectic manifold,

and k the canonical connection on the projection f : M × B → B. We can always reduce to this

case by passing to an open subset of Y .
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6.2. Hamiltonian systems from Joyce structures. Let M be a complex manifold with a holo-

morphic symplectic form ω. By a cotangent bundle structure on M we mean the data of a complex

manifold B and an open embedding M ⊂ T ∗
B, such that ω is the restriction of the canonical sym-

plectic form on T ∗
B. We denote by ρ : M → B the induced projection map.

The Liouville 1-form on T ∗B restricts to a 1-form λ ∈ H0(M,T ∗
M) on the open subset M . It

will be convenient to distinguish λ from the tautological section β ∈ H0(M, ρ∗(T ∗
B)). The two are

identified via the inclusion ρ∗(T ∗
B) →֒ T ∗

M induced by ρ.

Given local co-ordinates (t1, · · · , td) on B, there are induced linear co-ordinates (s1, · · · , sd) on

the cotangent spaces T ∗
B,b obtained by writing a 1-form as

∑

i si dti. In the resulting co-ordinates

(si, tj) on M we have

ω =
∑

i

dti ∧ dsi, β =
∑

i

si · ρ∗(dti), λ =
∑

i

si dti. (90)

Let M be a complex manifold equipped with a Joyce structure. Thus there is a pencil of flat,

symplectic connections hǫ = h + ǫ−1v on the projection π : X = TM → M , and closed 2-forms ΩI

and Ω± on X . We denote by p : Z → P1 the associated twistor space. Suppose also given:

(i) a cotangent bundle structure M ⊂ T ∗
B,

(ii) a Lagrangian submanifold R ⊂ Z∞.

Set Y = q−1
∞ (R) ⊂ X , and denote by i : Y →֒ X the inclusion. There are maps

Y �

� i // X
π // M

ρ // B (91)

Define p : Y → M and f : Y → B as the composites p = π ◦ i and f = ρ ◦ π ◦ i. We make the

transversality assumption:

(⋆) For each b ∈ B the restriction of q1 : X → Z1 to the fibre f−1(b) ⊂ Y ⊂ X is étale.

The following result will be proved in the next section.

Theorem 6.2. Given the above data there is a strongly-integrable time-dependent Hamiltonian

system on the map f : Y → B uniquely specified by the following conditions:

(i) the relative symplectic form Ω is induced by the closed 2-form i∗(2iΩI) on Y ;

(ii) for each ǫ ∈ C
∗ the connection kǫ on f : Y → B satisfies

im(kǫ) = TY ∩ im(hǫ) ⊂ TX ; (92)

(iii) the Hamiltonian form is ̟ = p∗(β) ∈ H0(Y, f ∗(T ∗
B)).

To make condition (iii) more explicit, take a co-ordinates system (t1, · · · , td) on B, and extend to

a co-ordinate system (si, tj) on M as above. We can also extend to a co-ordinate system (ti, qj, pj)
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on Y as in Section 6.1. Then writing Hi = p∗(si), we have ̟ =
∑

i Hi · f ∗(dti), and

kǫ

( ∂

∂ti

)

=
∂

∂ti
+

1

ǫ
·
∑

j

(

∂Hi

∂qj

∂

∂pj
− ∂Hi

∂pj

∂

∂qj

)

. (93)

The main claim of Theorem 6.2 is then that the connections kǫ are all flat, so that the conditions

(89) hold for the Hamiltonians Hi.

6.3. Proof of Theorem 6.2. Take a point y ∈ Y ⊂ X with π(y) = m ∈ M and set b = ρ(m).

Given a tangent vector u ∈ TB,b let us choose a lift w ∈ TM,m satisfying ρ∗(w) = u. Using the maps

hǫ, v : π
∗(TM) → TX as in Section 2.2 we then obtain tangent vectors hǫ(w), v(w) ∈ TX,y. Recall

that hǫ(w) = ǫ−1v(w) + h(w), and note that h(w) ∈ TY,y, since Y = q−1
∞ (R), and q∞ contracts the

leaves of h = h∞. This implies that for any ǫ ∈ C∗ the following two conditions are equivalent:

(a) v(w) ∈ TY,y ⊂ TX,y,

(b) hǫ(w) ∈ TY,y ⊂ TX,y.

Thus when (b) holds for some ǫ ∈ C∗ it holds for all such ǫ.

