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Abstract. An artificial neural network (ANN)-based hybrid machine learning algorithm used to predict Lagrangian particle 

trajectories is described and demonstrated within a turbulent channel flow. The algorithm is capable of predicting the 

response of trajectories to particle-fluid density ratios across a large range, representing calcite particles in water (𝜌𝑃∗ =2.5) to air (𝜌𝑃∗ = 2041.0), highlighting its use across the scope of nuclear waste transportation flow systems. As well as 

the density ratio, the ANN uses the vertical location within the channel flow as its secondary feature variable. The ANN is 

trained on 10,000 simulated particle trajectories for each parameter set studied. Once suitably optimized, the ANN is shown 

to achieve around 6% mean-squared-error, with validation data sampled across three particle densities. Qualitative 

comparisons of trajectories demonstrate very good agreement at all three density ratios studied, though artefacts in the form 

of particle streaks arise due to the deterministic nature of the ANN. Investigation into the mean streamwise velocities 

suggests excellent agreement at low density ratios, and strong agreement at the upper bound of those studied, 𝜌𝑃∗ = 2041.0. 

The normal stresses are shown to agree in the core of the channel, while weaker agreement is found towards the walls. The 

algorithm provides a strong foundation for obtaining accurate statistical quantities and further insights into wall-bounded 

turbulent particle-laden flows using both simulated and experimentally obtained trajectory datasets.  

INTRODUCTION 

The use of machine learning (ML) to augment analysis, prediction and decision making has received wide attention 

in recent years, forming a crucial part of both industrial and everyday processes such as medical imaging [1] and 

satellite navigation [2]. In such applications, ML relies upon the availability of labelled training data, such as magnetic 

resonance imaging scans for cancerous or non-cancerous growths, or routes across a city with associated distance 

costs. From these, models can be trained, and insights derived to make logical, optimized decisions and further to 

generate knowledge, working towards understanding the fundamentals of the system. In the field of particle-laden 

flows, the availability of high-fidelity training data is good, due to widely used simulation techniques such as 

Lagrangian particle tracking (LPT) [3], as well as experimental techniques such as particle imaging velocimetry [4]. 

In both cases, tens of thousands to millions of trajectories can be predicted or resolved, with techniques such as direct 

numerical simulation (DNS) or tracer particles further allowing for full resolution of the continuous phase. It is 

therefore clear that both single-phase and multi-phase fluid flows stand as suitable candidates for augmentation and 

analysis via ML. Due to this, the use of ML techniques has received recent attention in the fluid dynamics community, 

with challenges such as turbulence closure modelling [5] and flow process optimization [6] addressed.  

For predicting the features of turbulent flows, various techniques have been demonstrated to date. For example, a 

random forest regression-based ML algorithm was used to predict the turbulence features in curved pipes using 

simulation data for training, which mapped the important characteristics of the flow, while slightly mispredicting the 

positions of additional vortices [7]. For particle-laden flows, the k-nearest neighbour algorithm has been used to 

recover the key fluid dynamic features of a mixing tank [8] and the radial mean velocity and concentration profiles in 

turbulent pipe flows [9], though the particle velocity fluctuations were not discussed. Artificial neural networks 

(ANNs) show further promise in such developments, capturing emergent phenomena such as preferential 

concentration [10]. The present work aims to utilize ANNs alongside leveraging dynamic training databases obtained 

through direct numerical simulation, to develop an algorithm capable of predicting particle trajectory responses to 

modification of the particle-fluid density ratio, recovering the key dynamic statistics, and greatly reducing the amount 

of time taken to obtain the particle behaviour features. 



METHODOLOGY 

The spectral-element method based DNS code, Nek5000 [11], is used to simulate the turbulent channel flow at 

shear Reynolds number, 𝑅𝑒𝜏 = 180, solving the Navier-Stokes equations in non-dimensional form numerically on a 

structured, discretized Cartesian grid comprising of 27 × 18 × 23 7th-order spectral elements, totalling approximately 

3.9 million equivalent Gauss-Lobatto-Legendre (GLL) nodes. Variables such as the instantaneous velocity 𝒖𝐹 and 

position 𝒙 are non-dimensionalized by the bulk velocity 𝑈𝐵 and the channel half-height, 𝛿, respectively. The grid is 

scaled in the wall-normal direction of the channel flow (𝑦) to distribute elements more densely closer to the wall, with 

uniform distribution in the streamwise (𝑥) and spanwise (𝑧) directions. The domain spans dimensions of 12𝛿 × 2𝛿 × 

6𝛿, representing a classical turbulent channel flow. The flow is maintained by a constant pressure gradient 𝜕𝑝∗ 𝜕𝑥∗⁄ =(𝑅𝑒𝜏 𝑅𝑒𝐵⁄ )2, with 𝑝∗ the non-dimensional pressure, and 𝑅𝑒𝐵 the bulk Reynolds number. A Lagrangian particle 

tracking routine was developed and implemented, operating concurrently with Nek5000, in order to predict the 

trajectories of solid particles within the turbulent flow. Particles are represented as point-like impenetrable spheres. 

