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Abstract
Particulate materials include powders, emulsions, composites, and many others. This is why
measuring these has become important for both industry and scientific applications. For industrial
applications, the greatest need is to measure dense particulates, in-situ, and non-destructively. In
theory, this could be achieved with acoustics: the standard method is to send an acoustic wave
through the particulate and then attempt to measure the effective wave speed and attenuation. A
major obstacle here is that it is not clear how to relate the effective wave speed and attenuation to
the reflection and transmission coefficients, which are far easier to measure. This is because it has
been very difficult to mathematically account for different background mediums. In this paper, we
resolve this obstacle. To help comprehension, we present how to account for different background
mediums for a simple case: a halfspace filled with a random particulate, where the background of
the halfspace is different from the exterior medium. The key to solving this problem was to derive a
systematic extension of a widely used closure approximation: the quasi-crystalline approximation.
We present some numerical results to demonstrate that the reflection coefficient can be easily
calculated for a broad range of frequencies and particle properties.

1. Introduction

Particulate materials are composed of small particles embedded in a continuous medium, like a powder in
air, emulsions such as oil droplets in water, or air bubbles appearing in boiling water. Many applications, for
example sensing, require a descriptive model of particulate materials. The positions of the particles are
disordered and are either not known or cannot be completely controlled. Therefore, the most important
features of particulate materials are statistical, such as the average particle size or inter-particle distance.

Sensing. Non-destructive measurements of particle size and properties can be achieved using wave scattering
(acoustic, electromagnetic or elastic) [Cha+05, AC15, FHP16, 20917]. Characterising, or monitoring, the
particles is needed to ensure quality, or can be used in feedback loops during production or manufacturing.
As the particles can change position (or even properties) in time, to obtain a reliable measurement,
experiments need to be repeated many times to then compute the average wave response. This average
response depends only on the statistical properties, such as average concentration and particle size, which are
usually the most important features for industrial applications. Mathematically, the result of averaging over
measurements in time (or space) can be equivalent to a procedure called ensemble averaging, which we use
in this work, see [Fol45, Mis+16, Hua63] for details.

Broad frequency range. To sense the size of particles, we need to consider a broad range of frequencies, so
that the wavelengths are comparable to the particle size. It is not enough to develop a theory for only the low
frequency limit, as in this limit it is not possible to sense particle size distribution. For example, in the long
wavelength limit (low frequency) for acoustics [CDW12], the material is completely described by two
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Figure 1. Shows the cross-section of a pipe, with a fluid flowing in the direction of the black arrow. Particles are suspended in the
fluid, represented by black circles. A pair of transducers (acoustic sensors) are attached to the pipe walls. One transducer emits
waves and measures their reflection, while the other measures the transmitted wave. This illustration is just a pictorial
representation. For any real applications, particles would be much smaller and more numerous. The figure was generated in Julia
with the MultipleScattering.jl library [GD24, Pau24].

numbers: the effective density and effective bulk modulus [Gow+18]. So, in terms of sensing, to learn more
than just two numbers from a wave experiment we need to consider shorter wavelengths.

EffectiveWaves Method. As we need a broad range of frequencies, we make use of a method called the
Effective Waves Method [GK21, GHK23, NPG24], which can account for wave scattering in dense or sparse
particulate materials for a broad range of frequencies (see [KPG24] for phase diagrams). This method
accounts for multiple scattering between all particles, and provides a way to perform sensitivity studies on a
wide range of parameters such as particle size distribution and volume fraction.

Different backgroundmediums.When using the Effective Waves Method to design ways to sense particles
we came across a significant barrier: it is not clear how to calculate the average scattering when the source
comes from a medium which is different from the background medium of the particles. An example is
shown in figure 1, which depicts an emulsion (particles in a fluid) travelling along a metal pipe. The pipe
material is different from the background fluid. There have been work, and experiments, in the literature that
considers the case of different background mediums [Faw21, Gar+05, Sim+24], but the expressions used do
not come from first principles calculations. We discuss this further in the literature review below. To design
robust sensing methods, we need to account for these different mediums, which is the main goal of this
paper. After significant calculations from first principles, we arrive at a simple strategy which will lead to
more robust sensing methods.

Quasi-crystalline approximation. To solve for all orders of multiple scattering between particles, on average,
one needs to use a closure approximation [Ado71, Kue16]. The most standard closure assumption to account
for scattering between particles is called the Quasi-Crystalline Approximation (QCA) [Lax52, MVV84,
GPA19]. We derive a consistent extension to QCA (named X-QCA) to also account for scattering between
particles and interfaces. To summarise, eXtended Quasi-Crystalline Approximation (X-QCA) accounts for
the same scattering orders as QCA and leads to simpler calculations. For clarity, we consider only a simple
case: plane wave incidence on a halfspace filled with random particles (see figure 4), and only for acoustic
wave scattering.

Further applications. Other than sensing, accounting for scattering between layers and particles can lead to
improved design of: graded particulate materials [Miy+99] and disordered metamaterials with tailored
frequency response. Disordered particulate materials can be far simpler to manufacture on a large scale,
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because the exact positioning of the particles does not need to be carefully controlled, as it does in most
periodic metamaterials.

A brief literature review.Most of the work done in particulates and composites is focused on the low
frequency limit, for example [PA10], or for broader frequencies but with only one background medium
[CDW12, CD15, LM05, LM06].

Recent work on acoustic scattering by random composite media has been carried out by John R. Willis
[Wil19, Wil20, Wil23], in which a broad frequency response is considered. According to [Wil19], the model
framework is based on elasticity [Wil81], and it describes wave scattering (acoustic or elastic) from a
halfspace formed by three distinct phases. Compared to figure 3 later in the text, one phase would be
represented by the exterior medium (blue), the second could be thought of as the matrix (yellow), and the
last as the particles (black circles). However, the distribution of each phase in the halfspace is given in terms
of a two-point correlation function, and not by placing particles as shown in figures 1 and 3. To solve the
resulting equations, Willis assumed two of the phases have the same bulk modulus in [Wil23]. In this paper,
we do not impose any restrictions on the acoustic properties of the three phases.

In this work we follow a first principles approach similar to [KW20], which accounts for all orders of
multiple scattering. To solve for the average reflected and transmitted waves, Kristensson and Wellander
[KW20] used the standard QCA (for scattering between particles) and specialised to either a low particle
volume fraction or low frequency. In contrast, in this paper, we do not need to specialise to a low particle
volume fraction or low frequency and reach solutions which are easier to compute and are, in principle, as
accurate. To achieve this we deduce an extension of the quasi-crystalline approximation (X-QCA), which
simplifies the scattering between particles and walls.

Summary of the paper. In section 1.1 we introduce an overview of how to account for multiple scattering
between particles and interfaces for the average wave in materials with random microstructure. In section 2
we define the setup of a plane wave incident on a halfspace filled with particles. In section 3 we explicitly write
the system of equations of the problem for acoustic scattering of waves for one configuration of particles. In
section 4 we define the probability density of each realisation, and all the statistical assumptions used
throughout the paper. In section 5 we compute the average of the total pressure field and apply boundary
conditions on the interface between the different mediums in the halfspace. In section 6 we use X-QCA to
determine the average of the backscattering operator to make a clear connection with the strategy introduced
in section 1.1. In section 7 we derive X-QCA, which can be used in the presence of different background
mediums. In section 8 we apply the Effective Waves Method and present the numerical results achieved.

1.1. Overview of the strategy
In this section, we show how to intuitively deduce wave scattering from a random particulate in the presence
of different background mediums. We do this for the simplest scenario: plane wave scattering. After this
section, we deduce rigorously the results presented here.

Let r= (x,y,z) be a position in R
3. Consider a homogeneous acoustic halfspace, which we call the

background matrix, occupying the region z> 0, in R
3, which is filled with a random complex material.

Consider another homogeneous acoustic halfspace z< 0 which has different properties to the background
matrix in z> 0. From the region z< 0, an incident plane wave propagates in the positive z direction given by

uin (r) = Geikz

with k> 0 being the wavenumber of the z< 0 region.
Surprisingly, to describe the average transmitted and reflected waves due to the incident plane wave is not

straightforward, and arguably unsolved when considering all the multiple scattering between the interface
and embedded random medium. During our work, we realised a simple intuitive trick to arrive at the same
results achieved by the first principles calculations. The idea is to use what is already known: the solution of
an average reflected plane wave from a complex material that is embedded in just one homogeneous
medium. To use this solution, we consider an artificial region 0< z< δ which is homogeneous and has the
same properties as the background matrix. See figure 2(a) for an illustration.

