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Abstract

In their previous works [CGHM+22b, CGHM+22a], Cristofaro-Gardiner, Humilière,
Mak, Seyfaddini and Smith defined links spectral invariants on connected compact sur-
faces and used them to show various results on the algebraic structure of the group of
area-preserving homeomorphisms of surfaces, particularly in cases where the surfaces have
genus zero. We show that on surfaces with higher genus, for a certain class of links, the
invariants will satisfy a local quasimorphism property. Subsequently, we generalize their
results to surfaces of any genus. This extension includes the non-simplicity of (i) the group
of hameomorphisms of a closed surface, and (ii) the kernel of the Calabi homomorphism
inside the group of hameomorphisms of a surface with non-empty boundary. Moreover,
we prove that the Calabi homomorphism extends (non-canonically) to the C0-closure of
the set of Hamiltonian diffeomorphisms of any surface. The local quasimorphism prop-
erty is a consequence of a quantitative Künneth formula for a connected sum in Heegaard
Floer homology, inspired by results of Ozsváth and Szabó.
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ported by the École Normale Supérieure while working on this project. I.T. was also partially
supported by the ERC Starting number 851701.

Contents

1 Introduction 2

1.1 Link spectral invariants and known results for genus zero surfaces . . . . . . . 2
1.2 Main results for positive genus surfaces . . . . . . . . . . . . . . . . . . . . . . 3

∗email: c.mak@sheffield.ac.uk
†email (corresponding author): ibrahim.trifa@ens.psl.eu

1



2 Preliminaries 4

2.1 Subgroups of Ham(Σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Spectral invariants and Quasimorphisms . . . . . . . . . . . . . . . . . . . . . 6

3 Construction of the new invariants 8

4 Extending the Calabi homomorphism and simplicity 13

4.1 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1 Introduction

Let Σ be a compact connected orientable surface (possibly with boundary) equipped with an
area from ω. In 1980’s, Fathi defined the mass-flow homomorphism [Fat80]

Homeoc(Σ, ω) → R

from the group of area-preserving homeomorphisms supported in the interior of Σ to R.
Whether its kernel is a simple group was an open question for a long time and has recently
been resolved negatively using techniques from symplectic geometry. The case of the sphere
was answered by [CGHS24] using periodic Floer homology, building on the work of [Hut11]
and [CGHR15]. The case of positive genus surfaces was answered by [CGHM+22b] using
Lagrangian Floer theory, borrowing ideas from [OS04], [MS21] and [PS23].

Symplectic geometry enters the picture because ω is a symplectic form and the kernel of
the mass-flow homomorphism can be identified with the C0 closure of the group Ham(Σ) of
Hamiltonian diffeomorphisms supported in the interior of Σ. The Hofer metric, a bi-invariant
and non-degenerate metric, on Ham(Σ) enables us to define two natural normal subgroups
of Ham(Σ), namely the group of hameomorphisms Hameo(Σ) and the group of finite energy
homeomorphisms FHomeo(Σ) (see Section 2.1 for the precise definitions, and also [OM07],
[CGHS24] for more discussions). Indeed, the authors of [CGHM+22b] show that the subgroup
Hameo(Σ) is always a proper normal subgroup.

Since then, the method has been pushed further to answer more refined questions about
the algebraic structure of Ham(Σ), especially when Σ has genus 0, using a property called the
quasimorphism property. The goal of this paper is to generalize the results of [CGHM+22a]
to all surfaces even though we no longer have the quasimorphism property for positive genus
surfaces.

1.1 Link spectral invariants and known results for genus zero surfaces

Link spectral invariants are introduced in [CGHM+22b] as the main tool to study Ham(Σ).
Given a Lagrangian link (i.e. a union of disjoint circles) L = L1 ∪ ... ∪ Lk satisfying
certain monotonicity conditions on a surface (Σ, ω), we can associate a spectral invariant
cL : C∞(S1 × Σ,R) → R which satisfies several useful properties (Proposition 13).
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In particular, the homotopy invariance permits to define cL(φ) for φ ∈ H̃am(Σ), by
the formula cL({φt

H}t∈[0,1]) = cL(H) for a mean normalized Hamiltonian function H. The
homogenization µL of cL is defined by

µL(φ) = lim
n→∞

cL(φ
n)

n
.

In the case of Σ = S2, we have the following :

Theorem 1 (Theorem 7.7 of [CGHM+22b]). cL : H̃am(S2) → R is a quasimorphism with
defect D ⩽ k+1

k
λ where λ is the monotonicity constant of L. Moreover, µL descends to a

quasimorphism on Ham(S2).

The fact that µL is a quasimorphism and that we can quantify its defect is the key
ingredient to prove the following results (the definition of Cal will be recalled in Section 2.1):

1. The Calabi homomorphism Cal : Hameo(D2) → R can be extended to Ham(D2) =
Homeo(D2, ω). ([CGHM+22a, Theorem 1.9])

2. Ker(Cal) ∩Hameo(D2) is not simple. ([CGHM+22a, Theorem 1.3])

3. Hameo(S2) is not simple. ([CGHM+22a, Theorem 1.3])

1.2 Main results for positive genus surfaces

The purpose of this paper is to generalize (1) and (2) to any compact oriented surface Σ (of
any genus) with non-empty boundary:

Theorem 2. The Calabi homomorphism Hameo(Σ) → R can be extended to Ham(Σ).

Theorem 3. Ker(Cal) ∩Hameo(Σ) is not simple.

and generalize (3) to any connected closed oriented surface (Σ, ω):

Theorem 4. Hameo(Σ, ω) is not simple.

Theorem 3 and 4 together answer a question in [OM07, Problem 4] for all surfaces.
There is a fundamental difference between the genus 0 and positive genus case: cL and

µL are never quasimorphisms for positive genus surfaces for any L (cf. Proposition 16). To
remedy this, we need to prove a local version of the quasimorphism property when Σ has
positive genus and combine it with the fragmentation technique. This requires a slightly
different class of Lagrangian links (see Definition 14) than those in [CGHM+22b]. We define
the spectral invariants cL for this new class of links, show that they satisfy all the usual spec-
tral invariant properties listed in Proposition 13, as well as the following local quasimorphism
property.

Theorem 5. Let L be an admissible link with k contractible components, with monotonicity
constant λ (see Definition 14). Let D ⊂ Σ be a disk that does not intersect the non-contractible
components of L, and denote by HamD(Σ) the Hamiltonian diffeomorphisms supported in D.
Then, the restriction of cL to HamD(Σ) is a quasimorphism with defect bounded by k+1

k+g
λ.

The construction of cL and the proof of its local quasimorphism property relies on the
following Künneth formula for connected sums in Heegaard Floer Homology, similar to the
stabilization result of [OS04], which is proved by identifying moduli spaces of holomorphic
maps under degeneration:
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Theorem 6. Consider two transverse η-monotone admissible Lagrangian links L and K with
k components on a closed surface (Σ, ω). Let (E,ωE) denote the two-dimension torus, and α
be a non-contractible circle on E. Let α′ be a small Hamiltonian deformation of α, such that
α and α′ are transverse. Then for an appropriate choice of almost complex structure, there
is an isomorphism of filtered chain complexes

CF ∗(SymL, SymK)⊗ CF ∗(α, α′)
∼−→ CF ∗(Sym(L ∪ α), Sym(K ∪ α′))

where the LHS is computed considering the links L and K in (Σ, ω), α and α′ in (E,ωE),
while in the RHS, L ∪ α and K ∪ α′ are links in the connected sum (Σ#E,ω′) (where we
perform the connected sum between a point σ1 ∈ Σ away from the links L and K, and a point
σ2 ∈ E away from the isotopy between α and α′).

If we forget the filtration, Thereom 6 is an identification of generators and differentials so
it doesn’t depend on the symplectic form. To guarantee that the filtration also agrees, the
symplectic form ω′ on Σ#E is chosen such that it equals to ω away from a neighborhood
B(σ1) of σ1 which does not intersect L ∪ K, equals to ωE over the support Kα of the
Hamiltonian isotopy from α to α′, and satisfies ω′(Σ#E) = ω(Σ) (so we need to assume
that ωE(Kα) < ω(B(σ1)) for ω

′ to exist).

Structure of the paper

We collect some preliminaries in Section 2. The new class of Lagrangian links and the proof
of its local quasimorphism property (Theorem 5) are given in Section 3. Section 4 is devoted
to the proof of the main results, Theorem 2, 3 and 4. Theorem 6 is proved in Section 5.

2 Preliminaries

2.1 Subgroups of Ham(Σ)

Let Σ be a compact connected surface equipped with an area form ω. We start by introducing
some conventions and notations, which we follow closely from [CGHM+22b]:

• Given a Hamiltonian H : S1 ×Σ → R, the Hamiltonian diffeomorphism ϕ1H is the time
1 flow of the Hamiltonian vector field XHt defined by ιXHt

ω = dHt;

• Given two HamiltoniansH andK, we define the composition by (H#K)t(x) := Ht(x)+
Kt((ϕ

t
H)−1(x));

• We denote by Ham(Σ) the group of Hamiltonian diffeomorphisms of Σ supported in
the interior of Σ (it is often denoted Hamc(Σ) in the literature);

• Ham(Σ) its closure for the C0 distance;

• the Hofer norm of a Hamiltonian is ||Ht||Hof :=
∫ 1
0 oscHtdt =

∫ 1
0 (maxHt −minHt)dt;

• the Hofer norm of a Hamiltonian diffeomorphism is ||φ||Hof := inf
Ht,φ=φ1

Ht

||Ht||Hof ;

• the Hofer distance on Ham(Σ) is dH(φ, ψ) := ||φψ−1||Hof ;

We define some subgroups of Ham(Σ) (cf. [OM07] and [CGHS24]):
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Definition 7. φ ∈ Ham(Σ, ω) is called a finite energy homeomorphism if there exists a
sequence of smooth Hamiltonians Hi such that :

• ϕ1Hi

C0

−−→ φ

• There exists C ⩾ 0 such that for every i,

||Hi||Hof :=

∫ 1

0
osc(Hi,t)dt ⩽ C

Definition 8. φ ∈ Ham(Σ, ω) is called a hameomorphism if there exists an isotopy
(ψt)t∈[0,1] in Ham(Σ) from Id to φ and a sequence of smooth Hamiltonians Hi supported
in a compact subset K of the interior of Σ such that :

• ϕtHi

C0

−−→ ψt uniformly in t ∈ [0, 1];

• (Hi) is a Cauchy sequence for the Hofer norm.

We denote the group of finite energy homeomorphisms by FHomeo(Σ, ω), and the group
of hameomorphisms by Hameo(Σ, ω). When Σ has non-empty boundary, one can define the
Calabi invariant Cal : Ham(Σ) → R as follow: let φ ∈ Ham(Σ), and Ht be a Hamiltonian
supported in the interior of Σ such that φ = ϕ1Ht

. Then,

Cal(φ) =

∫ 1

0

∫

Σ
Htωdt

This definition does not depend on the choice of the Hamiltonian Ht, and Cal is a group
homomorphism.

As shown in [CGHM+22b], Cal can be extended canonically to a group homomorphism
Hameo(Σ) → R by the formula Cal(φ) = lim

i→∞
Cal(φ1

Hi
), where we consider any sequence

(Hi) as in the definition of a hameomorphism.
The purpose of this paper is to study the algebraic structure of Ham(Σ) and its subgroups,

for a general surface Σ.
Here is what was known before this paper:

1. Ham(Σ) is not simple since FHomeo(Σ) is a proper normal subgroup ([CGHM+22b]);

2. Hameo(S2) is not simple ([CGHM+22a]);

3. FHomeo(S2) is not simple since Hameo(S2) is a proper normal subgroup ([Buh23]);

4. when Σ has non-empty boundary :

(a) Hameo(Σ) is not simple since it contains the kernel of the (extended) Calabi ho-
momorphism ([CGHM+22b]);

(b) FHomeo(Σ) is not simple, since either Hameo(Σ) is a proper normal subgroup, or
they coincide and by the previous point they are not simple ([CGHM+22b]);

(c) Hameo(D2) ∩Ker(Cal) is not simple ([CGHM+22a])

5. All normal subgroups of Ham(Σ) contain the commutator subgroup, which is perfect
and simple.

We will extend this picture with a generalization of (2), (3) and (4)(c) respectively:
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• when Σ is closed, Hameo(Σ) is not simple (Theorem 4);

• when Σ is closed, FHomeo(Σ) is not simple, since either Hameo(Σ) is a proper normal
subgroup, or they coincide and by the previous point they are not simple;

• when Σ has non-empty boundary, Hameo(Σ) ∩Ker(Cal) is not simple (Theorem 3).

2.2 Spectral invariants and Quasimorphisms

Let (M,ω) be a closed symplectic manifold, and L ⊂ M a monotone Lagrangian, i.e.
ω|π2(M,L) = τµ|π2(M,L) for some constant τ > 0, where µ is the Maslov homomorphism.
Then, by [LZ18], for a Lagrangian L′ Hamiltonian isotopic to L, and a Hamiltonian H such
that φ1

H(L) ⋔ L′, the Floer cohomology HF ∗(L,L′, H) is well defined.
We follow the convention in [CGHM+22b, Section 6] and define the Floer cohomology

HF ∗(L,L′, H) is a vector space over C[[T ]][T−1]. In particular, there is an action filtration on
the Floer complex, by defining CFλ(L,L

′, H), the subcomplex of CF (L,L′, H) generated by
capped Hamiltonian chords of action less than or equal to λ. The inclusion of this subcomplex
gives rise to a map

iλ : HFλ(L,L
′, H) → HF (L,L′, H).

