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ABSTRACT

Accurate, reliable, and efficient robot localization is essential for long‐term autonomous robotic inspection of buried pipe net-

works. It is necessary for path planning and for locating detected faults in the network. This paper proposes a novel localization

algorithm designed for limited, high‐uncertainty sensing in network environments. The localization method is developed from the

Viterbi algorithm, which efficiently searches for the most likely robot trajectory amongst multiple hypotheses. It is augmented to

facilitate hybrid metric‐topological localization, and it is improved to efficiently spend computation on useful points in time.

Results using field robot data from a sewer network demonstrate the algorithm's practical applicability, as the algorithm is shown

to robustly produce a coherent trajectory estimate with low error in estimated location, compared with a particle filter alternative

that incorrectly jumps between parts of the network. Results using simulated data demonstrate the algorithm's robust performance

at large spatial and temporal scales. In 79% of trajectories, the algorithm produces less error than a particle filter, while requiring a

median of 0.18 times the computation time, demonstrating a substantial improvement in computational efficiency with com-

parable or superior accuracy. The flexibility of the algorithm is also demonstrated in simulation by incorporating measurements

representing acoustic echo sensing and pipe gradient sensing, which is shown to reduce the error rate from 28% to 7% or below, in

the case of large uncertainty in all other inputs. These results demonstrate that the proposed localization method improves the

computational efficiency, accuracy, and robustness of localization compared to a particle filter specialized to the pipe environment,

even in the presence of limited and high‐uncertainty sensing.

1 | Introduction

Autonomous robots could improve the effectiveness and effi-

ciency of buried pipe network inspection. These robots would

operate within the pipes, detecting and monitoring faults over a

large area and time period. Long‐term autonomy in the pipe

network requires reliable localization, which is the problem of

how a robot estimates its position in the environment. This is

more challenging here than in other robotics applications as the

Global Positioning System cannot be used underground to

measure position, and the scale of the environment, at

400,000 km of wastewater pipes in the UK (Department for

International Trade 2015) with 400,000 km of water supply

pipes, precludes alternative external position sensors.

Pipe networks are a special case of environment for robot local-

ization. The discrete pipe and junction locations, as depicted in

Figure 1, lend themselves to a topological environment represen-

tation. Moreover, a topological representation has been shown to

be memory‐efficient for localization and mapping at large scales

(Aguiar et al. 2023), which would be required in application to

pipe networks. However, while a number of sensing approaches

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
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have been developed in the literature (Aitken et al. 2021) for this

environment, these approaches are limited to making observations

of only the robot's motion or immediate surroundings, and a lack

of distinguishing features (Edwards et al. 2023) makes recognizing

discrete locations challenging. The sensing available is, therefore,

limited to metric measurements of distance traveled between

detected locations. This motivates a hybrid metric‐topological en-

vironment representation.

Hybrid metric‐topological localization using filtering has been

developed generally (Blanco et al. 2008), and similar approaches

have been applied to tracking targets in agricultural applica-

tions (Khan et al. 2020; Polvara 2021), and localization of

vehicles in road networks, where estimation is done using

particle filtering (Merriaux et al. 2015). A combination of par-

ticle filtering and Kalman filtering with a Gaussian mixture

model has been used elsewhere for vehicles in road networks

(Brubaker, Geiger, and Urtasun 2016), and a similar approach

was augmented with semantic information to more uniquely

identify places (Bernuy and Ruiz‐del Solar 2018). Filtering is

motivated in application to road vehicles where estimation at a

high rate is required for control and possibly path planning.

Good results are found in that application, but improvements

are found using semantic maps unavailable in the pipe en-

vironment, and accuracy and robustness in the case of limited,

high‐uncertainty sensing are not shown.

Methods based on smoothing or optimization can be used,

which have the advantage of estimating the full robot trajectory

using information over all time steps, rather than incremental

position. Smoothing for hybrid metric‐topological robot local-

ization has been developed for more general robot environ-

ments where the discrete variables are not limited to the

location of the robot (Doherty et al. 2022). The proposed solu-

tion is to alternately iteratively solve the continuous and the

discrete parts of the problem. In the pipe environment, robot

observations do not generally contain precise information re-

garding the discrete location, so the estimation of the discrete

state alone must generally involve the continuous state. Simi-

larly, the continuous robot pose depends heavily on the discrete

state. Therefore, there is a need for an approach specialized to

this environment.

A distinct approach to metric‐topological localization is based

on map‐merging (Huang and Beevers 2005); in this application

merging a network map and a robot's trajectory, or robot map.

In this application, the problem is a specific instance of this

map‐merging problem defined previously; the robot map is

entirely contained within the network map, rather than par-

tially overlapping, and the initial pose of the robot, part of the

robot map, is known exactly in the network map. At the same

time, the accumulating uncertainty from odometry means that

the robot map would be relatively deformed, such that the rigid

transform of the robot map would not bring it in alignment with

the network map. These substantial differences and challenges

motivate a different approach to the solution.

This paper addresses the general research gap in developing and

evaluating hybrid metric‐topological state space estimation in

application to robots in pipe networks, where there is high uncer-

tainty in sensing and significant limitations on computation. Robot

localization in pipe networks has been done using particle filtering

in a 2D metric state space (Alejo, Caballero, and Merino 2019), and

our previous work improved upon the robustness of this approach

by constraining the estimate to a 1D hybrid metric‐topological state

space (Worley and Anderson 2021a, 2021b). However, despite its

improvements to robustness, our previous approach is shown in an

experiment to suffer from occasional mislocalization from which it

fails to recover, producing a large overall error in trajectory

estimation. Furthermore, the computational cost of the particle

filtering approach increases as measurement uncertainty

increases, such that a robot constrained in sensing and com-

putation will be unable to produce a satisfactory estimate with

this approach. Therefore, further improvements to robustness

and computational cost are required in this application.

This paper addresses the specific problem of developing an

algorithm that improves localization robustness in the pipe

environment while simultaneously reducing the computational

cost. Improving estimation robustness by more precise or

thorough calculation of localization hypotheses is antithetical to

the reduction in computation, posing a difficult challenge but a

challenge that must be solved to allow the deployment of

localization algorithms on robots in this environment.

Computation for each step of the robot trajectory must be

reduced so that a more thorough set of trajectory hypotheses

can be considered while keeping the total computational

FIGURE 1 | Examples of (a) water distribution and (b) wastewater

pipe networks in towns in the UK.
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cost low. Improving from previously developed particle

filter approaches, the proposed algorithm utilizes the low

dimensionality of the network environment to represent

hypothetical robot locations as a small set of estimates with

some continuous position uncertainty, rather than a large set

of discrete particles. This allows the use of a more thorough

distribution of localization hypotheses, improving robust-

ness, without simply adding to the computational cost. The

efficient Viterbi algorithm is used as a starting point for

computing the localization estimate. This algorithm is aug-

mented for the continuous part of the state space by using the

set of estimates, but is usefully constrained by the discrete

part of the state space, such that a small set of distinct esti-

mates can sufficiently represent the hypothetical robot tra-

jectories. Moreover, the algorithm is improved by making

estimates only for the subset of times at which the robot

makes an informative measurement. Therefore, computation

is spent for points in space and time at which it is most

useful, allowing a more thorough, robust localization esti-

mate while reducing computational cost.

The localization method is demonstrated on real‐world robot

data in a sewer network (Alejo et al. 2020) using odometry

measurements, manhole detection, and an a priori map of the

environment. The performance of the algorithm is bench-

marked against particle filter methods designed for the pipe

environment in metric (Alejo, Caballero, and Merino 2019) and

hybrid metric‐topological (Worley and Anderson 2021b) space.

The robustness of the hybrid metric‐topological approaches to

measurement uncertainty is investigated using simulation data.

These experiments show the superior accuracy and robustness

of the proposed optimization‐based trajectory estimation

approach. Finally, there is an investigation into the use of dif-

ferent additional measurement types with this estimation

method, including the use of measurement of pipe gradients in

a three‐dimensional pipe network.

2 | Problem Definition

The pipe network environment is made up of pipes, or links,

and connections between pipes, or nodes. These nodes are po-

sitioned in three‐dimensional space, with a latitude, longitude,

and elevation. The links are much larger in length than in width

and much larger than the nodes, so a close approximation of the

network is a set of connected one‐dimensional places. The state

space of the robot is therefore defined in this hybrid metric‐

topological way, and in this paper it is assumed that the map of

the pipe network is known a priori. In practice, this map would

be obtained from utility managers in the area in which the robot

is operating, or from a resource like the National Underground

Asset Register (Department for Science, Innovation and Tech-

nology 2022) in the UK. This map describes the neighboring

nodes and links for each node ∈n , and describes the posi-

tion in continuous space of each node ∈n and the start and

end position of each link ∈l .

A robot moves around the network of pipes, modeled as small

discrete time steps. It is assumed that the robot moves purely

linearly along the straight pipes in the network and makes

purely angular motion when turning at a connection between

pipes. The robot's state is therefore defined by

ξ i d xs x= ( = ( , ), = ),t t t t t t (1)

where ∈it is the discrete location of the robot, represented by

the index of the link (pipe) or node (junction or manhole), from

the set of all locations   = { , }, where  and  are the sets

of all links and nodes. xt is the distance from the origin of the

link or node,  ≤ ≤∈ ∈x x x X{ : 0 }t it , where Xit is the maxi-

mum distance for a location it . dt is the discrete direction in the

link or node. In a link, ∈d d= {−1, 1}t t
l . In a node, d d d=t t

d
t
n,

with ∈d D{1, 2, …, }t
n n , where there are Dn adjacent links at

node n, and ∈d {−1, 1}t
d so the sign of the direction depends on

whether the robot is arriving or leaving from a direction.