For just one realisation of the complex material, i.e. the deterministic case, the total acoustic field is given
by

utot (r) =

{

Geikz +Re−ikz + ε− (r) , z< 0

Aeik0z +Be−ik0z + ε+ (r) , 0< z< δ
(1)

3
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Figure 2. An illustration of the amplitudes of different plane waves. The blue on the left is the homogeneous halfspace from where
the source (G) originates, and the reflected wave (⟨R⟩) heads into. The region on the right of both (a) and (b) with the particles is
a homogeneous matrix with an embedded random complex material (shown as particles here). The middle of (a) is a yellow layer
with thickness δ, which is homogeneous, and has the same properties as the background matrix of the halfspace filled with
particles.

where k0 is the wavenumber of the region 0< z< δ, and G,R,A,B ∈ C are the amplitudes of the: incident
plane wave, reflected plane wave, and two transmitted plane waves, respectively. The terms ε±(r) represent
the non-planar contribution from the random material. This non-planar contribution will be zero later
when taking an ensemble average over the random variables.

We can calculate the unknown amplitudes by applying standard transmission boundary conditions
across z= 0 given by







utot (r) is continuous at z= 0,

1

ρ(r)

∂

∂z
utot (r) is continuous at z= 0,

(2)

where ρ(r) is the density of the medium.
Let us attempt to use (2) to deduce the average reflection. To describe averages, we introduce the random

variable σ to denote one realisation (or configuration) of this random material. For example, in a material
composed of small particles σ represents one possible configuration of the particles and their acoustic
properties, see figure 2(b). In this sense, the ensemble average ⟨◦⟩ gives the average of ◦ over all possible
realisations σ. Later we define this in detail.

Returning to (1), we know that on average ⟨ε±(r)⟩= 0 due to planar symmetry. Performing the
ensemble average of both sides of (1) then leads to

⟨utot (r)⟩=

{

Geikz + ⟨R⟩e−ikz, z< 0,

⟨A⟩eik0z + ⟨B⟩e−ik0z, 0< z< δ,

where ⟨G⟩= G because the incident wave is the same for each realisation σ. Figure 2(a) shows how each
plane wave contributes to the average field. The goal is to first solve the case shown in figure 2(a) and then
take the limit δ→ 0 to reach the solution of the case shown in figure 2(b).

Taking an ensemble average on both side of the boundary conditions (2), after some algebra, results in
{

⟨R⟩= ζRG+ ζT ⟨B⟩,

⟨A⟩= γ0ζTG− ζR ⟨B⟩,
(3)

with ζR, ζT and γ0 being constants that depend on the material properties of the background mediums and
are provided in section 5.2.

With the system (3), we have 3 unknowns: ⟨R⟩, ⟨B⟩, ⟨A⟩, but only 2 equations. We need another
equation. We can obtain another equation by knowing how the particles themselves reflect a plane wave. The
transmitted wave with amplitude A is reflected, in some sense, by the particulate material in the region z> δ,
and creates the reflected wave with amplitude B. This reflection is linear and can be represented by some
scalar Tσ such that

TσA := B. (4)

We call Tσ the backscattering operator, and it depends on each realisation σ. See [GPA19, GK21] for
examples of the average of this operator.

The main issue now is that taking an ensemble average on both sides of (4) results in

⟨B⟩= ⟨TσA⟩, (5)

4
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Figure 3. Cross-section of a homogeneous halfspaceR, filled with homogeneous spherical particles. The set of all points in
particles is denoted by P . The acoustic properties of each medium (sound speed and density) are specified, together with particle
radius.

which does provide another equation, but also delivers another unknown ⟨TσA⟩, which can not be written
directly in terms of ⟨A⟩. This is because the waves A and B have been reflected between the complex random
material and the interface at z= 0, so both of these waves do depend on the realisation σ. If the background
matrix medium (yellow) was the same as the exterior (blue) medium, both shown in figure 2, then A would
be the incident wave (A=G) and we would have ⟨TσA⟩= ⟨Tσ⟩A, as the incident wave does not depend on
the realisation σ.

To resolve this, it is normal to assume a closure relation [Ado71, Kue16]. The simplest and most
commonly used is a naive mean field approximation [KS20], given by

⟨B⟩= ⟨TσA⟩ ≈ ⟨Tσ⟩⟨A⟩. (6)

At first, this approximation may appear crude. However, we will show in this paper that (6) is equivalent to
the QCA. Therefore, when QCA is assumed, it would not be useful (or consistent) to use a more accurate
approximation than (6).

The main goal of this work is to show that closure approximations of the form (6) can be deduced from
first principles when using the same assumptions as QCA. Beyond just scattering by a halfspace, our
approach leads to a general strategy to calculate (on average) multiple scattering between random particles
and different background mediums.

2. Setting of the problem

Our aim is to describe wave scattering from a halfspace,

R :=
{

r= (x,y,z) ∈ R
3 |z⩾ 0

}

,

filled with particles. The region that all particles occupy is denoted by P ⊂R, which is the union of
non-overlapping homogeneous spheres with radius a> 0, sound speed cs ∈ C and density ϱs ∈ R

1.
We call the region in between all the particles,R\P , the matrix, and the region z< 0 the exterior

medium, from where the incident wave originates. See figure 3 for an illustration. The exterior medium has a
speed of sound c ∈ R and density ϱ ∈ R, while the matrix has homogeneous acoustic properties, c0 ∈ R and
ϱ0 ∈ R.

The pressure field in the frequency domain is denoted by utot and it satisfies the following Helmholtz
equations:

∇2utot (r)+ k2utot (r) = 0, for r /∈R,

∇2utot (r)+ k20utot (r) = 0, for r ∈R\P ,

where ω ∈ R is the angular frequency, k := ω/c is the wavenumber for the exterior medium (blue region),
k0 := ω/c0 is the wavenumber for the matrix (yellow region).

1 It is not difficult to generalize all results presented here for the multispecies case, where each particle can have a different radius, sound
speed and density. The procedure would be the same as done in [GK21].

5
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Figure 4. Shows the different waves that are scattered from, and arrive at, the particles and the boundary ofR. Each arrow
identifies where the wave was generated and what it excites. The colour of each arrow indicates which term of equations (7)
and (8) it is associated with. Magenta arrows represent the reflected field outsideR.

The total field in the exterior region equals the incident wave plus a reflected field,

utot (r) = uin (r)+ urf (r) = Geik·r + urf (r) , r /∈R (7)

where G ∈ C is the incident plane wave amplitude and k= (kx,ky,kz) its wave vector, with |k|= k= ω/c and
kz > 0. The reflected field urf is complicated and has no symmetry. We describe it in more detail in section 3.

3. One configuration of particles

Solving any wave scattering from one configuration of spheres in the matrix is a difficult problem [MS20,
KW20], and as far as we know, there is no efficient semi-analytic solution for it. In this section, we formulate
the basic equations for one configuration, which we use to study the ensemble average system.

We define the spherical solutions of the Helmholtz equation un and vn (with n= (ℓ,m), ℓ ∈ Z+,m=
−ℓ, . . . , ℓ), defined as

un (kr) = u(ℓ,m) (kr) := hℓ (kr)Yn (r̂) ,

vn (kr) = v(ℓ,m) (kr) := jℓ (kr)Yn (r̂) ,

where (r,θ,ϕ) are the spherical coordinates of r ∈ R
3; r̂ is the unit vector in the direction of r; Yn(r̂) are the

spherical harmonic functions defined in appendix B; jℓ are spherical Bessel functions and hℓ are spherical
Hankel functions, both of the first kind.

Within the matrix, and outside of the particles, the field can be written as a regular wave plus the waves
scattered from each particle u i

sc in the form2

utot (r) = ureg (r)+
J

∑

i=1

u i
sc (r)

=
∑

n

gnvn (k0r)+
J

∑

i=1

∑

n

f inun (k0r− k0ri) , for r ∈R\P , (8)

where ri is the position of the center of the i-th particle. The summations over the bold index n are
performed as defined in appendix A. Figure 4 makes use of an arrow diagram to illustrate how waves scatter
for one configuration of particles in the matrix.

Two types of waves contribute to regular field ureg(r): 1) the waves scattered between the boundary ∂R
and the particles, and 2) the transmission of the incident field into the matrix. As ureg(r) contains no sources
it is smooth inR\P , and can therefore be expressed in terms of regular spherical waves.