We assume that either L′ = L or L′ ⋔ L. In the former case, there is the PSS isomor-
phism QH(L) → HF (L,L,H). In the latter case, there is the continuation isomorphism
HF (L,L′, 0) → HF (L,L′, H). By an abuse of notation, we denote QH(L) by HF (L,L, 0)
and the isomorphism (in either case) by κ. Given a homology class a ∈ HF ∗(L,L′, 0) \ {0},
one can define a spectral invariant:

cL,L′(a,H) := inf{λ|κ(a) ∈ Im iλ}

When L = L′ and a = eL is the unit of QH∗(L), we will simply denote cL(H) := cL,L(eL, H).
This spectral invariant satisfies a homotopy invariance property, which enables us to define
cL on H̃am(M,ω), the universal cover of Ham(M,ω).

We recall the definition of a quasimorphism:

Definition 9. Let G be a group. A quasimorphism on G is a map µ : G→ R that satisfies:

∃D ⩾ 0, ∀g, h ∈ G, |µ(gh)− µ(g)− µ(h)| ⩽ D

The infimal value of D such that this property holds is called the defect of µ.
Moreover, µ is an homogeneous quasimorphism if it also satisfies

∀n ∈ Z, ∀g ∈ G,µ(gn) = nµ(g)

When (M,ω) = (CPn, ωFS) and L is a monotone Lagrangian submanifold with HF (L) ̸=
0, cL is a quasimorphism on H̃am(M,ω). This is a consequence of the same result for the
Hamiltonian spectral invariant c (cf. [EP]), and the inequality cL ⩽ c (cf. [LZ18, Proposition
4]).

Proposition 10 (Homogenization). Let µ : G→ R be a quasimorphism. Then,

µ̃(g) := lim
n→∞

µ(gn)

n

is well defined, and it is a homogeneous quasimorphism, called the homogenization of µ.
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Now we explain the construction of spectral invariants for Lagrangian links as defined in
[CGHM+22b].

Consider a closed symplectic surface (Σ, ω), with a compatible complex structure j. A
Lagrangian link on Σ is a disjoint union L = L1 ∪ ... ∪ Lk of smooth simple curves in Σ.

Definition 11. Denote by Bj, 1 ⩽ j ⩽ s, the connected components of Σ \ L. Let kj be the
number of boundary components of Bj, and Aj the ω-area of Bj. Let η ⩾ 0. We say that L
is η-monotone if

λ := 2η(kj − 1) +Aj

does not depend on j. λ is called the monotonicity constant of L.
A Lagrangian link L on a compact surface Σ0 with non-empty boundary is called η-

monotone if there exists a symplectic embedding of Σ0 into a closed surface Σ such that
L is η-monotone inside Σ.

Remark 12. λ is equal to the area of the disks bounded by contractible components of the
link. Therefore, if L has m components bounding pairwise disjoint disks, then λ ⩽ 1

m
.

Let L = L1 ∪ ... ∪ Lk be a Lagrangian link on Σ. Denote by SymL the image of L1 ×
... × Lk in the symmetric product Symk(Σ) := Σk/Sk, where Sk is the permutation group
permuting the factors. Suppose that L is η-monotone and L′ is Hamiltonian isotopic to L.
Let H : S1 × Σ → R be a Hamiltonian and Symk(H) : S1 × Symk(Σ) → R be given by
Symk(H)t(x1, . . . , xk) :=

∑k
i=1Ht(xi). We recall in Section 5.1 how from such a link one can

define a Floer cohomology1

HF (L,L′, H) := HF ∗(SymL, SymL′, Symk(H)). (1)

It was shown in [CGHM+22b] that HF ∗(SymL, SymL′, Symk(H)) ∼= H∗(SymL) so a vector
space (without filtration) so it is non-zero. Moreover, they show that Lagrangian spectral
invariants cSymL,SymL′(a, Symk(H)) are well-defined. Therefore, one can define link spectral
invariants

cL :=
1

k
cSymL =

1

k
cSymL,SymL(eSymL, ·)

Proposition 13. This invariant inherits all the properties of Lagrangian spectral invariants:

• (spectrality) cL(H) lies in the action spectrum Spec(H,L)

• (Hofer Lipschitz)
∣∣cL(H)− cL(K)

∣∣ ⩽ ||H −K||Hof

• (monotonicity) If H ⩽ K then cL(H) ⩽ cL(K)

• (Lagrangian control) If Ht|Li = si(t) for each i, then

cL(H) =
1

k

k∑

i=1

∫
si(t)dt

Moreover,

1

k

k∑

i=1

∫

S1

min
Li

Htdt ⩽ cL(H) ⩽
1

k

k∑

i=1

∫

S1

max
Li

Htdt

1The function Symk(H) is not smooth along the diagonal of Symk(Σ) but it turns out that any
smooth Hamiltonian that agrees with Symk(H) outside a sufficiently small neighborhood of the diagonal
will give the same Floer cohomology up to canonical isomorphisms as a filtered vector space. Therefore,
HF ∗(SymL, SymL′, Symk(H)) is defined to be the filtered vector space.
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• (triangle inequality) cL(H#K) ⩽ cL(H) + cL(K)

• (homotopy invariance) If H,K are mean normalized, ϕ1H = ϕ1K and (ϕtH)t∈[0,1] is ho-
motopic to (ϕtK)t∈[0,1] relative to endpoints, then cL(H) = cL(K).

• (shift) cL(H + s(t)) = cL(H) +
∫
s(t)dt

The homotopy invariance permits to define cL({φt}t∈[0,1]) for {φt}t∈[0,1] ∈ H̃am(Σ), by
the formula cL({ϕtH}t∈[0,1]) = cL(H) for a mean normalized H.

Moreover, cL a quasimorphism when Σ = S2 (i.e. Theorem 1). It is proved using the fact
that Symk(S2) ∼= CPk (cf. [EP]).

3 Construction of the new invariants

Let (Σ, ω) be a compact surface of genus g. We suppose that Σ has area 1. We introduce the
following class of links, which is slightly different from the ones in [CGHM+22b] (cf. [Che21],
[Che22] for the study of this class of links in the cylindrical setting).

Definition 14. A Lagrangian link L = L1 ∪ ... ∪ Lk ∪ α1 ∪ ... ∪ αg is called admissible if:

• the circles L1, ..., Lk, α1, ..., αg are all disjoint;

• α1, ..., αg are non-contractible;

• there exists a decomposition of Σ as a connected sum of a genus zero surface Σ0 and g
tori such that each αi lives in a different torus and Li lives in Σ0;

• L0 := L1 ∪ ... ∪ Lk ⊂ Σ0 is η-monotone for some η ⩾ 0, with respect to a symplectic
form ω0 on Σ0 which coincides with ω outside a small neighborhood of the connected
sum region away from the link, and such that ω0(Σ0) = 1.

We define the monotonicity constant of L as the monotonicity constant of L0 (see Definition
11).

Remark 15 (A remark on the third bullet of Definition 14). Suppose that L = L1 ∪ ... ∪
Lk ∪ α1 ∪ ... ∪ αg satisfies the first two bullets of Definition 14. Let B be the image of
H1(∂Σ) → H1(Σ), V be the image of H1(α1 ∪ · · · ∪ αg) → H1(Σ) and li be the image of
H1(Li) → H1(Σ). Topologically, if V is a g dimensional subspace which intersects B only at
0 and li ⊂ B for all i, then there is a decomposition of Σ as a connected sum of a genus zero
surface Σ0 and g tori such that the third bullet of Definition 14 is satisfied.

To see this, for simplicity, we first assume that there is no Li and Σ is closed (so B = 0).
Then V is a Lagrangian subspace with respect to the intersection form Ω on H1(Σ). Let
ai := [αi] ∈ H1(Σ). We can complete {ai} to a basis {a1, . . . , ag, b1, . . . , bg} of H1(Σ;Z) such
that Ω(ai, bi) = 1 and Ω(ai, bj) = 0 if i ̸= j, and Ω(bi, bj) = 0 for all i, j. We can find circles
βi ⊂ Σ, i = 1, . . . , g, such that the geometric intersection number between any two circles in
{αi, βj} agrees with the homological intersection number. The regular neighborhood of αi ∪βi
gives the splitting of the ith torus in the connected sum decomposition. The case when Σ has
boundary components can be proved by first embedding it to a closed surface by capping off
the boundary components by disks (and choosing βi to avoid the capping disks). The case
when there is Li can be reduced to the case with no Li by running the argument above, for
the positive genus components, in the complement of ∪iLi (in particular, Li are allowed to
be non-contractible separating circles).
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Figure 1: An admissible link

We assume that Σ is closed. Then, given an admissible link L, there exists a decomposition
of Σ as a connected sum Σ = S2#E1#...#Eg, where the Ei are copies of the 2-torus, such
that L0 := L1 ∪ ... ∪ Lk ⊂ S2 is η-monotone, and for all 1 ⩽ i ⩽ g, αi ⊂ Eg. (Here, we
inflate the symplectic form near the connected sum point in S2 so that S2 has area 1. This
choice of symplectic form makes L0 η-monotone by the fourth bullet of Definition 14, and it
is compatible with the one in Theorem 6.)

The authors of [CGHM+22b] show that HF ∗(L0, L0) is well-defined and non-zero.
By applying Theorem 6 g times, we get that HF ∗(L,L) is non-zero, and therefore for a

non-degenerate Hamiltonian H, HF ∗(L,L,H) is also non-zero. As a result, one can define
spectral invariants

cL(H) :=
1

k + g
cSymL(Sym

k+g(H))

for non-degenerate H, and then extend it to all Hamiltonians by continuity (i.e. the Hofer
Lipschitz property in Proposition 13).

If Σ0 has non-empty boundary, then one can embed Σ0 into a closed surface Σ, such
that L remains admissible in Σ. Indeed, by the definition of η-monotonicity for surfaces
with boundary, there exists an embedding into a closed surface Σ such that L is still η-
monotone inside Σ. Then, one can define the link spectral invariant for Σ0 by restricting cL
to Ham(Σ0) ⊂ Ham(Σ).

The fact that this invariant satisfy all the properties listed in Proposition 13, as in
[CGHM+22b], is a straightforward consequence of the properties of Lagrangian spectral in-
variants (see [Hum17] for instance).

Before proving the local quasimorphism property 5, we show the following statement:

Proposition 16. Let Σ be a surface of genus g > 0. Let L = L1 ∪ ... ∪ Lk ∪ α1 ∪ ... ∪ αg

be a monotone admissible Lagrangian link on Σ, where α1, ..., αg are the non-contractible
components of L. Then cL is not a quasimorphism.

Proof. It is enough to show that there exists a sequence of Hamiltonians (Hn)n such that
γL(Hn) := cL(Hn) + cL(Hn) is not bounded. We pick a non-contractible circle in Σ that
intersects L at a single point in α1. Such a circle always exists, take for instance β1 as in
Remark 15. Then, we pick a small neighborhood U of this circle, diffeomorphic to the annulus
A = S1× (−1; 1) (we denote by ψ : U → A such a diffeomorphism), such that U ∩L = U ∩α1

is connected and sent to a vertical {θ0} × (−1; 1) by ψ. Let H : (−1; 1) → R be a smooth
function such that :

9



• H is compactly supported;

• H admits a single local maximum at 0 and no other critical point in the interior of its
support;

• H(0) = 1

We define Kn on A by Kn(θ, t) = nH(t), and Hn on Σ by:

• Hn(x) = Kn(ψ(x)) if x ∈ U

• Hn(x) = 0 if x /∈ U

Now, we compute the sequence (γL(Hn))n for this choice of Hamiltonians.
We know that cL(Hn) lies in

1
k+g

Spec(Sym(Hn)). In order to compute this spectrum, we
consider critical points of the action that are in the same connected component as a chosen
reference path in P(Sym(L), Sym(L)) (see Section 5.1 for a definition of the Heegaard Floer
complex and the action functional). We pick x1 ∈ L1, ..., xk ∈ Lk, y1 ∈ α1, ..., yg ∈ αg fixed
by the flow of Hn, and take the constant path η := {x1, ..., xk, y1, ..., yg} in Sym(L) as the
reference path.

Then, the only critical points of the action that are in the same connected component
as η in P(SymL, SymL) are symmetric products of points fixed by Hn. They all have zero
action except when we choose in α1 the point y′1 for which Hn is maximal. For any choice of
x′i ∈ Li, 1 ⩽ i ⩽ k, and y′i ∈ αi, 2 ⩽ i ⩽ g, the critical point {x′1, ..., x′k, y′1, ..., y′g} has action
n.

Hence, Spec(Sym(Hn)) = {0, n}. Similarly, Spec(Sym(Hn)) = {−n, 0} because Hn =
−Hn. Therefore, γL(Hn) ∈ {− n

k+g
, 0, n

k+g
}.