The aim is to estimate the robot's trajectory, given by

s s s s s s= { , , …, , …, , }T t T T0: 0 1 −1 . Specifically, the aim is to esti-

mate the trajectory which maximizes the posterior distributionp s u z s( , , )T T T0: 1: 1: 0 , given by

ps s u z sˆ = argmax { ( , , )},T T T T
s

0: 0: 1: 1: 0

T0:
(2)

which is the probability distribution over possible state

sequences s T0: given an initial state s0 and the sequence of

uncertain observations u T1: and z T1: .

The observations are defined by

fs s u= ( , ),t u t t−1 (3)

fz s= ( ),t z t (4)

ut where ut contains information about the transition between

states st−1 and st , given by

x θu = {Δ , Δ }.t t t (5)

These odometry measurements could be obtained from the

robot's command motion, or wheel encoders and inertial sens-

ing. These measurements could be modeled as having normally

distributed uncertainty, given by σ xΔ t and σ θΔ t. This uncertainty

accounts for deviations between the robot's measured motion

and its actual motion, which could be due to the uneven terrain

in the environment. Alternatively, the uncertainty might be

better modeled as a time‐varying bias, which might account for

persistent deviations in motion due to the flow of water or

obstacles like blockages in the pipes. The effects of both models

are investigated in Section 4.2.

zt contains information about the observations made in the current

state st . The simplest observation is the robot detecting whether it is

at a pipe junction, or node , where z N=t , or in a pipe, or link,
where z L=t . The measurement uncertainty is described by

∈p z L i β( = ) = 1 − ,t t p (6a)

∈p z L i β( = ) = ,t t n (6b)
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∈p z N i β( = ) = ,t t p (6c)

∈p z N i β( = ) = 1 − ,t t n (6d)

where βp and βn are the probabilities of false positive and

negative detection, respectively.

These two measurement variables can be defined more specifically

depending on the measurements available. Nearby junctions

between pipes can be detected from vision with structured lighting

(Lee et al. 2013; Kakogawa, Komurasaki, and Ma 2017; Zhao

et al. 2018; Kakogawa et al. 2015) or depth images (Thielemann

et al. 2008), or from rangefinding (Kirchner and Hertzberg 1997).

Vision can also be used make odometry measurements which

could be incorporated into ut and into loop‐closing measurements,

although this is challenging due to the feature sparseness com-

pared with other environments (Edwards et al. 2023). Lidar sen-

sors are well developed for the task of object detection and

classification in other environments (Wu et al. 2022), so could

likely be used for detecting manholes, junctions between pipes, or

other informative features in this application. Acoustic echoes can

be used to measure the distance between the robot and distant

features, and measure the length of the surrounding pipe (Worley

et al. 2020, 2024). For long‐term localization in realistic environ-

ments, these feature observations need to be robust to changing

environmental conditions (Sousa et al. 2023). The pipe environ-

ment is dynamic, with conditions changing over a daily period,

changing with weather, and degrading over time. Therefore, this

work will assume initially that only simple binary detection of

junctions, as described above, is available.

It is assumed that the interval between time index t − 1 and t is

small, such that it takes many time steps for the robot to move

from one node in the pipe network to another. The sequence of

time indices is described as  t T T= {0, 1, 2, …, , …, − 1, }t .

3 | Methods

This section describes the proposed localization approach. In

Section 3.1 it is proposed to transform from the real state space

to a discrete state space using multihypothesis estimation, in

which the Viterbi algorithm can be applied. An altered form of

the state that is most suitable for this estimation is defined in

Section 3.2. The implementation is described, including the

computation of the discrete multihypothesis state space

(Section 3.3.2), the calculation of the required probabilities in

this state space (Section 3.3.3), and the execution of the Viterbi

algorithm using these discrete states and probabilities. The es-

timation is transformed back to the real state space in Sec-

tion 3.4, and the estimation of the remaining continuous

variables using Rauch–Tung–Striebel (RTS) smoothing is

described. Finally, the use of additional sensing information is

described in Section 3.5.

3.1 | Estimation Definition

Ultimately, the maximum a posteriori estimate of the most

likely sequence of states ŝ T0: is desired, given by Equation (2). A

particle distribution was used in previous work (Worley and

Anderson 2021b) to represent the distribution of pose st over

the hybrid metric‐topological state space. This sort of distribu-

tion is illustrated in Figure 2a. This could be extended to esti-

mation over all time, however:

• The reliability of particle‐based estimation is difficult

to determine, and although methods have been deve-

loped to address this (Akai 2023), they require

more informative observations than those described in

Equation (6).

• The application to small, resource‐constrained robots limits

available computation, and a particle distribution with a

small number of estimates is desirable.

• Because much of the environment comprises one‐

dimensional linear sections, a small number of

estimates, each with some continuous uncertainty, can

equally well represent the pose distribution over the

hybrid metric‐topological state space.

These drawbacks to a particle‐based approach motivate the

improvements proposed in this paper.

FIGURE 2 | An illustration of an example set of probability distri-

butions across a pipe network over time. The pipe network nodesN are

shown as circles, and the links  between nodes as black lines. (a) The

distributions as particle distributions (yellow crosses, with an approxi-

mation of the distributions in yellow lines) at time indices∈t {1, 2, 3, 4, 5} as used in previous work. (b) The distributions as

multihypothesis distributions (gray crosses and lines) at time indices∈t {1, 2, 3, 4, 5}. (c) The distributions as multihypothesis distributions

(green crosses and lines) at time indices ∈τ {1, 2}. [Color figure can be

viewed at wileyonlinelibrary.com]
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The proposed improved approach is based on multi-

hypothesis estimation, which is implemented here by

maintaining a set    { }= , , … , …t t t t
j1 2 of estimates or

hypotheses of the state at each time t . Each estimate  t
j

contains a robot pose st and a corresponding probability.

This is illustrated in Figure 2b.

These estimates are computed iteratively over time. For time

t , estimates are made by applying the measured odometry ut
to estimates  t

j
−1 using the odometry model in Equation (5).

When the odometry gives a continuous position xt beyond

the end of a link location ∈it , estimates are made in each

adjacent link location. Estimates are made in nearby node

locations ∈it , the likelihood of which depends on

estimates in t−1 and the observation zt and the model in

Equation (6). This produces a set of estimates t for all time

steps.

Much of the state space is discrete, and the continuous space is

effectively discretized by the set of estimates (Godsill, Doucet,

and West 2001). This gives a purely discrete state space S T0:

defined for each time t as

∈ { }S S S S S, , …, , …, ,t t t t
j

t
J1 2 (7)

where the number of possible states J may be different for each

time t . Each possible state St
j is an instance of the state st

defined in Equation (1).

Given a good set of estimates, the solution to the maximum

a posteriori estimation problem in this discrete state trajectory

gives a solution approximately equal to the maximum

a posteriori estimate of the real state trajectory s T0:

≈ Ps S S u z Sˆ ˆ = argmax { ( , , )}.T T T T T
S

0: 0: 0: 1: 1: 0

T0:

(8)

In the purely discrete state space S T0: , the Viterbi algorithm

(Forney 1973) can estimate Ŝ T0: . This algorithm finds the most

likely trajectory which arrives at each state ∈S St
j

t for ∈t t,

thus finding Ŝ T0: at time T . The algorithm efficiently only

considers the most likely trajectory which arrives at each state

St
j; therefore many hypotheses in t can be discarded, saving

redundant computation.

However, the Viterbi algorithm does not usefully work in

this case when estimating at time t , which motivates some

improvement. Most states in St are in link locations ∈it ,

with a nonzero estimate of continuous position xt, as illus-

trated in Figure 2b. For these states St
j and corresponding

estimates  t
j the most likely previous state will simply be the

estimate in t−1 from which it was created, so the algo-

rithm's process of discarding unlikely trajectories which

have arrived at the same state St
j will not function. However,

the algorithm still requires the computation of many esti-

mates and probabilities, which add little information to the

estimation of the overall trajectory. Therefore, the set of

time indices over which estimation is done can be reduced

to those at which the Viterbi algorithm can be usefully

applied, reducing the computational cost without affecting

accuracy and, therefore, improving the algorithm's per-

formance. This is illustrated in Figure 2c.

3.2 | State Definition

To improve upon the Viterbi algorithm, a reduced set

of time indices   ∈ ⊂τ( )t τ t is found, which simply

gives the set of time indices where an informative mea-

surement is made. Here, this is a measurement that gives

more information than other measurements, when the robot

either:

• Makes an observation between the robot pose at time t and

another robot pose that is not time t − 1, and therefore

provides more information than odometry, for example, a

loop‐closure measurement.

• Makes an observation ut between the robot poses xt and

xt−1 which includes some angular change, rather than

purely linear odometry.

• Makes an observation that gives some information

about the location of the robot xt at time t given

the understanding of the environment, that is, results

in a nonuniform distribution p z s( )t t . This could be

either:

– A simple observation is that the robot is in a node.

The majority of the space in the network is made up

of links, and a small minority of the space (an

infinitesimal volume in the model, and small in

reality) is made up of nodes, so an observation of a

node carries far more information than an observa-

tion of a link. This has been noted in the literature

on localization on road networks (Bernuy and Ruiz‐

del Solar 2018).

