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Abstract

This study investigates the modulus of elasticity of silicon nanowires us-
ing a combination of molecular dynamics simulations and machine learning
techniques. The research presents a substantial dataset with over 3000 data
points obtained from molecular dynamics simulations, which reveals detailed
insights into the mechanical properties of silicon nanowires and underscores
the importance of accurate model calibration. Machine learning surrogate
models are employed to predict the elasticity of silicon nanowires, focusing
on the influence of surface state and crystal orientation. By analyzing par-
tial dependencies and using inverse pole figures, the study demonstrates that
the modulus of elasticity exhibits significant orientation dependence. This
work bridges computational and experimental approaches, offering a refined
understanding of the mechanical behavior of silicon nanowires. The findings
highlight the potential of integrating machine learning with atomistic sim-
ulations to improve the predictive accuracy of material properties, building
the framework for advancements in nanoelectromechanical applications.

Keywords: Silicon nanowire, molecular dynamics, machine learning, tensile
behavior, modulus of elasticity



1. Introduction

Nanowires (NWs) exhibit a significant potential as essential building blocks
for the development of nanoelectromechanical systems (NEMS) [1], nanoelec-
tronics [2], and photonics [3, 4] with applications as highly sensitive sensors
|5] and energy-related technologies [6, 7|. Significant advancements in fab-
rication techniques and the wider range of technological applications have
generated increased interest in thoroughly characterizing NWs [8, 9, 10]. The
utilization of multi-scale modeling methods also contributes to this growing
interest [11, 12].

The surface contribution becomes more significant as a result of a size
reduction in nanomaterials leading to different physical properties compared
to the bulk counterpart [13, 14]. The mechanical properties are found to be
considerably size-dependent at nanoscale [13, 15, 16]. Hence understanding
the mechanical behavior of NWs is essential to embed them into NEMS de-
vices |16, 17|. Various experimental methods are employed to investigate the
impact of size reduction on the mechanical properties of NWs. This includes
studying the modulus of elasticity, fracture strength, and brittle to ductile
transition temperature, where considerable changes in the mechanical prop-
erties have been identified as a result of size reduction [11, 12, 16, 18]. Thus
nanomechanical modeling techniques have been developed as a means to ex-
plain such behavior in NWs [12]. These approaches can be classified as contin-
uum mechanics, analytical models, atomistic simulations and first principle
methods providing in-depth analysis on the scale effect [11, 12, 17, 19, 20].
As the size decreases, the surface contribution becomes more prominent,
leading to notable size-dependent properties of the NWs [11, 12, 21, 22].
In this respect, understanding the scale effect becomes more challenging
[11, 12, 22, 23|.

Silicon (Si) NWs have been extensively investigated as fundamental com-
ponents in semiconductor manufacturing due to their unique properties |13,
16, 24, 25, 26]. Although there have been numerous investigations into the
size-dependent mechanical properties of Si NWs, conflicting findings highlight

*Corresponding author
FEmail address: ealaca@ku.edu.tr (B. Erdem Alaca)

Preprint submitted to Computational Materials Science October 4, 2024



the need for a more comprehensive analysis of the scale effect [11, 12, 15, 22].
A recent study highlights the necessity of adopting a multiscale theoretical
framework to gain a comprehensive understanding of the size-dependent me-
chanical characteristics of St NWs [11]. Another study introduces a multiscale
model to bridge the existing gap between atomistic simulations and experi-
mental observations encountered around 10 nm critical dimension [12]|. Fur-
thermore, the importance of nanomechanical model selection is highlighted,
where deviations of up to 85-100 GPa in elastic properties of Si NWs are
attributed to the specific choice of the model [11, 27|. In light of the existing
challenges in fabrication, testing, and characterization, modeling continues
to be a crucial element in precise interpretation of the findings [11, 18]. Addi-
tionally, the disparities between experimental and computational approaches
concerning the scale effect present another significant challenge in this field
[15, 16]. Molecular dynamics (MD) and density functional theory (DFT)
play vital roles in revealing the size-dependent trends in the elastic proper-
ties of Si NWs [22, 28, 29, 27, 30]. In line with this, MD simulations are
used to subject Si NWs to tensile |12, 22, 30, 31, 32|, vibration [33, 34|, and
bending tests [27, 35, 36|, providing valuable insights into their mechani-
cal properties. Thus, utilizing small-scale modeling methods can facilitate
both analytical and experimental analyses to enhance the understanding of
research outcomes [12].