After each fluid timestep, the LPT solves the non-dimensional equations of motion for each particle, presented below: 

 

 MVM ∂𝒖𝑃∗∂𝑡∗ = 3𝐶𝐷|𝒖𝑠∗|4𝑑𝑝∗𝜌𝑃∗ 𝒖𝑠∗⏟      𝐷𝑟𝑎𝑔
 +  34 𝐶𝐿𝜌𝑃∗ (𝒖𝑠∗ ×𝝎𝐹∗ )⏟          𝐿𝑖𝑓𝑡 + 12𝜌𝑃∗ 𝐷𝒖𝐹∗𝐷𝑡∗⏟    𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑀𝑎𝑠𝑠 + 1𝜌𝑃∗ 𝐷𝒖𝐹∗𝐷𝑡∗⏟    𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡. (1) 

 

In Eq. (1), 𝒖𝑃∗  is the instantaneous particle velocity vector, 𝒖𝐹∗  is the instantaneous fluid velocity vector spectrally 

interpolated at the particle position, 𝒖𝑆∗ = 𝒖𝐹∗ − 𝒖𝑃∗  is the slip velocity vector between the fluid and the particle, 𝑑𝑃∗  is 

the non-dimensional particle diameter, 𝜌𝑃∗  is the density ratio between the fluid and the particle and 𝝎𝐹∗   is the fluid 

vorticity, given by 𝝎𝐹∗ = 𝛁 × 𝒖𝐹∗ . Finally, 𝑀𝑉𝑀 is the virtual mass modification term given by 𝑀𝑉𝑀 =(1 + 1 2𝜌𝑃∗⁄ ). The drag coefficient, 𝐶𝐷, is calculated using 𝐶𝐷 = 24𝑓𝐷/𝑅𝑒𝑃, with 𝑓𝐷 = (1 + 0.15𝑅𝑒𝑃0.687) when 𝑅𝑒𝑃 > 0.5 and 𝑓𝐷 = 24/𝑅𝑒𝑃 otherwise (in the Stokes regime). The term, 𝑅𝑒𝑃 is the particle Reynolds number, 𝑅𝑒𝑃 =𝑅𝑒𝐵𝑑𝑃∗ |𝒖𝑆∗|. Further details on the calculation and origins of these terms are fully described in [12]. The equations of 

motion are integrated utilizing a fourth-order accurate Runge-Kutta scheme, with a time step (Δ𝑡∗ = 0.005) matching 

that of the continuous phase solver. Interactions between particles and the channel walls are resolved through elastic 

collision conditions. In the periodic directions (streamwise and spanwise), particles leaving through the boundary are 

reinjected at the corresponding location on the opposite side of the domain. Fluid and particle properties used to train 

the algorithm are presented in Table 1. 

TABLE 1. Simulation properties used in training of hybrid ANN ML algorithm. 

 

Parameter Value 𝑅𝑒𝜏 180 180 180 𝜌𝑃∗  2.5 1111.0 2041.0 𝑑𝑃∗  0.0025 0.0025 0.0025 𝑆𝑡+ 0.028 12.49 22.96 𝑁𝑃,𝑆𝐼𝑀 10,000 10,000 10,000 

 

Trajectories are first generated using the simulation techniques presented above in accordance with Table 1. Each 

point in the trajectory is then pre-processed into a data array which consists of their vertical channel position, as well 

as their velocity components and mechanical parameters. The input feature and predictor arrays are assembled as 

(𝑦∗, 𝑅𝑒𝜏, 𝜌𝑃∗ , 𝑑𝑃∗ ) and (𝑢𝑥,𝑡∗ , 𝑢𝑦,𝑡∗ , 𝑢𝑧,𝑡∗ ) respectively. The ANN is assembled with four input features, followed by three 

hidden layers containing 64, 32 and 16 neurons respectively with ReLU activation functions, followed by an output 

dense layer with three predicted values corresponding to the new particle velocity. The ANN is trained over 100 

epochs and optimized using the adam optimizer, minimizing the mean-square-error (MSE) loss function, with a batch 

size of 32 and a train-test validation split of 0.3. 

Once the ANN is trained, fictional particle trajectories may be generated by first initializing the position of all 

particles within the original boundaries of the channel flow, before assigning initial velocities based on the original 

local mean fluid velocity profile. The ANN hybrid ML algorithm is then performed such that subsequent velocities 

are predicted using 𝒖𝑃,𝑡+1 = �̅�𝑃,𝑡 + 𝒖′𝐹. Here, �̅�𝑃 is the predicted velocity generated using the ANN and 𝑢′𝐹~𝒩(𝜇, 𝜎2) comes from a validated Gaussian noise model based on the velocity fluctuations obtained from the 

DNS-LPT flow fields. Three variations of this term have been considered, with the first using the global channel fluid 



velocity fluctuation distributions as performed in similar work [9]. The study also considered two potential 

improvements for resolving the fluctuations: one using the local fluid wall-normal distribution and a final one using 

the local particle wall-normal distribution, which are sampled a priori. The results presented in this paper use the 

latter, which demonstrated the strongest agreement. Particle positions are updated using a standard Euler time-stepping 

algorithm, with particle-wall collision detection and handling procedures identical to those present in the DNS-LPT. 