– An observation of some discrete or categorical quality of

the robot's surroundings, such as the material or color.

– An observation of some continuous metric quantity of

the robot's surroundings, such as the length of a pipe, or

the relative angles at which pipes leave a connection.

The reduced set of time indices is described as

 τ T= {0, 1, 2, …, , …, }τ .

The state space at time index τ is defined as

∈ { }S S S S S, , …, , …,τ τ τ τ
j

τ
J1 2 (9)

like the definition for St given in Equation (7). Each possible

state Sτ
j is an instance of the state s τ( )t defined as in Equation

(1). The maximum a posteriori estimate of the trajectory is

desired, given by

PS S u z Sˆ = argmax { ( , , )}.T T T T
S

0: 0: 1: 1: 0

T0:

(10)

The motion measurement, like in Equation (5), is

x θu = {Δ , Δ }τ τ τ . At time index τ , it is modeled that the robot

5 of 21

 1
5
5
6
4
9
6
7
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/ro

b
.2

2
4
9
5
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

5
/0

1
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



turns, making a measurement of change in angle θΔ τ by inte-

grating over a period of angular motion, then moves, making a

measurement of change in position xΔ τ by integrating over a

period of linear motion, given as



x xΔ = Δ .τ
t τ

τ

t

= ( −1)

( )

t

t

(11)

The uncertainty in this measurement can be given by



σ σ= .x

t τ

τ

xΔ
= ( −1)

( )

Δ
2

τ
t

t

t
(12)

If the value of uncertainty σ xΔ t at each time t is constant, this can

be simplified to

σ T σ T σ= = ,x τ
τ

x τ
τ

xΔ −1 Δ
2

−1 Δτ t t
(13)

where T τ
τ
−1 is the number of discrete time steps t between

reduced time indices τ − 1 and τ . As the robot is constrained
to move in a mostly one‐dimensional environment,

sequences of purely linear odometry measurements can be

simply integrated using a linear motion model without

adding the error that would be found when using a linear

function to represent the output from a nonlinear model.

The cost of estimation can, therefore, be reduced without

adding error to the estimation.

Given the definition of the informative measurements, the

environment measurement is generally simply given by

z Nz = =τ τ with uncertainty defined by Equation (6).

3.3 | Discrete Localization Implementation

3.3.1 | Viterbi Algorithm

The maximum a posteriori estimate of the most likely sequence

of discrete states S T0: over time ∈τ τ is desired, given by
Equation (10). The discrete state space ∈S S S S S{ , , …, , …, }τ τ τ τ

j
τ
J1 2

is defined by a set of estimates or hypotheses

   { }= , , …, , …τ τ τ τ
j1 2 .

The Viterbi algorithm estimates the probability Q S( )τ
j
0: of

the most likely sequence, which ends at each possible state
Sτ
j in the state space. This is done recursively forward

through time ∈τ τ , using the information in uτ and zτ . The
algorithm also records the index K τ

j of state at the previous
time step, which most likely proceeds each state Sτ

j. At the

end of this forward recursion, at time T , the state at which

the most likely sequence ends, ŜT , is found, and the most

likely sequence Ŝ T0: is found using the recorded most

likely previous states K τ
j starting with ŜT and stepping

backward through time, achieving the estimation given by

Equation (8). This is described by Algorithm 1.

Algorithm 1. The Viterbi algorithm implementation.

Initialize tables , ,S Q K

to store states and probabilities through time τ
∈ ∈τ j[ ][ {1, 2, …}]τS

∈ ∈τ j[ ][ {1, 2, …}]τQ

∈ ∈τ j[ ][ {1, 2, …}]τK

For each time index forward through time

for time ∈τ T= {1, 2, …, }τ do

Get the measurements for time τ
get uτ and zτ

for state index ∈j {1, 2, …} do

Compute the estimated state← { }ξτ i d x σS x[ ][ ] = ( = ( , ), = ),τ
j

τ τ τ τ τ
j
xτS j

Compute the probability of the most likely sequence

of states ending at this state← { }τ P τS u z S[ ][ ] ( , , ) [ − 1][ ]τ
j

τ τ τ
k
−1Q j max Q kk

Compute the index of the most likely previous state← { }τ P τS u z S[ ][ ] ( , , ) [ − 1][ ]τ
j

τ τ τ
k
−1K j argmax Q kk

end for

end for

Initialize table J to store the indices corresponding to the

most likely trajectory

∈τ[ ]τJ

Find the estimate at time T with the highest likelihood

Find the largest value in [ ]Q T←[ ] { [ ][ ]}J T argmax Q T jj

For each time index backward though time

for time ∈τ T T= { , − 1, …, 2}τ do

Get the index of the most likely previous state←τ τ τ[ − 1] [ ][ [ ]]J K J

Get the state at this index← τ τŜ [ − 1][ [ − 1]]τ−1 S J

end for

To include the necessary information for the Viterbi algorithm,
each estimate in  ∈τj τ is described by

 { ( )
}

( )

( )

ξ i d x

K Q σ

S x

S

= = = , , = ,

, ,

τ
j

τ
j

τ
j

τ
j

τ
j

τ
j

τ
j

τ
j

τ
j j

x0: τ

(14)

which includes the uncertainty σ j
xτ of the estimate of the con-

tinuous variable xτ
j .

The estimates are computed iteratively through time τ , so the

discrete state space Sτ and the state probability are calculated

simultaneously forward through time. The computation of state
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and probability at each time step is described in the following

two sections.

3.3.2 | Computing Hypothetical Discrete States

Hypotheses of the state ( )ξ i d xS x= = ( , ), =τ
j

τ τ
j

τ
j

τ
j

τ
j at time τ , are

desired. To allow recovery of the trajectory at time indices t , it is

useful to estimate the most likely sequence of discrete locations

ξ τ τ
j
−1: between states Sτ

k
−1 and Sτ

j. Therefore, hypotheses of the state

sequence S =τ τ
j
−1: ( )ξ i d xx= ( , ), =τ τ

j
τ τ
j

τ τ
j

τ
j

τ
j

−1: −1: −1: are found.

For each estimate  ∈τ
k

τ−1 −1, hypotheses of the state sequence
Sτ τ
j
−1: can be found by searching through the state space defined

by the pipe network map. The discrete network environment

usefully constrains the state space such that the hypothetical

state sequences can be represented by a small number of dis-

tinct estimates.

For a given discrete state ξ i d= ( , )τ
j

τ
j

τ
j , where ∈iτ

j and

∈dτ
j i, there are multiple possible values for continuous

position xx =τ
j

τ
j .

A predicted value of the continuous state x̃ τ
k is given by

x x x˜ = + Δ ,τ
k

τ
k

τ
j

−1 (15)

where xΔ τ
j is part of the odometry measurement uτ .

The predicted value x̃ τ
k is transformed to the coordinate frame

of the discrete state ξ τ
j using knowledge of the path ξ τ τ

j
−1:

between states Sτ
k
−1 and ξ τ

j .

( )ξx f x= ˜ , .τ
j

x
υ

τ
k

τ τ
j
−1: (16)

The ultimate maximum a posteriori estimate x̂ τ
j must be within

the boundary ( )XX = 0,i L i,j j
of the discrete state ξ τ

j. However,

the estimate x τ
j can be outside of this range to allow accurate

computation of future estimates.

This gives the state ( )ξ i d xS x= = ( , ), =τ
j

τ
j

τ
j

τ
j

τ
j

τ
j in Equation (14).

3.3.3 | Computing State Probability

For each estimate  τ
j, with a state Sτ

j, the probabilityQ S( )τ
j
0: , which

is the probability of the most likely sequence of states that arrives at

state S j at time τ , is found. Where S τ
j
0: contains the sequence of

states at times  τ as well as intermediate discrete locations, this

probability can be written (Thrun, Burgard, and Fox 2006) as

   

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

Q P

P Q

P P Q

P P Q

S S u z S

S u z S S

z S S u S S

z S S u S S

= , ,

= , ,

= ,

= , .

τ
j

τ
j

τ τ

τ τ
j

τ τ τ
k

τ
k

τ τ τ
j

τ τ
j

τ τ
k

τ
k

τ τ
j

τ τ
j

τ τ
k

τ
k

0: 0: 1: 1: 0

−1: −1 0: −1

−1: −1: −1 0: −1

−1: −1 0: −1

(17)

The motion model term can be written as

  ( ) ( )
( ) ( )

ξ

ξ ξ

P P

p P

S u S x u S

x u S u S

, = , ,

= , , ,

τ τ
j

τ τ
k

τ τ
j

τ
j

τ τ
k

τ
j
τ τ
j

τ τ
k

τ τ
j

τ τ
k

−1: −1 −1: −1

−1: −1 −1: −1

(18)

using the definition of conditional probability.

The continuous component is a probability density over the

value of the predicted state given by Equation (16)

 ( )( )ξp μ x σ σ σx u S, , = = , = +

.

τ
j
τ τ
j

τ τ
k

τ
j

x
k
x−1: −1 Δ

2 2
τ τ−1

(19)

This density is the uncertainty in the estimated continuous

position xτ
j for hypothesis  τ

j .