Since γL is non-negative, we can rule out − n
k+g

. Moreover, Sym(L) is not fixed by φHn ,
so γL(Hn) is non-zero.

Finally, we get that γL(Hn) =
n

k+g
, which is unbounded as n goes to infinity.

We now prove that this invariant satisfies Theorem 5.

Proof of Theorem 5. We consider an admissible link L = L1 ∪ ... ∪ Lk ∪ α1 ∪ ... ∪ αg, and a
disk D that does not intersect α := α1 ∪ ...∪αg. Then, one can find a decomposition of Σ as
a connected sum Σ = S2#E1#...#Eg such that L0 := L1 ∪ ... ∪ Lk ⊂ S2 is η-monotone, for
all 1 ⩽ i ⩽ g, αi ⊂ Eg, and D ⊂ S2.

Let H be a Hamiltonian supported in D, and let Hϵ be an ϵ-perturbation of H in small
neighborhoods of the link’s components so that HF (L,L,Hϵ) is well defined (cf. (1)). We
can assume that Hϵ is chosen such that it is away from the connected sum neighborhoods of
the decomposition Σ = S2#E1#...#Eg.

Then, by applying Theorem 6 g times, we have that

CF ∗(L,L,Hϵ) ≃ CF ∗(L0, L0, Hϵ|S2)⊗
g⊗

i=1

CF ∗(αi, αi, Hϵ|Ei)

Therefore, representatives of κ(eSym(L)) in CF ∗(L,L,Hϵ) are in one-to-one correspon-
dence with tensor products of representatives of unit classes in CF ∗(L0, L0, Hϵ|S2) and
CF ∗(αi, αi, Hϵ|Ei). It follows from the proof of Theorem 6 that this one-to-one correspon-
dence preserves the action (which is defined as the sum of the actions on the tensor product).

Since Hϵ is ϵ-small on Ei, we get that cSymL(Sym
k+g(H)) = cSymL0

(Symk(H)) where

cSymL0
is computed inside Symk(S2). Since L0 is η-monotone inside S2, with monotonic-

ity constant λ, applying Theorem 1 gives that the restriction of cSymL to HamD(Σ) is a
quasimorphism with defect bounded by k+1

k+g
λ.
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We define the homogenized spectral invariant µL by the formula:

µL(H) := lim
n→∞

cL(H
#n)

n

This is well defined by the triangle inequality and Fekete’s lemma.

Proposition 17. The invariant µL satisfies the following properties:

• (Hofer Lipschitz)
∣∣µL(H)− µL(K)

∣∣ ⩽ ||H −K||Hof

• (Lagrangian control) Suppose H is mean-normalized, and Ht|Li = si(t). Then,

µL(H) =
1

k

k∑

i=1

∫ 1

0
si(t)dt

Moreover,

1

k

k∑

i=1

∫ 1

0
min
Li

Htdt ⩽ µL(H) ⩽
1

k

k∑

i=1

∫ 1

0
max
Li

Htdt

• (homotopy invariance) µL descends to a map Ham(Σ) → R

• (support control) If supp(φ) ⊂ Σ \ L, then µL(φ) = −Cal(φ).

• (conjugacy invariance) µL(ψφψ
−1) = µL(φ)

Proof. These are all straightforward consequences of the properties of cL (13) and the defi-
nition of µL.

Moreover, we show the following:

Theorem 18. Suppose that L and L′ are two admissible η-monotone links with the same
number of components k, that share the same non-contractible components α. Then the
homogenized spectral invariants µL and µL′ coincide, and we denote by µk,η,α their common
value.

Proof. Let ∗ denote the pants product

HF ∗(L,L′)⊗HF ∗(L′, L) → HF ∗(L,L).

Using Theorem 6, we can view it as a map

HF ∗(L0, L
′
0)⊗HF ∗(α, α)⊗HF ∗(L′

0, L0)⊗HF ∗(α, α) → HF ∗(L0, L0)⊗HF ∗(α, α)

Since L and L0 are two η-monotone links with the same number of components in S2, there ex-
ist classes a0 ∈ HF ∗(L0, L

′
0) and b0 ∈ HF ∗(L′

0, L0) such that a0∗b0 = eSymL0
∈ HF ∗(L0, L0).

Let a be the image of a0⊗eα in HF ∗(L,L′) ∼= HF ∗(L0, L
′
0)⊗HF ∗(α, α), and b the image

of b0 ⊗ eα in HF ∗(L′, L) ∼= HF ∗(L′
0, L0)⊗HF ∗(α, α).

Then, a ∗ b is the image of (a0 ∗ b0) ⊗ (eα ∗ eα) = eSymL0
⊗ eα, i.e. a ∗ b = eSymL is the

unit of HF ∗(L,L).
Then, by the subadditivity property of Lagrangian spectral invariants, we have for any

Hamiltonian H:

c(SymL, SymL, eSymL, H)

⩽c(SymL, SymL′, a,H) + c(SymL′, SymL, b, 0)

⩽c(SymL, SymL′, a, 0) + c(SymL′, SymL′, eSymL′ , H) + c(SymL′, SymL, b, 0)

11



i.e.

cL(H) ⩽ cL′(H) +
1

k

(
c(SymL, SymL′, a, 0) + c(SymL′, SymL, b, 0)

)

We get for all n > 0:

cL(H
#n)

n
⩽
cL′(H#n)

n
+
c(SymL, SymL′, a, 0) + c(SymL′, SymL, b, 0)

kn

and therefore µL(H) ⩽ µL′(H). Swapping the roles of L and L′, we get the other inequality
and finally µL = µL′ .

Since the homogenized spectral invariants are conjugacy invariant, µk,η,α = µk,η,α′ when
α and α′ are Hamiltonian isotopic, and therefore we can write µk,η,[α] := µk,η,α where [α] is
the class of α.

We fix a decomposition of Σ as a connected sum Σ = Σ0#E1#...#Eg where Σ0 is a genus
zero surface, and the Ei are copies of the 2-torus. Recall that we modify the symplectic form
in a neighborhood of the connected sum points so that Σ0 has area 1.

Let β1j,θ be the circle {θ} × S1 ⊂ S1 × S1 ∼= Ej , and β
2
j,θ be the circle S1 × {θ} ⊂ Ej .

For θ = (θ1, ..., θg) ∈ (S1)g, and ϵ = (ϵ1, ..., ϵg) ∈ {1, 2}g, let αϵ
θ := βϵ11,θ1 ∪ ...∪β

ϵg
g,θg

. When

the components of α
ϵ
θ do not intersect the connected sum regions, this defines a Lagrangian

link on Σ.

Figure 2: Two links α and β inducing independent invariants µα and µβ

Proposition 19. The {µk,η,[αϵ
θ]
} are linearly independent.

Proof. Let E be the vector space generated by the {µk,η,[αϵ
θ]
}, and Ek,η the vector subspace

generated by the {µk,η,[αϵ
θ]
} where k and η are fixed. Following the argument in [CGHM+22b],

one can show that E =
⊕
k,η

Ek,η.

Now we show that for fixed k and η, the {µk,η,[αϵ
θ]
} are linearly independent. For 1 ⩽ j ⩽ g,

let Ek,η,βϵ
j,θ

be the subspace generated by the µk,η,[αϵ
θ]
that satisfy ϵj = ϵ and θj = θ. We are

going to show that for every j = 1, . . . , g, we have

Ek,η =
⊕

ϵ,θ

Ek,η,βϵ
j,θ
. (2)

12



Let l and m be non-negative integers. Pick l different elements θ1, ..., θl in S
1, and let µi

be an element of Ek,η,β1
j,θi

. We also pick m different elements θl+1, ..., θl+m in S1, and let µl+i

be an element of Ek,η,β2
j,θl+i

. Let ai be real numbers such that

l+m∑

i=1

aiµi = 0.

We want to show that for all i, ai = 0.
Let V be a small neighborhood of β1j,θ1 that does not intersect the connected sum points

and the β1j,θi for 2 ⩽ i ⩽ l. Let H be a Hamiltonian supported in V such that H|β1
j,θ1

≡ 1.

Let θ0 ∈ S1 − {θ1, ..., θl} be such that β1j,θ0 is away from the connected sum points. For
0 ⩽ i ⩽ l, let ρi be the rotation of the torus defined by

ρi(θ, φ) = (θ + θi − θ1, φ)

We can assume that V is small enough such that for any i = 0, . . . , l, ρi(V ) is a neighborhood
of β1j,θi that does not intersect the connected sum points and the β1j,θs for s ̸= i. Let Hi :=

H ◦ ρ−1
i , which is supported in ρi(V ).

Then, by the Lagrangian control property, for 0 ⩽ i ⩽ l and 1 ⩽ p ⩽ l, µp(Hi) =
1

k+g
δi,p.

Moreover, for l + 1 ⩽ p ⩽ l +m, since the ρi stabilize the β2j,θp , we get that µp(Hi) does not
depend on i.

Therefore, applying the equality
l+m∑
i=1

aiµi = 0 at Hi for 1 ⩽ i ⩽ l gives

ai
k + g

= −
l+m∑

p=l+1

apµp(H1)

and at H0 :
l+m∑

p=l+1

apµp(H1) = 0

Thus, ai = 0 for 1 ⩽ i ⩽ l. Since the β1 and β2 play symmetric roles, we can show in the
same way that ai = 0 for l + 1 ⩽ i ⩽ l +m.

Therefore, we have (2) for all j, and hence {µk,η,[αϵ
θ]
} are linearly independent.

4 Extending the Calabi homomorphism and simplicity

The proofs of Theorem 2, 3 and 4 will be given in the following three subsections respectively.
The main idea is to replace the quasimorphism property (Theorem 1), which no longer exists
for positive genus surfaces, by Theorem 5 and the fragmentation technique. Some of the
estimates is a bit more delicate than the ones in [CGHM+22a].

4.1 Proof of Theorem 2

We can now give a proof of Theorem 2, inspired by the proof of (1) found in [CGHM+22a].

Definition 20. A sequence of admissible Lagrangian links (Lk) is called equidistributed if:

13



• all the Lk share the same contractible components α1,..., αg;

• Lk has k contractible components Lk
1,..., L

k
k;

• the Lk
i bound disjoint disks Dk

i , and diam(Lk) := max(diamDk
i ) −−−→

k→∞
0.

Given such a sequence, we get a sequence of link spectral invariants cLk which satisfies
the Calabi property:

Proposition 21. For any smooth Hamiltonian H : S1 × Σ → R,

cLk(H) =

∫

S1

∫

Σ
Htωdt+Ok→∞

(
diam(Lk)

)

In particular, for any smooth Hamiltonian diffeomorphism φ,

cLk(φ) = Ok→∞
(
diam(Lk)

)

Proof. We fix a point xki in each of the disks Dk
i . Then, one can find smooth Hamiltonians

Gk such that:

• Gk
t ≡ Ht(x

k
i ) on D

k
i

• Gk
t = Ht on αi

• ||Gk
t −Ht||∞ ⩽ diam(Lk) sup

S1×Σ

||dHt||

Then, using the Hofer Lipschitz property and Lagrangian control (Proposition 13), we
get:

∣∣∣∣cLk(H)−
∫

S1

∫

Σ
Htωdt

∣∣∣∣

⩽

∣∣∣cLk(H)− cLk(Gk)
∣∣∣+
∣∣∣∣cLk(Gk)−

∫

S1

∫

Σ
Gk

t ωdt

∣∣∣∣+
∣∣∣∣
∫

S1

∫

Σ
(Gk

t −Ht)ωdt

∣∣∣∣

⩽||H −Gk||Hof +

∣∣∣∣∣
1

k + g

k∑

i=1

∫

S1

Gk
t (x

k
i )dt−

∫

S1

∫

Σ
Gk

t ωdt

∣∣∣∣∣

+
1

k + g

g∑

i=1

∫

S1

max
αi

|Gk
t |dt+ ||Gk −H||Hof

⩽2 diam(Lk) sup
S1×Σ

||dHt||+
∣∣∣∣∣

1

k + g

k∑

i=1

∫

S1

Gk
t (x

k
i )dt−

∫

S1

∫

Σ
Gk

t ωdt

∣∣∣∣∣+O

(
1

k

)

Let A := Area(Dk
i ). We have 1

k+1 ⩽ A ⩽ 1
k
, so diam(Lk) ⩾ C√

k
for some positive constant

C and therefore 1
k
= Ok→∞

(
diam(Lk)

)
. Moreover,
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∣∣∣∣∣
1

k + g

k∑

i=1

∫

S1

Gk
t (x

k
i )dt−

∫

S1

∫

Σ
Gk

t ωdt

∣∣∣∣∣

=

∣∣∣∣∣
1

(k + g)A

k∑

i=1

∫

S1

∫

Dk
i

Gk
t ωdt−

∫

S1

∫

Σ
Gk

t ωdt

∣∣∣∣∣

=

∣∣∣∣∣

(
1

(k + g)A
− 1

)∫

S1

∫
⋃

Dk
i

Gk
t ωdt−

∫

S1

∫

Σ\(⋃Dk
i )
Gk

t ωdt

∣∣∣∣∣

⩽

∣∣∣∣
1

(k + g)A
− 1

∣∣∣∣ ||G
k||∞ + ||Gk||∞

∫

Σ\(⋃Dk
i )
ω

⩽

(∣∣∣∣
1

(k + g)A
− 1

∣∣∣∣+ 1− kA

)(
||H||∞ + ||H −Gk||∞

)

=O

(
1

k

)

Since the invariants cLk satisfy all the properties listed in Proposition 13, the same proof

as in [CGHM+22b] show that:

Proposition 22. fLk := cLk + Cal : Ham(Σ) → R is uniformly continuous, and therefore

extends continuously to Ham(Σ).