The convergence between high-throughput computing and advanced ma-
chine learning (ML) algorithms has introduced a novel approach for enhanc-
ing the structural design and performance of nanomaterials [37, 38, 39, 40].
This innovative approach has made a significant impact on the discovery
of new materials [41, 42, 43]. While atomic-scale modeling has made re-
markable progress, they still face inherent limitations due to the substantial
computational expenses associated with explicit methods like MD and DFT
|41, 44]. Conversely, the field of NEMS design and industrial applications
necessitate a more efficient and expeditious solution to address the size effect
on the elasticity of Si NWs [11]|. Given the current computational challenges
encountered in investigating the size effect in Si NWs, ML presents an op-
portunity to streamline this process and inject a new level of realism into the
field of material science and technology [45, 46, 47]. Moreover, ML can func-
tion as a tool to offer enhanced understanding of material behavior at the
nanoscale and to provide insights for the design purposes [48]|. Additionally,
ML-based techniques are not only employed to explore material properties
but are also harnessed for the creation of novel interatomic potentials for Si,



offering a high degree of accuracy when compared to DFT studies [49, 50].
The current study addresses the size-dependent elastic properties of Si
NWs using ML-driven atomistic simulations. The details associated with
atomistic simulations are discussed in Section 2.1, while Section 2.2 addresses
the specifics of ML modeling efforts. The results section offers an in-depth ex-
amination of atomistic findings given in Section 3.1 and ML-driven discoveries
in Section 3.2. Ultimately, Section 3.3 provides an interpretation of the ML-
based atomistic findings while exploring the potential for future expansion of
the methodology introduced in this study [51]. This work contributes valu-
able insights into the elastic properties of Si NWs, thereby enhancing our un-
derstanding of their mechanical characteristics at the nanoscale. The devel-
oped methodology has the potential to pave the way for comparing ML-based
computational results to experimental findings, serving as the benchmark and
validation measure for the quality of similar efforts [11, 12, 16, 41, 47].

2. Materials and Methods

This section covers the methodology of the study in two parts: the initial
one discuss the computational aspects on the modeling of Si NWs using
MD simulations, while the subsequent section offers an extensive explanation
of ML strategies. This includes discussions on data preparation, feature
selection, and the algorithms employed within the framework of this article.
An in-depth exploration of both approaches in Sections 2.1 and 2.2 are given,
presenting a thorough analysis of the methods utilized.

2.1. Atomistic Simulations

This section offers a comprehensive account of modeling the tensile test
of Si NWs using MD simulations. The two commonly employed boundary
condition (B.C.) approaches for modeling the tensile behavior of NWs are
examined: i) non-periodic and ii) periodic tensile. Sections 2.1.1 and 2.1.2
are dedicated to discussing these two approaches individually. Furthermore,
both sections delve into the specifics of various computational configurations,
including the preparation of atomic configurations, interatomic potentials,
and other relevant computational particulars.

2.1.1. Non-periodic Tensile Stmulation
In this subsection, the atomistic methodology employed for the explo-
ration of the tensile behavior of Si NWs utilizing a non-periodic B.C. along



the NW is explained. MD simulations are conducted on Si NWs with un-
reconstructed surface states, utilizing the LAMMPS code [52]. Figure 1 (a)
illustrates the initial atomic configuration of Si NWs, emphasizing the ge-
ometric characteristics of the NW, which possesses a square cross-sectional
shape. This representation includes the width, which serves as a represen-
tation of the critical dimension (CD) in Si NWs. Figure 1 schematically
describes the tensile modeling approach where the length (L) of Si NW and
the fixed and movable boundaries are labeled as L; and L,,, respectively.
The lengths Ly and L,, correspond to one-eighth of the NW length (L). In
this respect, the length to CD ratio (L/CD) is termed as the aspect ratio
(AR). Regarding the geometrical and computational details, Table 1 provides
a complete description of input parameters. In this respect, the CD spans
from 2 nm to 10 nm, while the predefined ARs are assigned as 7, 8, 9, 10,
12, 14, 16, 18, and 20. Si NWs having < 100 >, < 110 >, and < 111 > crys-
tal orientations are subjected to tensile test where the interactions between
Si atoms are modeled using the Tersoff-T3 (TT3) [53] and Stillinger-Weber
(SW) |54] potentials. Comprehensive details of the potential expressions and
coefficients are available in the respective references [53, 54].

Non-periodic B.C.s are imposed in all directions (z, y, and z) to account
for a finite size. An energy minimization step is executed using the conjugate
gradient method, followed by assigning an initial velocity distribution based
on a finite temperature to all atoms. Subsequently, a relaxation process is
carried out for 60 ps at a constant temperature, employing a 1 fs time step
in the canonical NVT ensemble. During relaxation, the fixed and movable
regions connected to the NW remain in fixed configurations. The subsequent
tensile test involves fixing one end of the NW (L) while allowing the other
end (L,,) to move. To mitigate shock wave generation due to rapid loading,
a linearly increasing constant velocity is applied along the longitudinal direc-
tion (x). The velocity starts from zero at the support and gradually increases
to its maximum at the movable boundary. A velocity of 1.0 A/ ps is applied
at a constant temperature, corresponding to a strain rate of ¢ ~ 1.0 x 10°
s~!. This rate aligns with the strain rate employed in previous MD-based
tensile tests on NWs [22, 28, 30, 32|. The simulations are carried out at
three distinct temperatures: specifically, 10 K, 300 K, and 600 K. The Virial
theorem [55] is employed for stress calculations given in Eqn. 1.
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Here, {2y represents the atomic volume in an undeformed system, where N
denotes the total number of atoms. The distances between atoms « and S are
denoted as r*%. Furthermore, v§ signifies the position of atom « along the j
direction, which can be expressed as vfﬁ = vj — Uf . The term V corresponds
to the interatomic potential. The virial stress can be calculated by summing
contributions from all atoms (and atom pairs) within the simulation cell, and
subsequently dividing the result by the cell volume, which in this context

corresponds to the volume of the NW.

