
This is a repository copy of Environment‐organism feedbacks drive changes in ecological 
interactions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/221371/

Version: Published Version

Article:

Meacock, O.J. orcid.org/0000-0001-6269-9855 and Mitri, S. orcid.org/0000-0003-3930-
5357 (2025) Environment‐organism feedbacks drive changes in ecological interactions. 
Ecology Letters, 28 (1). e70027. ISSN 1461-023X 

https://doi.org/10.1111/ele.70027

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 of 12Ecology Letters, 2025; 28:e70027
https://doi.org/10.1111/ele.70027

Ecology Letters

LETTER OPEN ACCESS

Environment- Organism Feedbacks Drive Changes in 
Ecological Interactions
Oliver J. Meacock1,2  |  Sara Mitri1

1Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland | 2School of Biosciences, University of Sheffield, Sheffield, UK

Correspondence: Oliver J. Meacock (o.meacock@sheffield.ac.uk)

Received: 1 May 2024 | Revised: 6 November 2024 | Accepted: 9 November 2024

Editor: Lauren Glenny Shoemaker 

Funding: This work was supported by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (51NF40_180575, 

PCEGP3_181272), Human Frontier Science Program (LT0020/2022- L).

Keywords: antibiotic resistance | consumer- resource modelling | context- dependency | crossfeeding | ecological interactions | mathematical ecology | 

microbial communities | microfluidics | spatiotemporal dynamics | stress gradient hypothesis

ABSTRACT

Ecological interactions are foundational to our understanding of community composition and function. While interactions are 

known to change depending on the environmental context, it has generally been assumed that external environmental factors 

are responsible for driving these dependencies. Here, we derive a theoretical framework which instead focuses on how intrinsic 

environmental changes caused by the organisms themselves alter interaction values. Our central concept is the ‘instantaneous 

interaction’, which captures the feedback between the current environmental state and organismal growth, generating spatio-

temporal context- dependencies as organisms modify their environment over time and/or space. We use small microbial com-

munities to illustrate how this framework can predict time- dependencies in a toxin degradation system, and relate time-  and 

spatial- dependencies in crossfeeding communities. By re- centring the relationship between organisms and their environment, 

our framework predicts the variations in interactions wherever intrinsic, organism- driven environmental change dominates 

over external drivers.

1   |   Introduction

Interactions between organisms—their impacts on each other's 

growth, behaviour and overall community composition (Berlow 

et al. 1999)—are fundamental to a bottom- up understanding of 

the systems- level properties of ecosystems. More narrowly, they 

are typically taken by theoretical ecologists as the per- capita 

impact of one species on the net growth rate of another popu-

lation (Novak et  al.  2016). Though originally conceived of as 

fixed quantities which could be assembled into community- level 

frameworks such as the generalised Lotka–Volterra (gLV) model 

(Volterra  1926; Lotka  1920; O'Dwyer  2018; MacArthur  1970), 

interactions have since been shown to often depend on the en-

vironment in which they are measured (Piccardi, Vessman, and 

Mitri 2019; Hoek et al. 2016; Di Martino, Picot, and Mitri 2024; 

Rodríguez- Verdugo, Vulin, and Ackermann 2019; Chamberlain, 

Bronstein, and Rudgers  2014) and the time at which they are 

measured (Venkataram et  al.  2023; Daniels, van Vliet, and 

Ackermann 2023; Chamberlain, Bronstein, and Rudgers 2014). 

Interactions can also be strongly influenced by spatial organi-

sation in multi- species communities, depending on the arrange-

ment of partners (Nadell, Drescher, and Foster  2016; Dal Co 

et al. 2020). Such context- dependencies substantially complicate 

bottom- up attempts to predict community- level outcomes based 

on assemblages of elementary pairwise interaction measure-

ments (Chang et al. 2023; Friedman, Higgins, and Gore 2017). 

To resolve these issues, we must first understand how context- 

dependencies arise and, if possible, predict them.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.
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Numerous mechanisms can create context- dependencies. 

While external environmental factors, so- called allogenic fac-

tors, such as climactic change are one such component that 

can influence interactions (Liu and Gaines 2022; Maron, Baer, 

and Angert  2014), organisms can themselves influence their 

local environment, especially in sessile communities. Such 

autogenic environmental changes can mediate interactions 

when they modify the growth rate of surrounding organisms, 

effectively setting up a feedback loop between community 

composition and environmental composition. For example, 

reduction of local salinity by nurse plants in salt marshes can 

allow the establishment of salt- sensitive species (Bertness and 

Shumway  1993), while environmental detoxification by part-

ners allows toxin- sensitive species to grow in microbial cul-

ture (Piccardi, Vessman, and Mitri  2019). In these cases, net 

positive interactions result as long as autogenic mechanisms 

that increase growth rates (such as stress buffering) outweigh 

mechanisms that decrease growth (such as nutrient competi-

tion). This balance shifts between different environments, re-

sulting in a switch from net negative to net positive interactions 

along stress gradients (Callaway and Walker 1997; Malkinson 

and Tielbörger 2010; Brooker and Callaghan 1998; Di Martino, 

Picot, and Mitri 2024). Despite this qualitative understanding 

of the importance of autogenic processes in driving interaction 

changes, we lack corresponding theory to predict these changes 

and generalise the phenomena to other systems.

Here, we provide a theoretical basis for predicting environ-

mental, temporal and spatial context- dependencies based on 

the feedback between the growth rates of organisms in dif-

ferent environments and their autogenic impact on their envi-

ronment. Our approach builds on classical consumer- resource 

(CR) models, which explicitly represent the mechanisms of 

resource uptake through which many organisms compete 

(MacArthur  1970; Tilman  1980); we adopt a generalised ver-

sion that incorporates inhibitory environmental factors and 

positive impacts of organisms on their environment (e.g., se-

cretion of compounds), which we refer to as the environment- 

organism (EO) framework (Picot et  al.  2023). Prior theory 

relating interactions to underlying mechanisms relies on a 

separation of timescale approximation between environmen-

tal and species dynamics (MacArthur 1970). However, as such 

models cannot accurately capture the dynamics of the abiotic 

resources which fuel many ecosystems (O'Dwyer  2018), we 

adopt a novel approach that avoids this approximation. In the 

purely autogenic limit, we obtain an equation analogous to the 

gLV equation which captures environmental, temporal and 

spatial context- dependencies simultaneously. Central to this 

expression is an interaction- like term which depends on the 

environmental state, which we refer to as the ‘instantaneous 

interaction’. We then experimentally verify these predicted 

context- dependencies using small microbial communities 

from which allogenic mechanisms of environmental change 

can be eliminated. Surprisingly, our theory reveals that appar-

ently unconnected phenomena, such as the spatial structure of 

communities in microfluidic chips and the dynamics of spe-

cies in batch culture, are reflections of the same underlying 

ecological processes. Our work thus provides a new basis for 

understanding the connection between interactions and their 

underlying mechanisms, yielding novel explanatory—and 

predicitive—insights.

2   |   Materials and Methods

2.1   |   Modelling

2.1.1   |   EO Models

Our toxin- nutrient model was derived from a pre- existing 

framework (Piccardi, Vessman, and Mitri  2019), while our 

degrader- crossfeeder model was built from a Monod- based 

description of polymer/metabolite fluxes. We provide a com-

plete description of these systems—including derivations of 

instantaneous interactions—in the Supporting Information 

(Sections 2.1.1–2.1.3). Details of numerical integration are pro-

vided in the Supporting Information, Section 2.1.4.