The discrete motion model term can be written as

∝   

( ) ( ) ( )
( )
( )

( )
( )

( )

ξ ξ ξ

ξ

ξ

ξ

ξ

ξ

P P P

P x θ

P

P x

P θ

P

u S u S S

S

S

S

S

S

, ,

= Δ , Δ ,

= Δ ,

Δ ,

τ τ
j

τ τ
k

τ τ τ
j

τ
k

τ τ
j

τ
k

τ τ τ τ
j

τ
k

τ τ
j

τ
k

τ τ τ
j

τ
k

τ τ τ
j

τ
k

τ τ
j

τ
k

−1: −1 −1: −1 −1: −1

−1: −1

−1: −1

−1: −1

−1: −1

−1: −1

(20)

using Bayes' theorem.

The linear motion component is proportional to the integral of

the probability density over predicted continuous position, gi-

ven by Equation (19), over the range XX = (0, )i L i,j j
(Brubaker,

Geiger, and Urtasun 2016):

∝  ( ) ( )ξ ξP x p dS x u S xΔ , , , .τ τ τ
j

τ
k

X

τ
j
τ τ
j

τ τ
k

τ
j

−1: −1 0 −1: −1

L i j,

(21)

The angular motion component ξP θ S(Δ , )τ τ τ
j

τ
k

−1: −1 is calculated

using the expected angular measurement for the path ξ τ τ
j
−1: by

assuming there is heavy‐tailed normally distributed uncertainty

in the measurement θΔ τ .

The path ξ τ τ
j
−1: from Sk to S j may be via other discrete node

locations in the environment, because of the nonzero proba-

bility βn that the robot fails to perceive that it is in a node,

described in Equation (6). The number of missed nodes for a

given path is computed

( )ξfz S¯ = ,j k
z
ξ

τ τ
j

τ
k,

−1: −1 (22)

and the probability of this is
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P βz(¯ ) = .j k
n
z, ¯ j k, (23)

The probability of the path ξ τ τ
j
−1: is reduced by a factor equal to

the product of the reciprocal of the degree Θ j k, , or number of

neighbors, of each missed node ξ j k, .

( ){ } ξf SΘ = Θ , Θ , … = , ,j k j k j k ξ
τ τ
j

τ
k,

1
,

2
,

Θ −1: −1 (24)

P (Θ ) = Θ .j k

a
a
j k

z
,

=1

¯
,

j k,

−1
(25)

The path component ξP S( )τ τ
j

τ
k

−1: −1 is given by

( )ξP P PS z= (¯ ) (Θ ).τ τ
j

τ
k j k j k

−1: −1
, , (26)

The probability P z S( )τ τ
j of the observation zτ is found using the

measurement model in Equation (6).

The probability of arriving at state Sτ
j from state Sτ

k
−1 via

path ξ τ τ
j
−1: is found by multiplying the observation,

path, and motion probabilities together, as well as the

model for uncertainty in continuous position given by

Equation (19)

  

( ) ( ) ( )
( )
( )

( )

ξ

ξ

ξ

ξ

P p P

P j

P θ S

P x

S u z S x u S z S

S

S

, , = , ,

Δ ,

Δ , .

τ τ
j

τ τ τ
k

τ
j
τ τ
j

τ τ
k

τ τ
j

τ τ
j

τ
k

τ τ τ
j

τ
k

τ τ τ
j

τ
k

−1: −1 −1: −1

−1: −1

−1: −1

−1: −1

(27)

After computing the set of estimates τ , some of the estimates

 τ
j and corresponding sequences Sτ τ

j
−1: may have identical

values for state Sτ
j , because much of the state space is purely

discrete. For the Viterbi algorithm, only the most likely
sequence arriving at a state Sτ

j is needed and less likely esti-

mates are removed from the set. Conceptually, this is com-

puted by

{ }( ) ( ) ( )Q P QS S u z S S= max , ,τ
j

k
τ τ
j

τ τ τ
k

τ
k

0: −1: −1 0: −1 (28)

and

{ }( ) ( )K P QS u z S S= argmax , , ,τ
j

k
τ τ
j

τ τ τ
k

τ
k

−1: −1 0: −1 (29)

which give the likelihood Q S( )τ
j
0: of the most likely trajectory

ending at state Sτ
j and the index K τ

j most likely preceding

state Sτ
k
−1. Practically, this is computed by Algorithm 2.

Figure 3 illustrates this process with an example, showing the

discrete state space, computation of Equations (28) and (29),

and the resulting estimated trajectory through the discrete

state space.

Algorithm 2. The Viterbi estimate comparison.

Compare each state in the set of estimates

for each pair of estimates in the set of estimates

for   ∈ ≠j j˜ , ˜ ˜ ,τ
j

τ
j

τ 1 2
1 2 do

compare the two states

Get the estimated state sequences S S,τ τ
j

τ τ
j

−1: −1:
1 2

Get the final states in each sequence S S,τ
j

τ
j1 2

if S S=τ
j

τ
j1 2 then

if the two states are the same, remove the

state with the lower probability

∈ K p S u z S= argmin ( , , )
k j j

τ
k

τ τ
{ , }

0: 1: 1: 0

1 2

 ∅=τ
K

end if

end if

The distribution ξp x u S( , , )τ
j
τ τ
j

τ τ
k

−1: −1 over continuous position

can be parameterized by the uncertainty

FIGURE 3 | Illustrations of the discrete state space Sτ and the Vi-

terbi algorithm. Each discrete state is shown as a point. (a) The likeli-

hood of transition between each state, where a darker line illustrates a

more likely transition. (b) The calculation at time τ = 5 of the likelihood

Q S( )0:5
1 . (c) The most likely sequences ending at each state Sτ

j illustrated

with green lines, and the most likely sequence using information up to

time step τ = 8 illustrated as green points. [Color figure can be viewed

at wileyonlinelibrary.com]
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∈∈σ
i

σ σ i
=

0 if ,

+ if .
j

j

x
k jx
xΔ

2 2τ
τ τ−1

(30)

The probabilities and indices calculated are sufficient for

the computation of the Viterbi algorithm as defined in

Equation (14) and, therefore, the estimation of the most

likely discrete state trajectory Ŝ T0: . Because it is assumed
that the state Sτ

j has the Markov property, which is that the

likelihood of future states is independent of past states given

Sτ
j, the sequence Sτ τ

j
−1: can be estimated without any change

to the Viterbi algorithm.

3.3.4 | Implementation

The locations iτ−1 and iτ could either be nodes or links, which

gives four different types of transition between states. The

considerations in each case are described here. Figure 4 shows

the computation of probability of transition to a new discrete

location given the measured distance traveled, as well as the

subsequent new continuous robot position estimated within

that discrete location.

• Node to node: If the node states are modeled as having

infinitesimal size, the probability that a given measured

uncertain distance moves the robot from one node state to

another is zero. Therefore, the node states are considered to

have a nonzero size, which gives a nonzero interval in

distance corresponding to the node. This is illustrated in

Figure 4a. The position xτ is set to zero.

• Node to link: The interval in distance traveled is given by

the distance to the near and far end of the link. This is

illustrated in Figure 4b,c. The most likely position xτ is

found using Equations (15) and (16). The probability

distribution of position xτ over the space of the location

ξτ is created by limiting a Gaussian distribution in

the range X(0, )L i, , so is non‐Gaussian, especially when

the Gaussian distribution mode is close to the

boundaries of the location ξτ . Related research addresses

this by using a sampling approach when the estimate is

close to this nonlinearity, and approximating the sample

distribution as a Gaussian distribution (Brubaker,

Geiger, and Urtasun 2016). Here, the aim is in accurate

trajectory estimation rather than estimation of the state

at time τ . Therefore, this problem is addressed by

modeling the distribution as a Gaussian distribution for

which much of the probability mass may be outside of

the location ξτ . This gives an imprecise distribution for

time τ but allows the exact computation of subsequent

distributions without the need for sampling or

approximation.

• Link to node: If the previous state Sτ−1 is in a link, it has a

continuous position xτ−1. In this case, the normally dis-

tributed model can consider the uncertainty in both the

position xτ−1 and in the distance traveled xΔ τ . The standard

deviation of the distance traveled is equal to the square root

of the sum of the squared standard deviation of the distri-

butions for position and for distance traveled. This is seen

in Equation (19).

• Link to link: The likelihood of moving from a given link iτ−1
to a given link iτ can be found by combining the consid-

erations used above.

A general consideration is made regarding efficiency and

allow feasible computation. A threshold for probability is set

below which probabilities are assumed to be zero, and
therefore sufficiently unlikely estimates  τ

j can be removed
from the set τ , and sufficiently unlikely paths ξ τ τ

j
−1:

between states do not need to be considered. The latter is

achieved by exploiting the constraints of the discrete net-

work environment, and computing the possible paths Ξ
between discrete states for a given map  using a depth‐

first search before robot operation. From each starting state,

possible paths can be computed incrementally, and the

ending state at each step is recorded. One factor of the

probability of a transition between two states is independent

of the odometry measurements uτ , described by Equation

(23). This factor can therefore be compared with a threshold

probability, and the finite set of possible paths Ξ is made of

only paths with a sufficient probability.

3.4 | Continuous Localization Implementation

As stated in Equation (2), the aim is the maximum a posteriori

estimate

ps s u z sˆ = argmax { ( , , )},T T T T
s

0: 0: 1: 1: 0

T0:
(31)

where the state at time t is ξ i d xs x= ( = ( , ), = )t t t t t t .