Consider next the transversality statement

(⋆)ǫ The restriction of qǫ : X → Zǫ to the fibre f−1(b) ⊂ Y ⊂ X is étale at the point y ∈ Y .

Since the kernel of the derivative of qǫ at the point y ∈ X is the image of hǫ(TM,m), the condition

(⋆)ǫ is equivalent to

h−1
ǫ (TY,y) ∩ ker(ρ∗) = (0) ⊂ TM,m. (94)

But this is also the condition for the existence of a unique lift w ∈ TM,m satisfying condition (b).

Thus since we assumed (⋆)ǫ for ǫ = 1, it holds for all ǫ ∈ C∗.

We can now construct connections kǫ on π : Y → B for all ǫ ∈ C∗ by setting kǫ(u) = hǫ(w), where

w is the unique lift satisfying condition (b). In more geometric terms, the condition (⋆)ǫ ensures

that the map (f, qǫ) : Y → B×Zǫ is étale, and the connection kǫ is then pulled back from the trivial

connection on the projection B × Zǫ → B. This second description shows in particular that the

resulting connection kǫ is flat.

The closed 2-form q∗ǫ (Ωǫ) defines a relative symplectic form on f by the condition (⋆ǫ). Recall

the identity of closed 2-forms

q∗ǫ (Ωǫ) = ǫ−2q∗0(Ω0) + 2iǫ−1ΩI + q∗∞(Ω∞) (95)

from Section 4. On restricting to Y the last term on the right-hand side vanishes, since R ⊂ Z∞

is Lagrangian. On further restricting to a fibre f−1(b) ⊂ Y the first term also vanishes, since

ρ−1(b) ⊂ M is Lagrangian. Thus for ǫ ∈ C∗ the forms ǫ · q∗ǫ (Ωǫ) define the same relative symplectic

form Ω on f , and this is also induced by 2iΩI . Note that the the kernel of the restriction Ωǫ|Y
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clearly contains the subspace im(kǫ), and hence coincides with it. This implies that the connection

kǫ on f is symplectic [27, Theorem 4].

Observe next that there is a commutative diagram

TX

−(2iΩI )
♭

// T ∗
X

TM
ω♭

//

v

OO

T ∗
M

π∗

OO
(96)

since the relations (13) show that for tangent vectors w1 to M and w2 to X

−2iΩI(v(w1), w2) = −g(2iI(v(w1)), w2) = −2g(v(w1), w2) = g((J + iK)(h(w1)), w2)

= Ω+(h(w1), w2) = (π∗ω)(h(w1), w2) = ω(w1, π∗(w2)).
(97)

The fact that the closed 2-form i∗(2iΩI) induces a relative symplectic form on the map f : Y → B

is the statement that the composite of the bundle maps

ker(f∗)
�

� // TY

(2iΩI )
♭

// T ∗
Y

// T ∗
Y /f

∗(T ∗
B) (98)

is an isomorphism. The relative Hamiltonian flow r corresponding to a function H : Y → C is then

the unique vertical vector field on the map f : Y → B which is mapped to dH viewed as a section

of T ∗
Y /f

∗(T ∗
B). In symbols we can write (2iΩI)

♭(r) = dH + f ∗(α) for some covector field α on B.

Consider the canonical section ̟ = p∗(β) ∈ H0(Y, f ∗(T ∗
B)). Note that given a vector field

u ∈ H0(B, TB) the corresponding Hamiltonian Hu = (f ∗(u), ̟) = p∗(ρ∗(u), β) on Y is pulled back

from M . Let us lift u to a vector field w on M as above. Then kǫ(u) = hǫ(w) = h(w) + ǫ−1 · v(w).
We claim that v(w) is the relative Hamiltonian flow r defined by the function Hu. To prove this we

must show that the 1-form (2iΩI)
♭(v(w))− dHu on Y is a pullback from B. By the commutative

diagram (96) this is equivalent to showing that the 1-form ω♭(w)− d(ρ∗(u), β) on M is a pullback

from B.

This final step is perhaps most easily done in local co-ordinates (si, ti) on M as above in which

β =
∑

i sidti and ω =
∑

i dti ∧ dsi. If we take u = ∂
∂ti

then (ρ∗(u), β) = si and the lift w has the

form w = ∂
∂ti

+
∑

j aj
∂
∂sj

for locally-defined functions aj : M → C. But then ω♭(w) = dsi−
∑

j aj dtj,

and since the ti are pulled back via ρ this proves the claim. We have now defined the symplectic

connections kǫ for ǫ ∈ C∗ and proved the relation (88). We can then define a symplectic connection

k = k∞ by the same relation. Since the kǫ are flat for all ǫ ∈ C∗ the relations (89) hold, and it

follows that k is also flat.