2.1.2   |   Microfluidic Simulations

Our simulations of spatially structured flowing systems are 

based on a spatio- temporal model of abundances of species and 

intermediates. Concentration profiles of intermediates are rep-

resented as a set of 1D scalar fields r(x, t), with the position along 

the channel increasing from the inlet position x = 0 to the outlet 

position x = L. Likewise, species abundances s are represented 

by the set of 1D scalar fields s(x, t). Implicitly, we assume that 

the system is small enough in the y and z dimensions that it is 

effectively well- mixed along these axes by diffusion, allowing us 

to make use of a 1D approximation.

We simulate the dynamics of the media composition using the 

1D advection–diffusion equation:

The first term on the right represents diffusion of intermediates 

with diffusion coefficient D = 0.5 (equal for all intermediates), 

chosen to ensure numerical stability of the resulting environ-

mental trajectories. The second term represents the advective 

fluxes mediated by flow at a velocity vx. We set vx such that 

advection dominates over diffusion given the channel length 

L and the diffusion coefficient D (i.e., that the Péclet number 

Pe =
Lvx
D

 is substantially greater than 1), a necessary condition 

of our framework (Supporting Information Text S4). The final 

term represents the sources and sinks of intermediates at each 

position, in this case given by an adjusted form of the impact 

functions for the degrader- crossfeeder model (Equation  S23). 

Together, these terms give the total rate of change in the inter-

mediate concentrations at a point x in the channel. Microbial 

population dynamics are simulated at each spatial location and 

are assumed to be unaffected directly by diffusion or flow, with 

local growth rates based on an adjusted form of the sensitivity 

functions (Equation  S22). In brief, these adjustments consist 

of the addition of a chemostat- like mortality term � = 0.005vx 

which accounts for wash- out of microbes by flow and a maximal 

channel occupancy �. vx was selected as 10 in Figure 4 to obtain 

a balance between refreshment of media and excess washout 

of cells, similar to the experimental procedure described in 

Daniels, van Vliet, and Ackermann (2023). The results of other 

values of vx are shown in Figure S8. Further details are provided 

in the Supporting Information, Section 2.1.5.

(1)
�r(x, t)

�t
= D

�
2r(x, t)

�x2
− vx

�r(x, t)

�x
+ R

 1
4
6
1
0
2
4
8
, 2

0
2
5
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ele.7

0
0
2
7
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



3 of 12

2.2   |   Experiments

2.2.1   |   Strains and Growth Conditions

Our Comamonas testosteroni strain MWF001 is described in 

Piccardi, Vessman, and Mitri (2019). Cells were streaked onto TSA 

plates from freezer stocks and grown overnight. Single colonies 

were then picked (one colony per biological replicate), and cells 

were grown overnight in glass Erlenmeyer flasks under continu-

ous shaking in base minimal media (Table S1) supplemented with 

10 mM proline. Due to the slow growth of C. testosteroni under 

these conditions, cells were in exponential phase at the end of 

this period. Cells were then washed twice in PBS. The OD600s of 

the washed cultures were then measured and cultures diluted to 

initialise experiments at the appropriate starting densities as de-

scribed below. Cultures were grown at 28°C in all cases.

2.2.2   |   Intraspecific Interaction Measurements

We prepared 96- well plates with 180 μL of basal media supple-

mented with varying concentrations of proline ([pro]0 = 0.5, 1, 

2, 5 mM) and ampicillin ([amp]0 = 0, 10, 20, 30 μg mL−1). Twenty 

microlitres of an exponential- phase culture of C. testosteroni 

was then added, with three wells of each condition containing 

culture adjusted to high density (OD600 = 0.004) and three wells 

containing culture adjusted to low density (OD600 = 0.001). The 

plate was placed into a plate reader (BioTek Synergy H1) and 

OD600 readings for each well were taken every 30 min for 120 h 

at 28°C under continual shaking between timepoints.

The background signal was subtracted from the resulting raw 

growth curves by first estimating the initial OD contribution 

from cells in the high inoculation OD wells (�) using the equation

where < ODh(0) > and < ODl(0) > represent the plate- wide aver-

age initial OD readings for the high inoculation density and low 

inoculation density wells respectively. The factor of 4
3
 stems from 

the 1:4 inoculation density ratio. Each curve was individually 

adjusted by subtracting the average OD of the specified curve's 

first three timepoints and adding either � for the high inocu-

lation density wells or �
4
 for the low inoculation density wells. 

The average OD curves were then calculated from the three rep-

licates for each condition and used to calculate the measured 

interactions as described in the main text.

3   |   Results

3.1   |   A Theoretical EO Interaction Framework 
Explains Multiple Context- Dependencies

EO systems can be modelled by breaking them into three 

parts (Meszéna et  al.  2006; Tilman  1980; Koffel, Daufresne, 

and Klausmeier 2021): firstly the impact function of a species 

�, f � (r) describes the rate at which one unit of � modifies its 

environment, that is, the autogenic component of environ-

mental change. We denote this environment with the vector r, 

which we will mostly take here to represent the concentrations 

of different chemical intermediates (e.g., element 1 represents 

the concentration of glucose, element 2 acetate), but may more 

generally represent quantities such as temperature and light 

availability. r defines a position in the ‘environment space’, the 

set of different possible environmental states. The impact func-

tion is itself dependent upon r, allowing it to capture, for ex-

ample, concentration- dependent uptake of a resource. r is also 

affected by the second EO component �(r), which represents 

allogenic processes such as flows of intermediates into or out 

of the system. We can then write the rate of change in the en-

vironment as:

where s� is the instantaneous abundance of species �.

Thirdly, the sensitivity function g� describes the per- capita 

growth rate of a species � in a particular environment:

As defined here, these functions are very general, allowing the 

expression of various categories of EO relationship. These in-

clude ‘switching’ phenotypes such as diauxy, as well as com-

binations of essential resources (Tilman  1980). Equations  (3) 

and (4) are essentially identical to typical CR formulations 

(Cui, Marsland, and Mehta 2024), though generalised to allow 

elements of f� (r) to be positive (representing secretion) and to 

allow g�(r) to be negatively influenced by components of r (rep-

resenting toxicity).

The dependence of g� on r implies that environmental changes 

caused by both � itself (� = �, intraspecific interactions) and 

other species (� ≠ �, interspecific interactions) (Equation 3) will 

regulate �'s growth rate. Breaking this regulation into the ef-

fect mediated by each environmental factor r� individually, we 

can define four types of elementary mechanisms categorised 

by the combinations of the signs of the impact and sensitivity 

functions. Following recently defined terminology for metabolic 

interactions (Koffel, Daufresne, and Klausmeier  2021; Estrela 

et  al.  2019), we refer to these elementary mechanisms as en-

richment (� produces a nutrient that enhances the growth of �), 

depletion (� reduces the concentration of a nutrient, impeding 

the growth of �), pollution (� produces a toxin that impedes the 

growth of �) and detoxification (� decreases the concentration of 

a toxin of � and enhances its growth) (Figure 1A).