Now, we define the following relation on the space of real valued sequences RN : we say
that x ∼ y if limx− y = 0. This is an equivalence relation, and the quotient RN/ ∼ is a real
vector space. Then, we can define a map

f :Ham(Σ) → RN/ ∼
φ 7→ (fL1(φ), fL2(φ), ...)

We claim that f is a group homomorphism, that is, for every φ, ψ in Ham(Σ):

fLk(φψ)− fLk(φ)− fLk(ψ) → 0

Since the spectral invariants satisfy the triangle inequality, and since Cal is a group
homomorphism, we have the following inequality for every φ, ψ in Ham(Σ) and k in N :

fLk(φψ)− fLk(φ)− fLk(ψ) ⩽ 0

This inequality still holds for the extension of fLk to Ham(Σ). We also have, using the
triangle inequality :

fLk(φψ)− fLk(φ)− fLk(ψ) ⩾ fLk(φψ)− fLk(φ)− fLk(φψ)− fLk(φ−1)

⩾ −(fLk(φ) + fLk(φ−1))

Hence, the following property is enough to show that f is a group homomorphism:
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Proposition 23. For all φ ∈ Ham(Σ), γLk(φ) := fLk(φ) + fLk(φ−1) goes to zero when k
goes to infinity.

Proof. Fix φ ∈ Ham(Σ). Using a standard fragmentation result (see for instance [Ban97] or
[Sey13] for a more quantitative version), one can find φ1, ..., φn supported in disks D1, ..., Dn

such that φ = φ1 ◦ ... ◦ φn. For each 1 ⩽ i ⩽ n, we pick a smooth ψi sending Di to a disk
that does not intersect α := α1 ∪ ..∪, αg.

Then we have, using the triangle inequality:

0 ⩽ γLk(φ) ⩽
∑

γLk(φi)

⩽
∑

(γLk(ψiφiψ
−1
i ) + γLk(ψi) + γLk(ψ−1

i ))

⩽
∑

(γLk(ψiφiψ
−1
i ) + 2γLk(ψi))

Since for all i, ψiφiψ
−1
i is supported in a disk away from α, we can apply Theorem 5 and

Remark 12 to get that γLk(ψiφiψ
−1
i ) ⩽ k+1

k+g
λ ⩽ k+1

k(k+g) , and hence this term goes to zero.

As for the other terms, since the ψi are smooth, the Calabi property (Proposition 21)
implies that γLk(ψi) goes to Cal(ψi)+Cal(ψ−1

i ) = 0. Thus, γk(φ) goes to zero for any φ, and
hence f is a group homomorphism.

For φ smooth, we have f(φ) = (Cal(φ),Cal(φ), ...) since fLk(φ) converges to Cal(φ). Let

∆ denote the vector (1, 1, 1, ....) in RN/ ∼. Using Zorn’s lemma, we complete this vector into
a base (a1 = ∆, a2, a3, ...) of R

N/ ∼. Now let s be the following map :

RN/ ∼ → R
∑

λiai 7→ λ1

Then s ◦ f is a group homomorphism from Ham(Σ) to R that extends Cal. This completes
the proof of Theorem 2.

4.2 Proof of Theorem 3

We now give a proof of Theorem 3. Once again, it is inspired of the proof of (2) found in
[CGHM+22a].

We start by fixing an equidistributed sequence of links Lk = Lk
1 ∪ ... ∪ Lk

k ∪ α1 ∪ ... ∪ αg,

such that diam(Lk) = O
(

1√
k

)
. We define

N((Lk)k∈N∗) := {φ ∈ Hameo(Σ, ω)|
√
k(fLkφ)− Cal(φ)) is bounded}

We claim:

Proposition 24. N((Lk)k∈N∗) is a normal sub-group of Hameo(Σ, ω)

Proof. Let φ, ψ ∈ N((Lk)k∈N∗), and θ ∈ Hameo(Σ). Then, by the triangle inequality and the
fact that Cal is a homomorphism,

−
√
kγLk(φ) ⩽

√
k(fLk(φψ)− Cal(φψ))−

√
k(fLk(φ)− Cal(φ))−

√
k(fLk(ψ)− Cal(ψ)) ⩽ 0

Moreover, we have that

√
k(fLk(φ−1)− Cal(φ−1)) =

√
kγLk(φ)−

√
k(fLk(φ)− Cal(φ))

16



and the triangle inequality also implies that

−
√
kγLk(θ) ⩽

√
k(fLk(φ)− fLk(θφθ−1)) ⩽

√
kγLk(θ)

Therefore, the following lemma proves that φψ, φ−1 and θφθ−1 are in N((Lk)k∈N∗), which
concludes the proof of the proposition.

Lemma 25. For all φ ∈ Ham(Σ), (
√
kγLk(φ)) is bounded.

Proof. Writing φ = φ1...φN where each φi is supported in a disk Di, and choosing some ψi

displacing Di away from α, we get as in the proof of Proposition 23 that

√
kγLk(φ) ⩽

√
k

N∑

i=1

(γLk(ψiφiψ1

i ) + 2γLk(ψi))

⩽
√
k

N∑

i=1

(
k + 1

k(k + g)
+ O

(
1√
k

))

⩽
k + 1√
k(k + g)

N +O(1)

where we used the Calabi property (Proposition 21), with diam(Lk) = O
(

1√
k

)
. This shows

that
√
kγLk(φ) is bounded for every φ.

Remark 26. We see in this proof that the terms γLk(ψi) are of higher order than the other
ones. If we manage to show that for smooth elements, kγLk is bounded, then it would be the

case for all φ ∈ Ham(Σ), and we could define an even smaller normal subgroup by considering
kγLk instead of

√
kγLk .

It remains to show that for a certain choice of (Lk), this subgroup is proper. The proof
is similar to the one in [CGHM+22a] in the case of the disk. There are three steps:

• We show that N((Lk)k∈N∗) ∩Ker(Cal) contains all the smooth elements;

• We construct a hameomorphism T , and choose an equidistributed sequence (Lk), such
that T does not belong to N((Lk)k∈N∗).

• From this T we can construct another hameomorphism with the same property that
lies in Ker(Cal).

Lemma 27. N((Lk)k∈N∗) ∩Ker(Cal) contains all the smooth elements.

Proof. It is a corollary of the Calabi property (Proposition 21).

Now we construct the hameomorphism and the sequence of links. Fix g disjoint and
homologically independant circles α1, ..., αg. Let D be a disk of area 1/2 in Σ away from
α, and pick a point z0 in its interior. We fix a symplectomorphism Φ : (D \ {z0}, ω) ∼−→(
S1 ×

(
0, 1√

2π

]
, rdr ∧ dθ

)
.

We define an autonomous Hamiltonian H on Σ \ {z0} as follow:

• H is supported inside Φ−1
(
S1 ×

(
0, 1

2
√
π

])
⊂ D \ {z0};
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• H(θ, r) = h(πr2) is radial;

• h :
(
0, 14
]
→ [0,+∞) is decreasing, h(r) ⩽ r−a with equality on

(
0, 18
]
for some 1

2+
1

2
√
2
<

a < 1.

Then, φ1
H defines a Hamiltonian diffeomorphism on Σ \ {z0} which acts as a rotation

around the origin inside D \ {z0}. Therefore, it extends continuously to a homeomorphism
T that fixes z0. We claim the following:

Proposition 28. T ∈ Hameo(Σ)

Proof. We have to find a sequence of Hamiltonians (Kn), supported in a compact subset of
the interior of Σ, such that:

• ϕ1Kn

C0

−−→ T ;

• (ϕtKn
) is Cauchy for the C0 distance, uniformly in t ∈ [0, 1];

• the sequence (Kn) is Cauchy for the Hofer norm.

Let Dn := {z0} ∪ Φ−1
(
S1 ×

(
0, 1√

π2n/a

))
⊂ Σ. It has area 1

2n/a .

We start with a sequence of smooth Hamiltonians (Hn) such that:

• Hn coincides with H outside of Dn;

• Hn ≈ 2n in Dn

• ||Hn+1 −Hn||Hof ⩽ 2n

To construct such a sequence, we flatten H inside Dn.
Since Hn coincides with H outside of Dn, we have that ϕ1Hn

◦ T−1 = Id outside of Dn,

and therefore ϕ1Hn

C0

−−→ T .
We will now construct a sequence (Kn) such that ϕ1Kn

= ϕ1Hn
, (Kn) is Cauchy for the

Hofer norm, and (ϕtKn
) is Cauchy for the C0 distance uniformly in t.

We will use a lemma from [CGHM+22a, Lemma 4.5]:

Lemma 29. Let ∆ be a Euclidean 2-disk equipped with an area form ω of total area A.
Suppose D ⊂ ∆ is diffeomorphic to D2 and that Area(D) < A

N
some integer N > 0. Let F

be a smooth Hamiltonian supported in the interior of D. Then, we have:

dH(ϕ1F , Id) ⩽
||F ||Hof

N
+ 2A

where dH denotes the Hofer distance on Hamc(∆, ω).

Let b be a real number such that 1 < b < 1
a
. Let N = 2⌊bn⌋, and An = (N +1)2−

n
a . If n ⩾

n0 where n0 is large enough, A < 1
2 , and we can define ∆n := {z0} ∪Φ−1

(
S1 ×

(
0, 1√

πAn

))
.

It is a disk of area An. Hn+1 −Hn is supported inside Dn, which has area 2−
n
a < An

N
, so we

can apply the lemma and get that:

dH(ϕ1Hn+1−Hn
, Id) ⩽

||Hn+1 −Hn||Hof

N
+ 2An

Therefore there exists Gn supported in ∆n such that ϕ1Gn
= ϕ1Hn+1−Hn

= ϕ−1
Hn

◦ϕ1Hn+1
and

||Gn||Hof ⩽ 2n−⌈(1−b)n⌉ + (2⌊bn⌋ + 1)2−
a
n .
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By definition of b, the series
∞∑

n=n0

||Gn||Hof is summable. Since Gn is supported inside ∆n,

dC0(ϕtGn
, Id) ⩽ diam∆n = O(2(b−

1

a
)n), so

∞∑
n=n0

dC0(ϕtGn
, Id) is also summable, uniformly in t.

Then, we define (Kn) recursively by:

• Kn = Hn for n ⩽ n0;

• Kn+1 = Kn#Gn for n ⩾ n0

We get that ϕ1Kn
= ϕ1Hn

for n ⩽ n0, and for n > n0:

ϕ1Kn
= ϕ1Hn0

ϕ1Gn0
...ϕ1Gn−1

= ϕ1Hn0
ϕ−1
Hn0

ϕ1Hn0+1
...ϕ−1

Hn−1
ϕ1Hn

= ϕ1Hn

Moreover, the summability of
∞∑

n=n0

||Gn||Hof and
∞∑

n=n0

dC0(ϕtGn
, Id) implies that (Kn) is

Cauchy for the Hofer norm, and (ϕtKn
) is Cauchy for the C0 distance uniformly in t.

This concludes the proof that T ∈ Hameo(Σ).

We now construct an equidistributed sequence of admissible links as follow:

Fix an integer k ⩾ 1. For 0 ⩽ i ⩽ ⌊
√
k
2 ⌋, denote by Ai the annulus S1 ×

(
i√
πk
, i+1√

πk

)
⊂

D \ {z0}.
Let Lk

1 be the circle S1 ×
{√

1
π(k+1)

}
. It bounds a disk of area 1

k+1 . For i ⩾ 1, each

annulus Ai has area
1
k
((i+ 1)2 − i2) = 2i+1

k
, hence we can fit inside Ai 2i+ 1 disjoint circles

Lk
i2+1, ..., L

k
(i+1)2 that bound disjoint disks of area 1

k+1 and of diameter bounded by C√
k
where

C is a constant that does not depend on k.

The union of all the annuli cover a disk of area

(
⌊
√

k
2

⌋+1
)2

k
. The remaining area in Σ is

k−
(
⌊
√

k
2

⌋+1
)2

k
, which is enough to fit k−

(
⌊
√
k
2 ⌋+ 1

)2
disjoint circles Lk(

⌊
√
k
2

⌋+1
)2

+1
, ..., Lk

k that

bound disjoint disks of area 1
k+1 and of diameter bounded by C′√

k
where C ′ is a constant that

does not depend on k.
Let Lk := Lk

1 ∪ ...∪Lk
k ∪α1∪ ...αg. Then (Lk) is an equidistributed sequence of monotone

Lagrangian links, and moreover:

Proposition 30. For this choice of equidistributed sequence, T /∈ N((Lk)k∈N∗).