JOYCE STRUCTURES AND THEIR TWISTOR SPACES 27

7. Joyce structures of class S[A1]

In this section we discuss an interesting class of examples of Joyce structures. They are related

to supersymmetric gauge theories of class S[A1], and were first constructed in the paper [16]. The

base M parameterises pairs (C,Q) consisting of an algebraic curve C of some fixed genus g ≥ 2,

and a quadratic differential Q ∈ H0(C, ω⊗2
C ) with simple zeroes. The generalisation to the case

of meromorphic quadratic differential with poles of fixed orders will be treated in the forthcoming

work [41]. After reviewing the construction of these Joyce structures, we relate the twistor fibre

Z1 to the associated character variety, and the Hamiltonian systems of Section 6 to isomonodromy

connections.

7.1. Construction. For each point (C,Q) ∈ M there is a branched double cover p : Σ → C defined

via the equation y2 = Q(x), and equipped with a covering involution σ : Σ → Σ. Taking periods of

the form y dx on Σ identifies the tangent space T(C,Q)M with the anti-invariant cohomology group

H1(Σ,C)−. The intersection pairing on H1(Σ,C)
− then induces a symplectic form on M , and

the dual of the integral homology groups H1(Σ,Z)
− defines an integral affine structure T Z

M ⊂ TM .

There is a natural C∗-action on M which rescales the quadratic differential Q with weight 2. Taken

together this defines a period structure on M .

The usual spectral correspondence associates to a σ-anti-invariant line bundle L on Σ, a rank 2

vector bundle E = p∗(L)⊗
√
ωC on C with a Higgs field Φ. A key ingredient in [16] is an extension

of this correspondence which relates anti-invariant connections ∂ on L to connections ∇ on E.

Given this, we can view the space X# appearing in (30) as parameterising the data (C,E,∇,Φ).

The pencil of non-linear connections hǫ is then obtained by requiring that the monodromy of the

connection ∇− ǫ−1Φ is constant as the pair (C,Q) varies.

To explain the construction in a little more detail, let us fix a parameter ǫ ∈ C
∗ and contemplate

the following diagram of moduli spaces:

M(C,E,∇,Φ)
α

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠ βǫ

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

M(C,Q, L, ∂)

π3

��

M(C,Q,E,∇ǫ)

π2

��

ρ′ // M(C,E,∇ǫ)

π1

��
M(C,Q) oo = // M(C,Q)

ρ // M(C)

(99)

Each moduli space parameterises the indicated objects, and the maps ρ, ρ′ and πi are the obvious

projections. The map α is the above-mentioned extension of the spectral correspondence, and the

map βǫ is defined by the rule

βǫ(C,E,∇,Φ) = (C,− det(Φ), E,∇− ǫ−1Φ). (100)
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An important point is that α is birational, and βǫ is generically étale.

Given a point of M = M(C,Q), an anti-invariant line bundle with connection (L, ∂) on the

spectral curve Σ has an associated holonomy representation H1(Σ,Z)
− → C∗. This determines

(L, ∂) up to an action of the group of 2-torsion line bundles on C. We therefore obtain an étale

map from M(C,Q, L, ∂) to the space X#. The isomonodromy connection on the map π1 is a flat

symplectic connection whose leaves consist of connections (E,∇ǫ) with fixed monodromy. Pulling

this connection through (99) gives a family of non-linear symplectic connections hǫ on the projection

π : X# → M . This gives rise to a meromorphic Joyce structure onM , with the poles arising because

α is only birational rather than an isomorphism, and βǫ is only generically étale.

7.2. Twistor space. Consider the twistor space p : Z# → P1 associated to the Joyce structure of

Section 7.1. It could be an interesting problem to try to give a direct moduli-theoretic construction

of this space. For now we can at least describe the fibre Z1 up to an étale cover. Note that since

these Joyce structures are meromorphic, the connections hǫ are only well-defined on the projection

π : X0 → M of an open subset X0 ⊂ X = TM . We define the twistor fibres as the spaces of leaves

of the resulting foliations of X0.