Species can interact through multiple environmental factors 

r�. The net impact on growth then results from the summa-

tion of the effects of each of the composed elementary mecha-

nisms at play. Most interesting are cases where the composed 

mechanisms have a mixture of positive and negative impacts 

(e.g., depletion combined with detoxification), in which case 

the net effect will depend on the relative balance of the pos-

itive and negative mechanisms, in turn dependent upon the 

environmental context (Figure  1B). This environmental- 

dependence arises naturally within the EO framework: in sys-

tems dominated by autogenic mechanisms of environmental 

(2)� =
4

3

(

< ODh(0) > − < ODl(0) >
)

(3)
dr

dt
=

∑

�

s�f� (r) + �(r)

(4)
1

s�

ds�
dt

= g�(r).
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change—such that � = 0—it can be shown that (Supporting 

Information Text S1):

where r0 is the initial environmental composition and the integral 

is taken over the entire history of the system up to the current time 

t (parameterised by �). This expression is derived by considering a 

path integral through the environment space and precisely disen-

tangles the impact of each species on the growth rate of all other 

species through autogenic environmental change. We will refer to 

it as the closed environment- organism (cEO) equation, as the envi-

ronment is closed with respect to allogenic influences.

Central to this expression is the term a�
��
(r), which we call the 

instantaneous interaction by analogy to the gLV equation:

Here, �
�
 is �'s intrinsic growth rate (i.e., its growth in the ab-

sence of other species and at low population sizes) and a�� is the 

interaction between � and � (i.e., the density- dependent impact 

of � on the growth rate of �).

While analogous in structure, we note some important differ-

ences between the cEO and gLV equations: firstly, in contrast 

to the fixed gLV interactions a��, a
�
��
(r) is dependent on the 

environment r. This arises from its definition as the composi-

tion of the environmentally dependent impact and sensitivity 

functions:

∇g�(r) is the gradient of the sensitivity function, a vector field 

which denotes the direction in the environment space along which 

the growth rate of � increases most rapidly. The scalar product of 

this with f� (r) (also a vector field) therefore indicates whether � is 

pulling the environment in a direction that increases (positive a�
��

) 

or decreases (negative a�
��

) the growth rate of � at a given r. Second, 

this environmental dependence is not static—in contrast to equi-

librium gLV systems, environments under autogenic control are 

generally out of equilibrium and trace out a trajectory r(t) in the 

environment space, over which a�
��
(r) can vary substantially. In 

Supporting Information Text  S1, we additionally show that a�
��

 

arises in equilibrium systems that can be described by the gLV 

(5)
1

s�

ds�
dt

= g�
(

r0
)

+
∑

�
∫
t

0

a�
��
(r) s� d�

(6)
1

s�

ds�
dt

= �� +
∑

�

a�� s�

(7)a�
��
(r) ≡ ∇g�(r) ⋅ f� (r)

FIGURE 1    |    Multiple interaction context- dependencies can be explained with a single theoretical framework. (A) Environmentally mediated 

interactions between organisms can be broken into elementary components by considering the role of each environmental factor r� separately. 

‘Sensitivity functions’ (purple) denote the effect of increasing a factor r on the growth rate of a target species � (i.e., whether it decreases—bar—or 

increases—arrow—�'s growth), while ‘impact functions' (blue) denote the effect of an effector species � on r (i.e., whether it is increased—arrow—or 

decreased—bar). Combinations of these functions imply four elementary interaction mechanisms: Enrichment and detoxification which enhance 

the growth of �, and depletion and pollution which reduce �'s growth (Estrela et al. 2019; Koffel, Daufresne, and Klausmeier 2021). (B) Elementary 

mechanisms can be composed together through different environmental factors, with the net growth rate (GR) impact depending on the combined 

effect of the composed elements. When elementary mechanisms with both positive and negative effects are mixed, the sign of the net effect depends 

on the balance between the factors—that is, the environmental context. (C) Our framework shows how EO models give rise to an instantaneous in-

teraction that depends on the environment. As the environment changes over time (e.g., in batch culture) or over space (e.g., in microfluidic channels 

at steady- state), this environmental- dependency in turn gives rise to time and spatial dependencies.
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equation (such as chemostats) where it plays an equivalent role to 

the interaction matrix (Novak et al. 2016). We can exploit this link 

to estimate interactions in equilibrium settings by isolating the 

environment from allogenic influences and measuring the result-

ing nonequilibrium growth rate dynamics of pairs of organisms 

(Supporting Information Text S2).

Finally, growth rate impacts in the EO framework are cumula-

tive, arising from the integration of the instantaneous interac-

tion term over the entire history of the system up to the current 

time t  (∫ t
0
a�
��
(r) s� d�). This is because interactions are mediated 

via ongoing changes to environmental factors, which take time 

to be impacted by organisms. We refer to the resulting net im-

pact of � on �'s growth rate—considering all autogenic environ-

mental changes caused by � up to this point—as the cumulative 

interaction.

In the remainder of this manuscript, we illustrate how the 

environmental- dependency of the instantaneous interaction 

results in time- dependencies and spatial structure that can be 

predicted if the underlying elementary mechanisms (repre-

sented by appropriate choices of the impact and sensitivity func-

tions) are known (Figure 1C).

3.2   |   Mixed Mechanisms Can Result in Interaction 
Time- Dependencies

One of the simplest mixtures of mechanisms with opposing ef-

fects consists of a single species  interacting negatively with 

itself via nutrient depletion and positively via detoxification 

(Figure 2A). We modelled this system using Monod- based im-

pact (Figure 2B) and sensitivity functions (Figure 2C) describ-

ing the dynamics of the toxin, nutrient and cell abundances 

(Supporting Information). Placing this system in a closed 

batch culture setting prevents allogenic influxes of intermedi-

ates and thus satisfies the purely autogenic assumption of the 

cEO equation. The instantaneous intraspecific interaction a�


 

(Figure 2D) recapitulates the environmental- dependency of in-

teractions in this system, with positive intraspecific interactions 

FIGURE 2    |    Intraspecific interactions mediated by mixtures of positive and negative mechanisms are predicted to switch sign over time in batch 

culture. (A) One of the simplest examples of a system with mixed elementary mechanisms is a single species  which increases the growth of other 

members of its population by detoxifying an environmental toxin while reducing their growth by depleting a common nutrient. (B, C) We can repre-

sent the impact and sensitivity functions for  using the ‘environment space’, which denotes the values of the different growth- limiting environmen-

tal factors (in this case, the concentrations of the nutrient [n] and of the toxin 
[

q
]

). Impact functions are vector fields sitting in this space (black arrows, 

B), while sensitivity functions are scalar fields (C). The gradient of the sensitivity function then represents the direction in the environment space in 

which the growth rate of  increases most rapidly, as well as how quickly it increases (black arrows, C). (D) Taking the scalar product of the impact 

function and the gradient of the sensitivity function yields the instantaneous interaction a�


, representing the instantaneous effect that  has on its 

own growth rate at a given position in the environment space. (E) Purely autogenic systems such as batch culture experiments trace out trajectories 

in this environment space, starting from an initial position [n]0, 
[

q
]

0
. (F) Considering a single trajectory with [n]0 = 1, 

[

q
]

0
= 0.4, we can calculate both 

the net instantaneous interaction a�


 and the contributions from the two elementary mechanisms as a function of time. (G) The integrated effect of 

 on its own growth (the cumulative interaction) demonstrates a switch in the intraspecific interaction: At early timepoints, when the toxin concen-

tration is high, detoxification dominates and the interaction appears positive. By contrast, at late timepoints when the toxin has mostly been removed, 

depletion of the single nutrient dominates and the interaction becomes negative.
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dominating at high toxin concentrations and negative intra-

specific interactions at low toxin concentrations (Piccardi, 

Vessman, and Mitri 2019). The environment space is traversed 

by the system as it evolves from some initial state r0, following 

the trajectory r(t). In this case, the system moves towards the or-

igin as  reduces the concentration of both the nutrient [n] and 

the toxin 
[

q
]

, with the exact trajectory varying depending on the 

initial environmental context (Figure 2E). This means that the 

instantaneous interaction a�


 can switch signs from positive to 

negative over time because it captures the net effect, where the 

dominance of the two mechanisms switches from detoxification 

to depletion (Figure 2F).