We can use the boundary conditions on each of the particles to establish a relation between the
coefficients gn and f in. To achieve this, we define the field that excites the i-th particle u i

exc(r). This exciting
wave is the sum of the waves scattered from all J particles different from the ith particle and the background

2 The procedure to perform the summation over the double index n= (ℓ,m) is given in appendix A.
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regular field:

u i
exc (r) := ureg (r)+

J
∑

j=1
j ̸=i

ujsc (r)

=
∑

n

gnvn (k0r)+
∑

n

∑

j ̸=i

f jnun
(

k0r− k0rj
)

. (9)

To apply the boundary conditions for particle i, we write (9) in a basis of spherical waves centred at ri by
using (60) which leads to

u i
exc (r) =

∑

nn ′



gnVnn ′ (k0ri)+
∑

j ̸=i

f jnUnn ′

(

k0ri − k0rj
)



vn ′ (k0r− k0ri) , (10)

for |r− ri|< |rj − ri|. Solving the boundary condition for particle i is now equivalent to applying the
T-matrix [Wat71, VVP78, MTM96] Tn to the terms multiplying vn ′(k0r− k0ri) in (10), which leads to

f in = Tn

∑

n ′

gn ′Vn ′n (kri)+Tn

∑

j̸=i

∑

n ′

f jn ′ Un ′n

(

k0ri − k0rj
)

, (11)

where the expression of the T-matrix for a homogeneous spherical particle is given by

Tn = T(ℓ,m) =−
γsj ′ℓ (k0a) jℓ (ksa)− jℓ (k0a) j ′ℓ (ksa)

γsh ′
ℓ (k0a) jℓ (ksa)− hℓ (k0a) j ′ℓ (ksa)

,

with γs := (ϱscs)/(ϱ0c0) and ks := ω/cs.
The governing equation (11) is a straightforward generalisation of the case of particles in only one

background medium. If the material properties of the matrix were the same as the exterior medium (ϱ= ϱ0
and c= c0), then gn would represent the incident wave, as in [GK21, equation (2.7)].

Next, we need to establish a relation between the waves inside and outside the matrix; (11) and (7)
respectively. Instead of directly using the boundary conditions (2), it is simpler to ensemble average the fields
first. The averaging process will result in planar symmetry and simplify the form of (7) and (8), so that we
can then apply the boundary condition at z= 0.

4. Ensemble averaging

One clear lesson from figure 4 is that gn and f in each depends on the positions of all the particles. Despite the
rich number of interactions for one specific configuration, we show how the average field over all possible
configurations can be simpler.

To reach the limit of an infinite number of particles, in a mathematically consistent way, we start with a
cubeRL

η with a finite number of particles J. In set notation we have

RL
η :=

{

ri ∈ R
3 | xi ∈ (−L/2,L/2) , yi ∈ (−L/2,L/2) , zi ∈ (η,L+ η)

}

, (12)

where η is chosen later to create a space between the particles and the boundary, similar to section 1.1.
Now we can consider an ensemble for particles withinRL

η . The probability density for the particles
occupying the positions r1,r2, . . . ,rJ are given by

p(r1,r2, . . . ,rJ) . (13)

We define the ensemble average of any function f, which implicitly depends on the position and
properties of the particles, over the configuration space as

⟨f⟩ :=

ˆ

(RL
η)

J
f p(r1,r2, . . . ,rJ) dr1dr2 . . .drJ, (14)

where a set to the power J denotes the Cartesian product with itself J times. We also define the first and
second conditional ensemble averages as

⟨f⟩(r1) :=

ˆ

(RL
η)

J−1
f p(r2, . . . ,rJ|r1) dr2 . . .drJ,

⟨f⟩(r1,r2) :=

ˆ

(RL
η)

J−2
f p(r3, . . . ,rJ|r1,r2) dr3 . . .drJ,

(15)

7
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where we have used the marginalised probability functions for one and two particles, given by

p(r1) :=

ˆ

(RL
η)

J−1
p(r1, . . . ,rJ) dr2 . . .drJ,

p(r1,r2) :=

ˆ

(RL
η)

J−2
p(r1, . . . ,rJ) dr3 . . .drJ.

As in section 1.1, we assume particles are distributed homogeneously, which implies that

p(ri) =
1

L3
=

n

J
, with n :=

J

L3
. (16)

We call n the particle number density.
For simplicity, we assume our particles are hard spheres (non-overlapping), and use the approximation

known as hole correction:

p
(

ri|rj
)

=







p(ri)
J

J− 1
, for |ri − rj|> 2a,

0, for |ri − rj|⩽ 2a,
(17)

where the factor J/(J− 1) comes from the fact that there are J particles within the cubeRL
η . The need to add

this extra factor in the case of a finite number of particles is explained in [Kon+04, equation (8.1.2)].
With our choice of pair correlation (17), and assuming the volume ofRL

η is much larger than the volume
of the particles, we conclude that the position of just one of the particles does not significantly affect the
probability distribution of the other particles. In other words, we assume

p(r2, . . . ,rJ|r1)≈ p(r2, . . . ,rJ) , (18)

p(r3, . . . ,rJ|r2,r1)≈ p(r3, . . . ,rJ|r2) . (19)

Another way of interpreting these approximations is by replacing conditional probabilities with its average
over r1

p(r2, . . . ,rJ|r1)≈

ˆ

RL
η

p(r2, . . . ,rJ|r1)p(r1)dr1 = p(r2, . . . ,rJ) ,

p(r3, . . . ,rJ|r2,r1)≈

ˆ

RL
η

p(r3, . . . ,rJ|r2,r1)p(r1|r2)dr1 = p(r3, . . . ,rJ|r2) .

5. Average fields

Our goal in this section is to describe the average scattered field close to the interface z= 0, so we can apply
boundary conditions for the average total field. To make sure the particles do not touch the boundary at
z= 0, as done in section 1.1, we take η = a+ δ in (12), see figure 2(a). We remind the reader that a is the
radius of the particles and δ/a≪ 1 is a small parameter.

We start by computing the average of the total field. We multiply equation (7) by (13), use definition (14)
for some fixed value of L, and then integrate over all possible particle positions to obtain

⟨utot (r)⟩= Geik·r + ⟨urf (r)⟩, for r /∈R. (20)

Here we have ⟨G⟩= G because the incident wave is the same for every configuration of particles. Computing
the average of equation (8) results in

⟨utot (r)⟩= ⟨ureg (r)⟩+
J

∑

j=1

⟨ujsc (r)⟩,

where

⟨ureg (r)⟩=
∑

n

⟨gn⟩vn (k0r) , for r ∈R, (21)

J
∑

j=1

⟨ujsc (r)⟩=
J

∑

i=1

∑

n

ˆ

RL
a+δ

⟨f in⟩(ri)un (k0r− k0ri)p(ri)dri, (22)

8
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and (22) is valid for 0⩽ z⩽ δ. This is because if z> δ, then r could be inside a particle, in which case (8)
would not be valid. In (22), ⟨f in⟩(ri) is the average of f

i
n conditional to ri as defined in (15)1.

In our problem particles are indistinguishable, which enables us to use the simpler notation:

⟨fn⟩(ri) := ⟨f in⟩(ri) , (23)

for i = 1,2, . . . , J. This notation makes it clear how to simplify the sums over particle indices. For example,
substituting (16) and (23) into (22), leads to

J
∑

i=1

⟨uisc (r)⟩= n

∑

n

ˆ

RL
a+δ

⟨fn⟩(r1)un (k0r− k0r1)dr1. (24)

5.1. The infinite volume limit
We now take the limit of L→∞ so thatRL

a+δ becomes a halfspace, and compute the ensemble average for
each term of the total average field, inside and outside the matrix.

Average regular field. Because we assume particles are uniformly distributed, see equation (16), and due to
planar symmetry of the problem, the regular field evaluated in z> 0, shown in (21), can be represented as a
plane wave after averaging:

lim
L→∞

⟨ureg (r)⟩= ⟨A⟩eik0·r + ⟨A−⟩e
ik−0 ·r, for z⩾ 0,

where k0 = (k0x,k0y,k0z) :=
(

kx,ky,
√

k20 − k2x − k2y

)

and k−0 := (k0x,k0y,−k0z) are the wavevectors3 of the

plane waves. Without loss of generality, we choose Im[k0z]⩾ 0 which implies that ⟨A−⟩= 0 to avoid an
unphysical wave. This choice also allows us to represent (21) in terms of a single plane wave, given by

lim
L→∞

⟨ureg (r)⟩= ⟨A⟩eik0·r. (25)

The explicit expression for ⟨A⟩ in terms of ⟨gn⟩ is given in appendix B.