Choose a reference surface Sg of genus g, set G = PGL2(C), and define

MCG(g) = π0(Diff+(Sg)), X(g) = Homgrp(π1(Sg), G)/G. (101)

Then the mapping class group MCG(g) acts on the character stack X(g) in the usual way, and

sending a quadruple (C,E,∇) to the monodromy of the connection ∇ defines a map

µ : M(C,E,∇)/J2(C) → X(g)/MCG(g), (102)

whose fibres are by definition the horizontal leaves of the isomonodromy connection. Transferring

this map across the diagrams (99), and passing to the leaf space yields an étale map

µ : Z#
ǫ → X(g)/MCG(g). (103)

It would be interesting to test the speculations of Section 4.3 in this context. It has been sug-

gested that the appropriate Darboux co-ordinates to consider on the character variety X(g) are the

Bonahon-Thurston shear co-ordinates [7, 22]. Let us instead consider spaces of quadratic differen-

tials with poles of fixed orders. The corresponding Joyce structures will appear in [41]. It is natural

to expect that there is a similar map to (103) in which X(g) is replaced with a space of framed

local systems [23]. It is then expected that the preferred Darboux co-ordinates associated to a gen-

eral half-plane H(ϕ) are the Fock-Goncharov co-ordinates for the WKB triangulation determined

by the horizontal trajectories of the quadratic differential e−2πiϕ · Q. It follows from the work of

Gaiotto, Moore and Neitzke [26], and the results of [14], that as ϕ varies these satisfy the jumps

(76) determined by the DT theory of the corresponding category. The asymptotic property (69)
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should follow from existing results in exact WKB analysis. The whole story has been treated in full

detail [13] in the special case discussed in Section 9 below.

7.3. Hamiltonian systems. Let us consider the Hamiltonian system of Theorem 6.2 in the case

of Joyce structures of Section 7.1. Recall that a crucial feature of the construction of these Joyce

structures is the isomonodromy connection on the map

π1 : M(C,E,∇1) → M(C), (104)

which is both flat and symplectic. To construct a Hamiltonian system we need a whole one-

parameter family of such connections. In the notation of Section 6, the isomonodromy connection

is k1, but we also need the connection k∞ before we can write (87). This issue is often a little hidden

in the literature because in many examples there is a natural choice for the reference connection

k∞ which is then taken without further comment. It is discussed explicitly in [29], and is also

mentioned for example in [6, Remark 7.1].

One way to try to define a Hamiltonian system on the map (104) is to choose for each bundle E

a distinguished ‘reference’ connection ∇∞. Then we can define a Higgs field Φ = ∇∞ −∇1 and for

ǫ ∈ C∗ a connection ∇ǫ = ∇∞ − ǫ−1Φ. We can then define kǫ to be the isomonodromy connection

for the family of connections (E,∇ǫ). Many interesting examples of isomonodromic systems in the

literature involve bundles with meromorphic connections on a genus 0 curve. Since the generic such

bundle E is trivial, it is then natural to take ∇∞ = d. But for bundles with connection on higher

genus curves there is no such canonical choice.

Consider the meromorphic Joyce structures of Section 7.1. Note that the base M = M(C,Q) has

a natural cotangent bundle structure, with B = M(C) being the moduli space of curves of genus g,

and ρ : M → B the obvious projection ρ : M(C,Q) → M(C). Indeed, the tangent spaces to M(C)

are the vector spaces TCM(C) = H1(C, TC), and Serre duality givesH0(C, ω⊗2
C ) = H1(C, TC)

∗. Thus

T ∗
B parameterises pairs (C,Q) of a curve C together with a quadratic differential Q ∈ H0(C, ω⊗2

C ),

and M ⊂ T ∗
B is the open subset where Q has simple zeroes.

Let us choose a Lagrangian R ⊂ X(g)/MCG(g). Pulling back by the étale map gives a Lagrangian

in Z∞ which we also denote by R. The subspace of the quotient X(g)/MCG(g) consisting of

monodromy representations of connections on a fixed bundle E is known to be Lagrangian. Then

for a generic bundle E we can expect these two Lagrangians to meet in a finite set of points, and

so locally on the moduli of bundles we can define ∇∞ by insisting that its monodromy lies in R.