This posterior distribution can be factorized as

FIGURE 4 | Estimation of the probability of a transition between

two states. (a) The case for a node state and (b, c) the case for a link

state. [Color figure can be viewed at wileyonlinelibrary.com]
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ξ
ξ ξ

ξ

p p

p

p

s u z s x u z s

x u z

s

u z s

( , , ) = ( , , , )

= ( , , ,

, )

( , , )

t T T T t T t T T T

t T t T τ T T T

τ T T T

=0: 1: 1: 0 =0: =0: 1: 1: 0

=0: =0: =0: 1: 1:

0

=0: 1: 1: 0

(32)

by conditioning the posterior on the discrete set of states at

times τ . These values ξτ T=0: are what has been estimated pre-

cisely by the Viterbi algorithm when performing the maximum

a posteriori estimation

PS S u z Sˆ = argmax { ( , , )}T T T T
S

0: 0: 1: 1: 0

T0:

(33)

in the discrete space of the estimates  T0: at reduced time

indices τ , as described in Section 3.3.

Given the estimates of the discrete trajectory ξτ T=0: , the state
space reduces to a single continuous linear space x ξ along the

trajectory. In this continuous linear space the maximum

a posteriori estimates x̂t T=0: and ξ̂t T=0: can be found, therefore

completing the maximum a posteriori estimate ŝ T0: .

When the estimated location is ∈ît , the continuous position

xx =t t is defined as equal to zero, so further estimation is not

needed. When the estimated location is ∈ît , the continuous

position xt can be estimated using the odometry measurements

ut and ut+1. This smoothing can be done for sequences in time

from ta to tb, where ∈ît for ≤ ≤t t ta b, and where ∈ît −1a

and ∈ît +1b . For these sequences, the continuous space of ît t:a b

can be considered as a single linear continuous space, over which

continuous probability distributions for position xt can be simply

described by one‐dimensional linear Gaussian distributions.

Therefore, RTS smoothing can be used for this estimation.

The forward recursion of the smoothing is done using the

method for computing hypothetical states described in Sec-

tion 3.3.2, except using measurements ut at time t rather than

uτ . Equations (15) and (16) calculate the estimate of the con-

tinuous position xt using an odometry measurement and an

estimate of the state at the previous time step. Equation (30)

calculates the uncertainty in this estimate of continuous posi-

tion. The uncertainty in estimates σxta and σxtb is set to a small

nonzero value.

The backward recursion of the smoothing is done starting at

t t= − 1b using

 ( )x x c x xˆ = + ˆ − ,t t t t t t t+1 +1b b (34)

 ( )σ σ c σ σˆ = + ˆ − ,x x t x x
2

t tb t t tb t+1 +1 (35)

where

 c σ σ= ,t x x
−1

t t t t+1
(36)

and x̂t tb and σ̂xt tb refer to the estimate and uncertainty for time t

given information from time ta to time tb.

The estimates x̂t ta b to x̂t tb b in the single coordinate frame x ξ can

be used to find the corresponding discrete locations ξ̂t ta b
to ξ̂t tb b

.

This is simple to do as it is known how the continuous space x ξ

maps to the discrete locations along the trajectory. The esti-

mates x̂t ta b to x̂t tb b are then transformed to the coordinate

frames of the locations ξ̂t ta b
to ξ̂t tb b

for the output. This change of

coordinate frames is done with an altered form of Equation

(16). This is straightforward to implement algorithmically, but

the detail is omitted here.

This RTS smoothing estimate of the continuous variables x̂t,

combined with the Viterbi algorithm estimate of the discrete

states ξ̂ T0: , gives the estimation of the most likely state trajectory

ŝ T0: for time indices t .

3.5 | Additional Measurements

While this algorithm has been derived to use inputs from

integrated linear and angular odometry in uτ and observations

of either a node or a link in zτ , other information could be

found either instantaneously or through integration over the

time step τ which could be incorporated into zτ .

The first source of additional information used here is the

identification of a nearby node, which could be done by use of a

beacon (Sahli and El‐Sheimy 2016; Haug, Lorenz, and

Thamsen 2021), which the robot can detect and uniquely

identify. This is implemented in the algorithm presented here as

a simple multiplication of the probability of each state Sτ by a

factor given by P o S( )τ τ .

The second source of additional information is in loop‐closures,

where the robot detects and recognizes a previously observed

feature, thereby observing that the state at two different time

steps is likely the same. This is denoted as z τ=τ
l

l. If one esti-

mate of the state is Sτ , and a loop‐closure has been made

between time τ and time τl, then the state Sτl is found using the

same method that is used to find the full sequence from time 0

to T . The likelihood of the estimated sequence given the loop‐

closure can be found by computing P z S( )τ
l

τ τ:l .

The third source of additional information is from the estima-

tion of the length of a link Λτ using means, such as acoustic

echoes (Worley et al. 2020, 2024). This estimate gives a proba-

bility density over the continuous space of possible pipe lengths.

This density is typically largest around the true pipe length

(which is measured with probability pΛ), but also around N Λ̄
+

multiples of the pipe length and around N Λ̄
− random values

smaller than the true pipe length. The true pipe length may not

be in the set of measurements, with probability p̄Λ. The preci-

sion of this estimate depends on that of the acoustic echo

detection, so the measured length has normally distributed

uncertainty σΛ. This is simply implemented in the algorithm

presented here as a multiplication of the probability of each

estimate Sτ by a factor given by P S(Λ )τ τ .

The fourth source of additional information is found in the

three‐dimensional nature of buried pipe networks. Pipe net-

works are constructed to follow the three‐dimensional topology

10 of 21 Journal of Field Robotics, 2024
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of the area to some extent, and some networks are designed to

use gravity to direct fluid as desired. Therefore, there is a var-

iation in the elevation of nodes in pipe networks and, therefore,

a variation in the gradient of pipes. The pipe gradient gτ can be

measured using an inertial sensor (Yu et al. 2018; Luo

et al. 2021; Cui and Liang 2023), or inclinometer, which mea-

sures the direction of gravity relative to the robot. Here, it is

assumed that the robot will only sometimes be able to confi-

dently measure the gradient of a pipe, due to variation in gra-

dient along a pipe, variation in the robot's orientation with

respect to the pipe, and sensor uncertainty σg. This uncertainty
is reported as less than ∘1.5 (Cui and Liang 2023), less than ∘0. 5

(Yu et al. 2018), and around ∘0. 1 (Hu et al. 2018), for different

devices. Some of these values are relatively large; in the pipe

data used in this paper, 35% of pipes have a gradient of less than∘0. 5 , while 66% of pipes have a gradient of less than ∘1. 5 .

Different values of measurement uncertainty σg will be inves-

tigated, although it is assumed that the robot will be able to

correctly measure the sign of the gradient.

When incorporating all of these measurements, zτ would be

defined as

∈{ }z L N o z gz = { , }, , , Λ , .τ τ τ τ
l

τ τ (37)

4 | Results and Discussion

This section presents an experiment and discussion primarily

comparing three algorithms:

1. The 2D algorithm is presented in the literature (Alejo,

Caballero, and Merino 2019).

2. The 1Dt algorithm presented in previous work (Worley

and Anderson 2021a) (Where it is there referred to as the

1D+ algorithm. The name of this algorithm has been

changed in this paper to better describe the difference

between it and the 1Dτ algorithm.), which is an

improvement in the application to high‐uncertainty robots

to the 2D algorithm.

3. The proposed 1Dτ algorithm is presented in this paper.

4.1 | Localization on Real‐World
Experimental Data

Figure 5 shows a demonstration and comparison of localization

algorithms using data from the SIAR data set (Alejo et al. 2020)

as an input. This data is recorded on a robot moving through a

sewer network beneath part of a city in Spain. The robot records

data using a range of sensors, and here, the output from the

odometry and manhole detection functions are used as inputs to

the localization algorithms, along with a map of the pipe net-

work. Figure 5a–d shows example images from the forward‐

facing camera on the robot, showing a relatively feature‐dense

environment compared with those described in other pipes in

the literature (Edwards et al. 2023). To test the algorithms in the

context of high‐uncertainty measurements, only the odometry

estimated using wheel encoders and IMU is used, rather than

visual odometry, to get ut as in Equation (5). Figure 5e–h shows

images from the upward‐facing camera used in the data set as

part of a manhole detection system. The output from this

manhole detection is used to get zt.

Due to differences between the data set environment and

robot operation to that specified in Section 2, the data are

altered somewhat. It was assumed here that a robot would

only turn at discrete connections between pipes, but in the

experimental environment, there are sections of curved

tunnels, so the angular motion is gradual. To reconcile the

data with the problem specified here, periods where the

robot is turning are manually identified and the angular

motion is integrated and applied at a single time step t . The

position of the manholes in space and in time is adjusted to

reflect this change. The experimental robot is able to move

in either direction, while it was assumed here that the robot

would only move forward and change direction at manholes.

The odometry data are updated to add this change of

direction as a turn of 180°.

Figure 5i shows the trajectory estimated using the 1Dτ algo-

rithm, along with an aerial image of the location above the

buried pipes. The crosses show the positions of the detected

manholes. Figure 5j–l shows the trajectories estimated using the

1Dτ and 1Dt algorithms, and the 2D algorithm presented in the

literature (Alejo, Caballero, and Merino 2019), incrementally

through time.

Figure 6 illustrates the computation of the 1Dt and 2D al-

gorithms. These algorithms are based on the particle filter,

and the different particle distributions for each algorithm

are shown. Figure 6a shows an occasion where the two

distributions are usefully modeling the robot position. Much

of the probability distribution is near the true robot location.