2.1.2. Periodic Tensile Simulation

This subsection outlines the MD approach used to investigate the tensile
behavior of Si NWs with unreconstructed surfaces and periodic B.C.s applied
along the NW. Similar to the Si NWs described in Section 2.1.1, atomistic
simulations are carried out on Si NWs with crystal orientations listed in Ta-
ble 1, utilizing the LAMMPS code [52]. In contrast to the Si NWs discussed
earlier, periodic B.C.s are applied along the z-direction, while the y- and
z-directions are constrained to model an infinitely long NW segment given
in Figure 1 (c). The parameters such as CD, AR, interatomic potential,
and temperature are repeated for Si NWs studied using this method. The
MD simulations start with an energy minimization step using the conjugate
gradient method, followed by the assignment of initial velocities based on a
Gaussian distribution at the specified temperature. Subsequently, dynamic
equilibration at the designated temperature is carried out for 60 ps, utiliz-
ing the Nose-Hoover isobaric-isothermal (NPT) ensemble with a time step
of 1 fs. Following equilibration, the simulation cell undergoes longitudinal
deformation at a strain rate of ¢ = 1 x 10°s~!, which falls within the suitable
range for MD-based tensile testing [22, 32|, as well as for Si NWs discussed in
Section 2.1.1. This ensures consistency in the deformation of Si NWs within
the scope of this study. The stress-strain curves obtained for Si NWs are
utilized to determine the modulus of elasticity, employing the formulation
given in Eqn. 1.

Apart from Si NWs featuring unreconstructed surfaces modeled in this
study, the comprehensive framework also encompasses Si NWs with native



oxide surface states, as previously investigated by the authors [22, 28, 30].
In this regard, readers are encouraged to refer to the provided references
in Table 1 for computational details on modeling Si NWs with native oxide
[22, 28, 30].

(a) (b) .~X i (c) F‘.:»X i -
: = : =

Figure 1: (a) Cross-sections of a Si NW with dimensional parameter defined as CD, repre-
senting NW width. (b) Non-periodic tensile simulation of Si NWs exhibited schematically
(upper) and with atomic configuration (lower). The associated NW length (L) and B.C.s
regions are referred as fixed (L) and movable boundaries(L,,). (c) Periodic tensile sim-
ulation of Si NWs exhibited schematically (upper) and with atomic configuration (lower).
The associated NW length (L) and simulation box are shown. The force denoted by F
schematically illustrates the direction of the tensile simulations.

2.2. Machine Learning

This section encompasses the intricacies related to data extraction from
modeling Si NWs with unreconstructed surface states, as elaborated in Sec-
tion 2.1, and draws upon information available in the literature for Si NWs
with a native oxide surface state |22, 28, 30|. Further explanations regarding
the data will be presented in Section 2.2.1, while details pertaining to feature
selection and the implementation of ML models will be discussed in Section
2.2.2 and Section 2.2.3, respectively.

2.2.1. Data Preparation

Effective data preparation is crucial for developing a robust ML algorithm,
where the relevance of data is as important as the quantity for successful pre-
dictions. To construct the dataset necessary for training the ML algorithms,
two primary sources of input are employed. The modeling efforts outlined in
Section 2.1 generate tensile responses for Si NWs under different parameter
sets, with a specific focus on Si NWs featuring the unreconstructed surface



state. In light of three crystallographic orientations of Si, two distinct inter-
atomic potentials, three designated testing temperatures, and nine differing
Si NW CDs, coupled with nine distinct ARs modeled via non-periodic and
periodic B.C.s, a comprehensive collection of 2916 Si NWs is established
within this study. Additionally, data from previous research conducted by
the authors on Si NWs with a native oxide surface state, as documented in
relevant literature |22, 28, 30|, are assimilated into the overall dataset.