This switch in sign of the instantaneous intraspecific interac-

tion propagates through to 's growth rate. As there are no other 

species in this system, the sole growth rate effect is the time- 

dependent impact of  on itself—the cumulative intraspecific 

interaction—given by ∫ t
0
a�(r) s d�. This switches from pos-

itive to negative once the accumulated benefit of the removal of 

the toxin is outweighed by the accumulated penalty from the 

reduction in the nutrient concentration (Figure 2G). We there-

fore predicted from this model that measurements of the intra-

specific interaction in such systems should give positive values 

if performed early on (when detoxification dominates) and nega-

tive values if performed later (when depletion dominates).

3.3   |   An Antibiotic- Based Experimental System 
Demonstrates Sign- Switching of the Intraspecific 
Interaction

We now investigated whether this prediction was borne out ex-

perimentally. We used a bacterium (Comamonas testosteroni) 

that can degrade �- lactam antibiotics via induced secretion of 

�- lactamases (Figure S1) and which competes with itself over 

proline as a sole carbon source as an experimental analogue 

of the detoxification/depletion system shown in Figure  2A. 

To measure intraspecific interaction changes over time in 

multiple environmental contexts, we prepared arrays of en-

vironmental conditions (with varying initial proline, [pro]0 

and ampicillin, [amp]0, concentrations) within 96- well plates 

(Figure 3A). Each condition was split into two sets of wells, 

one inoculated with exponential- phase C. testosteroni cells at 

high density and the second at low density. Absorbance- based 

growth curves of these cultures were then measured in a plate 

reader, which was used to calculate a quantity we call the 

measured interaction (for a comparison of the three interac-

tion concepts we discuss in this paper—instantaneous, cumu-

lative and measured—please refer to Supporting Information 

Text S3 and Figure S2).

Analogous to existing experimental measurements of interac-

tions, in which the growth of a focal population is measured 

in the presence or absence of a partner (Piccardi, Vessman, 

and Mitri 2019; Mitri and Foster 2013; Foster and Bell 2012; 

Kehe et  al.  2021), we can treat our low inoculation density 

condition as a ‘monoculture- like’ assay, with a correspond-

ing subpopulation in the high- density condition which is of 

equal size. In the high- density condition, this subpopulation 

is effectively cocultured with a second subpopulation of the 

same species. We can therefore measure the intraspecific in-

teraction by comparing the fate of the matching subpopula-

tions in the high-  and low- density conditions (Figure 3B). This 

is achieved by dividing the growth curve of the high- density 

culture by the ratio of inoculation densities (4:1), yielding the 

size of the subpopulation as a function of time. At times when 

this normalised curve is higher (lower) than that of the low 

inoculation density condition, we can infer that the presence 

of additional cells of the same species enhanced (reduced) 

the subpopulation's growth—that is, that a positive (negative) 

intraspecific interaction has occurred (Figure  3B). We can 

therefore simply subtract the low inoculation density curve 

from the normalised high inoculation density curve to infer 

the interaction (Figure 3C). We considered several alternative 

definitions of the measured interaction (Figure  S2D–G), but 

found that this abundance difference provided the optimal 

balance between capturing the shape of the cumulative inter-

action and robustness to measurement noise. We note that it 

represents a time- varying version of accepted endpoint- based 

interaction metrics (Foster and Bell 2012).

Beginning with the control conditions with zero antibiotic, the 

low inoculation density curves looked similar to the high inoc-

ulation density curves aside from a consistent lag (Figure S3A). 

The ratio of densities between the two conditions remained ap-

proximately equal to the inoculation ratio until the high- density 

condition approached stationary phase, implying this lag arises 

from the smaller initial number of cells in the low- density condi-

tion. This is reflected in the measured intraspecific interaction, 

which was approximately neutral up to this point and negative 

afterwards (Figure 3D). In the presence of antibiotics, the lag 

between the two conditions increased, presumably because the 

smaller initial population was slower to degrade the ampicil-

lin before starting to grow (Figure S3B). Consequently, we ob-

served a concentration- dependent positive interaction emerging 

with increasing [amp]0, as predicted by the model (Figure 3E). 

Ultimately, all environments resulted in negative interactions 

in the long term. Summarising these time- dependencies by 

considering the peak and final measured interactions demon-

strates the environmental and time- dependencies together 

(Figure 3F,G), which qualitatively match the predictions of our 

modelling framework (Figure  3H,I). Although we do not di-

rectly fit model parameters to our data, we find that these qual-

itative patterns are robust to large changes in parameter values, 

suggesting that these results are not a result of fine- tuning of 

the model (Figure S4).

Evolutionary rescue can result in similar abundance trajec-

tories as those described here, as a small number of mutant 

cells with antibiotic- resistant genotypes can grow to fixation 

after a long lag (Orr and Unckless 2014; Ramsayer, Kaltz, and 

Hochberg 2013). We tested whether evolution could play a role 

in our experimental system by measuring the MIC of ampicil-

lin for each culture at the end of our interaction measurement 

timecourses (Figure  S5). While we did observe a small in-

crease (≈ 50%) in the resistance of populations exposed to the 

highest ampicillin concentrations compared to those grown 

under antibiotic- free conditions, simulations incorporating 

the evolution of resistance showed that evolutionary trends, 

far from driving the observed interaction time- dependencies, 
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tend to attenuate measured positive interactions if they have 

any effect at all (Figure S6). Thus, we concluded that the con-

sistent positive- to- negative interaction switch that we observe 

arises from the changing dominance of the two elementary 

interaction mechanisms, as suggested by our theoretical 

framework.

FIGURE 3    |    An antibiotic- based model system demonstrates sign switching of measured intraspecific interactions over time. Comamonas testoster-

oni is a �- lactamase producing soil bacterium which can degrade environmental ampicillin. Combined with competition over a single limiting carbon 

source (proline), we used this as an experimental analogue of the model shown in Figure 2. (A) Exponential- phase cells were transferred to a 96- well 

plate containing wells with different initial ampicillin concentrations [amp]0 and proline concentrations [pro]0. Six wells were prepared for each condi-

tion, consisting of three replicates each of low and high initial inoculation densities at a 1:4 density ratio, allowing 16 different environmental conditions 

in total. (B, C) We measured the growth curve of each well and averaged the technical replicates. We then calculated the measured interaction over time 

by normalising the averaged high optical density (OD) curve by the ratio of the starting ODs (B) and subtracting the low OD curve (main text, Figure S2, 

Supporting Information Text S3) (C). Measured interactions greater than 0 indicate that growth of a matched subpopulation of C. testosteroni (black dots) 

was enhanced by the presence of additional members of the same species in the high- OD wells relative to the low- OD wells (a positive intraspecific inter-

action), while differences less than 0 indicate growth suppression (a negative intraspecific interaction). (D, E) Comparing measured interactions across 

different proline (D) and ampicillin (E) concentrations demonstrates the environment- dependent shift in positive to negative interactions predicted by 

the model. We summarise this shift for each condition by measuring the peak (purple circles) and final (orange circles) measured interactions for each 

condition (F, G). These qualitatively match predictions from our modelling framework (H, I). The general pattern that emerges from these simulations is 

robust to changes in simulation parameters (Figure S4). Faint lines in (D and E) indicate n = 3 separate biological replicates performed on separate days, 

while bold lines indicate LOESS- smoothed averages. Biological replicates are indicated in (F) and (G) by separate horizontal strips.
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3.4   |   Small Crossfeeding Communities Illustrate 
the Common Origins of Time- Dependent 
Interactions and Spatial Structure