The increased robustness of the 1Dt algorithm is achieved by

creating a very diverse distribution; particles are spread

across the environment, increasing the likelihood that the

algorithm is making an estimate near the true robot loca-

tion. Conversely, the 2D particle distribution is clustered

around only two locations. Figure 6b shows a closer view of

part of the particle distribution. The computational draw-

back of the 1Dt algorithm is illustrated, as it can be seen that

each cluster of particles in the distribution could likely be

well represented by a single estimate with some parame-

terized uncertainty. Figure 6c shows an occasion where the

2D is failing to estimate the correct location. Due to

uncertainty in the input to the algorithm, most of the

probability distribution is clustered around the wrong

location. There are some particles near the correct location,

so the algorithm may be able to recover from this error;

however, this would require a fortunate sequence of obser-

vations from the robot, which is unlikely in this environ-

ment with many similar appearing locations.

Figure 7 illustrates the computation of the 1Dτ algorithm.

Figure 7a,c,e,g shows the discrete state space, in the same way

as in Figure 3. The likelihood Q S( )τ
k
0: corresponding to each

state Sτ
k is shown by a circle, and the likely trajectories through

the state space are indicated by lines. These lines are trans-

formed into the physical state space and shown on the maps in
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Figure 7b,d,f,h. In all cases, the estimated trajectory approxi-

mately matches the real trajectory.

Comparing Figure 7a,c, corresponding to τ = 5 and 7, it is seen
how the most likely trajectory at τ = 5 is found to no longer be

most likely at τ = 7 given new information. This shows the

innate recovery from error achieved by this algorithm. Com-

paring Figure 7e,g, corresponding to τ = 15 and 17, it is seen

how the observation of a long pipe at τ = 17 increases the

certainty of the estimation of the trajectory, and reduces the

number of states in the state space on which computation must

be spent at future time steps. This dynamic computation of

likely states based on the varying usefulness of the input mea-

surements provides efficiency to the algorithm.

Figure 8 shows a comparison of the trajectories estimated by

each algorithm, measured by the estimate error, for three dif-

ferent amounts of noise added to the input data. Figure 8a,d

shows the case with no additional noise, where all algorithms

are seen to give a small amount of error. Figure 8c,f shows the

FIGURE 5 | (a–h) Example data from the SIAR data set, showing images from the front and upward‐facing cameras. (i) Illustrative example

results showing the estimated trajectory based on experimental data from the SIAR data set (Alejo et al. 2020). (j–l) The trajectory estimated using the

1Dt, 1Dτ , and 2D algorithms, at three different points in time. For comparison, an estimate made only using the odometry input is shown in white.

The trajectory estimated using the 1Dτ algorithm follows the true trajectory, so the true trajectory is not seen. Satellite imagery: Google, ©2023.

[Color figure can be viewed at wileyonlinelibrary.com]
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case with the largest additional noise, where only the 1Dτ
algorithm is seen to give a performance with low error.

The 1Dτ algorithm produces a smooth trajectory estimate, while

the trajectory estimate from the 1Dt and 2D algorithms is

incoherent, exhibiting large, incorrect, jumps around the net-

work. These jumps become more common as input uncertainty

increases, while the robust 1Dτ estimate remains coherent and

low in error.

4.2 | Localization on Simulated Data Analyzing
Robustness to Noise

An example of the performance of the localization algorithms is

shown for simulated large‐scale data in Figure 9. In Figure 9a,

the trajectory estimated by each algorithm is shown on a map of

part of the pipe network used in this experiment. This network

is obtained from a utility map of a town in the UK. The

trajectory estimate error is compared for each algorithm in

FIGURE 6 | Illustrative results showing the computation of the 1Dt (yellow) and 2D (blue) particle filter algorithms, using data from the SIAR

data set with added uncertainty. In all cases, circles show the location of particles used to represent the probability distribution over the robot position

and the approximate true robot position is shown with a red cross. (a) The full particle distributions, shortly after the robot has turned approximately

90° at a corner. (b) A close view of part of the two particle distributions, at the same point in time as in (a). (c) Part of the particle distributions some

time after the robot has made several consecutive changes in direction. Satellite imagery: Google, ©2023. [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 | Illustrative results showing the computation of the 1Dτ algorithm using data from the SIAR data set. (a, c, e, g) The discrete state

space constructed by the algorithm for times T = {5, 7, 15, 17}. Each discrete state k at time τ T= {0, …, } is denoted as a circle, the size of which

corresponds to the likelihood Q S( )τ
k
0: . Green lines show the likely trajectories through this state space at time T , where the width of the lines

corresponds to the likelihood. (b, d, f, h) The likely trajectories estimated by the 1Dτ algorithm drawn on the map. Satellite imagery: Google, ©2023.

[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 9b. The estimate from the 2D algorithm eventually

becomes incorrect and fails to relocalize, indicated by a per-

sistently large error. The 1Dt algorithm successfully relocalizes

over the whole trajectory, indicated by periods of large error

followed by periods of low error. The 1Dτ algorithm has a

consistently accurate estimate.

The algorithms are compared by using simulation to create a

large number of trajectories through a pipe network, each of

1000 time steps in length. As in previous work (Worley and

Anderson 2021b), the algorithms are compared in terms of

error rate, which is the proportion of time where the error in

estimated position is above a threshold 25 m. Figure 9c illus-

trates the calculation of the estimate error rate. The colored

sections of the graphs indicate time steps at which the estimate

is in an incorrect discrete location. This error is computed only

at time steps τ , to make a fair comparison between the

algorithms.

The error rate is compared for a range of values of different

variables describing the uncertainty in the input measurements:

1. Normally distributed uncertainty in measured linear motion,

with additive noise given by  ( )v μ σ σ x~ = 0, = Δt x tΔ t .

2. Uncertainty in measured angular motion, with additive

noise given by  ( )w μ σ σ θ~ = 0, = Δt θ tΔ t .

3. Integrated uniformly distributed uncertainty in measured

linear motion, with additive noise given by v =t
k v k v+ (1 − ) ˜v t v t−1 , where  ( )v u u˜ ~ − ,t x xΔ Δt t . The added

uncertainty is, therefore, dynamic and could model per-

sistent deviations in the robot's motion caused by obsta-

cles or the flow of water in the pipes. This is challenging to

the algorithms which use a model of uncorrelated

uncertainty.

4. Uncertainty in the observation of nodes, given by the rates

of false positive and false negative detection, βp and βn,
described by Equation (6a). Both are varied simulta-

neously, according to ∕β β β β= 10, =p n , with the obser-

vation error rate β.
The error rate and computation time are measured over dif-

ferent values of these uncertainty variables. For each value, the

error rate and computation time are measured over 50 trajec-

tories through the pipe network, and the distributions of error

rate and computation time over the 50 trajectories are pre-

sented. The median of each distribution is shown as a measure

of the average value unbiased by the high outliers. The 90th

percentile is shown as a measure of the measure of the higher,

or worse, values in each distribution.

The default parameters describing uncertainty in the simulated

robot's motion and measurements are given in Table 1. The

parameters used by each of the localization algorithms are given

in Table 2. The meaning of the parameters for the 1Dt algorithm

are described in detail in previous work (Worley and

Anderson 2021a), as is the meaning of the parameters for the

2D algorithm (Worley and Anderson 2021b). The parameter

values for the 1Dt and 2D algorithms, for example, a number of

particles, are chosen based on the results from previous work. It

FIGURE 8 | (a–c) Illustrative example results using experimental data from the SIAR data set with increasing additive uncertainty in the

odometry input: σ = 0.2xΔ t , 0.5, and 0.8 for (a), (b), and (c), respectively. Four different estimation algorithms are compared, the 1Dt (yellow), 1Dτ
(green), and 2D (blue) algorithms, and an estimate made only using the odometry input (white). The true robot trajectory is shown with a dashed

white line, slightly offset from the real position for clarity. (d–f) The estimate error corresponding to each trajectory, at time steps τ . Note the

variation in the y‐axis scale. Satellite imagery: Google, ©2023. [Color figure can be viewed at wileyonlinelibrary.com]
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was found that increasing the number of particles would reduce

the error rate somewhat; however, there is no guarantee that

the error rate would continue to decrease for very large num-

bers of particles. Moreover, this reduction was smaller for each

further increase in the number of particles, therefore giving a

reduction in efficiency. Here, 100 particles was chosen as a

balance between performance and computational cost.

Table 3 compares the results over all measured trajectories. For

55% of trajectories, the 1Dt algorithm error rate is less than that

of the 2D algorithm, while for 36% of trajectories, the 1Dt

algorithm error rate is more than that of the 2D algorithm,

indicating the better performance of the 1Dt algorithm. For 79%

of trajectories, the 1Dτ algorithm error rate is less than that of

FIGURE 9 | (a) Illustrative example results from a simulation showing an estimated trajectory. Three different estimate algorithms are com-

pared, the 1Dt (yellow), 1Dτ (green), and 2D (blue) algorithms. The trajectory estimated using the 1Dτ algorithm follows the true trajectory, so the

true trajectory is not seen. The trajectories over time are indicated by the color gradient from light to dark. (b) The estimate error for the trajectories

in (a). (c–e) Illustrations of the calculation of the error rate from the estimate error in (b), which is the proportion of time for which the error is above

a threshold, indicated by the colored sections. The dotted line shows the error at time steps t , while the solid line shows the error at time steps τ for
which the error rate is compared here. Satellite imagery: Google, ©2014. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 | Default parameters for the robot motion and

measurement.