Proof. We want to show that
√
k(fLk(T )− Cal(T )) is unbounded.

First, we observe that:

Cal(T ) = lim
n→∞

Cal(ϕ1Kn
) = lim

n→∞
Cal(ϕ1Hn

) = lim
n→∞

∫

Σ
Hnω =

∫

Σ
Hω

and

fLk(T ) = lim
n→∞

fLk(ϕ1Kn
) = lim

n→∞
fLk(ϕ1Hn

) = lim
n→∞

cLk(Hn)
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Figure 3: The sequence Lk

Since Hn coincides with H outside of Dn, for n sufficiently large, Hn coincides with H on
Lk and therefore cLk(Hn) = ck(H). Thus, fLk(T ) = cLk(H).

We start by estimating cLk(H). Since H is supported inside S1 ×
(
0, 1

2
√
π

]
, and by

Lagrangian control:

cLk(H) ⩽
1

k + g

(
⌊
√
k
2

⌋+1
)2

∑

i=1

max
Lk
i

H

⩽
1

k


max

Lk
1

H +

⌊
√
k
2

⌋∑

i=1

(2i+ 1)max
Ai

H




⩽
1

k


h

(
1

k + 1

)
+

⌊
√
k
2

⌋∑

i=1

(2i+ 1)h

(
i2

k

)



⩽
1

k


h

(
1

k + 1

)
+ 3h

(
1

k

)
+ 2

⌊
√

k
2

⌋∑

i=2

h

(
i2

k

)
+

⌊
√
k
2

⌋∑

i=2

(2i− 1)h

(
i2

k

)
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Using that h is decreasing, and comparing the sums with integrals, we get:

cLk(H) ⩽
(k + 1)a

k
+ 3ka−1 +

2√
k

∫ 1

2

1√
k

h(r2)dr +

⌊
√
k
2

⌋−1∑

i=1

2i+ 1

k
min
Ai

H

⩽

(
k + 1

k

)a

ka−1 + 3ka−1 +
2√
k

[
1

1− 2a
r1−2a

] 1

2

1√
k

+

∫

Σ\A0

Hω

⩽

(
1 +

a

k

)
ka−1 + 3ka−1 +

2

2a− 1
ka−1 +

∫

Σ\A0

Hω

Therefore, for k ⩾ 8,

√
k(fLk(T )− Cal(T )) =

√
k(cLk(H)−

√
k

∫

Σ
Hω)

⩽

(
4 +

a

k
+

2

2a− 1

)
ka−

1

2 −
√
k

∫

A0

Hω

⩽

(
4 +

a

k
+

2

2a− 1

)
ka−

1

2 −
√
k

∫ 1

k

0
h(r)dr

⩽

(
4 +

a

k
+

2

2a− 1

)
ka−

1

2 −
√
k

1

1− a
ka−1

⩽

(
4 +

a

k
+

2

2a− 1
− 1

1− a

)
ka−

1

2

⩽

( −8a2 + 8a− 1

(2a− 1)(1− a)
+
a

k

)
ka−

1

2

Since 1
2 + 1

2
√
2
< a < 1, −8a2+8a−1

(2a−1)(1−a) +
a
k
< 0 for k large enough, and

√
k(fk(T )− Cal(T ))

goes to −∞.

In a similar fashion, we also compute a lower bound for cLk(H)−
∫
ΣHω (when k is large

enough) that we will need in the following section:

21



cLk(H)−
∫

Σ
Hω ⩾

1

k + g

(
⌊
√
k
2

⌋+1
)2

∑

i=1

min
Lk
i

H −
∫

Σ
Hω

⩾
1

k + g


min

Lk
1

H +

⌊
√

k
2

⌋∑

i=1

(2i+ 1)min
Ai

H


−

∫

Σ
Hω

⩾
1

k + g


h

(
1

k + 1

)
+

⌊
√
k
2

⌋∑

i=1

(2i+ 1)h

(
(i+ 1)2

k

)

−

∫

Σ
Hω

⩾
1

k + g


h

(
1

k + 1

)
− 3h

(
1

k

)
− 2

⌊
√
k
2

⌋∑

i=2

h

(
i2

k

)
+

⌊
√
k
2

⌋∑

i=1

(2i+ 1)h

(
i2

k

)

−

∫

Σ
Hω

k

k + g



(k + 1)a

k
− 3ka−1 − 2√

k

∫ 1

2

1√
k

h(r2)dr +

⌊
√

k
2

⌋−1∑

i=1

2i+ 1

k
max
Ai

H −
∫

Σ
Hω




− g

k + g

∫

Σ
Hω

Once again, we used that h is decreasing and compared the first sum with an integral. Doing
the same for the second sum, we obtain:

cLk(H)−
∫

Σ
Hω ⩾

1

1 + g
k



(
k + 1

k

)a

ka−1 − 3ka−1 − 2√
k

[
1

1− 2a
r1−2a

] 1

2

1√
k

+

∫

Σ\A0

Hω −
∫

Σ
Hω




− g

k

∫ 1

4

0
h(r)dr

⩾

(
1− g

k

)((
1 +

1

k

)a

ka−1 − 3ka−1 − 2

2a− 1
ka−1 −

∫

A0

Hω

)
− g

k

∫ 1

4

0
r−αdr

⩾

(
1− g

k

)((
1− 3− 2

2a− 1

)
ka−1 −

∫ 1

k

0
h(r)dr

)
− g

k

[
r1−α

1− α

] 1

4

0

⩾

(
1− g

k

)((
−2− 2

2a− 1

)
ka−1 − 1

1− a
ka−1

)
− 4α−1g

(1− α)k

⩾

(
1− g

k

)(
−2− 2

2a− 1
− 1

1− a

)
ka−1 − 4α−1g

(1− α)k

Now, it remains to construct a hameomorphism in Ker(Cal). Choose a smooth Hamilto-
nian diffeomorphism θ such that Cal(θ) = Cal(T ). Then, T ′ := Tθ−1 ∈ Hameo(Σ)∩Ker(Cal).
Since θ is smooth, by Lemma 27, θ ∈ N(Σ), and therefore T ′ /∈ N((Lk)k∈N∗).

Hence, N((Lk)k∈N∗) ∩ Ker(Cal) is a proper normal subgroup of Hameo(Σ) ∩ Ker(Cal),
which concludes the proof of Theorem 3.

We give more precision on the subgroups we defined:
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Note that since the Hamiltonian H we constructed in this section is radial, we have
H#n = nH, and therefore

µLk(H) = lim
n→∞

cLk(H#n)

n
= cLk(H)

Then, by Theorem 18, cLk(H) only depends on k, α and the monotonicity constant of the

link. Therefore, for any other equidistributed sequence of links (L′k) having the same non-
contractible components α, and the same monotonicity constant, we have that T /∈ N(L′k).

Since we fixed an arbitrary α at the start of the proof, and since we could modify the
definition of (Lk) to change its monotonicity constant while keeping similar inequalities for
cLk(H), we get the following proposition:

Proposition 31. Let (L′k) be an equidistributed sequence of admissible links, satisfying

diam(L′k) = O
(

1√
k

)
. Then, N((L′k)k∈N∗) is a proper normal subgroup of Hameo(Σ) ∩

Ker(Cal).
Moreover, taking the intersection of those subgroups over all such sequences of links, we

get an even smaller proper normal subgroup N , which contains all smooth elements.

Remark 32. We need the assumption on the diameter to ensure that N((L′k)k∈N∗) is a
normal subgroup (Proposition 24).

4.3 Proof of Theorem 4

This time we consider a connected, closed, oriented surface (Σ, ω).

Fix an equidistributed sequence of admissible links (Lk) with diam(Lk) = O
(

1√
k

)
.

Fix a such that 1
2 + 1

2
√
2
< a < 1.

Then, for k0 large enough, 1
1−a

− 4 − a
22k0

− 2
2a−1 > 0. Fix such a k0, then for N large

enough, −2− 2
2a−1 − 1

1−a
+ 2N(1−a)

(
1

1−a
− 4− a

22k0
− 2

2a−1

)
> 0.

Fix such an integer, and define gk := c
L22k − c

L22k−N .

Let N((Lk)k∈N∗) := {φ ∈ Hameo(Σ), (2kgk(φ)) is bounded}

Proposition 33. N((Lk)k∈N∗) is a normal subgroup of Hameo(Σ).

Proof. Let φ, ψ ∈ N((Lk)k∈N∗), and θ ∈ Hameo(Σ). Using the triangle inequality, we have:

γ
L22k (φ) ⩽ gk(φψ)− gk(φ)− gk(ψ) ⩽ γ

L22k−N (φ)

gk(φ
−1) = γ

L22k (φ)− γ
L22k−N (φ)− gk(φ)

and
−(γ

L22k (θ) + γ
L22k−N (θ)) ⩽ gk(θφθ

−1)− gk(φ) ⩽ γ
L22k (θ) + γ

L22k−N (θ)

Therefore, Lemma 25 implies that φψ, φ−1 and θφθ−1 are in N(Σ).

We claim that for a certain choice of link, N((Lk)k∈N∗) is a proper subgroup of Hameo(Σ).
In fact, once again Proposition 21 shows that it contains all the smooth elements.
We define a hameomorphism T and a sequence of links (Lk) as in the previous section,

with the parameter 1
2 + 1

2
√
2
< a < 1 we fixed earlier.

We claim that T /∈ N((Lk)k∈N∗).
Let k be a sufficiently large integer. Then, by the estimates of the previous section:

23



2kgk(T ) = 2k
(
c
L22k (H)− c

L22k−N (H)
)

= 2k
((

c
L22k (H)−

∫

Σ
Hω

)
+

(∫

Σ
Hω − c

L22k−N (H)

))

⩾ 2k
((

1− g

22k

)(
−2− 2

2a− 1
− 1

1− a

)
(22k)a−1 − 4α−1g

(1− α)22k

)

+ 2k
(

1

1− a
− 4− a

22k−N
− 2

2a− 1

)
(22k−N )a−1

⩾ 2k(2a−1

(
−2− 2

2a− 1
− 1

1− a
+ 2N(1−a)

(
1

1− a
− 4− a

22k−N
− 2

2a− 1

))

− 2k(2a−3)g

(
−2− 2

2a− 1
− 1

1− a

)
− 2−k 4

α−1g

1− α

By definition of N , for k ⩾ k0+
N
2 , −2− 2

2a−1− 1
1−a

+2N(1−a)
(

1
1−a

− 4− a
22k−N − 2

2a−1

)
>

0, and therefore 2kgk(T ) goes to infinity, which concludes the proof of Theorem 4.
Using the same argument as in the previous section, we also get:

Proposition 34. Let (L′k) be an equidistributed sequence of admissible links satisfying diam(L′k) =

O
(

1√
k

)
. Then, N((L′k)k∈N∗) is a proper normal subgroup of Hameo(Σ).

Moreover, taking the intersection of those subgroups over all such sequences of links, we
get an even smaller proper normal subgroup N , which contains all smooth elements.

5 The Künneth formula for connected sums

This section is devoted to the proof of Theorem 6.

5.1 Heeagaard Floer Homology

Let us start by discussing how we define Heegaard Floer Homology. Indeed, we decided to
use the original construction, which computes Lagrangian Floer Homology in the symmetric
product. Alternatively, one could work in a cylindrical setting and define Heegaard Floer
Homology by counting pseudo-holomorphic curves in the 4-manifold Σ × [0, 1] × R. We
believe that this cylindrical reformulation (formulated by Lipshitz in [Lip06]) could be used
to prove the statements of this paper since similar results are proved in [Lip06] and [OS08]
in the cylindrical setting. Indeed, a cylindrical reformulation of the Lagrangian link spectral
invariants is considered in [Che21], [Che22] so it is likely that the cylindrical approach together
with our arguments in the previous sections can be combined to obtain Theorem 2, 3 and
4. However, since our main results are inspired by [CGHM+22b], [CGHM+22a] and [OS04],
which are all using the symmetric product setting, we will do the same. This setting is the
following.

Consider a closed symplectic surface (Σ, ω), with a compatible complex structure j. Let
L = L1 ∪ ... ∪ Lk be a Lagrangian link in Σ. Denote by SymL the image of L1 × ...× Lk in
the symmetric product Symk(Σ) := Σk/Sk.

Denote by π the projection Σk → Symk(Σ). The symmetric product is naturally en-
dowed with a singular symplectic form Sym(ω) := π∗(ω⊕k), which is smooth away from the
diagonal ∆ := π ({(x1, ..., xk), ∃i ̸= j, xi = xj}). It is also endowed with a complex structure
Symk(j) := π∗j×k.
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Since the circles composing L are disjoint, SymL does not intersect ∆. Let V be a
neighborhood of ∆ that does not intersect SymL. Then, one can find a smooth symplectic
form ωV on Symk(Σ) which agrees with Sym(ω) away from V , and compatible with Symk(j).
Then, SymL is a Lagrangian submanifold inside (Symk(Σ), ωV ).

Let (L,K) be a pair of Lagrangian links with k components. Let H : S1 × Σ → R be
a smooth Hamiltonian. Then one can define a Hamiltonian Symk(H) on Symk(Σ) by the
formula Symk(H)t({x1, ..., xk}) := Ht(x1) + ...+Ht(xk).