So far, we have considered time-  and environmental- 

dependencies in a mono- species system. However, our frame-

work generalises to multi- species communities, as well as 

certain types of spatially structured communities (Methods, 

Supporting Information Text S4, Figure S7). Two recent studies 

have described time-  (Daniels, van Vliet, and Ackermann 2023) 

and spatial-  (Wong et  al.  2023) dependencies of similar two- 

species communities. In both cases, a degrader species  

consumes a polymer (chitin or dextran) and subsequently 

produces a metabolite (acetate or glucose) which is consumed 

by the second crossfeeding community member . When the 

polymer is exhausted,  can switch from net production to net 

consumption of the crossfed metabolite (Figure  4A). Daniels, 

van Vliet, and Ackermann (2023) observed a time- dependency 

of the interspecific interactions in batch culture (Figure  4B), 

while loading of a similar community into a microfluidic chan-

nel under flow resulted in spontaneous self- structuring of the 

community along the channel with  only growing towards the 

outlet (Wong et al. 2023; Figure 4C). Given the commonalities 

between the two studies, we decided to use them as case studies 

FIGURE 4    |    Our framework shows that interaction time- dependencies and spatial structure can arise from closely related processes. (A) Two re-

cent studies (Daniels, van Vliet, and Ackermann 2023; Wong et al. 2023) describe the ecological patterns arising in a two- species community consist-

ing of a degrader  that consumes a polymer p and produces a metabolic by- product m which is consumed by a second crossfeeding species . At low 

concentrations of p,  switches from net production of m to consumption. (B) Daniels, van Vliet, and Ackermann (2023) find that this type of commu-

nity displays time- dependent interspecific interactions in batch culture, with the impact of  on  increasing early on and decreasing later (red) and 

the impact of  on  switching from neutral to negative (orange). (C) By contrast, Wong et al. (2023) show how a similar community patterns itself in 

microfluidic channels of length L with unidirectional flow, with  only being able to grow towards the outlet of the device. (D) We constructed an EO 

model of this community and applied our analytical techniques to obtain the instantaneous interaction matrix for each possible pair of community 

members (main text, Supporting Information). We then simulated the environmental trajectories of batch culture (dashed lines) and the microfluidic 

device (solid lines) inoculated with this community (Methods). In the case of the microfluidic device, the initial environment 
[

p
]

0
, [m]0 corresponds 

to the composition of the media injected into the system at the inlet, while points along the environmental trajectory indicate the steady- state media 

composition at different positions along the channel. (E, F) In the batch- culture model, the gradual enhancement of the environment by  for  via 

conversion of p to m results in a gradual increase in the cumulative interaction from  to . Later, once p has been largely exhausted, the switch in 

the behaviour of  from net production to net uptake of m leads to competition between the two species, and a downward trend in both interspecific 

cumulative interactions (E). These dynamics are difficult to dissect from the raw growth curves (F). (G, H) When this community is placed into the 

spatial context of a simulated microfluidic channel with flowrate vx = 10, we observe a similar interaction pattern from the inlet to the outlet, with 

a positive interaction accumulating from  to . At a certain position, this positive cumulative interaction exceeds the mortality rate � representing 

the flushing of cells by flow. Beyond this point, the net growth rate of  is positive, reflecting the opening of a niche for  (G). This leads to the spatial 

structuring of the two species observed in experiments (H).
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for how our framework can unify similar observations occur-

ring across time or space.

We built an EO model of such degrader/crossfeeder communi-

ties and derived expressions for the four different instantaneous 

interactions a�


, a�


, a�


 and a�


 (Supporting Information). As 

shown in Figure 4D, these four quantities can be arranged anal-

ogously to the interaction matrix of the gLV framework, with 

intraspecific interactions located along the main diagonal and 

interspecific interactions located off this axis. However, instead 

of being represented by a single value as in the gLV model, the in-

stantaneous interactions are expanded into scalar fields defined 

on the entire environment space, capturing the environmental- 

dependency of each interaction. Both the degrader's intraspecific 

instantaneous interaction a�


 and interspecific instantaneous 

interaction a�


 contain positive and negative regions, reflect-

ing the changing balance between the enrichment mechanism 

(production of the crossfed metabolite from the polymer) and the 

depletion mechanism (competition over the crossfed metabolite) 

in different environments.

In batch culture, organisms modify their environment by se-

creting and consuming intermediates over time. A similar effect 

occurs in flowing systems, whereby the intermediates within a 

parcel of fluid are sequentially modified by the organisms re-

siding at successive spatial locations as it is transported down-

stream. This results in an environmental trajectory in space 

that is formally equivalent to the temporal trajectory of batch 

culture systems when the spatial system is allowed to reach a 

steady state (Supporting Information Text S4). This allows us to 

directly compare the batch culture system trajectory (Figure 4D, 

dashed lines) and the microfluidic trajectory (Figure  4D, solid 

lines) when plotted onto the instantaneous interaction maps, en-

abling us to interpret the changing interactions over time and 

space using the same framework. Both systems sweep out initial 

paths with similar shapes, suggesting that the temporal pattern-

ing of the batch culture and the spatial patterning of the channel 

may arise from similar changes in interaction strengths.

To explore this in more detail, we now broke down the growth 

dynamics in the batch culture simulations into cumulative in-

teractions, focusing on the interspecific cases (Figure 4E,F). We 

observed a similar pattern of time evolution in the batch culture 

interactions as in the original study (Figure 4B,E). In the initial 

phase, the large initial amount of polymer is metabolised by the 

degrader, resulting in large amounts of free metabolite. While 

this substantially enhances the growth of the crossfeeder, the 

low utility of the metabolite at this point for the degrader pre-

vents the crossfeeder from having a strongly negative impact on 

the degrader. Later, the switch of the degrader to net metabolite 

uptake leads to mutual competition between the two species, 

decreasing the strength of the net- positive interaction with the 

crossfeeder and causing a net- negative impact of the crossfeeder 

on the growth of degrader.

Similar effects arise in the spatially structured system 

(Figure 4G,H). The crossfeeder cannot grow near the inlet as 

the rate at which it is washed out of the device (�) exceeds the 

growth rate sustained at very low metabolite concentrations. 

However, the activity of the degrader leads to a gradual en-

hancement of the environment for the crossfeeder along the 

length of the channel and ultimately leads to the opening of a 

new niche when the cumulative interaction from the degrader 

to the crossfeeder exceeds the threshold set by �. This generates 

spatial structure, with the crossfeeder only growing towards the 

outlet of the device (Figure 4C,H). Our model also reproduces 

the suppressive effect of increased flow rates on the growth of 

, as observed experimentally (Wong et al. 2023) (Figure S8). In 

summary, our framework shows how spatial patterns arising 

under uni- directional flow and interaction time- dependencies 

in well- mixed systems are reflections of the same underlying 

ecological processes.

4   |   Discussion

We have presented a general framework that explains context- 

dependencies of interactions as arising from feedback between 

organisms and their environment. This viewpoint provides a 

theoretical justification for the ubiquity of context- dependencies 

of environmentally mediated interactions (Chamberlain, 

Bronstein, and Rudgers  2014; He, Bertness, and Altieri  2013; 

Shantz, Lemoine, and Burkepile 2016): aside from some carefully 

chosen combinations of the impact and sensitivity functions, 

Equation  (7) implies that essentially every environmentally 

mediated interaction will depend on the environmental state. 

