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Abstract

Lithium-ion batteries, widely used in modern technology, degrade with use, leading to reduced capacity and power

output. Monitoring and diagnosing this degradation is essential, and ultrasound has emerged as a potential tool

because of its low cost and non-destructive nature. Studies have noted changes in ultrasound behaviour with battery

degradation, making it potentially valuable for tracking battery health. However, the behaviour of ultrasound as a

battery degrades has been an issue within studies. This paper explores the relationship between state-of-health (SOH)

loss and permanent ultrasonic signal changes over 100 charge cycles. A strong correlation was found between SOH

reduction, observed to be caused by the loss of lithium inventory (LLI), and shifts in ultrasound signal responses.

The analysis of individual peaks within a single acoustic signal showed consistent shifts in time-of-flight (TOF),

often trending toward shorter TOFs. In particular, the rate of degradation was not entirely linear, with fluctuations

observed across the cycles. These findings suggest that ultrasound can effectively monitor the rate of lithium-ion

battery degradation. Future work could expand on these results by inducing varied degradation conditions and cathode

chemistries to determine specific TOF shifts, enhancing detection methods for different degradation mechanisms in

lithium-ion batteries.

Keywords: Lithium-ion battery; Battery Degradation; Ageing mechanism; Incremental capacity; Ultrasonic

acoustics

1. Introduction

1.1. Battery SOC and SOH

Lithium-ion cells have become commonplace in handheld electronics, such as mobile phones and laptops, and in

larger energy storage, such as electric vehicles and grid storage since their commercialisation in the 1990s [1–3]. This
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can be attributed to their high energy density, high operating voltage, no memory effect, and small levels of self dis-

charge [4, 5]. However, there are limitations with this technology: stress-induced material damage, capacity fade, and

thermal instability which can lead to thermal runaway. Optimal use will provide a finite number of charge/discharge

cycles, and nonoptimal use will lead to faster degradation of cell life and an increased rate of loss of cell performance

[6].

In order to ensure safe, efficient usage of lithium-ion cells, battery management systems (BMS) have been de-

veloped and deployed. A BMS can estimate the state-of-charge (SOC) of a lithium ion cell, which is the ratio of

the current cell capacity to the maximum capacity of the cell. This can be estimated using measured values, such as

Coulomb counting and open circuit voltage lookups, or using modelling approaches such as electrochemical circuit

models and neural networks [7, 8]. Other examples of common BMS methods include: the equivalent circuit model,

utilising the open-circuit voltage, ohmic internal resistance, and resistor-capacitor network to model a cell [2]; and

support vector machines, which use machine learning algorithms to estimate SOC [7]. These approaches each have

their individual benefits and drawbacks: experimental methods require less computational effort and allow easier

estimations than modelling approaches, whilst having greater estimation errors [9].

BMSs are capable of providing state-of-health (SOH) estimates based on comparisons between current and past

cell performance [10], or by measurable parameters and comparisons to electrochemical models [9]. These parameters

include, but are not limited to, internal resistance, terminal voltage, and self-discharge resistance [11, 12]. However,

all these methods use values that measure the electrical state of the cell and do not provide accurate measurements of

the internal physical state of the cell [13]. Hybrid approaches, involving both empirical data and models, can greatly

improve SOH accuracy [14], but these require large datasets and greater computing power.

Estimating the SOH of a cell is a complex task. Several definitions and methods are being deployed for SOH

estimations. See ref [15] for further details. The SOH can also be estimated as a function of open circuit voltage

(OCV), incremental capacity analysis (ICA) curves, [16], and based on the internal resistance of the cell [17]. One of

the most common methods to estimate the SOH is by coulomb counting [9]. It is defined as the ratio of the maximum

capacity at cycle t, Qt (A h), to the original maximum capacity, Q0:

SOH =
Qt

Q0

· 100% (1)

This allows for the capacity fade of the cell to be measured, which can be caused by multiple physical and chemical

reactions. These are outlined in the supplementary material in Figure S1.
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1.2. Ultrasonic Non-Destructive Monitoring of Lithium-ion Batteries

Recently, there have been many studies using ultrasound to measure internal changes in-situ in order to estimate the

health and performance of lithium-ion cells [18–22]. Ultrasound is defined as sound with a frequency above the human

hearing range, normally around 20 kHz [23]. It is a well-developed non-destructive technique used for detection of

surface and subsurface changes in bodies of interest. Piezoelectric transducers are excited to generate ultrasonic

pulses that travel through bodies of interest and get partially reflected at interfaces, such as between two materials,

a crack or an air bubble. In addition to monitoring, ultrasound has been used to improve the leaching of active

materials from spent LIBs [24, 25] which exposes the cells to high powered, continuous wave. The improvement in

the electrochemical performance of LIBs via ultrasound has also been investigated by subjecting cells to a continuous

low power acoustic energy [26].

The relationship between ultrasonic signals and battery SOH is complicated when considering the numerous side

reactions that can affect the SOH. Side reactions occur almost everywhere because of the electrochemical nature of

LIBs, both during normal and abusive conditions. Such reactions include lithium plating, SEI formation and growth,

gassing, electrode delamination, and porosity [27, 28]. Post-mortem analysis has confirmed these reactions to be

detected, however there is an issue of decoupling these effects for more accurate detection. If multiple reactions

occurred within a cell, the ultrasonic response would not be able to discriminate between them.