Let V be a neighborhood of ∆ that does not intersect Sym(φt
H(L)), Sym(φt

H(K)) for
t ∈ [−1, 1].

Definition 35. An almost complex structures J over Symk(Σ) is V -nearly symmetric if it
agrees with Symk(j) over V , and tames Sym(ω) outside of V .

If SymL and SymK are both monotone Lagrangian submanifolds that are Hamiltonian
isotopic and Sym(φ1

H(L)) ⋔ SymK, then given a path of V -nearly symmetric almost complex
structures (Jt)t∈[0,1], one can define the Lagrangian Floer cohomology

HF ∗(SymL, SymK, Symk(H))

in the standard way (cf. [CGHM+22b, Section 6]). One can show that this construction will
not depend on the choice of V and Jt.

In order to clarify some notations, we will recall briefly how HF ∗(L,K,H) is constructed
for two Hamiltonian isotopic monotone Lagrangians L and K inside a closed monotone sym-
plectic manifold (M,ω), and a smooth Hamiltonian H.

We define the space P(L,K) of smooth paths γ : [0, 1] →M with γ(0) ∈ L and γ(1) ∈ K.
Fix η in P(L,K), and let P̃η(L,K) be the universal cover of the connected component of

η (with base point η).
Given a Hamiltonian H, we can define an action functional on P̃η(L,K), by :

AH([γ,w]) := −
∫
w∗ω +

∫
H (t, γ(t)) dt

Here, w is a homotopy from γ to η in P(L,K).
By the definition of P̃η(L,K), two cappings [γ,w] and [γ′, w′] are isomorphic if γ = γ′

and w and w′ coincide in the set π2(η, γ) of homotopy classes of cappings from η to γ with
boundary in L and K.

Definition 36. Two cappings [γ,w] and [γ′, w′] are defined to be equivalent if γ = γ′ and w

and w′ have the same image in π2(η,γ)
Kerω .

Let CF ∗
◦ (L,K,H; η) be the C-vector space generated by the equivalent classes of critical

points of the action functional AH . It is naturally a C[T±1]-module where T acts by adjoining
the smallest positive area disk class in π2(η, η) to the capping. The Lagrangian Floer complex
is

CF ∗(L,K,H) := ⊕η∈π0(P(L,K))CF
∗(L,K,H; η)

CF ∗(L,K,H; η) := CF ∗
◦ (L,K,H; η)⊗C[T±1] C[[T ]][T

−1].

One can also think of CF ∗(L,K,H) as a C[[T ]][T−1]-vector space generated by the critical
points of the circle-valued action functional on P(L,K) descended from AH . These critical
points are trajectories of φt

H from L toK, and are in one-to-one correspondance with φ1
H(L)∩

K. This complex is graded by the Maslov index, and the Novikov parameter carries a grading
given by the minimal Maslov number of L.
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To define the differential, we fix a path of ω-compatible almost complex structure Jt on
M . Then, given two paths γ and γ′, and a homotopy class β of Maslov index 1, we define
the space M̃Jt,β(γ, γ

′) of smooth maps u : R× [0, 1] →M satisfying:

• ∂u
∂s

+ Jt
(
∂u
∂t

−XH(u)
)
= 0 (where (s, t) ∈ R× [0, 1]);

• u has finite energy;

• u(R, 0) ⊂ L and u(R, 1) ⊂ K;

• [u] = β;

• u is asymptotic to γ at s = −∞, and to γ′ at s = +∞.

Denote by MJt,β(γ, γ
′) the quotient of this moduli space by the action of R by translation,

and by π2(γ, γ
′) the set of homotopy classes of Floer trajectories between γ and γ′. The

differential is then given by

∂[γ′, w] :=
∑

[γ,w#β]∈Crit(AH)

#MJt,β(γ, γ
′)[γ,w#β]

5.2 Identification of the vector spaces

Let L andK be two transverse Lagrangian links with k components on a closed surface (Σ, ω).
Let (E,ωE , jE) denote the two-dimension torus with complex structure jE and Kähler form
ωE . Let α be a non-contractible circle on E and α′ be a small Hamiltonian deformation of
α, such that α and α′ are transverse. Let σ1 ∈ Σ \ (L ∪ K), and σ2 be a point in E away
from the isotopy between α and α′.

We denote by Σ′(T ) the connected sum of Σ and E along the points σ1 and σ2, that we
construct in the following way:

Pick small real numbers r1 and r2, and fix conformal identifications Φ1 : Br1(σ1)\{σ1}
≃−→

[0,∞)×S1 and Φ2 : Br2(σ2)\{σ2}
≃−→ [0,∞)×S1 (whereBr(z) denotes the closed ball of radius

r centered at z). Let Σ(2T ) := Σ\Φ−1
1

(
(2T,∞)× S1

)
and E(2T ) := E\Φ−1

2

(
(2T,∞)× S1

)
.

Then, Σ′(T ) is the union of Σ(2T ) and E(2T ) modulo the identification of the cylinders
[0, 2T ] × S1 ⊂ Σ(2T ) and [0, 2T ] × S1 ⊂ E(2T ) via the involution (t, θ) ∼ (2T − t, θ). We
denote the resulting complex structure on Σ′(T ) by j′(T ), which agrees with j over Σ\Br1(σ1),
agrees with jE over E \ Br2(σ2) and agrees with the standard complex structure over the
tube [0, 2T ]× S1.

We assume the Hamiltonian isotopy from α to α′ is small enough such that the area
of its support is less than ω(Br1(σ1)). In this case, we can equip Σ′(T ) with a symplectic
form ω′(T ) which agrees with ω over Σ \ Br1(σ1), agrees with ωE over the support of the
Hamiltonian isotopy from α to α′, is compatible with j′(T ), and ω′(T )(Σ′(T )) = ω(Σ).

LetW := {σ1}×Symk−1(Σ) ⊂ Symk(Σ). Let σ be a point that lies in the same connected
component of Σ \ (L ∪K) as σ1, but away from Br1(σ1).

For any z ∈ Σ \ (L ∪K) and φ ∈ H2(Sym
k(Σ), Sym(L) ∪ Sym(K)), we denote by nz(φ)

the intersection number of φ with {z} × Symk−1(Σ) ⊂ Symk(Σ). Similarly, for z′ ∈ Σ′ \ (L∪
K ∪ α ∪ α′) and φ′ ∈ H2(Sym

k+1(Σ′), Sym(L ∪ α) ∪ Sym(K ∪ α′)), we denote by n′z′(φ
′) the

intersection number of φ′ with {z′}× Symk(Σ′) ⊂ Symk+1(Σ′) where . For zE ∈ E \ (α∪α′),
and φE in H2(E,α ∪ α′), we denote by nEzE (φE) the intersection number of φE with zE .

In order to prove Theorem 6, we start by establishing an isomorphism of vector spaces
between the Floer complexes. We will show that there is a one-to-one correspondence between
generators.
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Given an intersection point x = {x1, ..., xk} ∈ Symk(Σ) between SymL and SymK, and
an intersection point c ∈ E between α and α′, we get an intersection point x×{c} ∈ Symk(Σ\
Br1(σ1))× Sym1(E \Br2(σ2)) ⊂ Symk+1(Σ#TE) between Sym(L ∪ α) and Sym(K ∪ α′).

Since α and α′ do not intersect L and K, any intersection point between Sym(L∪α) and
Sym(K ∪α′) can be decomposed in a single way as x×{c} where x ∈ Sym(L)∩Sym(K) and
c ∈ α∩α′, and therefore there is a one-to-one correspondence between (Sym(L) ∩ SymK))×
(α ∩ α′) and Sym(L ∪ α) ∩ Sym(K ∪ α′).

Now we need to consider the cappings. In fact, recall that a generator of the Floer complex
is an equivalence class of an intersection point x together with a capping w (cf. Definition
36).

For each connected component of P(SymL, SymK) that contains an intersection point
of SymL and SymK, we choose the reference path η for that connected component to be
a constant path at one the intersection points that are contained in that component. On
E, since we assumed that α′ is a Hamiltonian perturbation of α, we can assume that all
intersection points between them are in the same connected component of P(α, α′). We
choose as a reference path ηE to be a constant path equal to an intersection point between
α and α′. For every η chosen above, We define η′ := η × ηE , and choose it as a reference
path in Symk+1(Σ′). Clearly, the constant path at any intersection point between Sym(L∪α)
and Sym(K ∪ α′) is homotopic to some η′. Moreover, if η1 and η2 are two reference paths
in P(SymL, SymK) that are not in the same connected component, then η′1 = η1 × ηE and
η′2 = η2 × ηE do not lie in the same connected component too.

Definition 37. Let L and K be two Lagrangian links on Σ away from a point z. Let x be
a path between SymL and SymK. A class φ in π2(x, x) is said to be periodic if nz(φ) = 0.
The set of periodic classes will be denoted Πx(z).

Then, we show the following lemma (which is a generalization of [OS04, Proposition 2.15],
which corresponds to the case k=g):

Lemma 38. Let (Σ, z) be a pointed surface. Let L and K be two Lagrangian links on Σ,
away from z, with k components. Then, for any path x from SymL to SymK,

π2(x, x) ∼= π2(Sym
k(Σ))⊕Πx(z)

Proof. π2(x, x) is the fundamental group of P(SymL, SymK) based at the point x. The
evaluation at both ends of the path gives rise to a fibration

ΩSymk(Σ) → P(SymL, SymK) → SymL× SymK

The corresponding long exact sequence gives

0 → π2(Sym
k(Σ)) → π1(P(SymL, SymK)) → π1(SymL× SymK)

f−→ π1(Sym
k(Σ))

One can rewrite it as a short exact sequence

0 → π2(Sym
k(Σ)) → π2(x, x) → Ker(f) → 0

Since k ≥ g, we have either π2(Sym
k(Σ)) ∼= Z or π2(Sym

k(Σ)) = 0, and π2(Sym
k(Σ)) = 0

happens only when k = g = 1 (cf. [BRa14, Theorem 5.4]). When π2(Sym
k(Σ)) ∼= Z, the map

π2(x, x)
nz−→ Z gives a splitting of the short exact sequence, and π2(x, x) ∼= π2(Sym

k(Σ)) ⊕
Ker(f). When π2(Sym

k(Σ)) = 0, we also have π2(x, x) ∼= π2(Sym
k(Σ)) ⊕ Ker(f). Since nz

gives a splitting of the sequence, Ker(f) can be identified with Ker(nz) = Πx(z), which shows
that π2(x, x) ∼= π2(Sym

k(Σ))⊕Πx(z).
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Lemma 39. Given an intersection point x = {x1, ..., xk} ∈ Symk(Σ) between SymL and
SymK, all cappings are of the form [x, nS#w] where S is a generator of π2(Sym

k(Σ)) whose
intersection number with W is nσ1

(S) = 1, w is a capping from x to η that does not intersect
W , and n is an integer.

Proof. Fix a capping wx from η to x that does not intersectW . Then, π2(x, η) = wx#π2(η, η).
By the previous lemma, π2(η, η) ∼= π2(Sym

k(Σ))⊕Πη(σ1). Therefore,

π2(x, η) ∼= π2(Sym
k(Σ))⊕ (wx#Πη(σ1))

and elements of Πη(σ1)#wx do not intersect W .

Given an intersection point c ∈ E between α and α′, since E is aspherical, all cappings
from c to ηE do not intersect σ2. Moreover, since α and α′ are Hamiltonian isotopic to each
other, any two cappings would have the same areas and hence descend to a unique equivalence
class.

Lemma 40. Given an intersection point x × {c} between Sym(L ∪ α) and Sym(K ∪ α′), a
capping w from x to η that does not intersect W , and wE from c to ηE that does not intersect
σ2, w×wE is a capping from x×{c} to η′ such that n′σ(w×wE) = 0. Moreover, all cappings
from x× {c} to η′ are of the form [x× {c}, nS′#(w × wE)] for some integer n and cappings
w and wE as above, and where S′ is a generator of π2(Sym

k+1(Σ′)) with n′σ(S
′) = 1.

Proof. The first part of the lemma is straightforward. The proof of the second part is identical
to that of the previous lemma.

Proposition 41. The linear map defined by

Φ : CF ∗(SymL, SymK)⊗ CF ∗(α, α′) → CF ∗(Sym(L ∪ α), Sym(K ∪ α′))

[x, nS#w]⊗ [c, wE ] 7→ [x× {c}, nS′#(w × wE)]

is an isomorphism of vector spaces.

Proof. We already know there is a one-to-one correspondence between (Sym(L) ∩ SymK))×
(α ∩ α′) and Sym(L ∪ α) ∩ Sym(K ∪ α′), and according to the previous lemma, the mapping
Ψ : π2(x, η) × π2(c, ηE) → π2(x × {c}, η′) is also a one-to-one correspondence. It remains to
show that this mapping descends to a one-to-one correspondence between equivalence classes
of cappings

π2(x, η)/Ker(Sym(ω))× π2(c, ηE)/Ker(ωE) → π2(x× {c}, η′)/Ker(Sym(ω′(T ))).

First note that in the torus, π2(c, ηE)/Ker(ωE) is trivial (see the paragraph before Lemma
40).