Furthermore, as organisms often change their environment over 

time, interaction changes over time should be widespread. Our 

single- species toxin/nutrient system (Figures  2, 3) provides an 

illustration of this effect. Initially, the population interacts pos-

itively with itself (increases its own growth rate) through envi-

ronmental detoxification, but this mechanism inherently causes 

a sign switch of the interaction: once the toxin is eliminated, 

the positive interaction mechanism is suppressed and competi-

tion for the nutrient dominates. The autogenic environmental 

changes thus effectively set up a stress gradient in time, driving 

the observed time- dependency of the interaction (Brooker and 

Callaghan 1998).

Our results have particular relevance for our understanding 

of the outcomes of batch culture interaction measurements 

(Piccardi, Vessman, and Mitri  2019; Mitri and Foster  2013; 

Foster and Bell  2012; Kehe et  al.  2021; Hsu et  al.  2019; Weiss 

et al. 2021). The mechanism by which measured interactions in 

batch culture switch from positive to negative once nutrients be-

come limiting (Figure 3) is quite general and suggests that mea-

surements based on end- point abundances may miss positive 

interactions during early community establishment. This may at 

least partially explain the ongoing controversy surrounding the 

relative distribution of negative and positive interactions in nat-

ural communities (Palmer and Foster 2022; Yu et al. 2022; Kehe 

et al. 2021; Zelezniak et al. 2015; Foster and Bell 2012).

More broadly, we see two general applications of this work. 

First, we show that placement of the same community of or-

ganisms in different types of system can result in distinct but 

connected phenomena. For example, in Figure  4 we show 

how time- dependencies in batch culture and spatial struc-

ture in flowcells are manifestations of the same EO feed-

backs. Of more practical relevance, we discuss in Supporting 

Information Texts S1 and S2 a novel route by which our frame-

work allows one to map interactions in open, equilibrium 
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systems like chemostats through measurements of closed 

experimental systems like batch cultures, thereby providing 

a novel basis for evaluating the ecology of open ecosystems. 

Crucially, this approach is based purely on species abundance 

measurements, meaning it can be applied even when the un-

derlying environmental dynamics are unknown. This insight 

might be used to explore the ecological landscape around 

equilibrium states in chemostat- like systems by applying en-

vironmental perturbations in batch culture, potentially open-

ing up new routes to rationally control community composition 

by changing the environment (Goyal, Rocks, and Mehta 2024; 

Sánchez et al. 2024).

Secondly, our work provides new theoretical tools for con-

necting the underlying mechanisms of species' interactions 

to their evolution and ecology. The instantaneous interaction 

a�
��

 we discuss throughout this work is also at the heart of the 

ecology of the equilibrium systems typically of interest to the-

oreticians (Supporting Information Text S1, (Koffel, Daufresne, 

and Klausmeier 2021)). As it can be calculated for most realistic 

choices of the impact and sensitivity functions (Equation 7), it 

represents a much more flexible link between mechanistic mod-

els and interaction frameworks than the separation of times-

cales approach (MacArthur 1970; O'Dwyer 2018). We anticipate 

that this link will allow deeper mechanistic insights into phe-

nomena such as higher order interactions (HOIs) (Sanchez 2019; 

Abrams  1983; Billick and Case  1994; Gibbs, Levin, and 

Levine 2022) and the evolution of environmentally mediated so-

cial traits (Govaert et al. 2019), as well as the dependence of such 

evolutionary outcomes on the environmental context (Drew, 

Stevens, and King 2021).

We also note that despite our focus on microbial ecosystems, 

our results should also hold true for macroscopic ecosystems as 

long as the assumptions of our framework—particularly our as-

sumption of autogenic dominance—are at least approximately 

true. Indeed, the interplay between organisms and their envi-

ronment has long been understood to drive primary succession 

in plant ecosystems, whereby modification of the local environ-

ment by early pioneer species opens new niches and eventual 

replacement of pioneers by latecomers better adapted for the 

new environment (Roberts 1987; Connell and Slatyer 1977). In 

Supporting Information Text S5 and Figure S9, we illustrate this 

idea with a model of autogenic primary succession of plants. 

Calculation of the cumulative interactions illustrates the com-

plex time- dependency of the interactions in this system, with 

some changing signs (Figure  S9E). Similar successional pat-

terns are observed in macroscopic systems such as whale falls 

(Smith et  al.  2015) and microscopic systems such as marine 

snow (Pontrelli et al. 2022; Datta et al. 2016) in which allogenic 

nutrient fluxes are substantially smaller than the autogenic im-

pacts of detritivores. Likewise, the spatial niche- opening effects 

we describe in flowing systems may at least partially explain 

the longitudinal patterning of organisms in systems such as riv-

ers and the gut (Vannote et al. 1980; Riva et al. 2019; Pereira 

and Berry 2017).

Nevertheless, there are some limitations to our framework. 

While we can generalise our framework to incorporate allogenic 

mechanisms (Equation  S4), in most of this work we have as-

sumed that allogenic factors can be eliminated. This assumption 

allows the cEO and gLV equations to be analogised, but is not 

applicable to the numerous communities which are subject to 

external influences. Nevertheless, this assumption is less lim-

iting than it may initially appear, covering for example nutrient 

cycling in closed environments (de Jesús Astacio et al. 2021). We 

also do not specify how the initial environment r0 is reached. 

This is an external constraint which must be carefully selected, 

for example, based on the composition of virgin substrate in the 

case of a primary succession. Another important choice—partic-

ularly when attempting to directly compare models and experi-

ments—is the selection of the impact and sensitivity functions. 

For large ecosystems, the number of environmental factors in-

volved and the difficulty in measuring them can make accurate 

determination of these functions challenging. However, recent 

work suggests they can be constrained by in silico approaches 

such as genome- scale modelling (Schäfer et  al.  2023) without 

extensive experimental investigation. Lastly, our assumption 

that interactions are environmentally mediated, while well- 

grounded for many microbial and plant communities (Gralka 

et al. 2020; Roberts 1987), cannot account for direct interaction 

mechanisms such as predation and contact- dependent processes 

(Sockett 2009; Hayes, Aoki, and Low 2010).

In summary, our work shows that many context- dependencies 

of ecological interactions can be explained by reciprocal feed-

back between the growth of organisms and their resulting en-

vironmental impacts. Knowledge of these feedbacks can be 

used to predict and interpret interaction changes, providing a 

path forward in the effort to manipulate interactions to pre-

dictable ends. Ultimately, we anticipate that a renewed focus 

on the role of the environment in dynamical ecosystems will 

open new methods for controlling communities, as well as help 

to resolve longstanding questions regarding their composition 

and diversity.

Author Contributions

O.J.M. and S.M. conceived the study and edited the manuscript. O.J.M. 
developed models, performed experiments, analysed data and wrote the 
manuscript.

Acknowledgements

We thank E. Ulrich, M. Amicone, S. Sulheim, C. Vulin, A. Del Panta, 
P. Padmanabha, G. Ugolini, J. Palmer and three anonymous reviewers 
for their valuable comments on a previous version of this manuscript. 
We also thank J. Wong for sharing microfluidic data. Both authors were 
supported by the Swiss National Science Foundation (SNSF) through 
the NCCR Microbiomes (51NF40 180575), while O.J.M. was addition-
ally supported by a Human Frontier Science Program (HFSP) long- 
term fellowship (LT0020/2022- L) and S.M. was supported by an SNSF 
Eccellenza grant (PCEGP3 181272).