Using the natural cotangent bundle structure ρ : M → B and the Lagrangian R ⊂ Z∞ we can

now apply the construction of Section 6.2 to these examples. We obtain a diagram
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Y = q−1
∞ (R) �

� i //

f
))❙❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

M(C,E,∇,Φ)
β1 //

��

M(C,E,∇1)

π1
uu❦❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

M(C)

(105)

where the map β1 is defined by setting ∇1 = ∇− Φ.

The isomonodromy connection defines a flat connection h1 on the map π1. The Hamiltonian

system of Theorem 6.2 defines a whole pencil of flat connections kǫ on the map f . The transversality

assumption ensures that the map β1◦ i is étale, and the pullback of the connection h1 then coincides

with k1. Thus by choosing the Lagrangian R ⊂ Z∞ and using it to define reference connections, we

have upgraded the isomonodromy connection to a Hamiltonian system.

8. The doubled A1 example

In this section we discuss a simple and rather degenerate example of a pre-Joyce structure which

does not quite satisfy the conditions to be a Joyce structure. It is related to the DT theory of the

A1 quiver.

8.1. Pre-Joyce structure. We take M = C∗×C with co-ordinates (z, z∨), and consider the total

space of the tangent bundle X = TM with corresponding co-ordinates (z, z∨, θ, θ∨) as in Section 2.2.

We define a pre-Joyce structure on M by taking the symplectic form

ω =
1

2πi
· dz ∧ dz∨, (106)

and the pencil of connections h + ǫ−1v defined by

hǫ

(

∂

∂z

)

=
∂

∂z
+

1

ǫ
· ∂

∂θ
+

θ

2πiz
· ∂

∂θ∨
, hǫ

(

∂

∂z∨

)

=
∂

∂z∨
+

1

ǫ
· ∂

∂θ∨
. (107)

The corresponding Plebański function is

W (z, z∨, θ, θ∨) = − θ3

6(2πi)2z
. (108)

The formulae (24) - (26) become

Ω+ =
1

2πi
· dz ∧ dz∨, 2iΩI =

1

2πi

(

dθ ∧ dz∨ − dθ∨ ∧ dz
)

, (109)

Ω− =
1

2πi
· dθ ∧ dθ∨ − θ

(2πi)2z
· dθ ∧ dz. (110)

The above pre-Joyce structure was extracted from the DT theory of the A1 quiver in [12, Section

8] by first applying a doubling procedure and then solving the resulting Riemann-Hilbert problem.
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The doubling procedure is required because the Euler form of the category is degenerate, and in

fact identically zero.

8.2. Period structure. We can define a period structure onM by declaring the co-ordinates (z, z∨)

to be integral linear. The resulting lattice T Z

M ⊂ TM is spanned by integral linear combinations of

the vector fields ∂
∂z

and ∂
∂z∨

. This is a homogeneous period structure, since the vector field

Z = z · ∂

∂z
+ z∨ · ∂

∂z∨
(111)

generates the C∗-action t · (z, z∨) = (tz, tz∨). The inverse η : T ∗
M × T ∗

M → OM of the symplectic

form ω satisfies η(dz∨, dz) = 2πi.

Combining the above pre-Joyce structure and period structure does not quite yield a Joyce

structure. The problem is with axiom (J2): the connection (107) is not invariant under translations

by the lattice (2πi) T Z

M since it depends on θ rather than its exponential. This problem seems to be

related to the doubling procedure referred to above.

8.3. Alternative co-ordinates. There is another integral affine structure on M with integral

affine co-ordinates

v = z, v∨ = z∨ − z

2πi

(

log
( z

2πi

)

− 1

)

. (112)

The associated co-ordinates (v, v∨, φ, φ∨) on X = TM are

φ = θ, φ∨ = θ∨ − θ

2πi
· log

( z

2πi

)

. (113)

In this co-ordinate system the connection hǫ takes the form

hǫ

(

∂

∂v

)

=
∂

∂v
+

1

ǫ
· ∂

∂φ
, hǫ

(

∂

∂v∨

)

=
∂

∂v∨
+

1

ǫ
· ∂

∂φ∨
, (114)

and hence the corresponding Plebański function W (v, v∨, φ, φ∨) = 0.

Note however that since

Z = v · ∂

∂v
+
(

v∨ − v

2πi

)

· ∂

∂v∨
, (115)

we cannot combine this integral affine structure with the vector field Z to form a period structure.