When LIBs are cycled, there is a cyclical, reversible change in the TOF through the cell that correlates with the

SOC. As the cell is charged, the TOF decreases; as the cell is discharged, the TOF increases. There are different

reports on the direction of the permanent TOF shift in the literature. The TOF also experiences an non-reversible shift

as the cell degrades, which is independent of the SOC. This overall TOF shift is related to the SOH (distinct from the

cyclical TOF change driven by the SOC) and is hereafter called the permanent shift. The permanent shift has been

observed with different acoustic frequencies, from 90 kHz to 2.25 MHz. The direction of the permanent shift varies

within the literature; a permanent shift to a shorter TOF was observed by [22, 29], while a longer permanent shift was

observed by [19, 20, 30].

Using a low C-rate reduces the self-heating temperature of the cell due to ohmic heating (heat from the resistance

of lithium-ions moving through the electrolyte) and allows for even lithium-ion deposition dispersion [31]. This allows

for a more isolated look at degradation methods caused by chemical physical reactions as a result of normal operation

rather than as a result of extreme external factors. As stated in [32], some degradation methods occur outside the safe

operating conditions, such as cathode degradation at relatively high temperatures (45 °C) [33] and electrode damage

and potential rupture at high C-rates [34].

In this work, temporally resolved ultrasonic TOF measurements are performed in lithium-ion cells to investigate
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the effect of cell degradation on the permanent shift of the acoustic signal. The cells were cycled for over 100

cycles at a low C-rate within the manufacturer’s voltage limit to mitigate pronounced degradation whilst ageing. The

cycle number was selected as the cells were rated for 301 cycles by the manufacturer, so the effect of cell ageing is

accelerated. This allows for a comparative exploration into ageing and the effects on the ultrasonic response. Multiple

reflections were analysed to investigate and compare correlations and permanent shift directions between peaks with

different TOF within the A-Scan.

2. Experimental

2.1. Battery Instrumentation

This work involved testing two nominally identical cells, cell A and cell B. The cells were commercial pouch

lithium-ion batteries 2000 mA h with consisted of a cathode with NMC chemistry and a graphite anode (stock number

125-1266 RS Pro, London, England) with dimensions of 63 x 43.5 x 7 mm. The cells were purchased at the same

time, from the same manufacturing batch and were manufactured on the same day. The cells were instrumented

with a single ultrasonic piezoelectric transducer of dimensions 10 mm x 5 mm with a central frequency of 2 MHz.

(DeL Piezo Specialties, LLC, FL, US), which were bonded to the cell surface using a commercial adhesive. The

centre frequency influences the penetration depth, signal attenuation and wave sensitivity. Based on previous studies

[5, 35, 36], 2 MHz was determined as the most suitable frequency. Each cell was instrumented with a single transducer

that would act as both transmitter and receiver. A thermocouple was attached to the surface of each cell to record the

surface temperature.

2.2. Ultrasonic Pulsing and Receiving

The acoustic response was obtained using a Picoscope 5444D oscilloscope, operated by proprietary Picoscope 6

software (Pico Technology, Cambridgeshire, UK). The Picoscope acted as both a function generator and an acoustic

DAQ. The signal was produced by, and the reflections were captured by the Picoscope.

The acoustic signal was controlled through a bespoke virtual instrument (VI) built in LabVIEW, utilising the

Picoscope 6 software. This VI also allowed recording of the surface temperature along with the ultrasonic signal,

both of which were recorded once a minute. Each capture lasted for one second and recorded 50 pulses, of which

the average was taken and used for analysis. The resolution of each pulse was 3900 discrete measurements. This

provided a sampling interval of 7.7 ns over a time window of 30 µs. The source wave for each pulse consisted of

three sinusoidal waves, with an amplitude of ± 2 V, that transmitted through the cell and were reflected back to

the transducer once they reached the opposing face of the cell. The surface temperature of the cells was monitored

using a K-type thermocouple. The temperature was recorded using the NI-9211 temperature input module (National
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Instruments, TX, US).

Both cells were cycled at the same time. To capture the acoustic data from both cells, a bespoke multiplexer was

used to connect the cells to the Picoscope. This allowed a single Picoscope channel to be used. A sequence table

was created to control the acoustic inputs and the parameters of the recorded response. As the cells were connected

through a single channel, cells were recorded sequentially. The VI was also designed to receive multiple thermocouple

inputs at the same time.

2.3. Battery Cycling

The cells had a maximum charge rate of 0.5 C and a maximum discharge rate of 1 C and were cycled at 600 mA h

(0.3 C) using a MACCOR Model 4600A Automated Test System (MACCOR, OK, US) in a constant current-constant

voltage (CC-CV) cycle. Internal heat generation has been shown to have a dependency on the C-rate, with higher

C-rates resulting in greater heat generation [37]. An increase in heating can cause accelerated ageing in LIBs [38].