Data Availability Statement

All data and code used in this study (apart from data reproduced from 
other studies: Figure 4B,C) are available at https:// doi. org/ 10. 5281/ ze-
nodo. 13018090.

Peer Review

The peer review history for this article is available at https:// www. webof 
scien ce. com/ api/ gatew ay/ wos/ peer-  review/ 10. 1111/ ele. 70027 .

 1
4
6
1
0
2
4
8
, 2

0
2
5
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ele.7

0
0
2
7
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



11 of 12

References

Abrams, P. A. 1983. “Arguments in Favor of Higher Order Interactions.” 
American Naturalist 121: 887–891.

Berlow, E. L., S. A. Navarrete, C. J. Briggs, M. E. Power, and B. A. Menge. 
1999. “Quantifying Variation in the Strengths of Species Interactions.” 
Ecology 80: 2206–2224.

Bertness, M. D., and S. W. Shumway. 1993. “Competition and Facilitation 
in Marsh Plants.” American Naturalist 142: 718–724.

Billick, I., and T. J. Case. 1994. “Higher Order Interactions in Ecological 
Communities: What Are They and How Can They Be Detected?” 
Ecology 75: 1529–1543.

Brooker, R. W., and T. V. Callaghan. 1998. “The Balance Between 
Positive and Negative Plant Interactions and Its Relationship to 
Environmental Gradients: A Model.” Oikos 81: 196–207.

Callaway, R. M., and L. R. Walker. 1997. “Competition and Facilitation: 
A Synthetic Approach to Interactions in Plant Communities.” Ecology 
78: 1958–1965.

Chamberlain, S. A., J. L. Bronstein, and J. A. Rudgers. 2014. “How Context 
Dependent Are Species Interactions?” Ecology Letters 17: 881–890.

Chang, C. Y., D. Bajic, J. C. C. Vila, S. Estrela, and A. Sanchez. 2023. 
“Emergent Coexistence in Multispecies Microbial Communities.” 
Science 381: 343–348.

Connell, J. H., and R. O. Slatyer. 1977. “Mechanisms of Succession 
in Natural Communities and Their Role in Community Stability and 
Organization.” American Naturalist 111: 1119–1144.

Cui, W., R. Marsland, and P. Mehta. 2024. “Les Houches Lectures on 
Community Ecology: From Niche Theory to Statistical Mechanics.” 
ArXiv, arXiv:2403.05497v1.

Dal Co, A., S. van Vliet, D. J. Kiviet, S. Schlegel, and M. Ackermann. 
2020. “Short- Range Interactions Govern the Dynamics and Functions 
of Microbial Communities.” Nature Ecology & Evolution 4: 366–375.

Daniels, M., S. van Vliet, and M. Ackermann. 2023. “Changes in 
Interactions Over Ecological Time Scales Influence Single- Cell Growth 
Dynamics in a Metabolically Coupled Marine Microbial Community.” 
ISME Journal 17: 1–11.

Datta, M. S., E. Sliwerska, J. Gore, M. F. Polz, and O. X. Cordero. 2016. 
“Microbial Interactions Lead to Rapid Micro- Scale Successions on 
Model Marine Particles.” Nature Communications 7: 11965.

de Jesús Astacio, L. M., K. H. Prabhakara, Z. Li, H. Mickalide, and 
S. Kuehn. 2021. “Closed Microbial Communities Self- Organize to 
Persistently Cycle Carbon.” Proceedings of the National Academy of 
Sciences of the United States of America 118: e2013564118.

Di Martino, R., A. Picot, and S. Mitri. 2024. “Oxidative Stress Changes 
Interactions Between 2 Bacterial Species From Competitive to 
Facilitative.” PLoS Biology 22: e3002482.

Drew, G. C., E. J. Stevens, and K. C. King. 2021. “Microbial Evolution 
and Transitions Along the Parasite–Mutualist Continuum.” Nature 
Reviews. Microbiology 19: 623–638.

Estrela, S., E. Libby, J. V. Cleve, et al. 2019. “Environmentally Mediated 
Social Dilemmas.” Trends in Ecology & Evolution 34: 6–18.

Foster, K. R., and T. Bell. 2012. “Competition, Not Cooperation, 
Dominates Interactions Among Culturable Microbial Species.” Current 
Biology 22: 1845–1850.

Friedman, J., L. M. Higgins, and J. Gore. 2017. “Community Structure 
Follows Simple Assembly Rules in Microbial Microcosms.” Nature 
Ecology & Evolution 1: e109.

Gibbs, T., S. A. Levin, and J. M. Levine. 2022. “Coexistence in Diverse 
Communities With Higher- Order Interactions.” Proceedings of the 
National Academy of Sciences of the United States of America 119: 
e2205063119.

Govaert, L., E. A. Fronhofer, S. Lion, et  al. 2019. “Ecoevolutionary 
Feedbacks—Theoretical Models and Perspectives.” Functional Ecology 
33: 13–30.

Goyal, A., J. W. Rocks, and P. Mehta. 2024. “A Universal Niche Geometry 
Governs the Response of Ecosystems to Environmental Perturbations.” 
bioRxiv. https:// doi. org/ 10. 1101/ 2024. 03. 02. 583107.

Gralka, M., R. Szabo, R. Stocker, and O. X. Cordero. 2020. “Trophic 
Interactions and the Drivers of Microbial Community Assembly.” 
Current Biology 30: R1176–R1188.

Hayes, C. S., S. K. Aoki, and D. A. Low. 2010. “Bacterial Contact- 
Dependent Delivery Systems.” Annual Review of Genetics 44: 71–90.

He, Q., M. D. Bertness, and A. H. Altieri. 2013. “Global Shifts Towards 
Positive Species Interactions With Increasing Environmental Stress.” 
Ecology Letters 16: 695–706.

Hoek, T. A., K. Axelrod, T. Biancalani, E. A. Yurtsev, J. Liu, and J. 
Gore. 2016. “Resource Availability Modulates the Cooperative and 
Competitive Nature of a Microbial Cross- Feeding Mutualism.” PLoS 
Biology 14: e1002540.

Hsu, R. H., R. L. Clark, J. W. Tan, et  al. 2019. “Microbial Interaction 
Network Inference in Microfluidic Droplets.” Cell Systems 9: 229–242.

Kehe, J., A. Ortiz, A. Kulesa, J. Gore, P. C. Blainey, and J. Friedman. 
2021. “Positive Interactions Are Common Among Culturable Bacteria.” 
Science Advances 7: 7159.

Koffel, T., T. Daufresne, and C. A. Klausmeier. 2021. “From Competition 
to Facilitation and Mutualism: A General Theory of the Niche.” 
Ecological Monographs 91: e01458.

Liu, O. R., and S. D. Gaines. 2022. “Environmental Context Dependency 
in Species Interactions.” Proceedings of the National Academy of Sciences 
of the United States of America 119: e2118539119.

Lotka, A. J. 1920. “Analytical Note on Certain Rhythmic Relations in 
Organic Systems.” Proceedings of the National Academy of Sciences of 
the United States of America 6: 410–415.

MacArthur, R. 1970. “Species Packing and Competitive Equilibrium for 
Many Species.” Theoretical Population Biology 1: 1–11.

Malkinson, D., and K. Tielbörger. 2010. “What Does the Stress- 
Gradient Hypothesis Predict? Resolving the Discrepancies.” Oikos 119: 
1546–1552.