Average backscattered field. Taking the limit of L→∞ for the average backscattered field (24) leads to

lim
J→∞
L→∞

J
∑

i=1

⟨uisc (r)⟩= n

∑

n

ˆ

Ra+δ

⟨fn⟩(r1)un (k0r− k0r1)dr1, (26)

whereRa+δ := limL→∞RL
a+δ is the halfspace z⩾ a+ δ. When taking this limit we need to fix the particle

number density n, given in (16)2, which implies that J→∞ when L→∞.
Less obviously, (26) also has a plane wave representation due to symmetry. In appendix C, D we show

how to rewrite (26) as

lim
L→∞

∞
∑

i=1

⟨uisc (r)⟩= ⟨B⟩eik
−

0 ·r, for 0⩽ z⩽ δ, (27)

where the average backscattering amplitude ⟨B⟩ is given by

⟨B⟩ :=
2πn

k0k0z

∑

n

iℓYn

(

k̂0
)

ˆ ∞

a+δ

⟨fn⟩(0,0,z1)e
ik0zz1dz1. (28)

Average external field. By the same symmetry arguments, we know that the waves outsideR can also be
represented in terms of plane waves3:

⟨utot (r)⟩= Geik·r + ⟨R⟩ei(kxx+kyy−kzz), for z⩽ 0 (29)

where ⟨R⟩ is the average reflection amplitude. In section 5.2, we will derive a system of equations relating the
amplitudes of the different fields. This will enable us to deduce ⟨R⟩, which is the quantity of main interest in
this paper.

3 Here we have used Snell’s law to determine the components of the wavevectors for simplicity of the equations. However, this can be
deduced directly from the transmission boundary conditions (30) in section 5.2 ahead.

9
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5.2. Boundary conditions at the interface
To write down relations between the average amplitudes ⟨A⟩, ⟨B⟩ and ⟨R⟩, we need to impose boundary
conditions at z= 0. We are interested in the case of homogeneous background media, so we choose
transmission boundary conditions, which reads











⟨utot (r)⟩ is continuous at z= 0,

1

ρ(r)

∂⟨utot (r)⟩

∂z
is continuous at z= 0,

(30)

where ρ(r) is the density, which is a function of r ∈ R
3.

We substitute (25), (27) and (29) into (30)1 at the boundary r= (x,y,0):

Geik·r + ⟨R⟩eik·r = ⟨A⟩eik0·r + ⟨B⟩eik0·r

Because k · r= k0 · r= kxx+ kyy, the above simplifies to

G+ ⟨R⟩= ⟨A⟩+ ⟨B⟩. (31)

Similar computations can be done as above, starting from (30)2 instead of (30)1. These result in another
relation,

kz
ϱ
(G−⟨R⟩) =

k0z
ϱ0

(⟨A⟩− ⟨B⟩) . (32)

The system of equations (31) and (32) can be rearranged into

⟨R⟩= ζRG+ ζT⟨B⟩, ⟨A⟩= γ0ζTG− ζR⟨B⟩, (33)

where the newly introduced parameters ζR, ζT, γ0 are given by

ζR :=
ϱ0 kz − ϱk0z
ϱ0 kz + ϱk0z

, ζT :=
2ϱk0z

ϱ0 kz + ϱk0z
, γ0 :=

ϱ0 kz
ϱk0z

.

At this point, we have three unknowns ⟨A⟩, ⟨B⟩, and ⟨R⟩ and two equations (33). The missing equation,
which will be deduced in section 6, is determined by how the particles reflect waves in the regionR.

5.3. Single medium limit
As a sanity check, we can see how the equations (28) and (33) recover the single background medium limit.
Taking the acoustic properties of the exterior medium and the matrix as the same (c0 = c and ϱ0 = ϱ), we
have that k0 = k, which means ζR = 0 and ζT = γ0 = 1. Substituting these values in (33) provides us with

⟨A⟩= G, ⟨R⟩= ⟨B⟩=
2πn

kkz

∑

n

iℓYn

(

k̂
)

ˆ ∞

a
⟨fn⟩(z1)e

ikz1dz1,

where we used (28) and took the limit δ→ 0 to recover the formulas for particles distributed in a halfspace
regionR, see figure 2(b). The above is the same formula for reflection of a halfspace as [GK21, equation
(7.6)]. This means the approach is consistent with the average response of random particulate materials in
the case of particles embedded in only one homogeneous medium.

6. Average backscattering operator

To obtain the final equation needed to determine the average amplitudes in (33), we follow the notation
introduced in section 1.1. That is, we need to find an equation relating ⟨B⟩ and ⟨A⟩ through some
backscattering operator ⟨Tσ⟩. This final equation comes from the microstructure, which in our case is the
ensemble averaged version of the boundary conditions of the particles (11).

Following the strategy of [GK21], we take a conditional ensemble average of (11), and use
assumptions (16), (17), (23) to obtain

⟨fn⟩(r1) = Tn

∑

n ′

⟨gn ′⟩(r1)Vn ′n (k0r1)+ nTn

∑

n ′

ˆ

Ra\B(r1,2a)
Un ′n (k0r1 − k0r2)⟨fn ′⟩(r2)dr2 (34)

where we used the standard QCA to substitute ⟨fn⟩(r2,r1) = ⟨fn⟩(r2) [GK21].

10



New J. Phys. 26 (2024) 123033 P S Piva et al

By assuming that (34) has a unique solution for ⟨fn⟩(r1) given ⟨gn ′⟩(r1), then, formally, we can use (34)
to represent ⟨fn⟩(r1) as

⟨fn⟩(r1) =
∑

n ′

L
f
nn ′ [⟨gn ′⟩(r ′1)] , (35)

for some linear operator Lf
nn ′ acting on ⟨gn ′⟩(r ′1). This operator notation L

f
nn ′ will help to compute ⟨Tσ⟩.

From (28) we see that ⟨B⟩ is a linear map acting on ⟨fn⟩. For convenience, let us also represent (28) in the
form ⟨B⟩=

∑

nL
B
n[⟨fn⟩(r1)]. Substituting (35) into this representation leads to

⟨B⟩=
∑

nn ′

LB
n

[

L
f
nn ′ [⟨gn ′⟩(r ′1)]

]

. (36)

It is not obvious, but (36) is the same as (5). And, just like in section 1.1, when combining (36) with the
boundary conditions (33), we still have too many unknowns, and a closure assumption is required. The
closure assumption which is consistent with the standard QCA is given by

⟨fn⟩(r2,r1) = ⟨fn⟩(r2) ,

⟨gn⟩(r1) = ⟨gn⟩,
(X-QCA) (37)

where X-QCA stands for the eXtended QCA. Below we show how this matches the closure assumption (6) in
the introduction. In section 7 we deduce X-QCA from first principles, and show why it is the consistent way
to extend QCA.

Substituting (37)2 into (36), and using (63), leads to

⟨B⟩= ⟨Tσ⟩⟨A⟩, with ⟨Tσ⟩ ≡
∑

nn ′

LB
n

[

L
f
nn ′ [Cn ′ ]

]

,

where the coefficients Cn ′ are known quantities defined in appendix B. We clearly see now how the above is
equivalent to approximation (6) in section 1.1.

With the above, together with (33), we can now calculate the solution, with an efficient numerical scheme
shown in section 8, where we use the Effective Waves Method. To summarise, we can now obtain a governing
equation for the unknowns by substituting (36) into (34), and using (63) from appendix B, leading to:

⟨fn⟩(r1) =⟨A⟩Tn

∑

n ′

Cn ′Vn ′n (k0r1)+ nTn

∑

n ′

ˆ

Ra\B(r1,2a)
Un ′n (k0r1 − k0r2)⟨fn ′⟩(r2)dr2. (38)

We could now, in theory, numerically solve for ⟨fn⟩(r1), ⟨A⟩, ⟨B⟩, and ⟨R⟩, by combining (38) with the
boundary conditions (33) and the definition of ⟨B⟩ in terms of the ⟨fn⟩(r1) given by (28). However, we
present a far more efficient method to solve this in section 8.

6.1. The average reflection coefficient
With all the computations so far we have successfully deduced the contribution to sound wave scattering due
to particles (38) and the halfspace interface (33) as two separate equations, as briefed in section 1.1. Then, we
substitute (33)(2) into (38) to compute a single integral equation in ⟨fn⟩(r1), which reads

⟨fn⟩(r1) = γ0ζTTnWn (r1)G+TnDn (r1) [⟨fn ′⟩]− ζRTnWn (r1)⟨B⟩ [⟨fn ′⟩] , (39)

where we have defined the particle-rescattering operator

Dn (r) [⟨fn ′⟩] := n

∑

n ′

ˆ

Ra\B(r,2a)
Un ′n (k0r− k0r

′)⟨fn ′⟩(r ′)dr ′.

and the interface coupling function

Wn (r1) :=
∑

n ′

Cn ′Vn ′n (k0r1) = Cne
ik0·r1 , (40)

where we used [GK21, eqs. (A.2) and (B.12)] to write the second equality in (40).
If the geometry of the matrix containing the particles is changed, the same equation (39) can still be used,

however, the terms involving the interface coupling factor (40) will change. Also, the explicit equation for the
boundary conditions (33) will not be the same.