The Si NWs featuring a native oxide surface state exhibit variations in
critical dimension, native oxide layer thickness, applied B.C.s (non-periodic
and periodic), temperature, and interatomic potentials (Tersoff-Munetoh
(TM) [56] and modified Stillinger-Weber (m-SW) [57]). Notably, two key
distinctions arise upon integrating data from Si NWs with these distinct sur-
face conditions. Firstly, the unreconstructed Si NWs maintain their original
surface thickness without any native oxide layer, whereas the Si NWs with
native oxide exhibit values that account for differing oxide layer thicknesses.
Secondly, recognizing the structural deviations resulting from oxygen atom
presence in Si NWs with native oxide surfaces, a consolidation is performed
concerning the categorization of Tersoff and SW potentials. Consequently,
TT3 and TM, as well as SW and m-SW, are grouped within the same poten-
tial family, and comparable values are attributed during dataset preparation.
In this context, the Tersoff (T'T3 [53] and TM [56]) and Stillinger-Weber (SW
[54] and m-SW [57]) represent two distinct families of interatomic potentials
within the framework of this article. With the inclusion of the dataset per-
taining to Si NWs with native oxide surface states, a total of 305 additional
data points are appended to this study’s collection. This extension elevates
the overall number of data points to 3221, each representing the modulus of
elasticity of a unique Si NW.

Certainly, acquisition a substantial number of data points stands as a pri-
mary challenge in materials informatics, primarily due to the computational
costs associated with acquiring materials and their corresponding target vari-
ables. Consequently, datasets frequently comprise a limited quantity of data
points. Notably, to the best of our knowledge, the number of data points
available for different Si NWs, specifically those investigating elasticity us-
ing MD (excluding those presented by the authors [22, 28, 30]), is currently
less than 300. This circumstance might contribute significantly to the well-
recognized discrepancies between elastic properties of Si NWs obtained via
computational and experimental approaches [15, 16]. In this context, every
data point within the dataset encompasses seven distinct features, as delin-



eated in Table 1, along with a single target variable representing the modulus
of elasticity of the Si NW. The tabulated features encompass crystallographic
orientation (ORNT), CD, AR, interatomic potential (POT), temperature
(T), BC (non-periodic and periodic), and surface state (SS). Each unique
combination detailed in Table 1 for the unreconstructed surface condition is
simulated, and the dataset is further enriched through the incorporation of Si
NWs with native oxide surface states from pertinent literature |22, 28, 30|. In
the context of ML applications, the intrinsic nature of predictors within the
dataset might necessitate preprocessing to enhance the overall performance
of the ML process. Specifically, variables within a dataset can exhibit non-
normal distributions or disparate scales, all of which can adversely impact the
efficacy of ML algorithms. Therefore, prior to training, an in-depth analysis
of the dataset will be undertaken to comprehend the data distribution and
subsequently implement suitable data transformation techniques. Through
data transformation, the variables are normalized and scaled to ensure eq-
uitable treatment by ML algorithms. In this study, a z-score normalization
(standardization) approach is employed to achieve standard scaling and nor-
malization of features, ensuring a mean of zero and a standard deviation
of one. In this regard, min-max scaling is applied to normalize the numer-
ical features, ensuring that all values were scaled between 0 and 1, which
could enhance the performance and convergence of the ML models. For the
categorical variables (POT and BC), label encoding is used, assigning each
category a unique integer value, allowing the models to efficiently process
the data without being influenced by any ordinal bias. The next section will
cover the details associated with descriptors and feature selection for ML
algorithms.

2.2.2. Feature Selection

A meticulous feature selection process is carried out prior to construct-
ing the dataset. Previous studies by the authors on Si NWs with native
oxide surfaces [22, 30| highlighted the most important parameters to prior-
itize in modeling efforts for reliable ML analysis. Building on the previous
findings, priority was given to parameters that significantly influence the
elastic properties (more than 10% change in modulus of elasticity). The
seven parameters outlined in the earlier section, along with their detailed
descriptions in Table 1, have been identified as essential for this task. In
this regard, highly correlated features are excluded from this scheme, as they
would redundantly convey a shared realm of information. For instance, this



applies to combinations such as strain rate and time step within the context
of tensile modeling of Si NWs. Despite the selection of seven features for this
study, the assessment of correlation between these features is crucial, con-
sidering both linear and non-linear perspectives. To address the potential
linear correlation, the Pearson’s correlation coefficient (PCC) is calculated
[58]. To address broader correlation issues, the random forest (RF) method,
renowned for its efficacy in classification and regression tasks, is also utilized
for feature correlation study [59]. In contrast to alternative feature selection
methods, the RF method assigns importance scores to variables by ranking
them based on their performance during model optimization. This approach
allows for a comprehensive evaluation of feature correlations, facilitating en-
hanced interpretation of findings. Before implementing ML algorithms for
data generation, the initial focus revolves around refining the dimension-
ality of the dataset by emphasizing the most pertinent features. From a
modeling perspective, this entails considering factors like time step, cross-
section shape, alternative testing methods such as bending or compression,
and different types of interatomic potentials like the Modified Embedded
Atom Method (MEAM) potential [31]. However, while this approach could
enhance the dataset, it carries the risk of introducing an excessive number
of input features, potentially leading to overfitting especially when dealing
with a limited number of instances due to the problem’s potential high degree
of freedom or non-linearity. The following section will address the specifics
pertaining to ML algorithms.