Maron, J. L., K. C. Baer, and A. L. Angert. 2014. “Disentangling the 
Drivers of Context- Dependent Plant–Animal Interactions.” Journal of 
Ecology 102: 1485–1496.

Meszéna, G., M. Gyllenberg, L. Pásztor, and J. A. Metz. 2006. 
“Competitive Exclusion and Limiting Similarity: A Unified Theory.” 
Theoretical Population Biology 69: 68–87.

Mitri, S., and K. R. Foster. 2013. “The Genotypic View of Social 
Interactions in Microbial Communities.” Annual Review of Genetics 47: 
247–273.

Nadell, C. D., K. Drescher, and K. R. Foster. 2016. “Spatial Structure, 
Cooperation and Competition in Biofilms.” Nature Reviews. Microbiology 
14: 589–600.

Novak, M., J. D. Yeakel, A. E. Noble, et  al. 2016. “Characterizing 
Species Interactions to Understand Press Perturbations: What Is 
the Community Matrix?” Annual Review of Ecology, Evolution, and 
Systematics 47: 409–432.

O'Dwyer, J. P. 2018. “Whence Lotka- Volterra?: Conservation Laws and 
Integrable Systems in Ecology.” Theoretical Ecology 11: 441–452.

Orr, H. A., and R. L. Unckless. 2014. “The Population Genetics of 
Evolutionary Rescue.” PLoS Genetics 10: e1004551.

Palmer, J. D., and K. R. Foster. 2022. “Bacterial Species Rarely Work 
Together.” Science 376: 581–582.

 1
4
6
1
0
2
4
8
, 2

0
2
5
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ele.7

0
0
2
7
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



12 of 12 Ecology Letters, 2025

Pereira, F. C., and D. Berry. 2017. “Microbial Nutrient Niches in the 
Gut.” Environmental Microbiology 19: 1366–1378.

Piccardi, P., B. Vessman, and S. Mitri. 2019. “Toxicity Drives Facilitation 
Between 4 Bacterial Species.” Proceedings of the National Academy of 
Sciences 116: 15979–15984.

Picot, A., S. Shibasaki, O. J. Meacock, and S. Mitri. 2023. “Microbial 
Interactions in Theory and Practice: When Are Measurements 
Compatible With Models?” Current Opinion in Microbiology 75: 102354.

Pontrelli, S., R. Szabo, S. Pollak, et al. 2022. “Metabolic Cross- Feeding 
Structures the Assembly of Polysaccharide Degrading Communities.” 
Science Advances 8: eabk3076.

Ramsayer, J., O. Kaltz, and M. E. Hochberg. 2013. “Evolutionary 
Rescue in Populations of pseudomonas fluorescens Across an Antibiotic 
Gradient.” Evolutionary Applications 6: 608–616.

Riva, A., O. Kuzyk, E. Forsberg, et  al. 2019. “A Fiber-  Deprived Diet 
Disturbs the Fine- Scale Spatial Architecture of the Murine Colon 
Microbiome.” Nature Communications 10: 1–11.

Roberts, D. W. 1987. “A Dynamical Systems Perspective on Vegetation 
Theory.” Vegetatio 69: 27–33.

Rodríguez- Verdugo, A., C. Vulin, and M. Ackermann. 2019. “The Rate 
of Environmental Fluctuations Shapes Ecological Dynamics in a Two- 
Species Microbial System.” Ecology Letters 22: 838–846.

Sanchez, A. 2019. “Defining Higher- Order Interactions in Synthetic 
Ecology: Lessons From Physics and Quantitative Genetics.” Cell 
Systems 9: 519–520.

Sánchez, A., A. Arrabal, M. San Román, and J. Díaz- Colunga. 2024. “The 
Optimization of Microbial Functions Through Rational Environmental 
Manipulations.” Molecular Microbiology 122: 294–303.

Schäfer, M., A. R. Pacheco, R. Künzler, et al. 2023. “Metabolic Interaction 
Models Recapitulate Leaf Microbiota Ecology.” Science 381: eadf5121.

Shantz, A. A., N. P. Lemoine, and D. E. Burkepile. 2016. “Nutrient 
Loading Alters the Performance of Key Nutrient Exchange Mutualisms.” 
Ecology Letters 19: 20–28.

Smith, C. R., A. G. Glover, T. Treude, N. D. Higgs, and D. J. Amon. 2015. 
“Whale- Fall Ecosystems: Recent Insights Into Ecology, Paleoecology, 
and Evolution.” Annual Review of Marine Science 7: 571–596.

Sockett, R. E. 2009. “Predatory Lifestyle of Bdellovibrio bacteriovorus.” 
Annual Review of Microbiology 63: 523–539.

Tilman, D. 1980. “Resources: A Graphical- Mechanistic Approach to 
Competition and Predation.” American Naturalist 116: 362–393.

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. 
Cushing. 1980. “The River Continuum Concept.” Canadian Journal of 
Fisheries and Aquatic Sciences 37: 130–137.

Venkataram, S., H. Y. Kuo, E. F. Y. Hom, and S. Kryazhimskiy. 2023. 
“Mutualism- Enhancing Mutations Dominate Early Adaptation in a Two- 
Species Microbial Community.” Nature Ecology & Evolution 7: 143–154.

Volterra, V. 1926. “Fluctuations in the Abundance of a Species 
Considered Mathematically1.” Nature 118: 558–560.

Weiss, A. S., A. G. Burrichter, A. C. D. Raj, et  al. 2021. “In Vitro 
Interaction Network of a Synthetic Gut Bacterial Community.” ISME 
Journal 16: 1095–1109.

Wong, J. P. H., M. Fischer- Stettler, S. C. Zeeman, T. J. Battin, and 
A. Persat. 2023. “Fluid Flow Structures Gut Microbiota Biofilm 
Communities by Distributing Public Goods.” Proceedings of the National 
Academy of Sciences 120: e2217577120.

Yu, J. S., C. Correia- Melo, F. Zorrilla, et al. 2022. “Microbial Communities 
Form Rich Extracellular Metabolomes That Foster Metabolic 
Interactions and Promote Drug Tolerance.” Nature Microbiology 7: 
542–555.

Zelezniak, A., S. Andrejev, O. Ponomarova, D. R. Mende, P. Bork, and K. 
R. Patil. 2015. “Metabolic dependencies drive species co- occurrence in 
diverse microbial communities.” Proceedings of the National Academy 
of Sciences 112: 6449–6454.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section.

 1
4
6
1
0
2
4
8
, 2

0
2
5
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ele.7

0
0
2
7
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se


	Environment-Organism Feedbacks Drive Changes in Ecological Interactions
	ABSTRACT
	1   |   Introduction
	2   |   Materials and Methods
	2.1   |   Modelling
	2.1.1   |   EO Models
	2.1.2   |   Microfluidic Simulations

	2.2   |   Experiments
	2.2.1   |   Strains and Growth Conditions
	2.2.2   |   Intraspecific Interaction Measurements


	3   |   Results
	3.1   |   A Theoretical EO Interaction Framework Explains Multiple Context-Dependencies
	3.2   |   Mixed Mechanisms Can Result in Interaction Time-Dependencies
	3.3   |   An Antibiotic-Based Experimental System Demonstrates Sign-Switching of the Intraspecific Interaction
	3.4   |   Small Crossfeeding Communities Illustrate the Common Origins of Time-Dependent Interactions and Spatial Structure

	4   |   Discussion
	Author Contributions
	Acknowledgements
	Data Availability Statement
	Peer Review
	References