11
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As we shall see further on, equation (39) is enough to determine ⟨fn⟩(r1), making it possible to compute
the expression of the total wave outside the halfspaceR. We recall the expression for the reflection
coefficient (33)(1) below:

⟨R⟩= ζRG+ ζT ⟨B⟩.

The first term is the reflection coefficient from a homogeneous matrix without any particles inside. Only the
second term ζT ⟨B⟩ carries the effects of scattering from the particles. In others words, if we knew the
background material, and wanted to use a reflection experiment to characterise the particles, then we should
use the expression ⟨R⟩− ζRG to do so.

There have been many uses of reflection coefficients from particulates in the literature, see for example
[Gar+05, CPS11, Sim+24]. In [Sim+24] they used approximate formulas for the reflection
coefficient (33)(1) and obtained a good qualitative agreement with experimental data [Sim+24]. Having the
exact formula (33)(1), calculated from first principles, would likely lead to more accurate predictions,
especially for a broad frequency range, which is less understood.

7. Extended QCA

In this section, we explain why the eXtended Quasi-Crystalline Approximation (X-QCA) (37) is accurate, for
low and high volume fraction of particles, and show that it is the systematic extension of the standard QCA
[Lax52] to scenarios with different background mediums.

To justify X-QCA (37) it is best to start with just one configuration of particles, as this will help us
understand the role of the different waves.

We recall from figure 4 that the field (9) which excites particle i depends on the configuration of all
particles, including its own position ri. Take, for example, any wave which is initially scattered from particle i
and then returns to particle i due to multiple scattering. This type of dependence is called self-interaction,
and it is known in the statistical mechanics literature that accounting for self-interactions can lead to
unsolvable equations, or even divergences, when ensemble averaging [HBE87, DM18]. This is the case for
any particulate material, whether there are different background mediums or not.

For clarity, let us introduce the notation:

u1exc (r;r1,r2, . . . ,rJ) := u1exc (r) ,

to denote the exciting field u1exc, so that we can explicitly discuss how u1exc depends on the positions rj of each
particle.

A possible strategy to simplify the self-interactions is to approximate the field exciting particle 1, for
example, by its own conditional average:

u1exc (r;r1,r2, . . . ,rJ)≈ ⟨u1exc⟩1 (r;r2, . . . ,rJ) (41)

where we used the conditional average:

⟨u1exc⟩1 (r;r2, . . . ,rJ) :=

ˆ

RL
a+δ

u1exc (r;r
′
1,r2, . . . ,rJ)p(r

′
1|r2, . . . ,rJ)dr

′
1. (42)

We will show how (41) leads to the standard QCA [Lax52] when there is just one background medium, and
it also leads to X-QCA when there are different background mediums and interfaces. But first, let us consider
whether it is a sensible approximation.

Is the approximation (41) accurate? figure 5 illustrates some of the possible positions r ′1 of the first
particle, and how they contribute to the field exciting the particle positioned at r1. We will explain why (41) is
highly accurate for large and small particle volume fractions. We note that similar arguments have been used
in [WT61, FW64, MVV84].

For a small volume fraction of particles, the wave scattered from particle i will be weakly rescattered by
the same particle i, as the average distances to the next particle, or interface, are large. In which case
u1exc(r;r1,r2, . . .) weakly depends on the position of particle 1. From this we can deduce the
approximation (41) by taking u1exc(r;r1,r2, . . .) out of the integral in (42) together with

ˆ

RL
a+δ

p(r ′1|r2 . . . ,rJ)dr
′
1 = 1.

12
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Figure 5. The image on the left shows how waves scattered from the particle at r1 (blue disk) contribute to the field u1exc(r; r1; . . .)
evaluated for r close to r1. The image in the centre, and on the right, show how the exciting field u1exc(r; r

′

1 ; . . .), evaluated near r,
changes when moving particle 1 to the position r ′1 . Note that r

′

1 = r1 is always a feasible position, as there is no other particle at r1,
and therefore the case r ′1 = r1 always has a significant contribution in the integral (42) when calculating ⟨u1exc⟩1.

For a large volume fraction of particles, most of all particle positions r ′1 in the integral (42) would be
prohibitive, as the particles are densely packed together and particles can not overlap. That is, the function
p(r ′1|r2 . . . ,rJ) is zero when particles overlap. This is illustrated in figure 5. The one region that most
contributes to the integral in (42) is the region around the original particle position r1. An extreme example
of this is a crystal, where the neighbouring particles exactly determine the position of r ′1 and

p(r ′1|r2, . . . ,rJ) = δ (r ′1 − r1) ,

which substituted into (41) leads to u1exc(r;r1,r2 . . .) = ⟨u1exc⟩1(r;r2, . . .) exactly.
The discussion above shows why (41) is a good approximation, which justifies why it is commonly used

in the literature [MVV84, TPM11, LM05, GPA19, KW20, KPG24, NPG24]. In section 7.1 we show how
approximation (41) leads to X-QCA (37), and therefore is equivalent to standard QCA when there is just one
background medium.

7.1. The average exciting field
To reach X-QCA (37) (or the standard QCA) from the approximation (41) we start with definition (9),
rename r1 to r ′1, multiply both sides by p(r ′1|r2, . . . ,rJ), integrate over r

′
1, and then use (42) together with the

approximation (41) to arrive at

u1exc (r) =
∑

n

⟨gn⟩1vn (k0r)+
∑

n

J
∑

j=2

⟨f jn⟩1un
(

k0r− k0rj
)

. (43)

Note, in practice the only difference between (43) and (9) is that we have replaced gn by ⟨gn⟩1 and f jn by ⟨f
j
n⟩1

for j ̸= 1.
Following the same steps as done in sections 5 and 6, we would obtain the same expression as in (34),

except with the substitutions

⟨gn⟩(r1) = ⟨⟨gn⟩1⟩(r1) and ⟨fn⟩(r2,r1) = ⟨⟨fn⟩1⟩(r2,r1) ,

we show below that these are equivalent to (37) for disordered particulates. Combining the definition (42)
(with gn in place of u1exc) with the definition (15) leads to

⟨⟨gn⟩1⟩(r1) =

ˆ

gnp(r
′
1|r2, . . .)p(r2, . . . |r1)dr

′
1dr2 . . .drJ

=

ˆ

gn
p(r ′1,r2, . . .)

p(r2,r3, . . .)
p(r2,r3, . . . |r1)dr

′
1dr2 . . .drJ

=

ˆ

gnp(r
′
1,r2, . . .)dr

′
1 . . .drJ = ⟨gn⟩,

(44)

13
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where in the third line we used assumption (18), which is valid for a large number of disordered particles.
Similarly, we have that

⟨⟨f 2n ′⟩1⟩(r2,r1) =

ˆ

f 2n ′p(r ′1|r2, . . .)p(r3, . . . |r2,r1)dr
′
1dr3 . . .drJ

=

ˆ

f 2n ′

p(r ′1, . . .)

p(r2, . . .)
p(r3, . . . |r2,r1)dr

′
1dr3 . . .drJ

=

ˆ

f 2n ′

p(r ′1,r3, . . . |r2)

p(r3., . . . |r2)
p(r3, . . . |r2,r1)dr

′
1dr3 . . .drJ

=

ˆ

f 2n ′p(r ′1,r3, . . . |r2)dr
′
1dr3 . . .drJ

=⟨f 2n ′⟩(r2) = ⟨fn ′⟩(r2) ,

(45)

where we repeatedly used the definition of conditional probability, and to reach the fourth line we used
assumption (19).

The results in (44) and (45) demonstrate that approximation (37) is a consequence of approximation (41)
for disordered particulates as defined in section 4. Because the approximation holds for any number of
particles and any size of |RL

a+δ|, (37) is valid for the limit of infinite particles defined in section 5.1.
An advantage of using approximations in terms of the exciting field (41), instead of quantities which are

more directly related to the particles, such as (37), is that it is clear how to extend this approximation to more
complex scenarios. In the presence of other geometries, layers, or multispecies [Gow+18], we can still define
an exciting field, and then use (41) directly. It is also possible to account for more complex interactions
between particles other than the pair correlation (17) assumed in this work. See [Twe64, TPM11] for a
broader discussion on how to account for different pair correlations for standard QCA. In other words,
approximation (41) leads to a systematic way to generalise the original QCA introduced in [Lax52].