2.2.3. Machine Learning Algorithms

Building upon the insights gained from the initial data inspection via
MATLAB [60] (details are given in Supporting Information), various ML
algorithms namely, Random Forest Regressor (RF), K-Nearest Neighbors
Regressor (KNN), Linear Regression (LR), Decision Tree Regressor (DT),
Multi-Layer Perceptron Regressor (MLP), and Support Vector Regressor
(SVR) are assessed in their ability to forecast the target variable. Prior to
model training, the original dataset is divided into training data, facilitating
model optimization, and a test dataset, employed to gauge the models’ pre-
dictive accuracy on unseen data. The evaluation of ML models is grounded
in their predictive errors on the test dataset, measured by root mean squared
error (RMSE), mean absolute error (MAE), and coefficient of efficiency (R?)
as defined by Equations 2, 3 and 4, respectively. In this regard, y; and y;
are true and predicted values, respectively. Here ¢ is the average of the pre-
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Table 1: Summary of input and output parameters used for modeling the tensile behavior
of Si NWs.

Definition Descriptor  Values Output
(E) Range
(GPa)

Crystal

Orientation ORNT < 100 >: [100]-x [010]-y [001]-z 54.4 - 140.6

< 110 >: [110]-z [001]-y [110]-z 65.9 - 211.7
<111 >: [111]-z [110]-y [T12]-z 67.4 - 226.6

Critical
Dimension CD 2,3,4,5,6,7,8,9, 10 nm 54.4 - 226.6
Length to
Width Ratio AR 7,8,9, 10, 12, 14, 16, 18,20  54.4 - 226.6
Interatomic
Potentials POT Tersoft (TT3 [53] and TM [56]) 54.4-226.6
& Stillinger-Weber (SW  [54] (Tersoff) &
and m-SW [57]) 67.8-195.3
(SW)
Temperature T 10, 300, 600 K 54.4 - 217.9
(10K) &
4.8 - 220.3
(300K) &
61.5 - 109.0
(600K)
Boundary
Conditions BC Non-periodic (NP) and Peri- 54.8 - 226.6
odic (P) (NP) &
54.4 - 183.9
(P)
Surface
State SS Unreconstructed and Native 54.4 - 226.6

Oxide (Refs. [22, 28, 30])
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dicted values and n is the total number of the samples. All computations
are executed using the scikit-learn library within the Python programming
language [61]. Upon identifying the most effective models, additional op-
timization techniques, including hyperparameter tuning, are experimented
with to determine optimal configurations. These optimizations are iterated
to enhance the training process and mitigate the risk of overfitting given the
current training dataset.

n

1

RMSE = - Z(yi — 7i)? (2)

MAE = =3y~ i 3)
o4 Wi — )

=1 Zi:l(yi —)? (4)

3. Results

The section begins by presenting the particulars concerning the MD mod-
eling, including the outcomes of atomistic assessments for predicting the
modulus of elasticity in Si NWs as discussed in Section 2.1. It explores
the intricacies of the dataset, furnishing additional insights into the data
arrangement intended for the following phase of the results section (Section
3.1). Subsequently, the results of the ML approach, carried out using Python
(discussed in Section 2.2), are elaborated (Section 3.2). Finally, the interpre-
tation of findings on the elastic properties of Si NWs will be carried out in
Section 3.3.

3.1. Atomistic Results

Utilizing atomistic simulations, particularly MD, presents a viable ap-
proach for investigating the elastic properties of Si NWs. Despite an ex-
tensive literature examining factors like crystallographic orientation, critical
dimension, cross-section shape, AR, testing method, strain rate, tempera-
ture, interatomic potential, surface condition, defects or flaws, and B.C.s,

12



a consensus regarding the size effect in elasticity of Si NWs is still missing.
This stems not only from disparities between computational and experimen-
tal efforts but also from significant deviations observed in atomistic findings
due to variations in aforementioned parameter selection. Moreover, given
the extensive applications of Si NWs in future electronics and NEMS, there
is an imperative need for a rapid and precise exploration of elasticity con-
cerning size effects. In this context, the integration of ML algorithms with
computational approaches has the potential to streamline this process. This
section presents the outcomes of MD simulations conducted within the scope
of this paper, as well as previous data points from studies published by the
authors. Within this framework, the modulus of elasticity of Si NWs is de-
rived from stress-strain curves as the output parameter. This comprehensive
analysis includes data from 2916 Si NWs modeled in this study, along with
an additional 305 data points extracted from prior research by the authors
[22, 28, 30|. This accumulation results in a dataset comprising 3221 data
points, each representing the modulus of elasticity for a unique Si NW.