Parameter Symbol Value

Command input motion xΔ (normal) 5

Normal motion noise σ xΔ t 0.2

Angular measurement noise σ θΔ t 0.1

Uniform motion noise u xΔ t 0.5 m

Motion noise constant kv 0.8

False positive rate βp 0.005

False negative rate βn 0.05
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the 1Dt algorithm, while for only 6% of trajectories, the 1Dτ
algorithm error rate is more than that of the 1Dt algorithm,

which illustrates the further improved performance of the 1Dτ
algorithm.

Figure 10a–e shows the results of the comparison for each value

of uncertainty variables. In most cases, the error rate for the

1Dτ algorithm increases less with the increase in uncertainty

than that for the 1Dt algorithm, which in turn increases less

than that for the 2D algorithm. In some cases, for the lower

values of uncertainty variables, the error rate of the 2D algo-

rithm is lower than that of the 1Dt algorithm, indicating a

suitability for estimation in the case of low uncertainty.

Figure 10a,b shows that the 1Dτ algorithm has a median error

rate of less than 0.025, and a 90th percentile error rate of less

than 0.15, at the largest measured value of linear uncertainty,

where the 1Dt algorithm's median error rate is above 0.4 and the

2D algorithm's median error rate is above 0.6. The literature

gives a range of values of error in linear motion estimation for

robots in pipes; with measurements of 15% (Sahli and El‐

Sheimy 2016), 5%–35% (Murtra 2013), and 3%–15% (Al‐Masri,

Abdel‐Hafez, and Jaradat 2018) of distance traveled. Figure 10a

shows that the median error rate is 0 and 0.02 for linear motion

uncertainty of 50% and 100% of distance traveled, respectively.

Therefore, the algorithm performs well at uncertainty compa-

rable to that expected in practice, and is robust to the larger

uncertainty that might be expected in application in more

challenging realistic pipe environments.

Figure 10c shows that the 1Dτ algorithm has a median error

rate of 0, and a 90th percentile error rate of 0, even at the largest

measured value of angular motion, where the median error rate

of the 1Dt algorithm is around 0.4 and the median error rate of

the 2D algorithm is above 0.6.

Figure 10d shows that as measurement error rate increases up

to a measurement error rate of 0.3, the estimate error rate

remains low for the 1Dτ algorithm, while it increases steadily

for the 1Dt algorithm. At a measurement error rate of 0.3, the

error rate for all three algorithms increases considerably.

The results presented here can be translated to some degree to

the further challenge of simultaneous localization and mapping

(SLAM) in this application, where an exact map of the pipe

network is not necessarily available. The effect of metric error

in the pipe network map, such as incorrect pipe lengths or

angles at junctions, would be similar to that of metric error in

the sensing. Therefore, similar relative magnitudes of linear and

angular uncertainty in the network map could produce similar

results to those in Figure 10a–c. One element of topological

error in the map would be a missing junction. The effect of this

may be similar to that of false positive junction detection as

implemented in this experiment. Further topological error, such

as entire missing pipes, would require an augmentation to the

approach. Hybrid metric‐topological approaches to SLAM have

been proposed generally (Blanco et al. 2008) and in application

to pipe networks (Lee et al. 2013), although the accuracy of the

resulting map given the large uncertainties in sensor input in

this application is not known. In a case where a map is available

but has some missing information, it may be possible to use

the robust and efficient approach proposed in this paper most of

the time, and use a more computationally complex approach

when it is estimated that the map is likely missing some infor-

mation. Overall, addressing the SLAM problem for unknown

environments would be an interesting area for future work.

Figure 10e compares the performance of the algorithms over an

increase in all uncertainty parameters simultaneously. A similar

trend is seen in the other comparisons, as the error rate of

the 1Dt algorithm and the 2D algorithm increase to a median

value close to 1 with the increase in uncertainty, while the error

rate of the 1Dτ algorithm stays low and only increases to a

median value of less than 0.1. However, the 90th percentile

error rate increases to above 0.4 for the 1Dτ algorithm. There-

fore, while it is robust to an increase in each source of uncer-

tainty individually, its robustness is still limited when using

TABLE 2 | Default parameters for the localization algorithms.

Parameter Symbol Value

2D

Motion model noise σψ σ1.2 xΔ t

Angular motion model noise σω 1.2σ θΔ t

Angular motion model noise σω,min 0.1 rad

Link measurement std. σl xΔ m

Node measurement std. σn xΔ m

1Dt

Motion model noise σ̃ψ σ1.2 xΔ t

Node transition std. σn xΔ m

Angular weight std. σ̃ω 10σ θΔ t

Kernel std. σg x5Δ m

Number of particles M 100

Number of new particles MD 10

Number of particles constant Kh0 0.05

Divergence short time constant ταs 20

Divergence long time constant ταl 100

Hypothesis weight threshold α0 0.01

1D?

Motion model noise σ̃ xΔ τ σ T4 x τ
τ

Δ −1τ

Angular motion model noise σ̃ θΔ τ 2σ θΔ τ

Model noise minimum σ̃ θΔ ,min 0.2

TABLE 3 | Comparison of algorithms over all trajectories.

Algorithm A

2D (%) 1Dt (%) 1Dτ (%)

Algorithm B 2D — 55 76

1Dt 36 — 79

1Dτ 7 6 —

Note: Percentage of trajectories where the error rate of Algorithm A< error rate of
Algorithm B.
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only the simple measurements used here as inputs. This moti-

vates the incorporation of additional information from obser-

vations of the environment, as described in Section 3.5.

Overall, the proposed algorithm can be compared with the ex-

isting localization methods for robots in pipe networks, which

are the 2D (Alejo, Caballero, and Merino 2019) and 1Dt (Worley

and Anderson 2021a) algorithms, as well as similar approaches

based on the particle filter (Kazeminasab et al. 2021). The

proposed 1Dτ algorithm is more accurate, and specifically more

robust, as it maintains a low estimate error in cases of uncer-

tainty which cause the alternative algorithms to fail. Other

developments in the literature are complementary to the algo-

rithm proposed here. Sensing to improve the precision of

position estimation along a single pipe, such as the use of vision

(Hansen et al. 2015; Zhang et al. 2023), acoustic echoes (Worley

et al. 2020, 2024), or radio wave sensing (Rizzo et al. 2021), are

well suited to function alongside the approach for robust

localization across a large pipe network proposed in this paper.

These results can be translated to pipe environments with

higher complexity. The hybrid metric‐topological space is em-

bedded in a three‐dimensional space, and while the pipe net-

works investigated here are relatively flat, the approach could

be applied equally to networks of pipes in industrial applica-

tions where the network extends considerably in all three

dimensions. The approach proposed here explicitly represents

the connectivity of pipes. Therefore, even if many pipes exist

close together, this approach could be useful in estimating

which pipes the robot has traversed through, if the connectivity

between them is known. Evaluation of the algorithm in more

complex environments, for example, with overlapping pipes

such as would be found in process plants, would be an inter-

esting area for future work.

4.3 | Analysis of Computational Cost of
Localization Algorithms

Figure 11a–e shows a comparison of the computation time used by

the 1Dt and 1Dτ algorithms over a variation in uncertainty

parameters. Table 4 presents statistics on the computation time over

all cases, excluding outliers. The median computation time over all

cases tested here is 10.98 s for the 1Dt algorithm, and 2.52 s for the

1Dτ algorithm. The computational time of the 1Dτ algorithm is a

median of 0.18 times than that of the 1Dt algorithm.

There is a correlation between computation time and error rate

as shown in Figure 10, seen in Figure 11a,b,d,e, and in

Figure 11c to a lesser extent. Lower uncertainty inputs result in

fewer likely possible states which simultaneously reduces the

chance of error and reduces cost.

Overall, considering both the results for error rate in Section 4.2

and computation time, it can be seen that the 1Dτ algorithm is

substantially more efficient than the 1Dt algorithm for most

tested values of uncertainty, with a lower error rate and lower

computational cost. The proposed 1Dτ algorithm, therefore, has

a considerable advantage in applicability to robots in real

challenging pipe networks, compared with particle filter ap-

proaches, such as those in the literature (Alejo, Caballero, and

Merino 2019; Kazeminasab et al. 2021).

Further improvement to the computation time might be found

by using a more efficient adaptive approach to estimation,

rather than the breadth‐first approach taken here. Inspiration

could be taken from the field of robot path planning, for ex-

ample, where the state space can be efficiently searched for the

most promising region for improvements to the trajectory

(Li et al. 2023).

FIGURE 10 | A comparison of the error rate of the 2D, 1Dt, and 1Dτ algorithms with variation in: (a) σxt, (b) uxt , (c) σθt , (d) β, and (e) [i]

σ σ β= 0.2, = 0.1, = 0x θΔ Δt t , [ii] σ σ β= 0.5, = 0.2, = 0.05x θΔ Δt t , and [iii] σ σ β= 1, = 0.5, = 0.1x θΔ Δt t . The probability density of error rate and

computation time over 50 sample trajectories is estimated using kernel density estimation with a Gaussian kernel bandwidth of 0.05 error rate. Squares

show the median, and circles show the 90th percentile of the distributions. [Color figure can be viewed at wileyonlinelibrary.com]
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4.4 | Additional Sensing for Localization

This section investigates the incorporation of four additional

sources of information proposed in Section 3.5: unique identi-

fication of a node, loop‐closure, estimation of the length of a

link, and estimation of the gradient of a link, into the 1Dτ
algorithm. This is compared with an estimate using only simple

inputs with the higher uncertainty values used previously,

which give a median error rate of around 0.3 and a 90th per-

centile error rate of around 0.8. Figure 12 shows the results of

these comparisons. Here, the estimate error is only measured at

times at which the robot observes correctly, through zτ , that it is

at a node. Otherwise, there will be a component of the error

rate, which corresponds to the error in position estimate along a

link, which this algorithm and additional sensing cannot

address, and therefore the effect of additional sensing would not

be properly measured.