Beyond generalising QCA, we feel that approximation (41) provides more physical insight. We saw from
the section 7 that QCA, and its extension, only approximate the self-interaction by averaging it (conditioned
on the position of the other particles). This has already been discussed for the classical QCA through a
scattering series expansion [TPM11]. As a consequence, QCA, and its extension, is only making an
approximation about third-order and higher scattering4. This sheds light on the agreement between
second-order weak scattering approximations and QCA, as discussed in [MM08].

Finally, we note that some work has been carried out in the literature [KW20] which was able to write
down a closed system of equations by using the classical QCA, but without making an approximation on the
regular field ⟨gn⟩(r1). However, when using QCA, we would already be making an approximation about
third-order scattering, so there is no reason to retain high-order scattering for some terms (from a wall) but
not from others (particles). Further, X-QCA leads to systems which are far simpler to solve, as we
demonstrate in section 8.

8. Effective waves method

We use the Effective Waves Method, introduced in [GK21], to solve the governing equation (39). As shown in
[GK21], it is usually accurate, even for a broad range of frequencies and particle volume fractions5 to assume
that ⟨fn⟩ satisfies the 3D Helmholtz equation with the effective wavenumber k∗

∇2⟨fn⟩(r1)+ k2∗⟨fn⟩(r1) = 0 for r1 ∈Ra. (46)

Then, by using plane wave symmetry, shown in appendix C with (65), we conclude that

⟨fn⟩(r1) = Fne
ik∗·r1 , (47)

where k∗ = (k∗x,k∗y,k∗z) :=
(

kx,ky,
√

k2∗ − k2x − k2z

)

. We also choose Im[k∗z]⩾ 0, similarly to (25) in

section 5.1.

4 An example of third-order self-interaction scattering would be: the incident wave scatters on the i-th particle, which then gets scattered
by the j-th particle, and finally reaches the i-th particle again, scattering once more. See figure 3 in [TPM11] for the Feynman diagrams.
5 The general solution presented in [GK21] introducesmultiple wavenumbers, although they argue that there is usually only one dominant
wavenumber k∗ for most properties and frequencies. See [KPG24] for phase diagrams that show when more than one wavenumber is
needed.
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Now, we take the limit δ→ 0 to represent the case of a halfspaceR filled with particles, as illustrated in
figure 2(b). We also define the bulk region as done in [GHK23]:

RBulk :=
{

r1 ∈ R
3|z1 > 2a

}

. (48)

Below we follow the steps shown in [GHK23] to deduce an effective wave equation and ensemble
boundary conditions. We need to redo the steps here, as having a different background medium for the
matrix does lead to some important differences.

To start we note that

(

k20 − k2∗
)

Un ′n (kr1 − kr2)⟨fn ′⟩(r2)

= Un ′n (k0r1 − k0r2)∇
2
r2⟨fn ′⟩(r2)−⟨fn ′⟩(r2)∇

2
r2Un ′n (k0r1 − k0r2) , (49)

for r1 ∈RBulk and r2 ∈Ra, because Un ′n(kr1 − kr2) and ⟨fn ′⟩(r2) satisfy Helmholtz equations with
wavenumbers k0 and k∗ respectively. Then, by integrating the right side of (49) over r2 ∈Ra\B(r1,2a) and
using Green’s second identity, we get

ˆ

Ra\B(r1,2a)
Un ′n (k0r1 − k0r2)⟨fn ′⟩(r2)dr2dλ=

In ′n (r1)−Jn ′n (r1)

(k20 − k2∗)
, (50)

where In ′n(r) and Jn ′n(r) are given by

In ′n (r1) :=−Fn ′

ˆ

∂Ra

Un ′n (k0r1 − k0r2)
∂eik∗·r2

∂z2
−

∂Un ′n (k0r1 − k0r2)

∂z2
eik∗·r2dS2,

Jn ′n (r1) := Fn ′

ˆ

∂B(0,2a)
Un ′n (−k0r

′)
∂eik∗·(r

′+r1)

∂z
−

∂Un ′n (−k0r ′)

∂z
eik∗·(r

′+r1)dS ′,

with dS2 and dS ′ being the area elements. Also, in the second line of the above, we have performed the
change of coordinates r2 → r ′ + r1.

We substitute expression (50) into (39) to reach

⟨fn⟩(r1) = TnWn (r1)(γ0ζTG− ζR⟨B⟩)+ n

Tn

k20 − k2∗

∑

n ′

(In ′n (r1)−Jn ′n (r1)) , (51)

and we notice that ⟨fn⟩(r1,λ) and Jn ′n(r1) satisfy the Helmholtz equation with wavenumber k∗, while
Wn(r1) and In ′n(r1) satisfy the Helmholtz equation with wavenumber k0. Because k0 ̸= k∗, see [GK21,
appendix C], we can split (51) into

⟨fn⟩(r1)+ n

∑

n ′

Tn

k20 − k2∗
Jn ′n (r1) = 0, (52)

Wn (r1)(γ0ζTG− ζR⟨B⟩)+
n

k20 − k2∗

∑

n ′

In ′n (r1) = 0. (53)

Equation (52) is called the ensemble wave equation, and it is identical to [GK21, eq. (4.7)], which is
expected because (52) is fully determined by the microstructure of the particulate material and not the
exterior medium.

Equation (53) is similar to the ensemble boundary conditions in [GK21, eq. 4.8]. However, (53) has one
extra term representing the interaction between particles and the interface of the halfspace at z= 0.

Following the same steps as in [GK21], one can use (52) to write down the following eigensystem for the
eigenpair (k∗,Fn):

Fn + 8π aTn
∑

n ′,n1

cn ′nn1

k2
∗
−k20

i−ℓ1Yn1

(

k̂∗
)

Nℓ1 (2k0a,2k∗a)nFn ′ = 0, (54)

with n1 = (ℓ1,m1). The expression for Nℓ(x,z) and cnn ′n1 are defined in [GK21, eqs. (5.5) and (B.4)
respectively].
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8.1. Normalisation condition
The solution of (54) provides the effective wavenumber k∗, however the eigenvectors Fn are determined only
up to a multiplicative factor. The ensemble boundary condition (53) is needed to find a normalisation
condition for Fn, and fully determine the average field amplitude. To do so, we start by substituting (40) and
[GK21, equation (7.10)] into (53), leading to

Cne
ik0·r1 (γ0ζTG− ζR⟨B⟩) = Cne

ik0·r1 n

k20 − k2∗

∑

n ′

Kn ′ (a)Fn ′ , (55)

where we defined

K(ℓ ′,m ′) (a) :=
2π i

k0k0z
(−i)ℓ

′

Y(ℓ ′,m ′)

(

k̂0
)

(k∗z + k0z)e
i(k∗z−k0z)a.

Then, we substitute (47) into (28) to write down

⟨B⟩=−
2πn

k0k0z

ei(k∗z+k0z)a

i(k∗z + k0z)

∑

(ℓ,m)

iℓY(ℓ,m)

(

k̂0
)

F(ℓ,m), (56)

and we remind the reader we have already taken the limit δ→ 0 at the beginning of section 8.
Then, we substitute (56) into (55) and divide both sides by Cneik0·r1 to obtain

γ0ζTG+ ζR
2πn

k0k0z

ei(k∗z+k0z)a

i(k∗z + k0z)

∑

n ′

iℓ
′

Yn ′

(

k̂0
)

Fn ′ =
n

k20 − k2∗

∑

n ′

Kn ′ (a)Fn ′ ,

where n ′ = (ℓ ′,m ′).
Finally, we gather the terms which contain Fn ′ on the left-hand side to write down the following

normalisation condition:

∑

n ′ Mn ′Fn ′ = γ0ζTG, (57)

where

M(ℓ ′,m ′) :=
n

k20 − k2∗
K(ℓ ′,m ′) (a)− ζR

2πn

k0k0z

ei(k∗z+k0z)a

(k∗z + k0z)
iℓ

′−1Y(ℓ ′,m ′)

(

k̂0
)

.

This normalisation condition is the last equation needed to numerically calculate the eigenvectors Fn, and
together with k∗, they determine all the average amplitudes ⟨B⟩, ⟨R⟩ and ⟨A⟩ through equations (28) and (33)
respectively.

8.2. High frequency limit
As a side quest, here we deduce that, in the high frequency limit, the average reflection coefficient ⟨R⟩ does
not depend on the particle properties. In fact, ⟨R⟩ is just the reflection from the matrix itself without particles
in this limit. Results for high frequency, such as this, are not very common or well understood in the
literature.