RESULTS AND DISCUSSION 

Initially, the ANN was trained on 10,000 particle trajectories for each density ratio dataset over 100 epochs, beyond 

which overfitting was observed, wherein the MSE exhibited an increase for the validation data. At around 100 epochs, 

the MSE in the validation data settled at around 6%. Figure 1 compares the particle trajectory histories between the 

DNS-LPT results and the ML-informed predictions. Visually, comparison of the streamwise velocities associated with 

the particles suggests confidence that particles close to the wall are accurately predicted to slow. Lateral motion seems 

more pronounced for the DNS predictions, with trajectories orientated transverse to the streamwise direction, though 

evidence of this is suggested for the ANN predictions. The ML model also tends to exhibit streaks of particles which 

likely represents particles starting close together upon injection being subject to similar further velocity predictions, 

an artefact of the determinism inherent in the ANN. This could likely be alleviated by dropout layers in which neurons 

are randomly deactivated, such that an essence of randomness is imparted on a prediction for a particular input feature 

vector, and will be pursued in further work. 

 

 

 

FIGURE 1. Particle trajectory histories in (𝑥∗, 𝑦∗). Colour represents instantaneous particle streamwise velocity increasing from 

cyan to red. Left: 𝜌𝑃∗ = 2.5, middle: 𝜌𝑃∗ = 1111.0, right: 𝜌𝑃∗ = 2041.0. Upper: DNS predictions, lower: ANN predictions. 

 

 

      

FIGURE 2. Comparison of particle phase mean streamwise velocity (upper) and root-mean-square (r.m.s.) of velocity 

fluctuations (lower). Left: 𝜌𝑃∗ = 2.5, middle: 𝜌𝑃∗ = 1111.0, right: 𝜌𝑃∗ = 2041.0. Blue: 𝑢𝑥,𝑅𝑀𝑆′∗ , red: 𝑢𝑦,𝑅𝑀𝑆′∗ , green: 𝑢𝑧,𝑅𝑀𝑆′∗ . 



Figure 2 presents a quantitative analysis of both the mean streamwise velocities (upper) and the r.m.s. of the 

velocity fluctuations (lower). For the two lower density ratios studied the agreement in the mean streamwise velocity 

is excellent, indicating that the ML predictions of particle velocity based on vertical position within the channel are 

accurate. For 𝜌𝑃∗ = 2041, the hybrid ANN slightly overpredicts the velocities within the bulk of the channel, though 

the agreement is still good. The converse is true for the r.m.s. velocity fluctuation predictions, where the agreement is 

strong within the centre of the channel, and weaker in the turbulent regions, close to the wall. In these regions all 

components of the normal stresses tend to be overpredicted. This is likely due to the inability of the present technique 

to recover preferential concentration in low-speed streaks, which should be addressed in further improvements. That 

said, the technique is capable of performing with similar accuracy to DNS predictions for the first- and second- order 

particle statistics, with multiple orders of magnitude time reduction (around 4 minutes per simulation c.f. 48 hours). 

CONCLUSIONS AND FURTHER WORK 

The present study demonstrates an ANN-based predictive model used for generating particle trajectories in 

turbulent channel flows, trained on high-fidelity simulation data from DNS coupled with an LPT. Furthermore, by 

combining datasets across multiple density ratios (or Stokes numbers), the approach has been demonstrated to be well 

suited to capturing dynamic features across a range of material properties. Both qualitatively and quantitively the 

technique is shown to predict the mean streamwise velocities of particles within the flow correctly, when compared 

to equivalent DNS results. The normal stresses show best agreement in the channel core region, though weaker 

agreement close to the wall, where the fluctuations are overpredicted by the ANN technique, likely due to an inability 

to resolve motion within low-speed streaks.  

The presented findings indicate that the use of ANN-based models offer significant promise for reducing 

computational costs, whilst maintaining high accuracy in predicting the motion of particles within turbulent channel 

flows. Aside from the reduction of three orders of magnitude in runtime, the technique also mostly recovers the correct 

fluctuation behaviour, a novelty to the present literature in this field. Further work should first include improvements 

to the model, with the incorporation of dropout layers to reduce determinism in identical input feature vectors. The 

present model also struggles to capture fully the particle behaviour in the turbulent regions and as such, more 

sophisticated models to account for turbophoresis and preferential concentration which combine the ANN with 

physics-informed techniques should be adopted. 
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