The focus of this work is to investigate degradation through internal mechanical and structural changes with reduced

influences from controllable factors such as C-rate and temperature. Ultrasonic equipment can be sensitive to temper-

ature, and the exploitation of this is called ultrasound thermometry [39]. To reduce the influence of temperature on

the ultrasonic response to ensure that cell ageing has the greatest influence, the C-rate for this work was kept low. The

charge cycle saw the cells charged between 3.0 V (0% SOC) and 4.2 V (100% SOC). The upper and lower voltages

were held constant until the current dropped below 60 mA h (0.03C) (see Table 1).

Phase Mode Voltage (V) Current (mA)

Charge Current current 3.0 to 4.2 600

Constant voltage 4.2 600 to 60

Discharge Constant current 4.2 to 3.0 600

Constant voltage 3.0 600 to 60

Table 1: Charge cycle parameters.

2.4. Signal Processing

The charge data, surface temperature, and acoustic response were recorded every 60 seconds throughout the test.

The reflected signal (A-Scan) of cell A at the beginning of the test is shown in Figure 1a. The acoustic signal contained

information such as the TOF and the signal amplitude. The charge data includes information on the voltage, current

and estimated battery capacity. To correlate the acoustic data with the charge and temperature data, a method called

peak tracking was employed. In Figure 1a, the first seven peaks are related to the pulse generated that created the

acoustic signal and the associated damping. These peaks are highlighted by the blue shading. The other peaks relate

to reflections or reflected signals - acoustic signals that have travelled through the cell and returned to the transducer.
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As lithium ion cells have multiple layers, either rolled or layered, there are many interfaces. The cells used in this

work were purchased from the same batch at the same time. Due to the nature of cell manufacturing, there may be

differences between the cells.

Each interaction between the acoustic signal and an interface results in a part of the signal being reflected in

the original medium and a part transmitted in the new medium. Therefore, some signals can get trapped reflecting

between two interfaces, whilst some of the signal travels through the entirety of the cell. The signal detected by the

transducer is a superposition of all the reflections that have split within the cell. A single interface cannot be related

to a single peak as a result of this, as the number of interfaces that are superimposed in the signal increased as the

TOF increased. Therefore, the highest peak is unlikely to have the best correlation, as investigated by [5]. In order

to ensure that the peaks analysed provide the strongest correlation to the loss in SOH, a peak tracking method was

employed.

Peak tracking involved selecting individual peaks and recording the respective TOF and amplitude change through-

out the cycles [5]. This is done by creating windows centred on the peaks representing a set distance either side of

the selected peak in the TOF domain. Between each data point, the greatest amplitude is found within the window

range is found, and the windows were shifted to maintain the original set distance from the new peak. This is repeated

throughout the dataset, resulting in a spectogram of the A-Scan focused on the peak in question. This method allowed

for the identification of the peak that had the strongest correlation with the internal battery changes.

(a)

Figure 1: a) A-Scan of Cell A, with the window around peaks Short A and Long A shown with dashed lines. The green and blue shaded areas

highlight the first full and second full reflections, respectively. b) TOF of peak Long A using peak tracking. The colour of b) represents to amplitude

of the peak capture area, shown in the colourbar. The red lines in b) highlights the peak in the range; the greatest value within the peak capture

area.

Selecting multiple peaks individually creates the capability to compare the results of individual peaks across the
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A-Scan. In doing so, two peaks were selected for each cell. For cells A and B, these are Short A, Long A, Short B, and

Long B, respectively. The naming convention is related to where in the A-Scan (i.e. the TOF) the peaks were selected.

Short A and Short B were selected from earlier peaks in the A-Scan, and Long A and Long B were selected from

later peaks. The reason for this is due to the internal structure of the cells tested. The cells have a prismatic winding

construction which results in spacing in the centre of the cell. This spacing is enough to create an acoustic barrier

and was confirmed by Copley et al. when a genetic algorithm was able to accurately predict the internal construction

of the cell [40]. The algorithm identified an irregularity in the centre of the cell, which corresponds to a prismatic

winding construction. This spacing resulted in a proportion of the signal being reflected. The resultant reflected signal

is a half-reflection in which the signal has only travelled back and forth through half the cell. As such, the second

reflection was a superposition of the half-reflection after two passes, and the full reflection having made one pass.

Figure 1a shows the A-Scan of cell A. The two peaks, Short A and Long A, are highlighted with the dotted lines.

The green shaded area identifies the first two reflections, or the first half-reflection and first full reflection, as described

earlier. The blue shaded area therefore emphasises the third and fourth reflections. The change in the TOF of peak

Long A, highlighted in Figure 1a, over all the charge cycles is shown in Figure 1b. The colour of the plots change

from yellow to blue as the signal amplitude decreases. The red line denotes the location of the peak that is being

tracked within the peak window of Long A. In order to improve the signal-to-noise ratio of the signal, the selected

peaks were denoised using wavelets via the wdenoise function in MATLAB.

What can be seen in Figure 1b is a cyclical increase and decrease in ToF alongside a general trend to a shorter

TOF. The cyclical change is related to the charging cycle of the cell, as lithium-ions intercalate and deintercerlate

into and out of the electrodes. This TOF variation is therefore related to the SOC of the cell. The general trend to a

shorter TOF (or the permanent decrease in TOF) is related to the loss in SOH of the cell. This relates to non-reversible

changes in the cell such as LLI or LAM. The kink seen around 600 hours into the test will be discussed in the next

section.