8.4. First Plebański function. It follows from (114) that the fibre co-ordinates (φ, φ∨) are pre-

served by the connection h = h∞. By (26) they satisfy

Ω− =
1

2πi
· dφ ∧ dφ∨. (116)
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They therefore descend to Darboux co-ordinates on the twistor fibre Z∞. The corresponding first

Plebański function defined as in Section 5.3 is

U(z, z∨, φ, φ∨) =
1

2πi

(

z∨φ− φ∨z +
φz

2πi
− φz

2πi
· log

( z

2πi

)

)

. (117)

It satisfies

∂U

∂z∨
=

θ

2πi
,

∂U

∂z
=

−θ∨

2πi
. (118)

The Jacobian matrix has entries

∂2U

∂z∂φ
= − 1

2πi
log

( z

2πi

)

,
∂2U

∂z∨∂φ
=

1

2πi
= − ∂2U

∂z∂φ∨
,

∂2U

∂z∨∂φ∨
= 0, (119)

and has determinant −1/(2πi)2 as required by the first Plebański equation (85).

Remark 8.1. In this case the Jacobian matrix (119) is skew-symmetric. This means we can find

F = F(z, z∨) such that

∂F

∂z
=

∂U

∂φ
,

∂F

∂z∨
= − ∂U

∂φ∨
. (120)

Then F is closely related to the prepotential of [12, Section 7]. Explicitly we have

F(z, z∨) =
zz∨

2πi
− 1

(2πi)2

(

1

2
z2 log

( z

2πi

)

− 3

4
z2
)

. (121)

9. The A2 example

Here we consider a very interesting Joyce structure which is perhaps the simplest non-trivial

example. It is related to the DT theory of the A2 quiver, and is an example of a Joyce structure of

class S[A1]. For more details on this example we refer the reader to [13].

9.1. Period structure. The base of the Joyce structure is

M = {(a, b) ∈ C
2 : 4a3 + 27b2 6= 0}. (122)

Associated to a pair (a, b) ∈ M is a quadratic differential

Q0(x) dx
⊗2 = (x3 + ax+ b) dx⊗2 (123)

on P1 which has a single pole of order 7 at x = ∞ and simple zeroes. There is an associated double

cover Σ → P1 which is the projectivization of the affine elliptic curve y2 = x3 + ax+ b.

Take a basis of cycles (γ1, γ2) ⊂ H1(Σ,Z) with intersection γ1 · γ2 = 1. We shall need the periods

and quasi-periods of the elliptic curve Σ. They are given by

ωi =

∫

γi

dx

2y
, ηi = −

∫

γi

x dx

2y
, (124)
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and satisfy the Legendre relation ω2η1 − ω1η2 = 2πi.

There are local co-ordinates on M given by

zi =

∫

γi

y dx =

∫

γi

√
x3 + ax+ b dx, (125)

and relations

∂

∂a
= −η1

∂

∂z1
− η2

∂

∂z2
,

∂

∂b
= ω1

∂

∂z1
+ ω2

∂

∂z2
. (126)

We define a period structure on M by declaring (z1, z2) to be the integral linear co-ordinates. We

take the symplectic form

ω = − 1

2πi
dz1 ∧ dz2 = da ∧ db. (127)

Note that the inverse satisfies

η
(

dz1, dz2
)

= 2πi (128)

and so axiom (J1) of Definition 3.4 is satisfied.

The Euler vector field is

Z = z1
∂

∂z1
+ z2

∂

∂z2
=

4a

5

∂

∂a
+

6b

5

∂

∂b
. (129)

Note that Z does not generate a C∗ action onM . In fact the moduli space of quadratic differentials

of the form (123) is the quotient M/µ5, where the group µ5 ⊂ C∗ acts via ζ · (a, b) = (ζ4a, ζ6b).

The vector field Z generates an action of C∗ on this quotient.

9.2. Joyce structure. We have local co-ordinates (zi, θj) on the tangent bundle X = TM . We

consider the quotient X# = TM/(2πi) T Z

M . The fibre over a point (a, b) ∈ M is the cohomology

group H1(Σ,C∗) ∼= (C∗)2. We introduce some alternative co-ordinates on X# by the relation

θi = −
∫

γi

(

p

x− q
+ r

)

dx

2y
, (130)

where p2 = q3+ aq+ b and r ∈ C. The integral is well-defined up to multiples of 2πi. The numbers

ξi = exp(θi) are the holonomies of a connection on the line bundle on Σ with divisor (q, p)−∞.