We start by defining the volume fraction of particles as

ϕ :=
|P|

|Ra|
=

4π a3

3
n. (58)

Substituting (58) into (56), one can deduce that

|⟨B⟩|=
3

2

ϕ e−Im[k∗z]a

(k0a)(k0za) |k∗z + k0z|a

∣

∣

∣

∣

∣

∣

∑

(ℓ,m)

iℓY(ℓ,m)

(

k̂0
)

F(ℓ,m)

∣

∣

∣

∣

∣

∣

⩽
3

2

ϕ e−Im[k∗z]a

(k0a)(k0za) |k∗z + k0z|a

∑

n

∣

∣

∣
Yn

(

k̂0
)∣

∣

∣
|Fn| ,

(59)

which we will use to show that |⟨B⟩| → 0 when ka→∞.
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Figure 6. Numerical computations of the average reflection coefficient ⟨R⟩ divided by the incident wave amplitude G by using the
Effective Waves Method (‘EWMethod’). The particles are bubbles of gas in water (cs = c0/100, ϱs = ϱ0/100) with volume
fraction ϕ = 10%. The horizontal axis is the dimensionless frequency k0a and θ is the angle of incidence. On the left, the plane
wave incidence is normal (kx = ky = 0), while on the right the angle of incidence is varying (kx ⩾ 0, ky = 0). The dashed lines
represent the low frequency limit response and the reflection without any particles in the matrix. The exterior medium is a solid
(c= 3c0, ϱ= 3ϱ0). See [Pau24] for the source code.

Next, we write down the following relations between wavenumbers

k0 =
c

c0
k, k0z =

√

(

c

c0

)2

k2 − k2x − k2y ,

from which we conclude that k0a→∞ and k0za→∞ when ka→∞ for a fixed angle of incidence. Using
these limits in (59), we conclude that ⟨B⟩ → 0 with one added assumption: the absolute value of the
eigenvectors |Fn| does not increase indefinitely for higher frequencies. This is reasonable because the norm of
Fn is linked to the amplitude of the incident wave through the boundary condition (53), though we have not
been able to demonstrate this formally.

In other words, the response from the particles averages to zero due to incoherence for high frequency,
and the reflected wave sees only an empty halfspace with just the background matrix:

⟨R⟩ → ζRG.

It is possible to use this result to help calibrate an experimental measurement. As mentioned in the previous
section, if we wish to use ⟨B⟩ to characterise the particles, we need to subtract ζRG from the average reflection
coefficient ⟨R⟩. If the background matrix properties are not known, one could perform scattering
experiments while increasing the frequency until the reflected wave response stops changing. At this point,
the reflection coefficient would equal ζRG.

8.3. Numerical results
In this section, we present some examples of numerical computations of the eigensystem (54) and the
normalisation condition (57), using the Julia library [Gow24]. The main purpose of these numerical results
is to show that the system is easily solvable for broad frequencies and volume fractions. We also demonstrate
how sensitive reflection is to average particle size, which could be useful for designing characterisation
experiments. All infinite summations over double indices defined in appendix A were truncated at ℓ= 2 for
numerical computations, and the absolute value of ⟨R⟩ is plotted in the figures in this section. This
truncation provides a finite eigenvalue problem, which is solved numerically.

These calculations performed in Julia provide the effective wavenumber k∗ and the eigenvectors Fn. We
substitute the expressions for k∗ and Fn into (56) to calculate the average backscattered amplitude ⟨B⟩, and
then substitute ⟨B⟩ into (33)2 to calculate the average reflection coefficient ⟨R⟩. To show how general the
model is, and also provide some insight into the physics of the problem, we present three examples with very
different material properties.

Case 1.We consider that the matrix is water, the exterior medium is a solid with acoustic properties c= 3c0
and ϱ= 3ϱ0, and particles some gas with cs = c0/100 and ϱs = ϱ0/100. The reflection coefficients ⟨R⟩ are
presented in figure 6 for the case of volume fraction ϕ = 10%.

In figure 6, the low frequency limit is computed with the formulas provided in [GK21], and the reflection
coefficient of a homogeneous halfspace with no particles is given by R= ζRG. The agreement between low
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Figure 7. Numerical computations for dimensionless average reflection using the Effective Waves Method (‘EWMethod’). The
exterior medium is water, and the matrix is solid (c0 = 3c, ϱ0 = 3ϱ). The particles are solid inclusions (cs = 10c, ϱs = 10ϱ) with
volume fraction ϕ = 10%. The horizontal axis is the dimensionless frequency k0a and θ is the angle of incidence. On the left, the
plane wave incidence is normal (kx = ky = 0), while on the right the angle of incidence is varying (kx ⩾ 0, ky = 0). The dashed
lines represent the low frequency limit response and the reflection without any particles in the matrix. See [Pau24] for the source
code.

frequency limit and the Effective Waves Method for ka≪ 1 is a good sanity check for the formulas for the
normalisation condition (57).

Three main results can be obtained from figure 6: 1) The average reflection is sensitive to particle radius,
with a drop of more than 50% in figure 6(a) if varying radius a for a fixed frequency ω; 2) we have numerical
evidence that the high frequency limit matches the case with no particles; and 3) changing the angle of
incidence in figure 6(b) only makes reflection less sensitive to particle radius. The last result suggests that
normal incidence should be the optimal strategy to sense particle size if ⟨R⟩ can be measured with only one
angle of incidence.

Case 2.We consider that the matrix is a solid medium (c0 = 3c and ϱ0 = 3ϱ), and the exterior medium is
water. In this case, we choose solid inclusions in the matrix such that cs = 10c and ϱs = 10ϱ. The results are
presented in figure 7.

In this case 2, figure 7 shows the same qualitative behaviour as in figure 6. However, two observations
must be made: 1) the average reflection is less sensitive to particle radius, with only a drop of about 3% in
figure 7(a) when varying radius a for a fixed frequency ω; and 2) in figure 7(b), total reflection happens for
angle of incidence θ bigger than the critical angle for the homogeneous matrix without particles, given by

θc = arcsin

(

c

c0

)

,

which for case 2 is equal to θc ≈ 0.34rad< π/8.

Case 3. To study how reflection changes when varying the volume fraction of particles, defined in (58), we
compute the average reflection coefficient for hard solid particles in water, cs = 100c and ϱs = 100ϱ0. We take
the exterior medium as a solid (c= 3c0 and ϱ= 3ϱ0). The results are presented in figure 8.

Figure 8 shows that the dependency of ⟨R⟩ with respect to volume fraction can be approximated by a
simple linear relation. That suggests a first-order expansion in volume fraction would be accurate for
reflection measurements for case 3 depicted in figure 8. We also notice that the slope of the curves in figure 8
is sensitive to radius a, which may be useful for sensing methods for the particle size distribution.

9. Conclusions

In this work, we solve an open challenge on how to calculate sound wave scattering from particles embedded
in a matrix with different acoustic properties than the exterior medium. It seems we are the first to reach
simple solvable equations, while retaining the same order of approximation as in the Quasi-Crystalline
Approximation (QCA) [Lax52]. The QCA is one of the most successful approximations that captures
multiple scattering between particles [MVV84, LM05, GPA19].
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Figure 8. Numerical computations for dimensionless average reflection using the Effective Waves Method (‘EWMethod’). We
have a hard powder in water (cs = 100c0, ϱs = 100ϱ) for some values of dimensionless frequent k0a. The horizontal axis is the
volume fraction ϕ. The plane wave incidence is normal (kx = ky = 0) and the exterior medium is a solid (c= 3c0, ϱ= 3ϱ0). See
[Pau24] for the source code.

The method we develop can be applied to any material geometry, but for simplicity, we explore the
simplest case in this paper: plane wave incidence on a halfspace.

Theoretical results. The key to solve for more than one background medium was to reformulate the QCA in
terms of an approximation involving the field that excites each particle, as shown in (41). This reformulation
shows that QCA is equivalent to averaging over self-interactions for all orders of multiple scattering. A
similar interpretation has been noted before by [TPM11] by comparing QCA with a diagrammatic
approximation given by Twersky [Twe64]. However, unlike the Twersky approximation, QCA does not
discard any scattering contributions if defined as (37)(1) or (41). Instead, QCA averages over
self-interactions. Our calculations confirm that, for a big class of ensembles presented in section 4, QCA is
exact up to second-order scattering, as demonstrated in [MM08].

Our reformulation of QCA enabled us to reach simple solvable equations for the case of multiple
background mediums, we call the extension of QCA to multiple mediums the eXtended Quasi-Crystalline
Approximation (X-QCA). Using X-QCA leads to significant simplification in comparison to methods that
use only QCA [KW20], and is applicable for a broad range of frequencies and particle properties.

Numerical results. To exemplify how the method works for a broad range of frequencies, volume fractions
and material properties, we present explicit computations of the average reflection coefficient ⟨R⟩ in
section 8.3. We show numerically that the average reflection coefficient can be sensitive to particle radius,
depending on the material properties. This result can contribute to the development of sensing methods for
particle size distribution of powders, emulsions, porous material or slurries.