Tracking single peaks allows for direct comparison between the battery, temperature, and acoustic data. Figure 2

shows this comparison for four charge cycles for cell A, using the same peak in Figure 1. There is a clear correlation

between the acoustic and battery data, as the TOF (Figure 2e) shows a decrease as the capacity (Figure 2a) increases,

whilst the inverse is true for the amplitude (Figure 2d). The temperature is shown to exhibit cyclical behaviour, as the

temperature increases significantly as the cell nears the end of the discharge stage, followed by a sharp decrease as

charging begins.
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Figure 2: Change in a) capacity, b) voltage, c) current, d) temperature, e) time-of-flight over four cycles and f signal amplitude. The amplitude and

time-of-flight are from peak Short A. A cyclical response from the acoustic signal and the temperature can be seen that correlates with the charge

cycles of the cell.

3. Results and Discussion

3.1. Generated ultrasonic signal generated by a pouch cell

The amplitude of the reflected wave as it varies with time (known as an A-Scan) is recorded. Figure 3 shows

an A-Scan response from one of the lithium-ion cells used in this work. The 2Ah cells used in this work are the

same cells used by Copley et. al, which were described to contain around 15 "unit cells", each containing multiple

interfaces [40]. The authors described a "unit cell" as a repeating pattern of battery components consisting of two

anode layers, two cathode layers, two current collectors, an electrolyte, and two separators. Each interface acts as

an acoustic reflector, and the resultant A-Scan is a superposition of all internal interfaces within the body. For this

reason, the peaks seen in Figure 1 do not correspond to individual layers or structures within the cell, but rather to a

superposition of many layers and structures. The speed a longitudinal ultrasonic pulse travels through a medium, c (m

s-1), is defined by:
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c =

√

E

ρ
(2)

where E (MPa) is the elastic modulus of the material and ρ (kg m-3) is the material density. As lithium-ion cells

charge and discharge, the material properties of the electrode change based on the amount of lithium (de)intercalated

within. This influences how the ultrasonic signal travels through the cell, resulting in the difference seen in Figure

3. The A-Scan can vary in two ways: the time-of-flight (TOF) and amplitude. The TOF is the time it takes for an

ultrasonic signal to travel through a medium and be received by a transducer, and for a homogeneous material, with

known speed and thickness, is calculated using the relationship between c, distance d and time t:

c =
d

t
(3)

The use of a pulse-echo setup in this work means the distance travelled by the reflected signal is 2 d, as it must make

a round trip to and from the transducer. The TOF in this work was measured using the electrical signal generated by

the excitation of the transducer once the reflected wave returned. A cell is not a homogeneous material, with different

materials for the electrodes, current collectors, separator and electrolyte, the travel time of the wave will fluctuate with

changes in the speed of sound described in Equation 2.

The signal amplitude is the intensity of the acoustic wave. The signal attenuates as it travels through a medium,

due to a combination of scattering and absorption. This attenuation results in the decay of the signal amplitude.

Scattering is the result of heterogeneity in a material. This could be caused by flaws within a single host medium,

or the sudden change in acoustic impedances found at medium interfaces. Absorption is the conversion of acoustic

energy into heat by the host medium. When only accounting for these factors, an exponential function can be used to

describe the attenuation of an acoustic signal:

A = A0e
−αd (4)

where A0 and A are the initial and final acoustic amplitudes, respectively, α is the attenuation coefficient and d is

the distance travelled by the wave. As seen in Figure 3b, the A-Scan shows that the time-of-flight (TOF) increases

as the SOC drops, that is, the peaks shift to the right of the A-Scan. The amplitude of some peaks show an increase,

while some show a decrease in amplitude with a change in SOC.

The reflection at an interface is described by the reflection coefficient R, which is the ratio of the reflected wave

back divided by the incident wave. The reflection coefficient depends on the acoustic impedances of the two media,

and is determined by:
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(a) (b)

Figure 3: a) An A-Scan of one of the tested cells at full charge (blue) and full discharge (orange). The A-Scan section in the red circle is shown in

b) to isolate the first two reflections.

R =
Z2 − Z1

Z2 + Z1

(5)

where Z (Pa s m-1) is defined by:

Z = ρc (6)

3.2. Cell degradation

The SOH of both cells, obtained using Equation 1, is shown in Figure 4. It should be noted that the decline is not

perfectly linear, as there are SOH fluctuations present in both cells. Batteries such as lithium-ion can suffer from self-

charging when certain conditions are met, causing a sudden, temporary increase in available capacity in the next cycle.

This is known as regeneration phenomena, which can affect the accuracy and precision of SOH estimations [41–43].

The significance of fluctuations due to regeneration phenomena on the ultrasonic response will be explored in Section

3.4. Cell B underwent more significant fluctuations than cell A, with a significant drop around 20 cycles. Both cells

were tested in tandem using the same protocol as described in Table 1, reducing the probability of environmental

influences on the cells. Variation in cell performance and degradation behaviours is a well-known problem when it

comes to manufacturing [44]. These variations can be attributed to three main factors: the amount of active material

(anode and cathode) present in the cell; the resistance to the flow of Li-ions (polarisation resistance); and localised

kinetic factors (intercalation) [45]. Given the low C-rate of the charge cycle, the localised kinetic factors will play a

less significant role in the variation seen between the two cells. As the cells are from the same batch, the difference in
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polarisation resistance is the likely explanation for this difference in degradation behaviours.