Given the computational demands associated with modeling Si NWs with
a native oxide layer due to the increased number of atoms involved, the
primary focus of modeling efforts is directed toward unreconstructed Si NWs.
Specifically, all possible combinations of Si NWs with unreconstructed surface
states, accounting for the nine different CDs, nine various ARs, three distinct
temperatures, two types of B.C.s, and two types of interatomic potentials are
simulated. This extensive dataset serves as a valuable resource for ongoing
and prospective studies, considering its unique size and composition. The
dataset presented within this section will undergo examination and analysis
through the utilization of ML models in two distinct stages given in Section
3.2.

3.2. Machine Learning Results

Following the initial data set examination within the context of ML al-
gorithms (via MATLAB provided in Supporting Information), the Python
scikit-learn library is employed to conduct a more detailed investigation of
elasticity in Si NWs. This analysis involves the assessment of various ML
algorithms, namely RF, KNN, LR, DT, MLP, and SVR while different train-
ing data percentages, ranging from 30% to 90% with 10% intervals, are used
in this evaluation. Given the size of dataset in this study, it is important to
split the data thoughtfully, aiming for a balanced distribution in both the

13
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Figure 2: The evolution of (a) RMSE, (b) MAE, and (c) R? on test dataset with changing
training dataset proportions for the RF, KNN, LR, DT, MLP, and SVR algorithms.

training and test datasets to avoid overfitting. To ensure robustness, the ran-
dom assignment of the data set for this analysis is repeated across 100 trials.
The ML models are evaluated based on their prediction errors on the test
dataset. Subsequently, calculations of RMSE, MAE, and R? are performed,
with their respective standard deviations presented in Figures 2 (a), (b), and
(c), respectively. The obtained errors for RMSE, MAE, and R?, based on
100 repetitions of the analysis at different training data percentages, show a
negligible standard deviation, indicating the reliability of the reported errors.

When considering RMSE as the most critical performance evaluation pa-
rameter in the context of ML algorithms, a clear distinction emerges in the
errors obtained. Specifically, four models — RF, KNN, MLP, and DT — re-
port RMSE values below 10%, while LR and SVR, which both employ linear
kernels in this study, exhibit higher RMSE values. This emphasizes the

14



non-linearity of the problem when examining the elasticity of Si NWs. Fur-
thermore, MAE, a common measure of forecast error in time series analysis,
confirms the findings from the RMSE analysis, showing a greater dependence
on the training data percentage for smaller data subsets. In this context, the
calculation of R? provides an additional quantitative assessment of the ob-
servation of non-linearity. Linear models exhibit a degree of correlation of
approximately 80% within the context of prediction and target values, while
the remaining four models (RF, KNN, MLP, and DT) demonstrate more
than 95% coefficient of efficiency, underscoring their suitability for this task.
The evaluation of uncertainty, as presented through RMSE, MAE, and R? in
Figures 2 (a), (b), and (c¢), demonstrates that the majority of models exhibit
the lowest error when 70% of the data is used for training, indicating this as
the optimal percentage for follow-up analysis. Accordingly, the discussion on
the specific models and hyperparameter analysis will focus on this data com-
bination. Preliminary analysis using MATLAB models (given in Supporting
Information) allowed for an initial evaluation of different ML models. For
instance, the RF-Bagged model demonstrated lower RMSE and MAE com-
pared to the RF-Boosted model. Therefore, the Python-based analysis is
guided by these initial findings from MATLAB.

Following the discussion on error analysis, a subsequent examination and
discussion of algorithms are carried out using a 30% test data percentage,
which corresponds to optimal error rates observed for the majority of the
trained models. Furthermore, the performance of the KNN algorithm hinges
on the value of the hyperparameter K, which defines the number of closest
neighbors considered from the training dataset when making predictions for a
new data point. This provides an opportunity for further improvement of the
KNN model where the K hyperparameter can be fine-tuned. Lower values
of K such as those close to 1, result in predictions that closely resemble the
patterns in the training data, reducing flexibility but potentially increasing
generalization capabilities. In contrast, higher values of K introduce more
diversity in the neighbor selection process. In this context, Figure 3 (a)
displays the RMSE across a range of K hyperparameter values, spanning
from 1 to 20. The optimal value of K is identified as 4, corresponding to the
minimum error achieved. Furthermore, the paper explores the application of
the bagging ensemble technique to enhance the stability and accuracy of the
KNN model. The reduction in RMSE percentages for various training data
percentages is illustrated in Figure 3 (b), demonstrating the benefits of this
technique in improving model performance.
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Furthermore, Figure 3 (c) displays a heatmap illustrating the PCCs among
the input variables. Notably, the parameters representing dimensionality,
specifically CD and AR, exhibit the highest correlation, reaching approx-
imately 0.7. This correlation represents the strongest linear relationship
among all the features. However, it’s essential to acknowledge the limita-
tions of the PCC method, as it disregards model performance variations and
overlooks non-linear relationships among variables. Consequently, reliance
on importance calculations based on the RF method is considered to be
more reliable. In this context, it is important to note that the BC (second
most importance feature given in Figure 3 (d)) pertains to the computational
methodology employed and is not completely correlated to the physical in-
terpretation of properties in Si NWs.