Then recall that ω′(T ) is chosen such that it agrees with ω over Σ \ Br1(σ1), agrees
with ωE over the support of the Hamiltonian isotopy from α to α′, is compatible with j′(T )
and ω′(T )(Σ′(T )) = ω(Σ). These conditions guarantee that for all w and wE , we have
Sym(ω′(T ))(Ψ(w,wE)) = Sym(ω)(w) + ωE(wE). It implies the result.

To show that it is an isomorphism of chain complexes, we need to show that it preserves
the differential, i.e. that for all such x and c, ∂(x× {c}) = Φ((∂x)⊗ c+ x⊗ (∂c))2.

2More precisely, we need to identify the differentials of the capped intersection points, but the identification
of the cappings is straightforward so we focus on the intersection points.
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In order to do this, we compare the moduli space M(x, y) of Maslov index 1 Floer
trajectories from x to some y in Symk(Σ) to M(x × {c}, y × {c}), and M(c, c′) to M(x ×
{c}, x× {c′}).

In fact, we will show that these moduli spaces can be identified when considering a complex
structure on Σ′ = Σ#E that stretches sufficiently the connected sum tube.

This is a generalization of a statement in [OS04] which only considers the case of links
with g components (where g is the genus of Σ), and circles α and α′ with a single intersection
point. The proof of this statement still works in our setting. We will recall the main steps of
this proof and emphasize where one have to be careful when generalizing.

Before discussing the moduli spaces of Floer trajectories, which are pseudo-holomorphic
disks, we have to fix paths of almost complex structures on each manifold.

We fixa path of V -nearly symmetric almost complex structures (Jt)t∈[0,1] on Symk(Σ), for

some neighborhood V of ∆ ∪ Symk−1(Σ)× {σ1} ⊂ Symk(Σ).
Recall that j′(T ) is the complex structure on Σ′ = Σ#TE that coincides with j on

Σ\Br1(σ1), with jE on E \Br2(σ2), and is the standard cylindrical complex structure on the
connected sum tube [0, 2T ]× S1 between Σ and E.

Then, the symmetric product Symk+1(Σ′) endowed with the complex structure Symk+1(j′(T ))
admits an open subset holomorphically identified with

Symk(Σ−Br1(σ1))× Sym1(E −Br2(σ2))

Fix R1 > r1 and R2 > r2. We choose a path of almost complex structures J ′
t(T ) on

Symk+1(Σ′) satisfying the following conditions:

• J ′
t(T ) ≡ Jt × jE on Symk(Σ−BR1

(σ1))× Sym1(E −BR2
(σ2))

• J ′
t(T ) = Jt,r × jE on Symk(Σ − Br1(σ1)) × Sym1(BR2

(σ2) − Br2(σ2)), where Jt,r is
V -nearly symmetric for all r and connects Jt to Symk(j) as r, the normal parameter to
σ2, goes from R2 to r2.

• J ′
t(T ) ≡ Symk+1(j′(T )) on the rest of Symk+1(Σ′)

In particular, J ′
t(T ) is V ′-nearly symmetric for some neighborhood V ′ of the diagonal

∆′ ⊂ Symk+1(Σ′).
Let x, y ∈ Sym(L) ∩ Sym(K), and c, c′ ∈ α ∩ α′.
Given φ ∈ π2(x, y), there is a single class φ′

c ∈ π2(x × {c}, y × {c}) such that for any
z ∈ Σ \ (L ∪ K), nz(φ) = n′z(φ

′
c). Similarly, for any φE ∈ π2(c, c

′), there is a single class
φ′
E,x ∈ π2(x× {c}, x× {c′}) such that for any zE ∈ E \ (α ∪ α′), nEzE (φE) = n′zE (φ

′
E,x).

Then, Theorem 6 is a consequence of the following statement:

Theorem 42. Let φ ∈ π2(x, y) and φE ∈ π2(c, c
′) be two classes of Maslov index 1. Then,

for sufficiently large T , MJt,φ(x, y) ≃ MJ ′
t(T ),φ′

c
(x × {c}, y × {c}) and MjE ,φE (c, c

′) ≃
MJ ′

t(T ),φ′
E,x

(x× {c}, x× {c′}).
Remark 43. The isomorphisms above are identifications between deformation theories, and
therefore µ(φ′

c) = µ(φ) = 1, and µ(φ′
E,x) = µ(φE) = 1.

The proof of this theorem consists of two steps:

• Given a pseudo-holomorphic disk in Symk(Σ), we construct a corresponding disk in
Symk+1(Σ′) by gluing spheres;

• By a Gromov compactness argument, we show that all Maslov index 1 pseudo-holomorphic
disks in Symk+1(Σ′) can be constructed in this way.

These two steps will be addressed in the next two subsections respectively.
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5.3 Gluing

Let u be a pseudo-holomorphic disk in MjE ,φE (c, c
′). Then, u does not intersect σ2, and

therefore x × u defines a trajectory in Symk+1(Σ′) between x × {c} and x × {c′}, which is
J ′
t(T )-holomorphic. Moreover, for any zE ∈ E \ (α ∪ α′), n′zE (u) = nEzE (φE), so x × u ∈

MJ ′
t(T ),φ′

E,x
(x× {c}, x× {c′}).

Let u be a pseudo-holomorphic disk in MJt,φ(x, y). When nσ1
(φ) = 0, we can construct

u′ := u× {c}, and as before it lives in MJ ′
t(T ),φ′

c
(x× {c}, y × {c}).

However when n := nσ1
(φ) ̸= 0, we need to glue n spheres to the disk u to construct a

disk in Symk+1(Σ′). We follow the construction of [OS04], which was done in the case k = g,
but still works in this more general case. We will only give an outline of the proof without
going into the more technical details, which are exactly the same as in [OS04, Section 10.2
and 10.3].

Suppose u meets W = {σ1} × Symk−1(Σ) transversally in n distinct points q1, ..., qn. We
identify R × [0, 1] with D \ {±i}, where D denotes the unit disk in C. Then, u extends
continuously to D by setting u(−i) = x, u(i) = y.

We fix constants 0 < r1 < R1 such that u(D) ∩
(
Br1(σ1)× Symk−1(Σ−Br1(σ1))

)
⊂

Br1(σ1)× Symk−1(Σ−BR1
(σ1)).

There exists ϵ > 0 such that for every 1 ⩽ i ⩽ n, Bϵ(qi) is mapped by u into this subset.
We fix conformal identifications Br1(σ1)− σ1 ∼= [0,∞)× S1, and Bϵ(qi) ∼= [0,∞)× S1.
We will use Sobolev spaces with weight function eδτ1 , where:

• δ is a positive constant;

• τ1 : D − {q1, ..., qn} → [0,∞) is supported inside the Bϵ(qi);

• τ1(s, φ) = s for s ⩾ 1 in each Bϵ(qi) ∼= [0,∞)× S1.

Then, for each i there exists wi ∈ Symk−1(Σ), and (ti, θi) ∈ R×S1 such that the restriction
of u to Bϵ(qi)− {qi} ∼= [0,∞)× S1 differs by a Lp

1,δ map from the smooth map

ati,θi,wi
: [0,∞)× S1 → Symk−1(Σ)× [0,∞)× S1 ⊂ Symk(Σ)

defined by
ati,θi,wi

(s, φ) = (wi, s+ ti, φ+ θi)

where we cut-off s+ ti if it is negative ([OS04, Section 10.2]).
Given T > 0, we define X1(T ) := τ−1

1 ([0, T ]) and X1(∞) = D − {q1, ..., qn}.
Let h : R → [0, 1] be a smooth, increasing function such that h(t) = 0 for t < 0 and

h(t) = 1 for t > 1.
We can define a map ũT : X1(∞) → Symk(Σ) which agrees with u away from the Bϵ(qi),

and defined by

ũT (s, φ) = h(s− T )ati,θi,wi
(s, φ) + (1− h(s− T ))u(s, φ)

over Bϵ(qi)\{qi} ∼= [0,∞)×S1, and extends smoothly over qi (where the convex combination
is to be interpreted using the exponential map).

We also fix a constant δ0 > 0, and define τ0 : R × [0, 1] ∼= D → R supported away from
the Bϵ(qi), and such that τ0(s, t) = |s| for sufficiently large s3.

3In [OS04], they use (s, t) ∈ [0, 1]×R and require that τ0 equals to |t| for sufficiently large t, but we follow
the more standard convention that (s, t) ∈ R× [0, 1].
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Then, according to [OS04, Lemma 10.6], for the Sobolev norm with weight eδ0τ0+δτ1 , there
are constants κ > 0, S0 > 0 and C > 0 such that for all S > S0

||∂̄Jt ũS ||Lp
δ,δ0

(Λ0,1ũS)
⩽ Ce−κS

Now we consider spheres in Sym2(E). Let v be a holomorphic map from S2 to Symk−1(Σ)×
Sym2(E), constant on the first factor, and such that nσ2

([v]) = 1. Denote by M(S2 →
Symk−1(Σ)× Sym2(E)) the moduli space of such maps, modulo holomorphic reparametriza-
tion. According to [OS04, Lemma 10.7], we have:

Lemma 44. For such a map v, there exists a unique pair (w, c) in Symk−1(Σ)×E such that
(w, {c, σ2}) ∈ Im(v).4

The map [v] 7→ (w, c) is then a one-to-one correspondence between M(S2 → Symk−1(Σ)×
Sym2(E)) and Symk−1(Σ)× E.

We fix v as above, and normalize it so that v(0) = w × {c, σ2} (where we view S2 as
C ∪ {∞}).

We will only be interested in the case that c ∈ α ∩ α′. The intuitive reason is that we
are going to glue u× {c} : D → Symk(Σ)× E and n many v : S2 → Symk−1(Σ)× Sym2(E)
together (one v for each qi), so c has to be an intersection point between α and α′ for u×{c}
to satisfy the Lagrangian boundary conditions (cf. the degeneration (3) where the Gromov
limit lives). Therefore, we assume from now on that c ̸= σ2.

We identify a neighborhood of v(0) with

Symk−1(Σ)×Br2(σ2)× (E −BR2
(σ2)) ⊂ Symk−1(Σ)× Sym2(E)

for some 0 < r2 < R2.
Fix ϵ > 0 such that Bϵ(0) is sent by v to this neighborhood. Fix conformal identifications

[0,∞)× S1 ∼= Bϵ(0)− {0} and [0,∞)× S1 ∼= Br2(σ2)− {σ2}.
Then, there are unique w ∈ Symk−1(Σ), c ∈ E, (t, θ) ∈ [0,∞)× S1 such that v restricted

to [0,∞)× S1 ∼= Bϵ(0)− {0} differs by a Lp
1,δ map from the map

b(t,θ,w,y)(s, φ) = (w, s+ t, θ + φ, c)

(where Lp
1,δ is defined with a weight function eδτ2 with τ2 : S2 − {0} → R+ defined in a

similar fashion as τ1).
For S > 0, let S2(S) := τ−1

2 ([0, S]). We define a map5

vS : S2 − {0} → Symk−1(Σ)× Sym2(E − {σ2})

which agrees with v over S2(S), and such that over [0,∞)× S1 ∼= Bϵ(0)− {0},

vS(s, φ) = h(s− S)b(t,θ,w,c)(s, φ) + (1− h(s− S))v(s, φ)

In [OS04, Definition 10.8], the authors define a normalization condition on holomor-
phic spheres called being ’centered’. They show that the moduli space of centered maps
Mcent(S2 → Symk−1(Σ) × Sym2(E)) is diffeomorphic to Symk−1(Σ) × R × S1 × E through
the assignment v 7→ (w, t, θ, c).

Denote by v(w,t,θ,c) the pre-image of (w, t, θ, c) by this diffeomorphism.

4In [OS04], they use the notation (w, y) instead of (w, c). We use y to denote an intersection point between
SymL and SymK so we use c here.

5In [OS04], the domain of vS is S2 − {∞} which we believe is a typo.
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Using the conformal identifications Br1(σ1)−σ1 ∼= [0,∞)×S1 and Br2(σ2)−σ2 ∼= [0,∞)×
S1, one can think of Σ′(T ) as the union of Σ(2T ) and E(2T ) modulo the identification of the
cylinders [0, 2T ]×S1 ⊂ Σ(2T ) and [0, 2T ]×S1 ⊂ E(2T ) via the involution (t, θ) ∼ (2T −t, θ).

Let X2(T ) :=
n⊔

i=1
S2(T )i and X1 ∪T X2 be the union of X1(T ) and X2(T ) glued at their

common boundary. We have that X1 ∪T X2
∼= D2.

There exists some constant t > 0 such that for any real numbers S and T such that
0 < S < T − t, given the pseudo-holomorphic disk u ∈ MJs,φ(x, y) we fixed earlier, and the
intersection point c ∈ α ∩ α′ ⊂ E, one can define a map

γ̂c(u, S, T ) : D ∼= X1 ∪T X2 → Symk+1(Σ#TE)

which agrees with ũS × {c} over X1(T ) and with v(wi,−ti,θi,c),S on S2(T )i ⊂ X2(T ).
Following [OS04, Lemma 10.9], if S is sufficiently large, then for large T this map is

smooth, and for an appropriate Sobolev norm there are some positive constants C and a
such that

||∂̄J ′
t(T )γ̂c(u, S, T )|| ⩽ Ce−aS

One can show ([OS04, Proposition 10.12]) that when T is sufficiently large, the lineariza-
tion of ∂̄J ′

t(T ) for the spliced map from X1∪TX2 admits a right inverse whose norm is bounded
independent of T .