Figure 4 also shows the change in temperature of cells A and B during the test. The dotted lines represent the

temperature at which the cells were fully discharged, and the solid lines represent the fully charged temperature.

The fluctuations at the start of the cycle for cell B, and the drop at cycle 81 in cell A, can be seen to replicate in the

temperature readings. The temperature trends outside these isolated points follow the non-linearity of the loss in SOH,

but not to the same extent. This is because internal heat generation depends on the final capacity of the cell. A cell

that is closer to fully charged or fully discharged will generate more heat [46].

(a) (b)

Figure 4: Change in temperature of a) cell A and b) cell B at 0% SOC (dotted line) and 100% SOC (solid line) against the SOH drop.

Aside from these fluctuations, the temperature of the cells does not show a permanent trend that matches the SOH

drop - the temperature range remains consistently within 24 - 30 °C for both cells. The regeneration phenomenon is

reflected in the temperature, as fluctuations are seen in both fully charged and fully discharged temperature readings.

As the testing was not performed in a temperature controlled environment, variations are also a result of slight room

temperature changes. In a semi-empirical degradation model by [47], the main mechanism of battery degradation in a

cell between 25 - 30 °C is the SEI layer growth. This growth is caused by an interaction between the electrolyte and

active lithium-ions, leading to the formation of a surface layer film on the anode. This process consumes lithium ions,

reducing the effective capacity of the cell over time [48, 49], while increasing internal resistance [50].

In order to understand which driving forces are causing the cell degradation, incremental capacity analysis (ICA)

curves of the cells were employed. This analysis involves the differentiation of the capacity with respect to the voltage,

allowing voltage plateaus to be highlighted as peaks, as defined in Equation 7.

dQ

dV
=

Qt −Qt−1

Vt − Vt−1

(7)
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Qt =

∫

t

0

I dt (8)

where Qt and Vt are the capacity and voltage at time t, and I is the current. Changes in these peaks were evaluated

as the number of cycles increased. Through these equations, plateaus in the voltage curve are converted into peaks in

the ICA plot [51]. A rolling average with a window of 5 steps was applied to smooth the ICA curves. Figure 5 shows

the ICA plots of the two cells tested. Two peaks corresponding to voltage plateaus were observed. These peaks seen

during charging relate to graphite intercalation and the crystal structure change of the cathode, respectively [52]. As

such, the peaks are strongly dependent on the cell chemistry [53].

For charge (Figure 5a and 5c) and discharge (Figure 5b and 5d) for both cells, the ICA peaks trend to a higher

voltage as the cells are cycled i.e. the peaks shifted to the right. According to [54], this shift can be used to ascribe

the main driving mechanism for the capacity drop as LLI as seen in Figure 5e. The increase in voltage is due to the

incomplete lithiation of the anode as an increasing number of lithium ions are consumed by parasitic reactions, such

as the SEI growth. The voltage limits were kept the same (3.0 - 4.2 V) throughout the tests.

As the SEI grows, more lithium ions are consumed, which has the effect of reducing the lower potential regions

of the anode. This results in incomplete lithiation during charging, resulting in a higher potential at the end of charge.

To maintain the upper voltage limit, the cathode would have to compensate for a higher potential. The same is then

true for the discharge, as the cathode would experience incomplete lithiation at the end of discharge to maintain the

lower voltage limit [55]. The amplitude of the ICA curve peaks also consistently decreases as the cell ages, further

indicating that the lithiation of the electrodes is reduced due to LLI [56].

This degradation phenomenon agrees with the literature on cell degradation methods of NMC / graphite cells (see

Figure 5e) [57–59]. LLI has been found to be the most prominent degradation mechanism at the anode [60]. The main

cause of LLI has been found to be SEI formation and growth on the anode [61].

3.3. Ultrasonic response changes during degradation

The relationship between the SOH and the ultrasonic response was investigated, using the methods described in

Section 2.4. In this case, the Spearman correlation coefficient was employed to determine the correlation of SOH

estimation with the ultrasonic signal parameter throughout the test. The Spearman correlation coefficient rs can be

computed using:

rs =
cov(xi, yi)

σxi, σyi
(9)

where cov(xi, yi) is the covariance of the rank variables xi and yi for the original data and σxi, σyi are the standard
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(a) (b)

(c) (d)

(e)

Figure 5: The ICA of cell A during a) charge and b) discharge. The ICA of cell B is represented in c) and d). All plots show a trend to a higher

voltage as the cell ages. e) shows how the ICA of an NMC/graphite cell would change when influenced by different degradation methods. deNMC

= delithiated cathode; liNMC = lithiated cathode; deGIC = delithiated anode; liGIC = lithiated anode. Image adapted from [54], licensed under CC

BY 4.0. Modifications were made to only include graphs related to LLI and LAM changes.
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variations of the rank variables. The rs ranges from -1 to +1, where -1 is a perfect monotonous decreasing correlation

and +1 is a perfectly monotonously increasing correlation. This was determined to best evaluate the relationship

between the SOH and TOF as the change in TOF was observed to not be consistently linear. Similar statistical

models, such as the Pearson correlation, would therefore not be best suited, as this would prioritise the linearity of the

relationship.