Upon initial examination of the performance of ML models on the dataset,
the significance of features becomes more pronounced. The RF method,
which utilizes a forest of numerous trees, is particularly adept at this task.
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One notable advantage of RF is its ability to provide feature importance,
making it an appealing tool for potential follow-up analyses, such as partial
dependence analysis between features. Additionally, the output parameter,
modulus of elasticity, has been examined using Pearson correlation analysis,
with the results displayed in Figure 3 (d). The feature importance results
obtained from the RF algorithm in this study are depicted in Figure 3 (e).
Among these features, the crystallographic orientation, ORNT, the boundary
condition definition during testing, BC, and surface state, SS, emerge as
the most crucial parameters, showcasing the highest importance within the
context of this problem. Conversely, the numerous simulations conducted
on geometric properties, including CD and AR, exhibit lower importance
when compared to the previously mentioned features. This observation is
consistent with earlier research, which emphasizes the significant impact of
surface effects and crystal orientation on the mechanical properties of Si NWs
[11, 18, 22, 28, 27, 30]. The BC and SS emerged as critical factors in this
study due to their significant influence on the elastic properties of Si NWs.
BC distinguishes between periodic and non-periodic boundary conditions,
each contributing differently to stress and elastic behavior. Similarly, the ss
parameter, which quantifies oxide thickness, provides key insights into how
surface state affects mechanical properties of Si NWs.

As depicted in Figure 4, the performance of six algorithms in predicting
the modulus of elasticity of Si NWs, as a function of the actual modulus of
elasticity obtained via MD simulations, is showcased. Given the performance
disparities among various ML models, particularly when excluding the linear
models (LR and SVR) from consideration within the scope of this study,
it becomes essential to conduct a more detailed examination of these mod-
els. To ensure robustness and prevent overfitting, a ten-fold cross-validation
approach is employed. Among these algorithms, the RF and DT models
emerge as the top performers, followed by KNN and MLP. In contrast, LR
and SVR with linear kernels exhibit the least favorable performance. Further
examination of the best-performing models involves hyperparameter tuning,
particularly for the RF model. This fine-tuning is implemented to control
the maximum depth of individual trees, mitigating the risk of overfitting,
while also governing the minimum sample leaf and minimum sample split
parameters. Through this process, the following hyperparameter values are
determined for the RF model: a maximum depth of 10, a minimum sample
leaf of 1, and a minimum sample split of 5. This optimization results in
a notable improvement, with a 0.3% reduction in RMSE, a 0.2% reduction
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Figure 4: Performance of (a) RF, (b) KNN, (c) LR, (d) DT, (¢) MLP, and (f) SVR
algorithms in predicting modulus of elasticity as a function of actual modulus of elasticity
available in the testing set. The line of references, along with their corresponding standard
deviations, is also provided for each model. The dashed red line indicates the linear
relationship between actual and predicted values, providing a clear reference for examining
their correlation.

in MAE, and a 0.2% increase in R% Similarly, a detailed analysis of hy-
perparameters for the DT model is carried out, leading to the selection of
the following values: a maximum depth of 10, a minimum sample leaf of 3,
and a minimum sample split of 5. This hyperparameter tuning results in a
0.6% reduction in RMSE, a 0.1% reduction in MAE, and a significant 0.8%
increase in R2. These findings underscore the importance of hyperparameter
tuning in optimizing the performance of ML models, particularly for decision
tree-based algorithms like RF and DT. Given this, a more thorough analysis
of the two most important features — crystallographic orientation (ORNT)
and surface state (SS) — is necessary. Section 3.3 of the paper will present
the results of such analysis based on the feature importance. In this regard,
the hyperparameters used in the ML models are listed in the Supporting
Information.

3.8. Interpretation of Results
This section is dedicated to interpreting the outcomes of the ML-based
analysis of the MD simulations conducted on Si NWs, with a particular focus
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on the areas where ML can address existing gaps in the literature. As pre-
viously discussed, the size-dependent behavior of the modulus of elasticity
remains an ongoing research challenge, lacking a definitive answer regarding
the size effect. Considering various effective parameters, crystal orientation,
dimensionality, and surface state prove to be notably challenging. One crucial
aspect of the analysis presented here is the interpretation of partial depen-
dence between the surface state and crystal orientation of Si NWs. These
two features stand out as the most impactful, disregarding the influence of
BC, which mainly mirrors computational methodology and does not directly
represent the modulus of elasticity in Si NWs. Furthermore, once ML al-
gorithms achieve a reliable level of performance, they can serve as efficient
tools for predicting the surface state and Si NW orientation, facilitating the
rapid estimation of the modulus of elasticity.