We also give numerical evidence that, in the high frequency limit, there is no coherent reflection due to
particles. This means the high frequency response can be used as calibration for equipment that uses the
reflection coefficient to take measurements of particle scattering. If such measurements are not available, the
simple measurement of reflected waves from the matrix with no particles can also be used as calibration, see
discussion in section 6.1.

Possible generalisations. The model presented makes use of the Effective Waves Method [GK21], which
allows any geometry or acoustic properties. The same procedure in this work can be used to compute the
average wave scattering by a compact material filled with particles. On top of that, our method can be easily
applied to any linear wave, including electromagnetic and elastic waves.

Future work. The method introduced here is not a mere theoretical curiosity. It is a necessary step before
reaching quantifiable methods to measure particles in many areas of science and engineering. It is needed
because, in almost any sensor setup, there will be different background mediums. To account for these
mediums, and calculate the average reflection and transmission, one would need our results. A simple
example is illustrated in figure 1 which involves a particulate flowing through a pipe past a sensor. In other
words, a clear future avenue is to use the results here to develop sensors to predict the statistical properties of
particulates from the measured reflection and transmission.

19



New J. Phys. 26 (2024) 123033 P S Piva et al

Other future avenues include validating our method (X-QCA) against high fidelity Monte Carlo
simulations or experimental data. Another interesting step is to apply our results to design layered media
containing particulates, as these can form functionally graded materials [Miy+99], which have applications
in many areas like aerospace engineering, nuclear energy, optics, and others [LH18].
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Appendix A. Addition translationmatrices

Here we provide the notation for addition translation matrices for spherical Bessel waves. For a translation d
(y= x+ d), we have

vn (y) =
∑

n ′

Vnn ′ (d)vn ′ (x) ∀ x,d ∈ R
3,

un (y) =
∑

n ′

Vnn ′ (d)un ′ (x) for |x|> |d|,

un (y) =
∑

n ′

Unn ′ (d)vn ′ (x) for |x|< |d|,

(60)

where the summations over double indices n= (ℓ,m) represent double sums defined as

∑

n

:=
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

.

The addition translation matrices Vnn ′(d) and Unn ′(d) are given by [GK21, equation (B.3)].

Appendix B. Regular spherical to plane waves

In this section, we determine the expression that connects the spherical Bessel waves representation of the
regular field (21) with its planar wave representation (25). These expressions are only valid after the L→∞
limit in section 5.1. For that, we will use the following definition for the spherical harmonics

Y(ℓ,m) (r̂) := (−1)m
√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pmℓ (cosθ)e

imϕ,

where Pmℓ are the usual associated Legendre polynomials.
We equate the averaged field expressed in both spherical Bessel (21) and planar representations (25),

having in mind we chose k0z such that ⟨A−⟩= 0. This results in

⟨A⟩eik0·r =
∑

n

⟨gn⟩vn (k0r) .

Then, we substitute the planar wave expansion in terms of spherical Bessel waves, given by

eik·r = 4π
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

iℓY(ℓ,m)

(

k̂
)

v(ℓ,m) (kr) , (61)

where the overline denotes complex conjugation. The final step is to use the orthogonality relations of the
spherical harmonics, which leads to

⟨gn⟩= Cn⟨A⟩, (62)
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where we have defined

C(ℓ,m) := 4π iℓY(ℓ,m)

(

k̂0
)

. (63)

Appendix C. Translation symmetry

In the limit of an infinite number of particles (see section 5.1), the average regular field can be represented by
a plane wave, given by (25). Then, its dependency on x and y is given only by a known complex phase. For a
general translation in the z= 0 plane of b= x0x̂+ y0ŷ, we have

⟨ureg (r+ b)⟩= ⟨ureg (r)⟩e
ik0·b =

∑

n ′

⟨gn ′⟩vn ′ (k0r)e
ik0·b,

⟨ureg (r+ b)⟩=
∑

n

⟨gn⟩vn (k0r+ k0b) =
∑

nn ′

⟨gn⟩Vnn ′ (k0b)vn ′ (k0r) ,

where we have used (21) in both equations above, and translation matrices in appendix A in the second line.
Equating both lines above, and using the orthogonality relations of spherical harmonics, we conclude that

⟨gn⟩e
ik0·b =

∑

n ′

⟨gn ′⟩Vn ′n (k0b) , (64)

Then, we perform the same translation of b in (38) to get

⟨fn⟩(r1 + b) = Tn

∑

n ′

⟨gn ′⟩Vn ′n (k0r1 + b)

+ nTn

∑

n ′

ˆ

Ra\B(r1+b,2a)
Un ′n (k0r1 − k0r2 + k0b)⟨fn ′⟩(r2)dr2.

We decompose the regular translation matrix into two factors (see [GK21, eq. (B.3)]) and perform the
change of variables r2 → r ′2 = r2 − b into the above to reach

⟨fn⟩(r1 + b) = Tn

∑

n ′n ′ ′

⟨gn ′⟩Vn ′n ′ ′ (k0b)Vn ′ ′n (k0r1)

+ nTn

∑

n ′

ˆ

Ra\B(r1,2a)
Un ′n (k0r1 − k0r

′
2)⟨fn ′⟩(r ′2 + b)dr ′2.

Finally, we substitute (64) in the above, leading to

⟨fn⟩(r1 + b,λ) = Tn

∑

n ′ ′

⟨gn ′ ′⟩Vn ′ ′n (k0r1)e
ik0·b

+ nTn

∑

n ′

ˆ

Ra\B(r1,2a)
Un ′n (k0r1 − k0r

′
2)⟨fn ′⟩(r ′2 + b)dr ′2,

which is the same equation as (38), but written in terms of ⟨fn⟩(r1 + b) = ⟨fn⟩(r1)eik0·b instead of ⟨fn⟩(r1).
Assuming the uniqueness of the solution for (38), one can deduce that

⟨fn⟩(r1) = ⟨fn⟩(0,0,z1)e
i(kxx1+kyy1), (65)

and we have reduced the dimensions of our integral equation from three to one, due to symmetry.

Appendix D. Outgoing spherical to plane waves

To simplify (26), we use (65) from appendix C, which leads to

lim
J→∞
L→∞

∑

i

⟨uisc (r)⟩= n

∑

n

ˆ ∞

a+δ

⟨fn⟩(0,0,z1) In (r,z1)dz1, (66)

where we have defined the following quantity that can be determined analytically:

In (r,z1) :=

ˆ

R2

un (k0r− k0r1)e
i(kxx1+kyy1)dx1dy1, z ̸= z1, (67)
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and results in a plane wave in the z1 direction. To simplify (67), we use the following transformation formula
[DM65, BKS91, Kri16, Kri79, GK21]

un (k0r) = u(ℓ,m) (k0r) =
1

2π iℓ

ˆ

R2

Yn (q̂)

k0qz
eiq·rdqxdqy, z> 0,

where q= (qx,qy,qz) with q2x + q2y + q2z = k20. We substitute the above into (67) and perform the following
calculations for z> z1 as follows:

In (r,z1) =
1

2π iℓ

ˆ

R2

[
ˆ

R2

Yn (q̂)

k0qz
eiq·(r−r1)+i(kxx1+kyy1)dqxdqy

]

dx1dy1

=
1

2π iℓ

ˆ

R2

Yn (q̂)

k0qz
eiq·r−iqzz1

[
ˆ ∞

−∞

ei(kx−qx)x1dx1

ˆ ∞

−∞

ei(ky−qy)y1dy1

]

dqxdqy

=
2π

iℓk0

ˆ

R2

Yn (q̂)

qz
ei(q·r−qzz1)δ (qx − kx)δ

(

qy − ky
)

dqxdqy

=
2π i−ℓ

k0k0z
Yn

(

k̂
)

ei(kxx+kyy)+ik0z(z−z1),

(68)

where we have changed the order of integration, and used the Fourier expansion of the Dirac delta
distribution:

δ (q) =
1

2π

ˆ ∞

−∞

e−iqxdx.

For the case z< z1, we use the fact that

In (r,z1) = (−1)ℓ
ˆ

R2

un (k0r1 − k0r)e
i(kxx1+kyy1)dx1dy1, z ̸= z1,

and we repeat the same computations in (68) to reach

In (r,z1) =
2π iℓ

k0k0z
Yn

(

k̂0
)

ei(kxx+kyy)+ik0z(z1−z). (69)

Substituting (69) into (66), we conclude that the sum of the average scattered waves by particles (24) can also
be represented as a plane wave in the region 0< z< δ. The results of this appendix motivate the definition of
the average backscattered amplitude ⟨B⟩ in (28).
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