The Spearman correlation coefficient was calculated for the TOF of all peaks in the A-Scan (for example, all

peaks seen in Figure 1a against the change in SOH. Cell A saw 41 peaks were compared and cell B saw 40 peaks

compared. From that, using the definition of Short and Long reflections in Section 2.4, four peaks were found with

two peaks for cell A and two for cell B. For Short A and Long A, the coefficient was -0.831 and 0.821, respectively.

For Short and Long B, the coefficient was 0.906 and 0.810, respectively. All absolute values were above 0.8, which

indicates a strong correlation between the permanent TOF shift and capacity fade. Notably, the short TOF for both

cells had greater absolute values than the long TOF, which suggests that shorter TOF - signals that are reflected back

earlier through the cell - are more reliable at detecting capacity fade. This could be related to the reduced number of

superimposed interfaces on the signal, as the signal would have travelled through half of the cell rather than through

the whole cell. This would require the assumption that the ratio of lithium-ions between the electrodes is consistent

throughout the whole cell. It should be stated that not all peaks are equal; there were some peaks that had Spearman

correlation coefficients nearing 0, suggesting a lack of correlation between the TOF and capacity fade. This highlights

the importance of ensuring that the correct peak is used, not just the largest peak, when estimating the SOH of a cell.

Correct meaning the the peak with the strongest correlation between TOF and SOH.

The changes in acoustic signal against the change in SOH are shown in Figure 6 (where Figure 6a and 6c are Short

A and Short B, and 6b and 6d are Long A and Long B, respectively). The colour gradient is employed to signify the

cycle number, wherein the gradient transitions from a lighter hue (earlier cycles) to a darker one (later cycles). The

ultrasonic response for all cells showed deviation from cycle 1, which is considered the baseline signal. The average

capacity fade for cell A was approximately 0.03% per cycle, and cell B had an average capacity fade of 0.02% per

cycle. After 100 cycles, cell A had a remaining capacity of 96.42% and cell B had 97.6%.

Short A saw an increasing TOF change of 0.876 µs alongside a capacity fade of 3.58%. Conversely, Short B saw

a decreasing TOF of 0.0393 µs over a 2.15% capacity drop. Long A saw a decrease in TOF by 0.101 µs over a drop

in capacity of 3.58%. And Long B saw a permanent negative change in TOF for the long TOF of 0.109 µs over a drop

in capacity of 2. 15%. This is summarised in Table 2.

All peaks except Short A saw a linear decrease in TOF, which saw a significant increase. There are several

potential reasons that can result in unpredictable and unstable acoustic results [62]. One of these reasons is cell-to-cell
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(a) (b)

(c) (d)

Figure 6: Comparison of (a) Short A, (b) Long A, (c) Short B and (d) Long B over 100 cycles. The green dots represent a SOC of 100% and the red

dots represent a SOC of 0%. The hue of the dots represents the cycle number: the hue darkens as the cycle number increases. It should be noted

the y-axis for a) is much larger than for the other figures to allow for readability.

manufacturing variation. There is limited coordinated effort to quantify such variations in product specification. This

can result in variations not being identified until after experimental studies on the complete cell [63]. Another possible

source of the difference observed between nominally identical cells The other is the transducer and associated bonding

method. As the transducer is extremely sensitive, any difference in the surface it is bonded to, the pressure applied

to the transducer, the frequency, the type of couplant and the quality of the probe can have significant effects on the

signal [64]. In this case, the transducers were from the same manufacturing batch, used the same couplant and were

bonded using the same method, reducing the signal variation due to the transducer and bonding.

As the maximum capacity is decreasing with each cycle, the TOF difference between fully charged and fully

discharged should see some slight changes as a result of the decreased Li-ion movement. Both cells produced results
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that differed from one another. Short A started with a difference of 0̃.24 µs, which decreased linearly to 0̃.17 µs.

For the later peak, Long A started at 0.02 µs, ended at 0.04 µs. Both the selected peaks in cell B did not exhibit

changes in the TOF difference as the cell degraded. Short B had a consistent average of 0̃.0052 µs, and Long B was

constant at 0̃.024 µs. Both peaks saw very similar differences for each cycle, only differing in magnitude. The drop in

SOH seen in Figure 4b and the difference in TOF seen in Figures 6b and 6c align well, suggesting accurate acoustic

measurements of the maximum cyclical capacity of the cell.

As can be observed, there is an apparent consistent change in the TOF implying that the internal changes within

the cell were being detected. Given the rate of degradation is seen to be relatively linear in Figure 4, linear regression

was utilised to determine the TOF shift matched the capacity fade. Regression was used to determine the relationship

of the TOF and the SOH by fitting a linear equation to the data, shown in Figure 7. This provided an R-squared (R2)

that ranges between 0 and 1, where 0 means no correlation between the SOH and TOF and 1 is a perfect correlation

between the two variables.