Focusing on four models, specifically the KNN, MLLP, DT, and RF, which
have demonstrated superior performance in this study, this section explores
the partial dependence of surface state on three crystal orientations of Si
NWs. These relationships are visualized in Figures 5 (a), (b), (¢), and (d),
respectively. It is noteworthy that each model exhibits a distinct trend in
prediction, influenced by the level of non-linearity, spanning across the three
crystal orientations and the provided range of surface states. For the analysis
presented in Figures 5 and 6, the temperature was consistently maintained at
300K, reflecting standard experimental conditions. This ensures that varia-
tions in the observed results are attributed to changes in surface thickness and
crystallographic orientations, while the remaining parameters vary within the
associated ranges presented in this work. Rather than identifying a single,
most successful model, the results depicted in Figure 5 offer a valuable and
prompt method for estimating the modulus of elasticity for Si NWs. In light
of the discrepancies between experimental findings and computational results
when addressing the size effect in the elastic properties of Si NWs, Figure 5
serves as an initial step towards a more informed interpretation of the elastic
response in Si NWs. It provides a promising foundation for an intelligent
roadmap towards understanding the behavior of Si NWs in terms of their
modulus of elasticity. To the best of our knowledge, such an approach has
not been reported previously. While the current study employs empirical
interatomic potentials to maintain consistency with existing literature, the
increasing significance of ML-based potentials is clear. Future research should
incorporate such advanced interatomic models to further enhance the analy-
sis of Si NWs, particularly with respect to their elastic properties, enabling a
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more comprehensive comparison concerning computational and experimental
findings.
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Figure 5: Partial dependence of elasticity between surface thickness and crystallographic
orientation of Si NWs studied using (a) KNN, (b) MLP, (¢) DT, and (d) RF models.

Given the significance of crystal orientation in Si NWs, as indicated in
prior literature and in the context of this study, the common approach for
characterizing the orientation of crystalline materials in a spatially resolved
manner is through techniques like electron backscatter diffraction (EBSD)
|62, 63, 64]. This study focuses on the utilization of inverse pole figure (IPF)
coloring to assess the influence of crystal orientation on the modulus of elas-
ticity of Si NWs. IPF offers a set of visual representations that enable the
transformation of arbitrarily scattered pole figure data, a task that involves
considerable mathematical and computational challenges. To address the
relationship between crystal orientation and the modulus of elasticity of Si
NWs, a detailed analysis based on the partial dependence calculations of four
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successful ML models is conducted, given in Figure 6. In this regard, the IPF
visualizations for the modulus of elasticity with a constant surface thickness
are presented for the KNN, MLP, DT, and RF models in Figures 6 (a), (b),
(c), and (d), respectively. The shapes displayed in these figures represent
stereographic projections of specific directions situated at the three corners,
which correspond to the directions within the Si NWs investigated here. The
various shades in the IPFs indicate varying degrees of stiffness in relation
to the different orientations of Si NWs. This analysis on the orientation-
dependent modulus of elasticity for Si NWs is carried out based on partial
dependence analysis while maintaining a constant surface thickness, enabling
the observation of variations between different ML models as different crys-
tal orientations are examined. Considering the uncertainties associated with
size dependent elastic properties of Si NWs in the literature, Figure 6 is,
to the best of our knowledge, the first representation of orientation depen-
dence within the context of elastic properties of Si NWs. In this regard,
Figure 6 demonstrates the significance of scale effect while the deviations
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between the ML models remain negligible. The contour lines in Figures 5
and 6, derived from the ML predictions, should be interpreted with caution,
particularly in areas where lines intersect. This intersection underscores the
significant uncertainty in the predicted elasticity values. For a more accurate
interpretation, comparisons should concentrate on the external regions where
predictions are more reliable.

4. Conclusion

This study effectively integrates atomistic modeling with ML techniques
to explore and predict the mechanical properties of Si NWs, particularly
their modulus of elasticity. The research utilized MD simulations to generate
a robust dataset of 2916 data points (overall dataset of 3221), revealing
the complex, non-linear mechanical behavior of Si NWs. By training ML
models on this dataset, we achieved efficient predictions of elasticity, which
facilitated the generation of detailed graphs, such as those in Figures 5 and
6. These figures illustrate the relationships between key surface state effects
and orientation of Si NWs.

Key findings include:

e Optimal Data Division: A 30% test set size was identified as optimal for
balancing model performance and prediction accuracy, reflecting the lowest
error rates observed.

e Feature Importance: RF model highlighted surface state and crystal
orientation as the most influential features in predicting elasticity. These
findings underscore the significance of these features in determining the me-
chanical response of Si NWs.

e Model Performance: Among the models evaluated, the RF, KNN, MLP
and DT models demonstrated superior performance due to their ability to
capture non-linear relationships, compared to linear models like LR and SVR.

This study demonstrates the potential of combining MD simulations with
ML to accelerate the understanding of Si NWs’ mechanical properties, pro-
viding valuable insights for future research in nanoelectromechanical systems
and nanoelectronics. While the ML models offer enhanced prediction capa-
bilities, the associated uncertainties must be considered for data analysis.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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