The frequency of measurements is varied to measure the

improvement to the error rate for increasing cost from addi-

tional sensing. The identification probability is the proportion of

nodes in the network that are chosen to be identifiable. This

measurement could be obtained by placing identifiable beacons

placed around the network, so an increase in identification

probability might increase the cost of hardware. However, these

identifiable beacons might be placed alongside other necessary

hardware, such as recharging stations, depending on the overall

system design, with only a small increase in cost. The loop‐

closure probability determines the probability that the robot is

able to recognize a location that it has previously visited. The

increase in probability, therefore, corresponds to an increase in

the required perceptive ability of the robot and adds a

requirement to the path the robot takes. The echo measurement

quality determines the accuracy and precision of the measure-

ment of pipe length made using acoustic echoes, with param-

eters p N N¯ , ,Λ Λ̄
+

Λ̄
− , and σΛ defined in Section 3.5. The gradient

measurement uncertainty σg is the standard deviation in gradient

measurement, where σ = 10g
−2 corresponds to around∘ σ0. 5 , = 10g

−3 corresponds to around ∘0.05 , and σ = 10g
−5

corresponds to around ∘0.0005 .

Figure 12a shows that the error rate decreases with increasing

proportion of nodes being identified. The median and 90th

percentile error rate decreases most substantially with the

increase of identification probability from 0 to 0.25, and

decreases less so for further increases in identification proba-

bility. For an identification probability of 1, the median error

rate is 0.03. Further experimentation would be needed to better

understand this relationship and could also explore the effect of

a deterministic rather than stochastic placement of identifiable

nodes. The nonzero error rate for an identification probability of

1 may be due to some estimates being made in links for which

the estimate of continuous position could be greater than the

threshold for computing the error rate. It may also be because

FIGURE 11 | A comparison of the computation time of the 1Dt and 1Dτ algorithms with variation in (a) σxt , (b) uxt , (c) σθt , (d) β, and (e) [i]

σ σ β= 0.2, = 0.1, = 0x θΔ Δt t , [ii] σ σ β= 0.5, = 0.2, = 0.05x θΔ Δt t , and [iii] σ σ β= 1, = 0.5, = 0.1x θΔ Δt t . The probability density of computation

time over 50 sample trajectories is estimated using kernel density estimation with a Gaussian kernel bandwidth of 2 s. [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 4 | Computation time statistics excluding outliers.

Statistic 1Dt 1Dτ 1Dτ/1Dt

Lower quartile 10.33 1.91 0.14

Median 10.98 2.52 0.18

Upper quartile 12.21 3.58 0.24

Mean 11.38 2.95 0.19

Standard deviation 2.06 1.46 0.079
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the identification measurement can only improve the estimate

if the relevant node was predicted by the simple odometry and

node observation measurements.

Figure 12b shows the effect of increasing echo measurement

quality and rate on the estimate. The error rate generally

decreases when echo measurements are made regularly, but

can actually decrease when low‐quality measurements are

made only at a low rate. In the best case, with a higher rate of

high‐quality measurements, the median error rate is reduced

from 0.28 to 0.075, and the 90th percentile error rate is reduced

from 0.84 to 0.18. Similar to the identification observations,

acquiring the sequence of acoustic echo measurements needed

to make an estimate of pipe length has some cost. The relative

cost between making acoustic measurements and placing bea-

cons in the network for identification is beyond the scope of the

work presented here. Unlike the identification observations,

acoustic echo measurements can be made by the robot at any

time. An active localization approach where the robot makes an

acoustic measurement when the uncertainty in its localization

estimate is large could more efficiently acquire useful mea-

surements when they are more informative.

Figure 12c shows the effect of increasing probability of loop‐

closures. The error rate is seen to decrease only slightly, from a

median of 0.28 to a median of 0.17, and the 90th percentile

decreases from 0.83 to 0.55, even for a probability of 1 of making

loop‐closure observations. This could be explained by the low

probability that a given loop‐closure observation occurs at a

time when it improves the estimate. To correct an otherwise

erroneous estimate at time τ , a loop‐closure must occur

between the current time and a previous time for which the

estimate is correct. In comparison, a useful identification

observation requires only requires the coincidence in timing of

one observation rather than the coincidence in timing of two

observations.

Figure 12d shows the effect of increasing rate and quality of

gradient measurements. The error rate generally decreases

when gradient measurements are used, and the improvement

to accuracy is larger for the lower uncertainty gradient mea-

surements. If measurements are made frequently enough, for

measurement uncertainty of 10−2, around the worst of the

values from the literature, the error rate can be reduced

somewhat, from a median of 0.28 to a median of 0.13. For

measurement uncertainty of 10−3, which is close to the best

value from the literature, the error rate can be reduced subs-

tantially, to a median of 0.037. The error rate is only reduced

by a small additional amount for further reduced measure-

ment uncertainty, to a median of 0.028, so useful improvement

to localization estimates could be found with sensing tech-

nology similar to what has been reported on in the existing

literature. Incorporating this three‐dimensional gradient

information is therefore useful, and may be even more

impactful in pipe networks in locations with a bigger variation

in topography.

These results can be compared with alternative approaches to

localization in pipe networks. The use of beacons for identifying

a robot (or sensor) location has been investigated in the litera-

ture (Haug, Lorenz, and Thamsen 2021; Kazeminasab and

Banks 2021), and these results are complementary to those

presented here, as it has been shown that incorporating the

identification of a robots location can improve the localization

estimate. However, it has been shown that alternative sensing,

specifically acoustic echo sensing and pipe gradient sensing, can

FIGURE 12 | The effect of additional information on localization. (a) Unique identification of nodes. (b) Estimates of link length using acoustic

echoes. The quality is defined by p N N σ[¯ , , , ]Λ Λ̄
+

Λ̄
− Λ . For the lowest quality, (i) these are [0.1, 1, 5, 5]. For (ii) ii, these are [0.01, 0, 1, 2]. For the highest

quality, (iii) iii these are [0, 0, 0, 1]. r is the proportion of times t at which the robot makes an echo measurement. (c) Loop‐closure measurements. (d)

Measurements of link gradient, with variation in measurement uncertainty standard deviation σg . r is the proportion of times t at which the robot

makes a gradient measurement. The probability density of error rate over 50 sample trajectories is estimated using kernel density estimation with a

Gaussian kernel bandwidth of 0.05. Squares show the median, and circles show the 90th percentile of the distributions. [Color figure can be viewed at

wileyonlinelibrary.com]
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be used to produce a similar improvement to localization esti-

mate, without the need for the additional cost of adding beacons

to a huge number of locations around the pipe network. These

alternative sensing approaches might therefore offer an

advantage in terms of cost effectiveness.

5 | Conclusions

This paper develops an approach for estimating a robot trajectory

through a network of buried pipes, aiming for robustness to the

large uncertainty in input measurements which is expected in field

applications, while achieving low computational cost which is

necessary in application to small robots. Experiments here have

compared the novel 1Dτ algorithm, which improves on the Viterbi

algorithm to estimate the most likely sequence of states given the

sequence of measurements, with the 1Dt algorithm, which uses a

particle filter to incrementally estimate the most likely state with

additional processes to detect and recover from error.

The 1Dτ algorithm is shown to have higher accuracy and

robustness than the 1Dt algorithm for almost all measured input

uncertainty values, and is shown to require an average of 0.18

times the computation. For linear motion uncertainty, the 1Dτ
algorithm is shown to have a low median error rate of less than

0.025 for uncertainty up to 100% of the distance traveled, larger

than that expected in practical application from the literature. The

median error rate is 0 for motion uncertainty up to 50% of

the distance traveled and for an observation error rate of 0.2, and

the 90% percentile error rate is 0 for the largest measured value of

angular motion uncertainty. A median error rate of 0 means that

the trajectories are estimated without error more often than not,

and these results give some insight into the requirements for front‐

end sensing needed to achieve this performance. These results

show that the principle of making the localization estimate in a

suitable low‐dimensional space is effective in this application.

The 1Dτ algorithm is challenged by larger values of uncertainty

for motion and measurement simultaneously, which motivated

the incorporation of additional sensing information. In this

case, the error rate was reduced from 0.28 to 0.023 by incor-

porating the ability to identify locations in the network, and

similarly reduced by incorporating echo sensing proposed in the

literature and incorporating pipe gradient measurement, while

loop‐closure measurements were shown to be less useful.

Developments to the 1Dτ algorithm could further improve the

accuracy, robustness, and computational cost. The effect on

the estimate of the pipe network topology and geometry could

be considered, as could the impact of active sensing or active

localization. It may be possible to estimate an upper bound on

the performance of an algorithm, providing evidence beyond

numerical and statistical analysis of the accuracy and robust-

ness of the algorithm.
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