Figure 7 shows the R2 values for the selected peaks of both cells and is summarised in Table 2. The short TOF had

a greater R2 for both cells, further suggesting that shorter TOF measurements have a stronger relationship with SOH

regardless of the shift the signal undergoes. The degradation rate has been found to depend on the cathode chemistries

and operating conditions [65]. For NMC cells, the rate degradation rate decreases as the cell is cycled long term [66].

As seen in Figures 6a and 6c, there is a slight gradient change as the SOH drops, which is not as visible in the Long

reflections. Longer term testing would be needed to confirm this SOH bias to the Short reflections.

Cell Capacity

Drop (%)

Capacity

Drop per

Cycle (%)

Peak Spearman

Correlation

Coefficient

TOF

Change

(µs)

TOF Shift /

Capacity

Drop (µs /

%)

Linear

Regression

A 3.58 0.03
Short A -0.831 0.876 0.245 0.874

Long A 0.821 -0.101 -0.028 0.756

B 2.4 0.02
Short B 0.906 -0.0393 -0.018 0.898

Long B 0.81 -0.109 -0.051 0.753

Table 2: Summary of capacity and TOF changes, along with correlations, for both cells and selected peaks.

A shift to a shorter permanent TOF means a faster speed of sound through a cell. Using Equation 2, it can be

assumed that this is in part caused by an increase in E (MPa), a decrease in ρ or a combination of the two. Conversely,

a permanent shift to a larger nominal value would suggest the difference is decreasing. This is demonstrated within

a single cycle, where the lithium-ions intercalate and de-intercalate with the anode and cathode. During charge, the

lithium-ions de-intercalates from the cathode and intercalates into the anode, and the reverse is true when discharging.
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(a) (b)

(c) (d)

Figure 7: R2 plots for a) Short A, b) Long A, c) Short B and d) Long B. The shorter peaks showed a stronger correlation with SOH compared to

their longer counterparts.

It has been shown that the anode has a much greater sensitivity to changes in the SOC than the cathode, as between

an SOC of 0 and 30% the anode layer can expand almost 10% and the Young’s modulus can increase by 20% [67].

The Young’s modulus of the anode triples as it becomes fully lithiated to LiC6 [68]. The anode undergoes greater

expansion during lithiation, seeing a volumetric expansion of 9.8% when charged from 0% to 30% SOC [67]. This

is demonstrated across all peaks in Figure 6, where the TOF when fully charged (lithiated anode) is always less than

when fully discharged (de-lithiated anode), i.e. the red dots are higher than the green dots in Figure 6. The volumetric

expansion affects the TOF by affecting the propagation path of the acoustic signal; an increase in volume results in a

longer path, and therefore the signal requires more time to cover the distance. This amplifies the change in TOF when

combined with the change in the speed of sound, due to material properties. In the case of the permanent TOF shift,

the continued growth in the SEI layer driving the LLI will gradually affect the TOF.
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A shift to a shorter permanent TOF means the speed of sound has increased through the cell, whilst a shift to a

longer TOF represents a decrease in the cell’s speed of sound. There are a number of factors that could have caused

this: a change in E; a change in ρ, or a combination. It should be noted

Given the change seen in Figure 5 and general trend for Figure 6 of a decrease in permanent TOF, a relation of LLI

to a negative shift in permanent TOF is not unreasonable. The inconsistency between the polarity of the correlations

is likely to be caused by complex behaviours of multiple layers during cycling, as at each interface the ultrasonic

signal will split as defined in Equation 5. It is worthy of note that the polarity can vary within the same signal, as

Short A and Long A were from the same sensor monitoring the same cell. Similar results have been found in the

literature. Reference [22] found that the selected peak saw a permanent shift to a shorter TOF as the NMC cell aged,

while reference [20] saw a permanent shift to a longer TOF in the selected peak as the LCO cell aged. [19] also saw a

permanent shift to a longer TOF in an LCO cell, but within 60 cycles the permanent shift gradually decelerated until

there was no noticeable change in the TOF between cycles. It should be noted that the frequencies and the TOF of the

selected peaks differed between these articles. However, all tracked peaks were from the first reflection. [20] noted

that the TOF shift was likely due to swelling, while [22] and [19] did not discuss the degradation method.

Swelling was not detected within Cell A or Cell B. For Cell A, all short peaks (peaks within the first and second

reflection) saw a permanent shift to a longer TOF, whilst all long peaks saw a permanent shift to a shorter TOF. This

was not present in cell B, as the polarity matched between the two peaks. The direction of the permanent shifts seen

in the cells matches that of that seen in [22], which had the same cell chemistry of NMC, whilst the others used a

different cell chemistry. This suggests that the cell chemistry affects the direction of the permanent shift, though this

would require further investigation.

3.4. State-of-health and ultrasonic fluctuations

As shown in Figure 4, the SOH measured in both cells underwent fluctuations as they degraded, particularly with

cell B. Figures 8a and 8b show the SOH drop of cell A, with the Short A and Long A plotted alongside. The same for

cell B can be seen in Figures 8b and 8d. There is a visible relationship between the SOH and TOF fluctuations.