In terms of the fibre co-ordinates (θa, θb) associated to the co-ordinates (a, b) we then have

θi = −ηiθa + ωiθb. (131)

The functions (θa, θb) are given explicitly by

θa = −1

4

∫ (q,p)

(q,−p)

dx

y
, θb =

1

4

∫ (q,p)

(q,−p)

xdx

y
− r. (132)

The Joyce structure on X = TM is obtained by taking the connection hǫ given by
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hǫ

(

∂

∂a

)

= −2p

ǫ

∂

∂q
− q

ǫ

∂

∂r
+

(

∂

∂a
− r

p

∂

∂q
− r2(3q2 + a)− qpr

2p3
∂

∂r

)

, (133)

hǫ

(

∂

∂b

)

= −1

ǫ

∂

∂r
+

(

∂

∂b
+

r

2p2
∂

∂r

)

. (134)

This is the isomonodromy connection for a pencil of connections ∇− ǫ−1Φ on the trivial rank 2

bundle on P1 with

∇ = d−
(

r 0
0 −r

)

dx

2p
, Φ =

(

p x2 + xq + q2 + a
x− q −p

)

dx. (135)

Equivalently we can consider the deformed cubic oscillator

y′′(x) = Q(x)y(x), Q(x) = ǫ−2Q0(x) + ǫ−1Q1(x) +Q2(x), (136)

where the terms in the potential are

Q1(x) =
p

x− q
+ r, Q2(x) =

3

4(x− q)2
+

r

2p(x− q)
+

r2

4p2
. (137)

There is a rational expression for the Plebański function

W =
1

4(4a3 + 27b2)p

(

2apr3 − (6aq2 − 9bq + 4a2)r2 − 3p(3b− 2aq)r − 2ap2
)

, (138)

although note that this does not satisfy the second of the normalisation conditions (48). In other

words, the uniquely-defined Plebański function of Lemma 3.4 differs from the above expression by

a function of the form
∑

i ai(z) · θi.

9.3. Further properties. In the co-ordinates (a, b, q, r) the Euler vector field E is

E =
4a

5

∂

∂a
+

6b

5

∂

∂b
+

2q

5

∂

∂q
+

r

5

∂

∂r
. (139)

The expressions (126) and (131) and a short calculation using (132) gives

2iΩI = −da ∧ dθb + db ∧ dθa = dq ∧ dp+ da ∧ dr. (140)

The twistor fibre Z∞ is the space of leaves of the foliation defined by the connection h = h∞.

The functions

φ1 = q +
ar

p
, φ2 =

r

2p
, (141)

descend to Z∞ because they are constant along the flows (133) and (134) with ǫ = ∞. Moreover,

if we restrict to a fibre F of the projection π : X = TM → M by fixing (a, b), then

− 1

2πi
· dθ1 ∧ dθ2

∣

∣

F
= dθa ∧ dθb

∣

∣

F
= −dr

2p
∧ dq

∣

∣

F
= dφ1 ∧ dφ2

∣

∣

F
. (142)
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Thus we have

Ω∞ = dφ1 ∧ dφ2. (143)

The first Plebański function U : X → C of Appendix 5.3 is given by

U =
1

2

∫ (q,p)

(q,−p)

(x3 + ax+ b)1/2 dx, (144)

because a simple calculation using the flows (133) and (134) shows that

∂U

∂b

∣

∣

∣

∣

φ

= h
( ∂

∂b

)

U = −θa,
∂U

∂a

∣

∣

∣

∣

φ

= h
( ∂

∂a

)

U = θb. (145)

Since the C
∗-action rescales φ1 and φ2 with weights −2

5
and 2

5
respectively, we have

iE(Ω∞) = iE(dφ1 ∧ dφ2) =
2

5
d(φ1φ2). (146)

The Joyce function F of Section 5.1 is given by

F =
1

5
(1− 2φ1φ2), (147)

where for the constant normalisation we used the limiting behaviour of q, p, r along the zero section

M ⊂ TM as discussed in [13, Section 4.3].

The distinguished fixed point of Z∞ is defined by (φ1, φ2) = (0,∞). It is an isolated fixed point.

The linear Joyce connection on M is the one whose flat co-ordinates are (a, b), and the negative

and positive weight spaces V− and V+ of Lemma 5.4 are spanned by ∂
∂a

and ∂
∂b

respectively. The

Joyce metric is

g =
1

5
· (da⊗ db+ db⊗ da). (148)
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