Then, applying the inverse theorem function ([OS04, Proposition 10.14]), there is an ϵ > 0
such that for sufficiently large T , there is a unique holomorphic curve γc(u) which lies in an
ϵ-neighborhood of γ̂c(u, S, T ) (measured in the appropriate Sobolev norm).

This γc(u) lives in MJ ′
t(T ),φ′

c
(x× {c}, y × {c}).

5.4 Gromov compactness

Now we need to show that every map in MJ ′
t(T ),φ′

c
(x × {c}, y × {c}) and MJ ′

t(T ),φ′
E,x

(x ×
{c}, x × {c′}) can be attained by the construction of the previous section. Once again, the
argument is similar to the one in [OS04].

Let x′, y′ ∈ Symk+1(Σ′) be two critical points of the action functional (i.e. intersection
points of the Lagrangians Sym(L ∪ α) ∩ Sym(K ∪ α′)). Let φ′ be a Maslov index 1 class in
π2(x

′, y′).
Then, according to [OS04, Proposition 10.15], any sequence uT ∈ MJ ′

t(T ),φ′(x′, y′) with
T going to infinity has, up to passing to a subsequence, a Gromov limit u∞ mapping to

Symk+1(Σ ∨ E) =
k+1⋃

i=0

Symk+1−i(Σ)× Symi(E). (3)

We can think of the wedge sum Σ∨E as the degeneration of the connected sum Σ#TE when
the neck length T goes to infinity. The limit u∞ is analyzed in Lemma 48 and 46 below.

Remark 45. An alternative way to think about this Gromov compactness is to consider the
relative Hilbert scheme Hilbk+1(π) of a Lefschetz fibration π : E → D over a disk D, where
generic fibres are smooth and the singular fibre is Σ ∨ E. The relative Hilbert scheme is
smooth [Per07, Proposition 3.7] and one can equip Hilbk+1(π) with a one-parameter family
of almost complex structures such that the projection to D are pseudo-holomorphic, they are
fibrewise V -nearly symmetric, and they agree with J ′

t(T ) over some fibres such that T → ∞
corresponds to degenerating to the central fibre. The central fibre of Hilbk+1(π) has a canonical
‘cycle map’ to Symk+1(Σ ∨ E) (cf. [Per07, Section 1.5.1]) and u∞ is the same as applying
Gromov compactness inside Hilbk+1(π) and then applying the cycle map to Symk+1(Σ ∨ E).
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Lemma 46 (cf. Proposition 10.16 of [OS04]). If (x′, y′) is of the form (x×{c}, y×{c}), then
u∞ consists of a main component of the form u×{c}, where u is a Maslov index 1 trajectory
from x to y in Symk(Σ), together with possibly some sphere components of the form {w}× v,
where w ∈ Symk−1(Σ) and v is a holomorphic sphere in Sym2(E) with Chern number 2 (i.e.
a sphere in the ruling).

Proof. Since the uT are Floer trajectories between x′ and y′, u∞ consists of a (possibly)
broken Floer trajectory between x′ and y′, as well as sphere bubbles and disk bubbles. Let
ui∞ be the components of u∞ in Symk+1−i(Σ) × Symi(E). By projection to factors, we can
write it as ui∞ = (uΣ,i

∞ , uE,i
∞ ).

Let DΣ,i = Symk−i(Σ)×{σ1} ⊂ Symk+1−i(Σ) and DE,i = Symi−1(E)×{σ2} ⊂ Symi(E).
We define the adjusted Maslov index µ̃(ui∞) of ui∞ relative toDΣ,i×Symi(E)+Symk+1−i(Σ)×
DE,i as the Maslov index of u with respect to the log canonical line bundle with a simple pole
along DΣ,i×Symi(E)+Symk+1−i(Σ)×DE,i. In other words, the adjusted Maslov index of ui∞
is its usual Maslov index viewed as a map to Symk+1−i(Σ)× Symi(E) subtracted by 2[ui∞] ·
(DΣ,i × Symi(E) + Symk+1−i(Σ)×DE,i). The additivity of Maslov index under passing to a
Gromov limit implies that the sum of the adjusted Maslov indices of the components of u∞
equals the Maslov index of φ′, which is 1. This is becauseDΣ,i×Symi(E)+Symk+1−i(Σ)×DE,i

is precisely the locus where Symk+1−i(Σ)× Symi(E) intersects other irreducible components
of Symk+1(Σ ∨ E).

Since Sym(L ∪ α) and Sym(K ∪ α′) are contained in Symk(Σ) × E ⊂ Symk+1(Σ ∨ E),
the broken Floer trajectory and disk bubbles are contained in Symk(Σ)×E. We denote the
spherical components of u1∞ by u1∞,S and the other components of u1∞ by u1∞,D.

Now, we analyze the adjusted Maslov indices of the spherical components of u∞. Recall
from [BT01, Theorem 9.2] that the rank of π2(Sym

j(Σ)) → H2(Sym
j(Σ)) is 1 when j ≥ 2

or Σ has genus 0, and 0 otherwise. Moreover, the Chern number of a spherical class u is
given by (j + 1− g)[u] · [Symj−1(Σ)× {σ1}] (cf. [CGHM+22b, Remark 4.18]). Therefore, its
adjusted Maslov index relative to Symj−1(Σ)× {σ1} is given by

2c1 · [u]− 2[u] · [Symj−1(Σ)× {σ1}] = 2(j − g)[u] · [Symj−1(Σ)× {σ1}] (4)

The adjusted Maslov index µ̃(ui∞) is the sum of the adjusted Maslov indices µ̃(uΣ,i
∞ )+ µ̃(uE,i

∞ )
where the two terms in the sum are relative to DΣ,i × Symi(E) and Symk+1−i(Σ) × DE,i,
respectively. For spherical components, they can be computed by the formula (4).

For i ̸= 1, we define

NΣ,i := [uΣ,i
∞ ] ·DΣ,i, NE,i := [uE,i

∞ ] ·DE,i

For i = 1, we define

NΣ,1 := [uΣ,1
∞,S ] ·DΣ,1, NE,1 := [uE,1

∞,S ] ·DE,1

and
PΣ,1 := [uΣ,1

∞,D] ·DΣ,1, PE,1 := [uE,1
∞,D] ·DE,1

The terms PΣ,1 and PE,1 make sense because the Lagrangian boundary condition splits as a
product, and they are disjoint from the divisor DΣ,1, DE,1. Clearly, NE,0 = NE,1 = 0 and
NΣ,k+1 = 0 because the spherical class is trivial. Note that DΣ,i×Symi(E) ⊂ Symk+1−i(Σ)×
Symi(E) and Symk−i(Σ) ×DE,i+1 ⊂ Symk−i(Σ) × Symi+1(E) are precisely the locus where
these two components of Symk+1(Σ ∨ E) meet each other. Therefore, we have

NΣ,i = NE,i+1 (5)
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for i ≥ 2, and
NΣ,1 + PΣ,1 = NE,2, NΣ,0 = NE,1 + PE,1 = PE,1

Recall that α′ is a Hamiltonian push-off of α such that the Hamiltonian isotopy from α
to α′ does not pass through σ2. Therefore, any Floer trajectory between two intersection
points of α and α′ does not pass through σ2 in E. Also, there is no non-constant disk
bubble in E so PE,1 = 0. Therefore, NΣ,0 = 0 and u∞ does not intersect the component
Symk+1(Σ) ⊂ Symk+1(Σ ∨ E) at all.

The total sum of the adjusted Maslov indices of the components of u∞ is given by

µ̃(u1∞) +
k+1∑

i=2

µ̃(ui∞)

=µ̃(u1∞,D) + µ̃(uΣ,1
∞,S) + µ̃(uE,1

∞,S) +
k+1∑

i=2

µ̃(uΣ,i
∞ ) +

k+1∑

i=2

µ̃(uE,i
∞ )

=(µ(u1∞,D)− 2PΣ,1) + 2(k − g)NΣ,1 + 0 +

k+1∑

i=2

2(k + 1− i− g)NΣ,i +

k+1∑

i=2

2(i− 1)NE,i

=µ(u1∞,D)− 2PΣ,1 + 2(k − g)NΣ,1 +

k∑

i=2

2(k + 1− i− g)NΣ,i + 2NE,2 +

k∑

i=2

2iNE,i+1

=µ(u1∞,D)− 2PΣ,1 + 2(k − g)NΣ,1 + 2(NΣ,1 + PΣ,1) +

k∑

i=2

2(k + 1− g)NΣ,i

=µ(u1∞,D) + 2(k − g + 1)NΣ,1 +

k∑

i=2

2(k + 1− g)NΣ,i

As we said earlier, this total sum has to be 1. By regularity, each Floer trajectory component
of u1∞,D contributes at least 1 to the Maslov index. Any non-constant disk bubble in u1∞,D

contributes at least 2 to the Maslov index. Since k ≥ g, we have (k − g + 1) > 0. Therefore,
the sum is 1 only if NΣ,i = 0 for all i, and u1∞,D consists of a single component of Maslov
index 1. It implies that PΣ,1 = NE,2.

By genericity, we can assume that the component u1∞,D intersects DΣ,1 ×E transversely.

Therefore, u2∞ intersects Symk−1(Σ)×DE,1 transversely. Note that every component of u2∞
projects to a constant in Symk−1(Σ) because NΣ,2 = 0. Since the domain has genus 0, the
bubbling is modeled on a tree and hence no component of u2∞ can be a multiple cover of
an underlying holomorphic sphere. It implies that the sphere components of u∞ are of the
form {w} × v, where w ∈ Symk−1(Σ) and v is a holomorphic sphere in Sym2(E) with Chern
number 2. The Floer trajectory component of u∞ is u1∞, which goes between x × {c} and
y × {c}). Therefore, it is of the form u× {c}, where u is a Maslov index 1 trajectory from x
to y in Symk(Σ).

Remark 47. The bubbling analysis in the proof of Lemma 46 provides the details of the
phrase ‘by a dimension count’ in the proof of [OS04, Proposition 10.16] and at the same time
confirms that we can generalize it to all k ≥ g.

Lemma 48. If (x′, y′) is of the form (x×{c}, x×{c′}), then u∞ consists of a single component
and it is of a product form {x} × u where u is a Maslov index 1 trajectory from c to c′ in E.
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Proof. The proof is the same as Lemma 46. The only difference is that when (x′, y′) is of the
form (x×{c}, x×{c′}), the Floer trajectory u1∞,D is of the form {x}×u where u is a Maslov
index 1 trajectory from c to c′. Therefore, we have PΣ,1 = 0 and hence there is no sphere
bubbles.

Lemma 49. If (x′, y′) is of the form (x × {c}, y × {c′}) where x ̸= y and c ̸= c′, then
MJ ′

t(T ),φ′(x′, y′) is empty for large T .

Proof. We need to show that there is no possible u∞. The proof is the same as Lemma 46
again. More precisely, the reasoning for NΣ,i = 0 for all i, and u1∞,D consists of a single
component of Maslov index 1 can be applied without any change. Since x ̸= y and c ̸= c′,
there is no regular Maslov 1 Floer trajectory connecting x′ and y′. Therefore, there is no
possible u∞.

Now we show that for sufficiently large T , any map in MJ ′
t(T ),φ′(x × {c}, y × {c}) is

attained by the construction of the previous section.
We proceed by contradiction: suppose that there is a sequence (Tm) going to infinity, and

a sequence of disks uTm ∈ MJ ′
s(Tm),φ′(x × {c}, y × {c}) that are not attained by the gluing

construction.
By what precedes, we can extract a subsequence converging to a bubbletree u∞, consisting

of a disk u× {c} and n spheres {wi} × vi.
Then, the authors of [OS04] show that for sufficiently largem, uTm is in an ϵ-neighborhood

of the nearly holomorphic map γ̂c(u, S, Tm) for some 0 < S < Tm− t (for the suitable Sobolev
distance).

But we showed in the previous section that there was a single J ′
t(T ) holomorphic curve in

such a neighborhood, namely the curve γc(u, Tm). Therefore, for large m, uTm = γc(u, Tm),
which contradicts our assumption.

Hence by contradiction for large T , we have MJs,φ(x, y) ≃ MJ ′
t(T ),φ′

c
(x× {c}, y × {c}).

This concludes the proof of Theorem 42.
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[LZ18] Rémi Leclercq and Frol Zapolsky. Spectral invariants for monotone La-
grangians. J. Topol. Anal., 10(3):627–700, 2018.

[MS21] Cheuk Yu Mak and Ivan Smith. Non-displaceable Lagrangian links in four-
manifolds. Geom. Funct. Anal., 31(2):438–481, 2021.

[OM07] Yong-Geun Oh and Stefan Müller. The group of Hamiltonian homeomorphisms
and C0-symplectic topology. J. Symplectic Geom., 5(2):167–219, 2007.
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