Cell A experienced lower magnitude fluctuations than cell B; however, there was a significant drop around cycle

80, which is indicated by the black box. This perturbation is also observed in the ToF signal, despite the permanent

shift leading to a longer TOF. The change in TOF was 0.167 µs, which is ∼ 19% of the total TOF shift. In comparison,

the capacity fade of this perturbation was ∼ 15% of the total capacity drop. There are also SOH peaks and valleys

that are reflected in the TOF, namely around cycles 40 and 90. The fluctuations show a clear correlation with the

TOF response, show in Figure 8. The fluctuations in Long A were greater in magnitude compared to the overall shift,

along with a less linear shift as the cell was cycled. At cycle 80, the same significant valley is reflected; however, the
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(c) (d)

Figure 8: Matching peaks and valleys between the SOH estimation and TOF of Short A (a), Long A (b), Short B (c) and Long B (d). The time lag

for the four peaks are also presented to highlight the sensitivity of the TOF to SOH changes.

amplitude of the TOF shift is more significant than in Short A. The change in TOF was 0.036µs, which is ∼ 36% of

the total permanent shift. Both the short and long signals observed this shift. Cell B showed unstable SOH readings

for the first 30 cycles, as shown by the significant fluctuations. Both the long and short TOF readings reflected these

fluctuations as the signals oscillated in a similar manner.

Temporal dependencies between the time-of-flight (TOF) and state-of-health (SOH) were explored using the cross-

correlation technique, implemented through MATLAB’s ’xcorr’ function. The introduced time lag (τlag) quantifies the

temporal relationship, indicating the extent to which the TOF lags behind or leads the SOH. A positive τlag indicates

that the TOF precedes the SOH, while a negative τlag suggests the reverse, with a τlag of 0 denoting a simultaneous

change in the TOF and SOH. It can be seen in Figures 8b, 8c and 8d that τlag is 0 when the correlation coefficient

19



is highest. This alignment at τlag = 0 indicates that the TOF dynamically shifts simultaneously with the SOH. In

particular, the correlation strength is consistently observed to have its maximum value – all above 0.95 – at τlag = 0 in

the three subfigures. This is summarised in Table 3.

Peak τlag (Cycle) τlag Strength

Short A -30 0.829

Long A 0 0.962

Short B 0 0.984

Long B 0 0.961

Table 3: Time lag location and strength for each peak.

For Figure 8a, the correlation for Short A is greatest at τlag = -30 cycles with a range of lags at which the two

signals have similarities. This suggests the SOH precedes the TOF by a range of possible cycles, where the strongest

correlation occurring with a difference of 30 cycles. This is unlikely given the results from the other peak, notably the

valley at cycle 81 matching with no delay. This behaviour is not seen in the other peaks, suggesting that the signal is

exhibiting anomalous behaviour. This could be based on the direction of the TOF shift, as Short A is the only peak

that underwent an increase in TOF as the cell capacity dropped.

4. Conclusion

Accurate estimation of cell state-of-health can contribute to the increase in the safety and longevity of lithium-ion

cell utilisation. In this work, two cells with a cycle life of 301 cycles were cycled at a C-rate of 0.3C for 100 cycles

within manufacturer capacity limits to induce non-abusive degradation. The results displayed a strong correlation

between the change in the ultrasonic time-of-flight response and cell degradation when analysing longer reflections.

The direction of the shift matches work using the same cell chemistry, while cells with different chemistries tested

within literature were found to have a different direction in the permanent TOF shift.

For shorter reflections, they were observed to behave differently, with one cell showing a decreased permanent

shift and the other an increased permanent shift. There are several reasons this may have occurred: one of them is

manufacturing differences between the cells; another could be due to the transducer, as the Long TOF and Short TOF

differed within the same signal. All reflections after Short A saw an increased permanent shift, the same as seen

in cell B. Systematic testing showcased the feasibility of ultrasound in monitoring the state-of-health of lithium ion

cells. Through the use of IC analysis, the primary degradation method for the cells was observed to be the loss of

lithium-ion inventory.

The investigations also found that although the rate of degradation was linear, there were fluctuations observed,

resulting in inconsistent loss in state-of-health estimates. Ultrasonic time-of-flight responses were identified to react
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to these fluctuations, resulting in the detection of state-of-health variations that provide immediate responses. This

was true regardless of the permanent shift direction. This offers the potential to observe regeneration phenomena and

irregularities in the available capacity during operation. SOH anomalies can therefore be detected using ultrasound.

However, a large dataset will be necessary for acoustic anomaly detection to be used on a larger scale.

In order to develop this dataset, standard and anomalous SOH fade would need to be accounted for. Controlling the

variables that lead to SOH fade would be necessary to ensure the accuracy of the estimations. One such set of variables

would be the various degradation methods. Inducing different degradation methods as the primary mechanism in

similar cycling conditions could provide insight into the relation between capacity drop and the resultant ultrasonic

response. This could be performed by repeating the tests at various C-rates and varying temperatures, or under-

and over-charging the cells. Long cycling would allow for observations of degradation and ultrasonic behaviour

as the cell reaches the end of life. Including post-mortem analysis could determine the sources of degradation and

allow validation of the ultrasonic response. Investigating the effect of the cathode chemistry on the direction of the

permanent shift could improve the viability of this method for SOH estimation, as this is in contention in literature.

This can be done using simultaneous testing of multiple cells of differing cathode chemistries.
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